JP2012127929A - P-wave/s-wave arrival time of day automatic reading method - Google Patents

P-wave/s-wave arrival time of day automatic reading method Download PDF

Info

Publication number
JP2012127929A
JP2012127929A JP2010293855A JP2010293855A JP2012127929A JP 2012127929 A JP2012127929 A JP 2012127929A JP 2010293855 A JP2010293855 A JP 2010293855A JP 2010293855 A JP2010293855 A JP 2010293855A JP 2012127929 A JP2012127929 A JP 2012127929A
Authority
JP
Japan
Prior art keywords
wave
time
earthquake
arrival time
arrival
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293855A
Other languages
Japanese (ja)
Inventor
Shigeki Horiuchi
茂木 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOME SEISMOMETER KK
Original Assignee
HOME SEISMOMETER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOME SEISMOMETER KK filed Critical HOME SEISMOMETER KK
Priority to JP2010293855A priority Critical patent/JP2012127929A/en
Publication of JP2012127929A publication Critical patent/JP2012127929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: automatic reading by a conventional method is performed by applying information criterion by Akaike to waveform data filter processed, where the method is completely mathematical and does not assemble seismological perspective, so that there can occur a case in which reading noises is mistaken as earthquake waves or, in contrast, the earthquake waves as noises; when seismological specialists or the like read arrival times of day of P-waves and S-waves, they determine them generally--for example, a tremor of an earthquake tends to last long in comparison with noises, and there is difference in frequency between the noises and earthquakes--and considering such seismological perspective, difference between the two is distinguished even when noise amplitude is large and an arrival time of day is accurately read, but the conventional technology does not develop a method for incorporating the seismological perspective.SOLUTION: A method for incorporating the seismological perspective and a function for performing general check as a human does into software for automatic reading is developed and, by incorporating the function, precision of automatic reading is improved.

Description

日本では、1000点以上の高感度地震計が設置され、一日に約400個の地震が発生している。防災科学技術研究所、気象庁、大学等は、地震活動や地下構造の調査研究を行っているが、これらの調査研究には、P波とS波の到着時刻を読み取る必要がある。観測点数が多く、地震数も多いことから、読み取りを行う必要がある地震記録数は膨大で、読み取り作業に多くの経費が必要になっている。また、地震活動や地下構造の調査研究の高精度化には、より多くの観測点を設置する必要がある。観測点数が増えると、読み取りの量も増えるため、読み取り作業が調査研究高度化の隘路になっている。本発明は、P波、S波到着時刻を正確に読み取るための手法に関するものであり、利用分野は、気象庁、防災科学技術研究所、大学、電力会社等による、地震観測データの自動解析装置等の機器である。  In Japan, more than 1000 high-sensitivity seismometers are installed, and about 400 earthquakes occur every day. The National Research Institute for Earth Science and Disaster Prevention, the Japan Meteorological Agency, universities, etc. are conducting research on seismic activity and underground structures, but these researches require reading the arrival times of P waves and S waves. Due to the large number of observation points and the number of earthquakes, the number of earthquake records that need to be read is enormous, and a lot of expenses are required for the reading work. In addition, it is necessary to set up more observation points in order to improve the accuracy of survey and research on seismic activity and underground structures. As the number of observation points increases, the amount of reading increases, so reading is becoming a bottleneck for advanced research. The present invention relates to a method for accurately reading the arrival times of P waves and S waves, and the fields of use include automatic analysis equipment for earthquake observation data, etc. by the Japan Meteorological Agency, National Research Institute for Disaster Prevention, universities, electric power companies, etc. Equipment.

地震のP波、S波到着時刻の自動読み取りに関する研究は、1970年代の後半に開始され、1980年代以降、多くの研究者により自動読み取りのためのシステム開発が行われてきた(例えば、非特許文献1参照。)。従来技術は、赤池の情報量基準(例えば、非特許文献2参照。)を用いて、ノイズの時間区間とP波やS波の時間区間との境界を決定し、その時刻位置をP波やS波の到着時刻とするものである。しかし、ノイズの振幅は、時間的に大きく変化し、P波到着の直前に、自動車等によるノイズが混入する場合がある。従来方法では、ノイズを地震波と間違えて読み取る場合が多い。このため、防災科学技術研究所、大学、気象庁等の地震研究や業務に従事する機関では、従来技術による自動読み取り結果を最終結果として採用することはできないと判断し、現在も、多くの読み取り作業を行う人員を採用し、人間による読み取りを行っている。  Research on automatic reading of earthquake P wave and S wave arrival time started in the latter half of the 1970s, and since the 1980s, many researchers have developed systems for automatic reading (eg, non-patented). Reference 1). The prior art uses Akaike's information criterion (for example, see Non-Patent Document 2) to determine the boundary between the noise time interval and the P wave or S wave time interval, This is the arrival time of the S wave. However, the amplitude of noise varies greatly with time, and noise from an automobile or the like may be mixed just before the arrival of the P wave. In the conventional method, noise is often mistakenly read as an earthquake wave. For this reason, organizations engaged in earthquake research and operations such as the National Research Institute for Earth Science and Disaster Prevention, universities, and the Japan Meteorological Agency have judged that automatic reading results using conventional technology cannot be adopted as the final result, and many reading work is still in progress. It employs human resources to perform reading by humans.

