JP2012128535A - Reference potential generator - Google Patents

Reference potential generator Download PDF

Info

Publication number
JP2012128535A
JP2012128535A JP2010277500A JP2010277500A JP2012128535A JP 2012128535 A JP2012128535 A JP 2012128535A JP 2010277500 A JP2010277500 A JP 2010277500A JP 2010277500 A JP2010277500 A JP 2010277500A JP 2012128535 A JP2012128535 A JP 2012128535A
Authority
JP
Japan
Prior art keywords
electrodes
reference potential
generating device
electric field
potential generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010277500A
Other languages
Japanese (ja)
Inventor
Kiyoaki Takiguchi
清昭 滝口
Kenji Kono
賢司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Q FACTOR Inc
University of Tokyo NUC
Original Assignee
Q FACTOR Inc
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Q FACTOR Inc, University of Tokyo NUC filed Critical Q FACTOR Inc
Priority to JP2010277500A priority Critical patent/JP2012128535A/en
Publication of JP2012128535A publication Critical patent/JP2012128535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a reference potential generator capable of supplying stable reference potential.SOLUTION: A reference potential generator 1 comprises: m (m is an even number equal to or greater than four) electrodes 21A to 21D that are arranged around a reference position in a rotationally symmetric manner; application means for applying electrical charge whose intensity within an adjacent range including the reference position is less than a predetermined value to the m electrodes 21A to 21D; multiple conductors 31A and 31B that are arranged in the range; and amplification means 33 for amplifying a difference between signals obtained from a plurality of conductors 31A and 31B arranged in the range.

Description

本発明は基準電位生成装置に関し、接地がとれない機器において好適なものである。   The present invention relates to a reference potential generating device, which is suitable for a device that cannot be grounded.

例えば通信端末機器等といった可搬型の機器では接地がとれないため、基準電位を得ることが困難となる。この問題を解決する技術として、本発明者によって提案されたものがある(特許文献1参照)。   For example, a portable device such as a communication terminal device cannot be grounded, making it difficult to obtain a reference potential. As a technique for solving this problem, there has been proposed by the present inventor (see Patent Document 1).

この技術は、検出電極のペアとされる基準電極の周りに回転対称に例えば4つの電極を配し、これら4つの電極のうち、隣り合う電極の一方に対して信号を印加するとともに他方に対して該信号の位相が180度ずれた信号を印加する。これにより4つの電極から生じる電界における基準電極での強度が「0」又はその近傍範囲に納まる。   In this technique, for example, four electrodes are arranged rotationally symmetrically around a reference electrode which is a pair of detection electrodes, and a signal is applied to one of the four electrodes adjacent to the other, and the other is applied to the other. Then, a signal whose phase is shifted by 180 degrees is applied. As a result, the intensity at the reference electrode in the electric field generated from the four electrodes falls within “0” or in the vicinity thereof.

特開2010−085230号JP 2010-085230 A

しかしながら、外界ノイズ(外部の力の場の影響)や、電極の大きさ又は位置の誤差等の事項は完全に排除できないものであり、当該事項に起因して基準電極での強度が変動し、基準電位が不安定であった。   However, matters such as external noise (effect of external force field) and error in the size or position of the electrode cannot be completely excluded, and the intensity at the reference electrode varies due to the matter, The reference potential was unstable.

本発明は以上の点を考慮してなされたもので、安定した基準電位を提供し得る基準電位生成装置を提案しようとするものである。   The present invention has been made in consideration of the above points, and an object of the present invention is to propose a reference potential generating device capable of providing a stable reference potential.

かかる課題を解決するため本発明は、基準電位生成装置であって、基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、基準とすべき位置を含む近傍範囲での強度が所定値未満となる電荷を、m個の電極に印加する印加手段と、当該範囲に配される複数の導体と、複数の導体から得られる信号の差分を増幅する増幅手段とを備える。   In order to solve such a problem, the present invention is a reference potential generating device, which is m (m is an even number of 4 or more) electrodes arranged in a rotational symmetry around a position to be a reference, and should be a reference. Amplifying the difference between signals applied from the application means for applying to the m electrodes the electric charge whose intensity in the vicinity range including the position is less than a predetermined value, to the m electrodes, and the plurality of conductors arranged in the range. And amplifying means.

本発明では、印加手段からm個の電極に対して電荷が印加され、該電極で形成される電界によって、基準とすべき位置を含む近傍範囲での強度が所定値未満とされる。この電界が、外界における力の場の影響を受けた場合、基準とすべき位置を含む近傍範囲では電位変動が生じる。   In the present invention, charges are applied to the m electrodes from the applying means, and the intensity in the vicinity including the position to be the reference is less than a predetermined value by the electric field formed by the electrodes. When this electric field is affected by a force field in the external environment, a potential fluctuation occurs in a vicinity range including a position to be a reference.

しかしながら本発明では、基準とすべき位置を含む近傍範囲に配される導体から得られる信号の差分が増幅されるため、m個の電極で形成される電界に対する外界の力の影響は相殺される。   However, in the present invention, since the difference between signals obtained from conductors arranged in the vicinity including the position to be used as a reference is amplified, the influence of external force on the electric field formed by the m electrodes is canceled out. .

また、基準とすべき位置を含む近傍範囲に配される複数の導体は、m個の電極で囲まれる範囲の内部であるため、電極に対して外部との直接的な結合が、該電極で形成される電界によって回避される。   In addition, since the plurality of conductors arranged in the vicinity range including the position to be the reference is within the range surrounded by the m electrodes, direct coupling to the outside with respect to the electrode is caused by the electrode. Avoided by the electric field formed.

したがって本発明では、増幅手段での増幅結果を、基準電位とすべき信号として安定した状態で供給することが可能となる。なお、基準電位が安定化するということは、精密な値が要求されるセンシング分野等の分野では特に有用となる。   Therefore, according to the present invention, it is possible to supply the amplification result of the amplification means in a stable state as a signal to be set as the reference potential. Note that stabilization of the reference potential is particularly useful in fields such as the sensing field where precise values are required.