また、地震波形データと、読み取りデータに、人工知能のアルゴリズムを適用し、到着時刻を読み取る手法も提案されている(非特許文献3参照)。しかし、この方法による精度は低く、実用化には至っていない。  In addition, a technique for reading an arrival time by applying an artificial intelligence algorithm to seismic waveform data and read data has been proposed (see Non-Patent Document 3). However, the accuracy of this method is low and it has not been put into practical use.

実験室で発生するAEのP波、S波自動読み取り(例えば、特許文献1参照。)に関する研究も行われているが、実験データには、自動車等のノイズが入らないことから、ノイズ除去に関するアルゴリズムは組み込まれていない。  Research on automatic P-wave and S-wave reading of AE generated in the laboratory (see, for example, Patent Document 1) has also been conducted, but noise from automobiles and the like does not enter the experimental data. There is no built-in algorithm.

特許公開2004−286527、独立行政法人産業技術総合研究所平成15年3月20日(2003.3.20)多成分AE波形の初動検出方法。Patent Publication No. 2004-286527, National Institute of Advanced Industrial Science and Technology, March 20, 2003 (2003. 3.20) Multi-component AE waveform initial motion detection method.

横田 崇・周 勝奎・溝上 恵・中村 功(1981):地震波データの自動検測方式とオンライン処理システムにおける稼動実験,Bull.Earthq.Res.Inst.,55,449−484.Takashi Yokota, Katsumi Zhou, Megumi Mizokami, Isao Nakamura (1981): Automatic test method for seismic wave data and on-line processing system, Bull. Earthq. Res. Inst. , 55, 449-484. 樺島祥介、北川源四郎、甘利俊一、赤池弘次(2007):赤池情報量規準AIC−モデリング・予測・知識発見、共立出版。Shosuke Awashima, Genshiro Kitagawa, Shunichi Amari, Koji Akaike (2007): Akaike Information Criterion AIC-Modeling, Prediction, Knowledge Discovery, Kyoritsu Publishing. Zhao Y.and K.Takano,An Artificial Neural Network Approach for Broadband Seismic Phase Picking,Bull.Seism.Soc.Am.,89,3,670−−680,1999.Zhao Y. and K.K. Takano, An Artificial Neural Network Approach for Broadband Seismic Phase Picking, Bull. Seism. Soc. Am. 89, 3, 670--680, 1999.

従来方法に読み取りでは、主に情報量基準(AIC)〔非特許文献1〕が最大となる時刻位置を到着時刻とするものである。これは、ノイズが定常的であるとして、確率論的に到着時刻を求める方法であり、地震学的知見は組み込まれていない。このため、P波、S波到着後の位相を読み取る、あるいは、逆に、到着前のノイズ、を到着時刻として読み取る場合が多い。読み取りでは、ノイズであれば、振幅が大きくても読み取らないようにする必要があり、逆に、地震波であれば、振幅が小さくても読み取る必要がある。地震であるかノイズであるかを自動的に判定できれば、読み取り精度の向上が期待できる。地震学者と同様の判断で、両者を見分ける方法を開発することにより、正確な到着時刻を自動的に読み取れるようにする。  In reading by the conventional method, the time position where the information amount standard (AIC) [Non-Patent Document 1] is maximized is mainly used as the arrival time. This is a method of obtaining the arrival time stochastically assuming that the noise is stationary, and seismological knowledge is not incorporated. For this reason, in many cases, the phase after arrival of the P wave and S wave is read, or conversely, noise before arrival is read as the arrival time. In reading, if it is noise, it is necessary not to read even if the amplitude is large. Conversely, if it is a seismic wave, it is necessary to read even if the amplitude is small. If it is possible to automatically determine whether it is an earthquake or noise, an improvement in reading accuracy can be expected. By developing a method to distinguish between the two based on the same judgment as a seismologist, the accurate arrival time can be automatically read.

地震の専門家や読み取りに従事しているオペレータは、到着時刻を読み取る場合、地震波の到来で振幅が大きくなったのか、ノイズで偶然大きくなったのかを、地震学的知見と、波形の特徴を見て、総合的に判断し、両者を区別している。自動読み取りのシステムに、地震の専門家等が行うのと同様の、総合判断を行う機能を組み込むことができれば、高精度化できると考えられる。  When an earthquake expert or an operator engaged in reading reads the arrival time, it is possible to determine whether the amplitude has increased due to the arrival of the seismic wave, or whether it has increased due to noise. Seeing it, it judges comprehensively and distinguishes both. If an automatic reading system can incorporate a function for comprehensive judgment similar to that performed by earthquake specialists, it will be possible to increase the accuracy.

一方、地震の専門家等は、到着時刻を読み取る場合、振幅が大きくなるか、周波数が時間的に変化している時刻を読み取る。適切なフィルターを通すと、周波数が変化する時刻で、振幅が変化する。従って、地震の専門家等は、適切なフィルターを通した波形データの振幅が大きくなる時刻を、到着時刻として読み取ると考えることができる。  On the other hand, an earthquake expert or the like reads the time when the amplitude is increased or the frequency is temporally changed when the arrival time is read. When passed through an appropriate filter, the amplitude changes at the time when the frequency changes. Therefore, an earthquake expert or the like can consider that the time when the amplitude of the waveform data that has passed through an appropriate filter increases is read as the arrival time.

自動車等の振動によるノイズが混入する場合にも、振幅は大きくなるため、振幅が大きくなる時刻は、複数個存在する場合がある。従って、到着時刻を読み取るということは、振幅が大きくなる複数の到着時刻の候補の中から、地震波到来により振幅が大きくなる候補を選ぶことであると考えることができる。  Even when noise due to vibration of a car or the like is mixed, the amplitude increases, so there may be a plurality of times when the amplitude increases. Therefore, reading the arrival time can be considered to select a candidate whose amplitude increases due to the arrival of the seismic wave from among a plurality of arrival time candidates whose amplitude increases.

地震の専門家等が到着時刻を読み取る場合は、複数の候補の周波数や、振幅、時間差、到着前のノイズの特徴等を目で見て、総合的に判断していると思われる。本発明による方法は、図1に示すように、
1)多数の地震波形データと、地震の専門家により読み取られた、P波、S波到着時刻データを用い、2)地震波形データから、振幅が大きくなる時刻を計算し、到着時刻の候補とし、
3)候補と候補との間の区間、最初の候補より前の区間、最後の候補より後の区間での、卓越周波数や、時間差、振幅比等のパラメータの値を計算し、その値を保存する。
4)3)による卓越周波数等のパラメータを用いて、到着時刻の中から、P波やS波の到着時刻を選ぶための評価関数の初期モデルを作成し、
5)地震の専門家による到着時刻の読み取り値と、評価関数により選択された候補の到着時刻との時間差が最も小さくなるよう、4)の初期モデルを改良するものである。
When an earthquake expert or the like reads the arrival time, it seems that the frequency, amplitude, time difference, characteristics of noise before arrival, and the like are comprehensively determined by visually checking the arrival times. The method according to the present invention, as shown in FIG.
1) Using a large number of seismic waveform data and P wave and S wave arrival time data read by earthquake experts, 2) From the seismic waveform data, calculate the time when the amplitude becomes large and use it as a candidate for arrival time ,
3) Calculate values of parameters such as dominant frequency, time difference, amplitude ratio, etc. in the interval between candidates, the interval before the first candidate, and the interval after the last candidate, and save the values To do.
4) Create an initial model of the evaluation function for selecting the arrival time of the P wave and S wave from the arrival times using parameters such as the dominant frequency according to 3),
5) The initial model of 4) is improved so that the time difference between the arrival time reading by the earthquake expert and the arrival time of the candidate selected by the evaluation function is minimized.