距離に応じた各電界の相対的な強度変化(1[MHz])を示すグラフである。It is a graph which shows the relative intensity change (1 [MHz]) of each electric field according to distance. 距離に応じた各電界の相対的な強度変化(10[MHz])を示すグラフである。It is a graph which shows the relative intensity | strength change (10 [MHz]) of each electric field according to distance. 基準電位生成装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of a reference electric potential production | generation apparatus. 電極位置と当該電極に与えられる電荷との関係を概略的に示す図である。It is a figure which shows roughly the relationship between an electrode position and the electric charge given to the said electrode. シミュレーションに基づく電界・電位分布(1)を示す図である。It is a figure which shows the electric field and electric potential distribution (1) based on simulation. シミュレーションに基づく電界・電位分布(2)を示す図である。It is a figure which shows the electric field and electric potential distribution (2) based on simulation. 測定位置と測定位置での出力波形を示す図である。It is a figure which shows the output waveform in a measurement position and a measurement position. 測定実験における基準電位生成装置の構成を示す図である。It is a figure which shows the structure of the reference electric potential production | generation apparatus in a measurement experiment. 測定対象として良好となる領域の説明に供する図である。It is a figure where it uses for description of the area | region which becomes favorable as a measuring object. 他の実施の形態における電極位置と当該電極に与えられる電荷との関係(1)を概略的に示す図である。It is a figure which shows roughly the relationship (1) of the electrode position in other embodiment and the electric charge given to the said electrode. 各電極構造での基準電極の距離と電位との関係を示すグラフである。It is a graph which shows the relationship between the distance of the reference electrode in each electrode structure, and an electric potential. 他の実施の形態における電極位置と当該電極に与えられる電荷との関係(2)を概略的に示す図である。It is a figure which shows schematically the relationship (2) of the electrode position in another embodiment and the electric charge given to the said electrode. 他の実施の形態における基準電位出力部の構成を示す図である。It is a figure which shows the structure of the reference electric potential output part in other embodiment.

(1)電界通信
本発明を実施するための形態を説明する前に、まずは、電界方式の通信について各種観点から説明する。
(1) Electric field communication Before describing a mode for carrying out the present invention, first, electric field type communication will be described from various viewpoints.

[1−1.電界の分類]
電界発生源となる微小ダイポールからの距離をrとし、その距離rを隔てた位置をPとした場合、当該位置Pでの電界強度Eは、マックスウェル方程式より、次式
のように曲座標(r,θ,δ)として表すことができる。
[1-1. Classification of electric field]
When r is a distance from a minute dipole serving as an electric field generation source and P is a position separated from the distance r, the electric field intensity E at the position P is expressed by the following equation from the Maxwell equation.
It can be expressed as a music coordinate (r, θ, δ).

ちなみに、(1)式における「Q」は、電荷(単位はクーロン)であり、「l」は、電荷間の距離(但し、微小ダイポールの定義より、「l」は「r」に比して小さい)であり、「π」は、円周率、「ε」は、微小ダイポールを含む空間の誘電率、「j」は、虚数単位、「k」は、波数である。   Incidentally, “Q” in the equation (1) is a charge (unit is coulomb), and “l” is a distance between charges (however, “l” is compared with “r” by definition of a minute dipole. “Π” is a circular constant, “ε” is a dielectric constant of a space including a minute dipole, “j” is an imaginary unit, and “k” is a wave number.

かかる(1)式を展開すると、次式
となる。
When this equation (1) is expanded,
It becomes.

この(2)式からも分かるように、電界E及びEΘは、電界発生源からの距離に線形に反比例する放射電界(EΘの第3項)と、電界発生源からの距離の2乗に反比例する誘導電磁界(E、EΘの第2項)と、電界発生源からの距離の3乗に反比例する準静電界(E、EΘの第1項)との合成電界として発生する。 As can be seen from the equation (2), the electric fields E r and E Θ are the radiated electric field linearly inversely proportional to the distance from the electric field generation source (the third term of E Θ ) and the distance 2 from the electric field generation source. A combined electric field of an induction electromagnetic field (second term of E r , E Θ ) inversely proportional to the power and a quasi-electrostatic field (first term of E r , E Θ ) inversely proportional to the third power of the distance from the electric field source Occurs as.

このように電界は、距離との関係では、放射電界、誘導電磁界及び準静電界に分類することができる。   Thus, the electric field can be classified into a radiation electric field, an induction electromagnetic field, and a quasi-electrostatic field in relation to the distance.

[1−2.電界の分解能]
ここで、電界発生源からの距離によって電界強度が変化する割合を、放射電界、誘導電磁界、準静電界で比較する。
[1-2. Electric field resolution]
Here, the ratio of the change in electric field strength depending on the distance from the electric field generation source is compared between the radiation electric field, the induction electromagnetic field, and the quasi-electrostatic field.

(2)式における電界EΘのうち、放射電界に関する第3項を距離rで微分すると、次式
のように表すことができる。
Of the electric field E Θ in the equation (2), the third term relating to the radiation electric field is differentiated by the distance r.
It can be expressed as

また(2)式における電界EΘのうち、誘導電磁界に関する第2項を距離rで微分すると、次式
のように表すことができる。
Further, when the second term relating to the induction electromagnetic field in the electric field E Θ in the equation (2) is differentiated by the distance r, the following equation is obtained.
It can be expressed as

さらに(2)式における電界EΘのうち、準静電界に関する第1項を距離rで微分すると、次式
のように表すことができる。
Further, when the first term relating to the quasi-electrostatic field is differentiated by the distance r in the electric field E Θ in the equation (2), the following equation is obtained.
It can be expressed as

なお、(3)乃至(5)式の「T」は、単純化するために(2)式の一部分を次式
のように置き換えている。
Note that “T” in the equations (3) to (5) is a part of the equation (2) for the sake of simplicity.
It is replaced as follows.

これら(3)乃至(5)式からも明らかなように、距離によって電界強度が変化する割合は準静電界に関する成分が最も大きい。つまり、準静電界は距離に対して高い分解能があるといえる。   As is clear from these formulas (3) to (5), the ratio of the change in the electric field strength depending on the distance is the largest component relating to the quasi-electrostatic field. That is, it can be said that the quasi-electrostatic field has a high resolution with respect to the distance.

[1−3.電界強度と周波数との関係]
ここで、これら放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係を図1に示す。図1は、1[MHz]における各電界それぞれの相対的な強度と距離との関係を指数で示すものである。
[1-3. Relationship between electric field strength and frequency]
Here, the relationship between the relative intensity of each of the radiation electric field, the induction electromagnetic field and the quasi-electrostatic field and the distance is shown in FIG. FIG. 1 shows the relationship between the relative strength and distance of each electric field at 1 [MHz] as an index.

この図1からも明らかなように、放射電界、誘導電磁界及び準静電界それぞれの相対的な強度が等しくなる距離(以下、これを強度境界距離と呼ぶ)が存在する。この強度境界距離よりも遠方の空間では放射電界が優位(誘導電磁界や準静電界の強度よりも大きい状態)となる。これに対して強度境界距離よりも近方の空間では準静電界が優位(放射電界や誘導電磁界の強度よりも大きい状態)となる。   As is clear from FIG. 1, there is a distance (hereinafter referred to as an intensity boundary distance) in which the relative intensities of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field are equal. In a space far from the intensity boundary distance, the radiated electric field is dominant (a state larger than the intensity of the induction electromagnetic field or the quasi-electrostatic field). On the other hand, the quasi-electrostatic field is dominant (a state larger than the intensity of the radiated electric field and the induced electromagnetic field) in a space closer to the intensity boundary distance.

この強度境界距離は、(2)式における電界EΘの各項(EΘ1、EΘ2、EΘ3)に対応する電界の各成分、すなわち次式
が一致する(EΘ1=EΘ2=EΘ3)ということであるから、次式
を充足する場合、つまり、次式
として表すことができる。
This intensity boundary distance is the component of the electric field corresponding to each term (E Θ1 , E Θ2 , E Θ3 ) of the electric field E Θ in equation (2), that is, the following equation:
(E Θ1 = E Θ2 = E Θ3 )
That is, that is,
Can be expressed as

この(9)式における波数kは、光速をc(c=3 ×108[m/s] )とし、周波数をf[Hz]とすると次式
として表すことができる。
The wave number k in the equation (9) is expressed as follows when the speed of light is c (c = 3 × 10 8 [m / s]) and the frequency is f [Hz].
Can be expressed as

したがって強度境界距離は(9)式と(10)式を整理し、次式
となる。
Therefore, the intensity boundary distance is arranged by formulas (9) and (10).
It becomes.

この(11)式からも分かるように、放射電界及び誘導電磁界に比して強度の大きい状態にある準静電界の空間(以下、これを準静電界優位空間と呼ぶ)を広くする場合には周波数が密接に関係している。   As can be seen from equation (11), when the space of the quasi-electrostatic field that is stronger than the radiated electric field and the induction electromagnetic field (hereinafter referred to as the quasi-electrostatic field dominant space) is widened. Are closely related in frequency.

具体的には、低い周波数であるほど、準静電界優位空間が大きくなる(即ち、図1に示した強度境界距離は、周波数が低いほど長くなる(右に移ることになる))。これに対して高い周波数であるほど、準静電界優位空間が狭くなる(即ち、図1に示した強度境界距離は、周波数が高いほど短くなる(左に移ることになる))。   Specifically, the lower the frequency, the larger the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes longer as the frequency is lower (moves to the right)). On the other hand, the higher the frequency, the narrower the quasi-electrostatic field dominant space (that is, the intensity boundary distance shown in FIG. 1 becomes shorter as the frequency becomes higher (shifts to the left)).

例えば10[MHz]を選定した場合、上述の(11)式により、4.775[m]よりも近方では準静電界が優位な空間となる。かかる10[MHz]を選定した場合に放射電界、誘導電磁界及び準静電界それぞれの相対的な強度と、距離との関係をグラフ化すると図2に示す結果となる。   For example, when 10 [MHz] is selected, the quasi-electrostatic field becomes a space nearer than 4.775 [m] according to the above equation (11). When such 10 [MHz] is selected, the relationship between the relative intensity of each of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field and the distance is graphed, and the result shown in FIG.

この図2からも明らかなように、電界発生源から0.01[m]地点の準静電界の強度は、誘導電磁界に比しておよそ18.2[dB]大きくなる。従ってこの場合の準静電界は、誘導電磁界及び放射電界の影響がないものとみなすことができる。つまり、放射電界や誘導電磁界には磁界が発生するため、該放射電界や誘導電磁界では電流が分布するが、この分布に起因する副次的な電界との干渉の程度が小さい。   As apparent from FIG. 2, the intensity of the quasi-electrostatic field at a point of 0.01 [m] from the electric field generation source is about 18.2 [dB] larger than that of the induction electromagnetic field. Therefore, the quasi-electrostatic field in this case can be regarded as having no influence of the induction electromagnetic field and the radiation electric field. That is, since a magnetic field is generated in the radiated electric field and the induction electromagnetic field, a current is distributed in the radiated electric field and the induction electromagnetic field, but the degree of interference with a secondary electric field due to this distribution is small.

このように準静電界は、低い周波数帯を選定するほど、電界発生源からより広い空間において、誘導電磁界及び放射電界に比して優位となる関係にあり、副次的な電界との干渉の程度が小さいものとなる。   As described above, the quasi-electrostatic field has a relationship superior to the induction electromagnetic field and the radiated electric field in a wider space from the electric field generation source as the lower frequency band is selected. The degree of is small.

(2)本発明を実施するための形態
[2−1.基準電位生成装置の構成]
図3において、携帯電話機等の可搬型の電子機器あるいは車等の車両に代表されるように、明示的な基準電位を確保し難いとされる装置に搭載すべき基準電位生成装置1の構成を示す。この基準電位生成装置1は、回路電源部10、特異領域形成部20、基準電位出力部30及び遮蔽部40を含む構成とされる。
(2) Mode for carrying out the present invention [2-1. Configuration of reference potential generator]
In FIG. 3, the configuration of a reference potential generating device 1 to be mounted on a device in which it is difficult to secure an explicit reference potential, as represented by a portable electronic device such as a mobile phone or a vehicle such as a car. Show. The reference potential generating apparatus 1 includes a circuit power supply unit 10, a singular region forming unit 20, a reference potential output unit 30, and a shielding unit 40.

回路電源部10は、基準電位生成装置1が搭載される装置のバッテリー等の電源を用いて基準電位生成装置1を駆動するための電源電圧を生成し、これを特異領域形成部20及び基準電位出力部30に与える。   The circuit power supply unit 10 generates a power supply voltage for driving the reference potential generation device 1 using a power source such as a battery of a device in which the reference potential generation device 1 is mounted, and uses the power supply voltage to generate the singular region forming unit 20 and the reference potential. This is given to the output unit 30.

特異領域形成部20は、4つの電極21A〜21D、信号発振源22及び出力調整部23を有する。   The singular region forming unit 20 includes four electrodes 21 </ b> A to 21 </ b> D, a signal oscillation source 22, and an output adjusting unit 23.

電極21A〜21Dは同形同大でなり、基準とすべき位置を重心とする正方形の各頂点となる位置に配される。信号発振源22は、回路電源部10から与えられる駆動電圧に基づいて正弦波信号を発振する。   The electrodes 21 </ b> A to 21 </ b> D have the same shape and the same size, and are arranged at positions that are the vertices of a square whose center of gravity is a position to be a reference. The signal oscillation source 22 oscillates a sine wave signal based on the drive voltage supplied from the circuit power supply unit 10.

出力調整部23は、信号発振源22から発振される正弦波信号の周波数及び振幅を、操作部を介して入力された設定値に必要に応じて調整し、当該正弦波信号を、正方形の各頂点となる位置に配される電極21A〜21Dのうち、一方の対角線上に配される電極21A,21Cに出力する。   The output adjustment unit 23 adjusts the frequency and amplitude of the sine wave signal oscillated from the signal oscillation source 22 as necessary according to the setting value input via the operation unit, and the sine wave signal is adjusted to each square. Of the electrodes 21A to 21D arranged at the apex positions, the signals are output to the electrodes 21A and 21C arranged on one diagonal line.

また出力調整部23は、他方の対角線上に配される電極21B,21Dに対して、電極21A,21Cに出力される正弦波信号と同じ周波数及び振幅で位相が180°異なる信号(以下、これを逆波信号とも呼ぶ)を出力する。   In addition, the output adjusting unit 23 is a signal (hereinafter referred to as “this”) that is different from the electrodes 21B and 21D arranged on the other diagonal by 180 ° in phase and the same frequency and amplitude as the sine wave signals output to the electrodes 21A and 21C. Are also called reverse wave signals).