従来方式によるP波、S波自動読み取りの精度が低いため、地震研究に従事している、気象庁、大学、防災科学技術研究所等では、合計約100名程度のオペレータを採用し、読み取り作業を行っている。本発明で自動読み取りが高精度化されると、この作業を軽減でき、大幅なコスト削減及び迅速な地震データ解析が行えるものと期待される。現在は、読み取り作業に時間と労力がかかることから、より高密度の地震観測網整備が困難になっている。本発明により、観測網の高密度化、地震研究の促進が期待できる。  Because the accuracy of automatic P-wave and S-wave reading by the conventional method is low, the Meteorological Agency, universities, disaster prevention science and technology research institutes, etc. engaged in earthquake research employ a total of about 100 operators for reading work. Is going. If automatic reading is improved in the present invention, this work can be reduced, and it is expected that significant cost reduction and rapid earthquake data analysis can be performed. Currently, it takes time and labor to read, making it difficult to develop a higher-density seismic observation network. The present invention can be expected to increase the density of the observation network and promote earthquake research.

P波、S波自動読み取りシステム作成法の概念図Conceptual diagram of how to create P wave and S wave automatic reading system

i番目の地震、j番目の観測点の、適切なフィルターを通した地震波形データを、Fij(t)とし、区間t=0からtでは振幅の時間変化が閾値以下であるが、t以降、地震波の到来や、ノイズの混入で、振幅が閾値以上になったとする。振幅が大きく、地震波が明らかに到来したと考えられる時間区間に時刻tを設定し、到着時刻は、区間t−tの中に含まれるものとする。区間0−tでのFij(t)の絶対値の平均値をAとする。The seismic waveform data of the i-th earthquake and j-th observation point through an appropriate filter is F ij (t), and the time variation of the amplitude is below the threshold in the interval t = 0 to t 0. It is assumed that the amplitude becomes greater than or equal to the threshold due to the arrival of seismic waves or noise mixing after 0 . Large amplitude, sets the time t 4 to the time interval considered seismic wave is clearly arrival, arrival time is assumed to be included in the interval t 0 -t 4. Let A 0 be the average of the absolute values of F ij (t) in the interval 0-t 0 .

次に、P波到着時刻の候補の推定方法の一例を示す。関数Z(t)を以下のように定義する。

Figure 2012127929
は、1より大きい定数で、例えば、
Figure 2012127929
と置く。Next, an example of a P wave arrival time candidate estimation method will be described. The function Z (t) is defined as follows.
Figure 2012127929
R m is a constant greater than 1, for example,
Figure 2012127929
Put it.

区間0−Tでの(1)式が最小となる時刻をCijmとする。m=1の場合の(1)式、(2)式により求められたCijmは、ノイズに比べ、平均振幅が10%大きくなる時刻位置に一致する。なぜなら、Cijmは式(1)が最小値となる時刻であることから、時刻Cijm以降の振幅は、ノイズの平均振幅の1.1倍以上となるからである。振幅が急激に大きくなる場合は、mを変化させても、時刻Cijmは一定か、僅かに変化するだけである。そこで、到着時刻の候補としては、mを変化させても、Cijmが一定か、僅かな変化の場合は、一つにまとめて、同一の候補とするようにする。 Let C ijm be the time at which the expression (1) in the section 0-T 4 is minimum. C ijm obtained by the equations (1) and (2) when m = 1 matches the time position where the average amplitude is 10% larger than the noise. This is because C ijm is the time at which Equation (1) has the minimum value, and the amplitude after time C ijm is 1.1 times or more the average amplitude of noise. When the amplitude suddenly increases, the time Cijm is constant or only slightly changed even if m is changed. Therefore, as candidates for arrival time, even if m is changed, if C ijm is constant or slightly changed, the arrival time candidates are combined into a single candidate.

時刻t以前のノイズの区間でも、短い区間、振幅が大きくなる場合がある。(1)式、(2)式を用いて、到着時刻の候補を求める場合には、振幅が短い時間区間で大きくなっても、その時刻以降の振幅が小さければ、その区間内で、(1)式が最小になることはない。一方、地震波形は、ノイズに比べ、長い時間区間、連続して振幅が大きくなる性質がある。このため、地震による揺れの場合には、その到着時刻で(1)式が最小となる。(1)式を用いる利点は、計算が極めて簡単であること、(2)式のmの値により、10%程度の振幅変化の時刻も検出できること、(3)短期的振幅変化を有するノイズを除去できること、である。Even in the noise section before time t 0 , the amplitude may increase in a short section. When obtaining candidates for arrival time using the equations (1) and (2), even if the amplitude increases in a short time interval, if the amplitude after that time is small, (1 ) Is never minimized. On the other hand, the seismic waveform has the property that the amplitude continuously increases for a longer time period than the noise. For this reason, in the case of a shake due to an earthquake, Equation (1) is minimized at the arrival time. The advantage of using the formula (1) is that the calculation is very simple, the time of amplitude change of about 10% can be detected by the value of m in the formula (2), and (3) noise with short-term amplitude change is detected. It can be removed.