4つの電極21A〜21Dに印加される正弦波信号の振幅は同じ値とされ、該正弦波信号の周波数は、上述の(11)式に基づく「r<c/2πf」を充足する周波数とされる。具体的には、電極21A〜21Dの重心位置と、該電極21A〜21Dの配置位置との間の距離などを考慮して、ハムノイズの周波数帯域(50〜60[Hz]程度)等のノイズフロアとの差が明確となる周波数が選定される。   The amplitudes of the sine wave signals applied to the four electrodes 21A to 21D are set to the same value, and the frequency of the sine wave signals is a frequency satisfying “r <c / 2πf” based on the above-described equation (11). The Specifically, considering the distance between the center of gravity of the electrodes 21A to 21D and the arrangement position of the electrodes 21A to 21D, the noise floor such as the frequency band of hum noise (about 50 to 60 [Hz]) A frequency is selected that makes the difference between and clear.

したがって、電極21A〜21Dに対して出力調整部23から正弦波信号が印加された場合、該電極21A〜21Dから発生する放射電界、誘導電磁界及び準静電界の合成電界は、準静電界優位空間として形成される。ちなみに準静電界優位空間は、上述したように、放射電界及び誘導電磁界に比して強度が大きい状態にある準静電界の空間である。   Therefore, when a sine wave signal is applied from the output adjustment unit 23 to the electrodes 21A to 21D, the combined electric field of the radiated electric field, the induction electromagnetic field, and the quasi-electrostatic field generated from the electrodes 21A to 21D has a quasi-electrostatic field advantage. It is formed as a space. Incidentally, the quasi-electrostatic field dominant space is a quasi-electrostatic field space in which the strength is higher than that of the radiation electric field and the induction electromagnetic field, as described above.

また電極21A〜21Dには、隣り合う電極での極性が反転する同レベルの電荷が与えられるため、当該電荷により生じる電界は相互に打ち消しあう。したがって、図4に示すように、電極21A〜21Dに形成される電界の強度はZ軸(破線で示す)では時間経過にかかわらず0[V/m]又はそれに近い値となる。以下、電界が打ち消しあってその強度が、0[V/m]とみなすものとして許容し得る値未満となる領域を特異領域と呼ぶこととする。   Further, since the electrodes 21A to 21D are given the same level of charge that reverses the polarity of the adjacent electrodes, the electric fields generated by the charges cancel each other. Therefore, as shown in FIG. 4, the intensity of the electric field formed on the electrodes 21 </ b> A to 21 </ b> D is 0 [V / m] or a value close to it on the Z axis (shown by a broken line) regardless of the passage of time. Hereinafter, a region in which the electric field cancels and its intensity is less than an allowable value that can be regarded as 0 [V / m] is referred to as a singular region.

ここで、図4に示す点電荷により生じる電界を重ねあわせたx−y平面での電界を計算してマッピングしたものを図5及び図6に示す。   Here, FIG. 5 and FIG. 6 show the mapping of the electric field in the xy plane obtained by superimposing the electric fields generated by the point charges shown in FIG.

図5(A)は電界E[V/m]を対数尺度で示し、図5(B)は電界E[V/m]を線形尺度(リニアスケール)で示している。図5(C)は、図5(A)及び図5(B)の電界分布に対応する電位分布である。また図6(A),(B),(C)は、それぞれ、図5(A),(B),(C)における特異領域を拡大したものである。なお、図5及び図6では、電荷Qは1[C]とし、点電荷間の距離は0.01[m]とした。   FIG. 5A shows the electric field E [V / m] on a logarithmic scale, and FIG. 5B shows the electric field E [V / m] on a linear scale. FIG. 5C shows a potential distribution corresponding to the electric field distributions of FIGS. 5A and 5B. FIGS. 6A, 6B, and 6C are enlarged views of the singular regions in FIGS. 5A, 5B, and 5C, respectively. 5 and 6, the charge Q is 1 [C], and the distance between point charges is 0.01 [m].

図5及び図6に示されるとおり、x−y平面に存在する電極21A〜21Dの重心位置及びその近傍は特異領域となっていることが分かる。   As shown in FIGS. 5 and 6, it can be seen that the positions of the centers of gravity of the electrodes 21 </ b> A to 21 </ b> D existing in the xy plane and the vicinity thereof are singular regions.

また図5及び図6からも分かるように、電極21A〜21Dでの電界強度は急峻に減衰する。具体的には2の累乗数(電極個数)+1で減衰する。つまり、電極21A〜21Dから生じる電界の範囲はごく近傍に限局した状態にある。   Further, as can be seen from FIGS. 5 and 6, the electric field strength at the electrodes 21A to 21D attenuates steeply. Specifically, it attenuates by a power of 2 (number of electrodes) +1. That is, the range of the electric field generated from the electrodes 21A to 21D is in a very limited state.

このことは、電極21A〜21Dに対する外部の結合範囲がごく近傍に限局されるということを意味する。したがって、この基準電位生成装置1を搭載すべき装置に含まれる他の部品と電極21A〜21Dとの結合が低減され、該電極21A〜21Dにおける重心(特異領域)での電位の変動は大幅に抑制されることとなる。また、この基準電位生成装置1を搭載すべき装置に対して、該基準電位生成装置1を配すべきスペースの制約が緩和されることにもなる。   This means that the external coupling range for the electrodes 21A to 21D is limited to the very vicinity. Therefore, the coupling between the electrodes 21A to 21D and the other components included in the device on which the reference potential generating device 1 is to be mounted is reduced, and the potential variation at the center of gravity (singular region) of the electrodes 21A to 21D is greatly increased. It will be suppressed. Further, the restriction on the space in which the reference potential generating device 1 is to be arranged is relaxed for the device on which the reference potential generating device 1 is to be mounted.

別の実験として、4つの電極21A〜21Dに囲まれる範囲での電位を測定した結果を図7に示す。図7(A)は測定位置を示すものであり、図7(B)は測定位置での測定結果を示すもので、縦軸は5[mv/div]であり横軸は500[ns/div]である。   As another experiment, the result of measuring the potential in the range surrounded by the four electrodes 21A to 21D is shown in FIG. 7A shows the measurement position, FIG. 7B shows the measurement result at the measurement position, the vertical axis is 5 [mv / div], and the horizontal axis is 500 [ns / div. ].

この図7に示す測定では、図8に示すように、5[mm]のアクリル板がスペーサとしてシールド板上に配置され、該アクリル板の一面に電極21A〜21Dが配置された。電極21A〜21Dに対して印加した正弦波信号又は逆波信号の周波数は1[MHz]とされ、振幅は1[V]とされた。なお、電界検出センサーは、図7(A)に示す各測定位置に配された。   In the measurement shown in FIG. 7, as shown in FIG. 8, an acrylic plate of 5 [mm] was arranged on the shield plate as a spacer, and electrodes 21A to 21D were arranged on one surface of the acrylic plate. The frequency of the sine wave signal or reverse wave signal applied to the electrodes 21A to 21D was 1 [MHz], and the amplitude was 1 [V]. In addition, the electric field detection sensor was distribute | arranged to each measurement position shown to FIG. 7 (A).

図7に示す測定結果から分かるように、電極21A,21B,21C又は21Dの重心(D点)から、該電極21A〜21Dの重心(A点)に近づくにしたがって検出レベルは小さくなり、直流成分に近くなっている。   As can be seen from the measurement results shown in FIG. 7, the detection level decreases from the center of gravity (point D) of the electrode 21A, 21B, 21C or 21D toward the center of gravity (point A) of the electrodes 21A to 21D, and the direct current component It is close to.

この結果から、図9に示すように、隣り合う電極21Aと21B、21Bと21C、21Cと21D、21Dと21Aの間の領域と、各電極21A〜21Dに囲まれる領域とが、特異領域として好ましい範囲となる。   From this result, as shown in FIG. 9, the regions between the adjacent electrodes 21A and 21B, 21B and 21C, 21C and 21D, 21D and 21A, and the region surrounded by the electrodes 21A to 21D are defined as specific regions. This is a preferred range.

より好ましい範囲は、基準とすべき位置を重心として各頂点に配される電極21A〜21Dによって形成される正方形の対称軸のうち、長方形2つに分ける線分(図9におけるA点を基準とするX軸,Y軸)又はその近傍の範囲(太枠で囲まれる十字状の範囲)となる。   A more preferable range is a line segment divided into two rectangles (with reference to the point A in FIG. 9 as a reference) among the square symmetry axes formed by the electrodes 21A to 21D arranged at the vertices with the position to be a reference as the center of gravity. X-axis, Y-axis) or a range in the vicinity thereof (a cross-shaped range surrounded by a thick frame).

このように特異領域形成部20は、正方形の各頂点となる位置に配される電極21A〜21Dの隣り合う位置で逆極性かつ同レベルとなる電荷を与えることによって、当該電極21A〜21Dの重心位置とその近傍をおおよそ0[V]の領域(特異領域)として形成する。   As described above, the singular region forming unit 20 gives the charges having the opposite polarity and the same level at the positions adjacent to the electrodes 21A to 21D arranged at the positions of the respective vertices of the square, whereby the gravity centers of the electrodes 21A to 21D The position and its vicinity are formed as a region of 0 [V] (singular region).

基準電位出力部30は、特異領域での電位を検出するための導体(以下、これを検出電極とも呼ぶ)31A,31B、FET(Field Effect Transistor)32A,32B及び差動アンプ33を有する。   The reference potential output unit 30 includes conductors (hereinafter also referred to as detection electrodes) 31A and 31B, FETs (Field Effect Transistors) 32A and 32B, and a differential amplifier 33 for detecting a potential in a specific region.

検出電極31A,31Bは同形同大でなり、特異領域となる位置に配される。この実施の形態における検出電極31A,31Bの配置位置は、4つの電極21A〜21Dの重心を基準として点対称とされる。   The detection electrodes 31A and 31B have the same shape and the same size, and are arranged at positions that are specific regions. The arrangement positions of the detection electrodes 31A and 31B in this embodiment are point-symmetric with respect to the center of gravity of the four electrodes 21A to 21D.

FET32A,32Bのゲートは検出電極31A,31Bに接続される。またFET32A,32Bのドレインは差動アンプ33に接続され、ソースはグランドとすべき部位に接続される。   The gates of the FETs 32A and 32B are connected to the detection electrodes 31A and 31B. The drains of the FETs 32A and 32B are connected to the differential amplifier 33, and the sources are connected to a portion to be grounded.

検出電極31A,31Bに電位変動が生じた場合、該電位変動は、FET32A,32Bにおけるドレイン−ソース間での電流変動としてそれぞれ検知され、これら検知結果の差分が差動アンプ33において増幅される。   When potential fluctuations occur in the detection electrodes 31A and 31B, the potential fluctuations are detected as current fluctuations between the drain and source in the FETs 32A and 32B, respectively, and the difference between these detection results is amplified in the differential amplifier 33.

したがって、電極21A〜21Dで形成される電界に対する外界における力の場の影響は打ち消され、この結果、差動アンプ33の出力の変動は抑制され、直流状態又はそれに近い状態となる。   Therefore, the influence of the force field in the external field on the electric field formed by the electrodes 21A to 21D is canceled, and as a result, the fluctuation of the output of the differential amplifier 33 is suppressed, and the DC state or a state close thereto is obtained.

このように基準電位出力部30は、特異領域に配される検出電極31A,31Bから得られる信号の差分を基準電位の信号として出力することによって、該信号を0[V/m]とみなすものとして許容し得る値以下に保持する。   In this way, the reference potential output unit 30 regards the signal as 0 [V / m] by outputting the difference between the signals obtained from the detection electrodes 31A and 31B arranged in the singular region as a reference potential signal. Is kept below an acceptable value.

なお、基準電位出力部30を設けたことによって、特異領域で生じるドリフトをおおむね0[V/m]にできたことが本発明者らの実験により確認されている。   In addition, it has been confirmed by experiments of the present inventors that the drift generated in the singular region can be made almost 0 [V / m] by providing the reference potential output unit 30.

遮蔽部40は、回路電源部10、特異領域形成部20及び基準電位出力部30を収める導電性の箱体でなり、各部10,20,30に対する外部における力の場の影響を遮蔽する。この遮蔽部40は、回路電源部10、特異領域形成部20及び基準電位出力部30に共通の接地対象とされる。   The shielding unit 40 is a conductive box that houses the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30, and shields the influence of an external force field on each unit 10, 20, 30. The shielding unit 40 is a common ground target for the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30.

この実施の形態の場合、遮蔽部40の内部では、該遮蔽部40によって囲まれる空間を2つの空間に仕切る導電性の板(以下、これを遮蔽板とも呼ぶ)41が設けられる。遮蔽板41を境界とする一方の空間には電極21A〜21D及び検出電極31A,31Bが設けられ、他方の空間には回路電源部10、信号発振源22、出力調整部23、FET32A,32B及び差動アンプ33が設けられる。   In the case of this embodiment, a conductive plate (hereinafter also referred to as a shielding plate) 41 that partitions a space surrounded by the shielding portion 40 into two spaces is provided inside the shielding portion 40. The electrodes 21A to 21D and the detection electrodes 31A and 31B are provided in one space with the shielding plate 41 as a boundary, and the circuit power supply unit 10, the signal oscillation source 22, the output adjustment unit 23, the FETs 32A and 32B, and the other space A differential amplifier 33 is provided.

したがってこの遮蔽部40では、特異領域に対して、基準電位生成装置1内の電子部品から生じる輻射ノイズ等の影響が遮蔽板41によって大幅に低減される。この結果、特異領域に配される検出電極31A,31Bから信号の差分として得られる電位の変動は、遮蔽板41を設けない場合に比べて大幅に抑制される。   Therefore, in this shielding part 40, the influence of the radiation noise etc. which arise from the electronic component in the reference electric potential generator 1 with respect to a specific area | region is reduced significantly by the shielding board 41. FIG. As a result, the potential fluctuation obtained as the difference between the signals from the detection electrodes 31A and 31B arranged in the specific region is significantly suppressed as compared with the case where the shielding plate 41 is not provided.

またこの遮蔽部40では、例えばアクリル板等の絶縁性のスペーサ(以下、これを絶縁スペーサとも呼ぶ)42を用いて、遮蔽部40の内壁から準静電界優位空間を形成すべき距離よりも大きい距離を隔てて電極21A〜21Dが配される。   Further, in this shielding part 40, for example, an insulating spacer such as an acrylic plate (hereinafter also referred to as an insulating spacer) 42 is used, and is larger than the distance from which the quasi-electrostatic field dominant space should be formed from the inner wall of the shielding part 40. Electrodes 21A to 21D are arranged at a distance.

したがって、遮蔽部40の外部における他の部品と電極21A〜21Dとの結合が、絶縁スペーサ42を用いない場合に比べて大幅に低減され、特異領域に配される検出電極31A,31Bから信号の差分として得られる電位の変動は大幅に抑制される。   Therefore, the coupling between the other parts outside the shielding part 40 and the electrodes 21A to 21D is greatly reduced as compared with the case where the insulating spacer 42 is not used, and the signals from the detection electrodes 31A and 31B arranged in the singular region are transmitted. The fluctuation of the potential obtained as the difference is greatly suppressed.

(3)他の実施の形態
上述の実施の形態では、基準とすべき位置を重心とする正方形の各頂点の関係となる位置に配される電極21A〜21Dに対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(平面4極構造)が採用された。しかしながら電極構造はこの実施の形態に限定されるものではない。
(3) Other Embodiments In the above-described embodiments, the adjacent polarities are reversed with respect to the electrodes 21A to 21D arranged at the positions corresponding to the vertices of the squares whose center of gravity is the position to be the reference. An electrode structure (planar quadrupole structure) that gives a signal of the same level as the relationship is adopted. However, the electrode structure is not limited to this embodiment.

例えば、基準とすべき位置を重心とする正2n(nは2以上の偶数)角形の各頂点の関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(すなわち平面2n極構造)が適用可能である。   For example, the same level where the adjacent polarities are inverted with respect to the electrodes arranged at the positions corresponding to the vertices of the positive 2n (n is an even number of 2 or more) square with the position to be the reference as the center of gravity. It is possible to apply an electrode structure (that is, a planar 2n-pole structure) that gives the above signal.

ここで、平面6極構造(n=3)及び平面8極構造(n=4)における電極位置と、当該電極に与えられる電荷との関係を図10に示す。また平面4極構造(n=2)、平面6極構造及び平面8極構造での特異領域(基準電極が配される正2n角形の重心)からの距離と、電位との関係を図11に示す。   Here, FIG. 10 shows the relationship between the electrode position in the planar hexapole structure (n = 3) and the planar octupole structure (n = 4) and the charge applied to the electrode. FIG. 11 shows the relationship between the distance from the singular region (the center of gravity of a regular 2n square on which the reference electrode is arranged) and the potential in the planar quadrupole structure (n = 2), the planar hexapole structure, and the planar octapole structure. Show.

図11からも分かるように、平面2n極構造ではnが大きい電極構造となるほど、正2n角形の重心近傍での電位の減衰の程度が大きくなる。これは、正2n角形の重心から各頂点までの距離が一定であれば、nが大きくなるほど、隣り合う電荷間の距離(すなわち多角形の辺の長さ)が小さくなり、当該電極から生じる電界が打ち消しあう効率が向上することによる。したがって、平面2n極構造としてnが大きい電極構造が採用されるほど、特異領域における電位の変動を抑制する程度を大きくすることができる。   As can be seen from FIG. 11, in the planar 2n-pole structure, as the electrode structure increases, the degree of potential attenuation near the center of gravity of the regular 2n square increases. This is because if the distance from the center of gravity of the regular 2n square to each vertex is constant, the distance between adjacent charges (that is, the length of the side of the polygon) decreases as n increases, and the electric field generated from the electrode. This is because the efficiency of canceling out is improved. Therefore, as the electrode structure having a large n is adopted as the planar 2n-pole structure, the degree of suppressing the potential fluctuation in the specific region can be increased.

また例えば、基準とすべき位置を重心とする正4面体以外の正多面体、もしくは、全ての面の形状が2n角形となる準正多面体の各頂点の関係となる位置に配される電極に対して、隣り合う極性が反転する関係となる同レベルの信号を与える電極構造(すなわち立体多極構造)が適用可能である。なお、立体8極構造(正6面体)、立体14極構造(切頂8面体)における電極位置と、当該電極に与えられる電荷との関係を図12に示す。   In addition, for example, for an electrode arranged at a position corresponding to each vertex of a regular polyhedron other than a regular tetrahedron whose center of gravity is a position to be a reference, or a quasi-regular polyhedron in which the shape of all surfaces is a 2n square Thus, an electrode structure (that is, a three-dimensional multipolar structure) that provides a signal of the same level that is a relationship in which adjacent polarities are inverted can be applied. FIG. 12 shows the relationship between the electrode position and the charge applied to the electrode in a three-dimensional octapole structure (regular hexahedron) and a three-dimensional 14-pole structure (truncated octahedron).

なお、電極構造は上述した以外であってもよい。要するに、基準とすべき位置の周りに回転対称なm個(mは4以上の偶数)の電極に対して、隣り合う電極での極性が正対する関係となる同レベルの電荷が与えられる電極構造であればよい。なお、この多極構造自体の詳細等については本発明者が既に提案している特願2007−56954も参照されたい。   The electrode structure may be other than those described above. In short, an electrode structure in which the same level of charge is applied so that the polarities of adjacent electrodes are directly opposed to m (m is an even number of 4 or more) electrodes that are rotationally symmetric around a position to be a reference. If it is. Refer to Japanese Patent Application No. 2007-56954 already proposed by the present inventor for details of the multipolar structure itself.

上述の実施の形態では、電極21A〜21Dに対して交番信号が印加されたが、直流信号であってもよい。要するに、隣り合う電極に対して、該電極での極性が正対する同レベルの電荷が印加されればよい。   In the above-described embodiment, the alternating signal is applied to the electrodes 21A to 21D, but a DC signal may be used. In short, it is only necessary to apply the same level of charge with the opposite polarity to the adjacent electrodes.

上述の実施の形態では、検出電極31A,31Bの配置位置が、4つの電極21A〜21Dの重心を基準として点対称とされた。しかしながら、検出電極31A,31Bの配置位置は対称関係になくてもよい。要するに、特異領域に、検出電極31A,31Bが配置されていればよい。   In the above-described embodiment, the arrangement positions of the detection electrodes 31A and 31B are point-symmetric with respect to the center of gravity of the four electrodes 21A to 21D. However, the arrangement positions of the detection electrodes 31A and 31B may not be symmetrical. In short, the detection electrodes 31A and 31B only have to be arranged in the specific region.

上述の実施の形態では、2つに検出電極31A,31Bが特異領域に配された。しかしながら特異領域に配すべき検出電極31A,31Bの数は2つに限るものではない。例えば、特異領域に対して4つの検出電極を配する形態が適用可能である。   In the above-described embodiment, two detection electrodes 31A and 31B are arranged in the specific region. However, the number of detection electrodes 31A and 31B to be arranged in the specific region is not limited to two. For example, a form in which four detection electrodes are arranged for a specific region can be applied.

この形態では、図13に示すように、検出電極51A,51B、52A,52Bは同形同大とされ、該検出電極51A,51B、52A,52Bの配置位置は、4つの電極21A〜21Dの重心を基準として点対称とされる。また検出電極51A,51B、52A,52Bの配置位置は、検出電極51A,51Bの重心を結ぶ線分と、検出電極52A,52Bの重心を結ぶ線分とが直交する状態とされ、当該線分は同じ長さとされる。   In this embodiment, as shown in FIG. 13, the detection electrodes 51A, 51B, 52A, and 52B have the same shape and size, and the arrangement positions of the detection electrodes 51A, 51B, 52A, and 52B are the positions of the four electrodes 21A to 21D. It is point-symmetric with respect to the center of gravity. The arrangement positions of the detection electrodes 51A, 51B, 52A, and 52B are such that a line segment that connects the centroids of the detection electrodes 51A and 51B and a line segment that connects the centroids of the detection electrodes 52A and 52B are orthogonal to each other. Are the same length.

これら検出電極51A,51B、52A,52Bには、対応させるべきFET61〜64のゲートが接続される。FET61,62のドレインは差動アンプ71に接続され、FET63,64のドレインは差動アンプ72に接続される。差動アンプ71の出力端と、差動アンプ72の出力端とは、差動アンプ73の入力端に接続される。   These detection electrodes 51A, 51B, 52A, and 52B are connected to the gates of FETs 61 to 64 to be associated. The drains of the FETs 61 and 62 are connected to the differential amplifier 71, and the drains of the FETs 63 and 64 are connected to the differential amplifier 72. The output terminal of the differential amplifier 71 and the output terminal of the differential amplifier 72 are connected to the input terminal of the differential amplifier 73.

特異領域において電位変動が生じた場合、該電位変動は、直交状態に配される2組の検出電極51A,51B、52A,52Bで検知され、各組での検知結果の差分が、対応する1段目の差動アンプ71,72で増幅される。また差動アンプ71,72の増幅結果の差分が2段目の差動アンプ73でさらに増幅される。したがって、図3に示す実施の形態の場合に比べて、差動アンプ73からの出力変動はよりいっそう抑制される。   When a potential variation occurs in the singular region, the potential variation is detected by two sets of detection electrodes 51A, 51B, 52A, and 52B arranged in an orthogonal state, and the difference between the detection results in each set corresponds to 1 Amplified by differential amplifiers 71 and 72 at the stage. Further, the difference between the amplification results of the differential amplifiers 71 and 72 is further amplified by the second-stage differential amplifier 73. Therefore, the output fluctuation from the differential amplifier 73 is further suppressed as compared with the embodiment shown in FIG.

なお、検出電極数は、特異領域に配することを条件に、2x(xは整数)となる数であればよい。ただし、均等なものとする観点では、検出電極の数を2の冪乗とし、これらを、基準とすべき位置を重心として対称性をもつ関係で配されることが好ましい。   In addition, the number of detection electrodes should just be a number which will be 2x (x is an integer) on condition that it arrange | positions to a specific area | region. However, from the viewpoint of equalization, it is preferable that the number of detection electrodes is a power of 2, and these are arranged in a symmetrical relationship with the position to be a reference as the center of gravity.

また差動アンプは、2x−1となる数を、トーナメント方式の接続パターンで複数段接続する。これら複数段の差動アンプのうち最終段の差動アンプから出力される信号は基準電位の信号となる。このようにすれば上述の実施の形態と同様の効果以上の効果を奏し得る。   In addition, the differential amplifier connects a number of 2 × −1 in a plurality of stages using a tournament connection pattern. Of these multiple stages of differential amplifiers, the signal output from the final stage differential amplifier is a signal of the reference potential. In this way, it is possible to achieve an effect that is more than the same effect as that of the above-described embodiment.

上述の実施の形態では、電極21A〜21Dと、検出電極31A,31B、51A,51B、52A,52Bとの形状が正方形とされた。しかしながらこれら電極の形状はこの実施の形態に限定されるものではなく、あらゆる形状を採用することが可能である。なお、電極21A〜21Dと、検出電極31A,31B、51A,51B、52A,52Bとの大きさは図示した大きさに限るものではない。   In the above-described embodiment, the shapes of the electrodes 21A to 21D and the detection electrodes 31A, 31B, 51A, 51B, 52A, 52B are square. However, the shape of these electrodes is not limited to this embodiment, and any shape can be adopted. The sizes of the electrodes 21A to 21D and the detection electrodes 31A, 31B, 51A, 51B, 52A, and 52B are not limited to the illustrated sizes.

また上述の実施の形態では、電極21A〜21Dと、検出電極31A,31B、51A,51B、52A,52Bとが同一平面に配されたが、必ず同一平面としなければならないものではない。   In the above-described embodiment, the electrodes 21A to 21D and the detection electrodes 31A, 31B, 51A, 51B, 52A, and 52B are arranged on the same plane.

上述の実施の形態では、回路電源部10、特異領域形成部20及び基準電位出力部30に共通の接地対象が遮蔽部40とされたが、該遮蔽部40に代えて、遮蔽板41としてもよい。   In the above embodiment, the grounding object common to the circuit power supply unit 10, the singular region forming unit 20, and the reference potential output unit 30 is the shielding unit 40. However, instead of the shielding unit 40, the shielding plate 41 may be used. Good.

本発明は、例えば農業、林業、漁業、鉱業、建設業、製造業、電気業、情報通信業、運輸業又は医薬業において利用可能性があり、もちろんこれら以外のあらゆる産業において幅広く利用可能性がある。   The present invention can be used in, for example, agriculture, forestry, fishery, mining, construction, manufacturing, electrical, information and communication, transportation, or pharmaceutical industries, and of course, can be widely used in all other industries. is there.

1・・・基準電位生成装置
10・・・回路電源部
20・・・特異領域形成部
21A〜21D・・・電極
22・・・信号発振源
23・・・出力調整部
30・・・基準電位出力部
31A,31B、51A,51B、52A,52B・・・検出電極
32A,32B・・・FET
33,71,72,73・・・差動アンプ
40・・・遮蔽部
41・・・遮蔽板
42・・・絶縁スペーサ
DESCRIPTION OF SYMBOLS 1 ... Reference potential generator 10 ... Circuit power supply part 20 ... Singular area formation part 21A-21D ... Electrode 22 ... Signal oscillation source 23 ... Output adjustment part 30 ... Reference potential Output unit 31A, 31B, 51A, 51B, 52A, 52B ... detection electrode 32A, 32B ... FET
33, 71, 72, 73 ... differential amplifier 40 ... shielding part 41 ... shielding plate 42 ... insulating spacer

Claims (8)

基準とすべき位置の周りに回転対称に配されるm個(mは4以上の偶数)の電極と、
前記基準とすべき位置を含む近傍範囲での強度が所定値未満となる電荷を、前記m個の電極に印加する印加手段と、
前記範囲に配される複数の導体と、
前記複数の導体から得られる信号の差分を増幅する増幅手段と
を備えることを特徴とする基準電位生成装置。
M electrodes (m is an even number equal to or greater than 4) arranged in rotational symmetry around a position to be a reference;
Applying means for applying an electric charge having an intensity in a vicinity range including the position to be the reference to a value less than a predetermined value to the m electrodes;
A plurality of conductors arranged in the range;
An amplifying unit that amplifies a difference between signals obtained from the plurality of conductors.
前記導体は、x個(xは整数)であり、
前記増幅手段は、トーナメント方式の接続パターンで複数段接続される2x−1の数の差動アンプを有する
ことを特徴とする請求項1に記載の基準電位生成装置。
There are x conductors (x is an integer),
2. The reference potential generating device according to claim 1, wherein the amplifying unit includes 2 × −1 differential amplifiers connected in a plurality of stages with a tournament connection pattern.
前記導体は、2の冪乗の数であり、前記基準とすべき位置を重心として対称性をもつ関係で前記範囲に配される
ことを特徴とする請求項2に記載の基準電位生成装置。
The reference potential generating device according to claim 2, wherein the conductor is a power of 2 and is arranged in the range in a symmetrical relationship with the position to be the reference as a center of gravity.
前記m個の電極、前記印加手段、前記複数の導体及び前記増幅手段を収納する導電性の箱体と、
前記箱体の空間を仕切る導電性の板と
を備え、
前記板によって仕切られる一方の空間には前記m個の電極及び前記複数の導体が配され、他方の空間には前記印加手段及び前記増幅手段が配される
ことを特徴とする請求項1又は請求項2に記載の基準電位生成装置。
A conductive box housing the m electrodes, the applying means, the plurality of conductors, and the amplifying means;
A conductive plate that partitions the space of the box,
The m number of electrodes and the plurality of conductors are arranged in one space partitioned by the plate, and the applying means and the amplifying means are arranged in the other space. Item 3. The reference potential generating device according to Item 2.
前記箱体又は前記板は、前記印加手段及び前記増幅手段に共通の接地対象とされる
ことを特徴とする請求項4に記載の基準電位生成装置。
The reference potential generating device according to claim 4, wherein the box or the plate is a common grounding object for the applying unit and the amplifying unit.
前記m個の電極は、該電極から発生する放射電界、誘導電磁界及び準静電界のうち準静電界が他の電界よりも大きい強度となる空間として形成される距離よりも大きい距離を隔てて配される
ことを特徴とする請求項1乃至請求項5のいずれかに記載の基準電位生成装置。
The m electrodes are separated from each other by a distance larger than a distance formed as a space in which the quasi-electrostatic field has a greater intensity than other electric fields among the radiated electric field, induction electromagnetic field, and quasi-electrostatic field generated from the electrodes. The reference potential generating device according to claim 1, wherein the reference potential generating device is arranged.
前記m個の電極は、前記基準とすべき位置を重心として正2n角形(nは2以上の偶数)の各頂点となる位置に配される
ことを特徴とする請求項1乃至請求項5いずれかに記載の基準電位生成装置。
6. The m electrodes are arranged at positions that are vertices of a regular 2n square (n is an even number of 2 or more) with the position to be the reference as a center of gravity. A reference potential generating device according to claim 1.
前記印加手段は、
前記m個の電極のうち、隣り合う電極の一方に対して信号を印加するとともに、前記隣り合う電極の他方に対して前記信号の位相が180度ずれた信号を印加する
ことを特徴とする請求項1乃至請求項5いずれかに記載の基準電位生成装置。
The application means includes
A signal is applied to one of the adjacent electrodes among the m electrodes, and a signal whose phase is shifted by 180 degrees is applied to the other of the adjacent electrodes. The reference potential generating device according to any one of claims 1 to 5.
JP2010277500A 2010-12-13 2010-12-13 Reference potential generator Pending JP2012128535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277500A JP2012128535A (en) 2010-12-13 2010-12-13 Reference potential generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277500A JP2012128535A (en) 2010-12-13 2010-12-13 Reference potential generator

Publications (1)

Publication Number Publication Date
JP2012128535A true JP2012128535A (en) 2012-07-05

Family

ID=46645509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277500A Pending JP2012128535A (en) 2010-12-13 2010-12-13 Reference potential generator

Country Status (1)

Country Link
JP (1) JP2012128535A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212525A (en) * 2007-03-07 2008-09-18 Sony Corp Detecting device, detecting method, vein sensing device, scanning probe microscope, distortion detecting device, and metal detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212525A (en) * 2007-03-07 2008-09-18 Sony Corp Detecting device, detecting method, vein sensing device, scanning probe microscope, distortion detecting device, and metal detector

Similar Documents

Publication Publication Date Title
KR101410389B1 (en) Radio communication device and radio communication system
JP5585738B2 (en) Power transmission system
US20170104371A1 (en) Power supplying device
Bae et al. The effects of electrode configuration on body channel communication based on analysis of vertical and horizontal electric dipoles
US20150145537A1 (en) Capacitive sensor with differential shield
JP2011160499A (en) Feeding device
Mohammed et al. A comparative study of capacitive couplers in wireless power transfer
Kim et al. Three-dimensional wireless power transfer system using multiple orthogonal resonators for spatial freedom
JP5482967B1 (en) Wireless power transmission system
JP2012128535A (en) Reference potential generator
JP5499184B2 (en) Reference potential generator
JP5436554B2 (en) Communication device
WO2012093667A1 (en) Reference potential generating device
JPWO2014125709A1 (en) Wireless power transmission system
CN111554470B (en) Degaussing device and semiconductor processing equipment
US20180175674A1 (en) Novel Probes Arrangement
US9350462B2 (en) Field coupling electrode, communication device, and communication system
US8816304B1 (en) Standard electromagnetic wave field generator with slit
US20230269863A1 (en) Supply device and determination device
JP5933358B2 (en) Electronic key system, electronic key position detection device, and electronic key position detection method
CN107607984B (en) A kind of construction method of the magnetic spectrograph of measurement ions energy spectrum abatement bore error
JP2020025240A (en) Antenna device
JP2015059882A (en) Magnetic field sensor
Zhu et al. Effect of surrounding conductive object on four-plate capacitive power transfer system
Miura et al. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519