次に、請求項1の、到着時刻の候補、Cijmの中から、P波、あるいは、S波の到着時刻を選ぶ方法について述べる。m番目の候補と、m+1番目の候補との時間区間、即ち、Cijm−Cijm+1、での、卓越周波数、ノイズ部分との振幅比、上下動と水平動との振幅比、振幅のパラメータの時間変化等を計算する。Aijmnを、i番目の地震、j番目の観測点、m番目の候補のn番目の測定値であるとする。Hを評価関数、即ち、Aijmnを用いて、複数の到着時刻の候補から、P波やS波の到着時刻を選ぶ関数であるとする。i番目の地震の、j観測点の、地震の専門家等による到着時刻の読み取り値をPijとすると、

Figure 2012127929
と置ける。ここに、Bは、到着時刻を選ぶための未知パラメータ、εijは、地震の専門家等による読み取り値との差である。評価関数の形や、未知パラメータBを、
Figure 2012127929
が最小となるよう決定する。Next, a method for selecting the arrival time of the P wave or S wave from the arrival time candidates C ijm in claim 1 will be described. In the time interval between the m-th candidate and the m + 1-th candidate, that is, C ijm -C ijm + 1 , the dominant frequency, the amplitude ratio with the noise part, the amplitude ratio between the vertical movement and the horizontal movement, and the amplitude parameter Calculate changes over time. Let A ijmn be the n th measured value of the i th earthquake, the j th observation point, and the m th candidate. Let H be an evaluation function, that is, a function that selects the arrival time of a P wave or S wave from a plurality of arrival time candidates using A ijmn . When the reading of the arrival time of the j-th observation point of the i-th earthquake by an earthquake expert or the like is P ij ,
Figure 2012127929
I can put it. Here, B k is an unknown parameter for selecting an arrival time, and ε ij is a difference from a reading value by an earthquake expert or the like. The form of the evaluation function and the unknown parameter B k
Figure 2012127929
Is determined to be minimal.

一般に、(4)式は、特殊な関数であり、最小二乗法でBを求めることは困難である。しかし、(4)式には、地震の波形データが含まれていないことから、計算量は多くない。発明者は、数千個の読み取りデータに対応する(4)式を作成し、パソコンを用いて計算した結果、数千個の計算時間が0.1秒間程度であった。計算時間が短いことから、Bを数値的に求めることは可能である。また、(4)式のPと、Hとの差が大きい記録を出力することができることから、差が大きくなる原因を追及し、評価関数を高度化することができる。未知パラメータBを変更した場合、その全ての記録に対する影響を瞬時に計算できることから、未知パラメータの設定は比較的容易に行える。In general, equation (4) is a special function, and it is difficult to obtain B k by the method of least squares. However, since the equation (4) does not include earthquake waveform data, the amount of calculation is not large. The inventor created Formula (4) corresponding to thousands of read data and calculated it using a personal computer. As a result, the calculation time for several thousand was about 0.1 seconds. Since the calculation time is short, B k can be obtained numerically. Further, since a record having a large difference between P and H in the expression (4) can be output, the cause of the large difference can be pursued and the evaluation function can be enhanced. When the unknown parameter Bk is changed, the influence on all the recordings can be instantaneously calculated, so that the unknown parameter can be set relatively easily.

評価関数のイメージを分かりやすくするため、評価関数の最も単純な形を示す。それは、

Figure 2012127929
とする、即ち、M番目の候補の到着時刻を採用するというものである。この場合は、ノイズとのS/N比が1.1以上となる時刻を到着時刻であるとする、ということと等価である。評価関数の初期モデルの作成方法の例は、卓越周波数等の測定値と、未知パラメータBを用いて、スコアを定義し、スコアがある値以上となるCijmを到着時刻とするようにすることである。To make the evaluation function image easier to understand, the simplest form of the evaluation function is shown. that is,
Figure 2012127929
That is, the arrival time of the Mth candidate is adopted. In this case, it is equivalent to assuming that the time when the S / N ratio to noise is 1.1 m or more is the arrival time. As an example of a method for creating an initial model of an evaluation function, a score is defined using a measured value such as a dominant frequency and an unknown parameter B k , and C ijm having a score greater than or equal to a certain value is set as an arrival time That is.

Claims (2)

過去に発生した多数の波形データと、地震の専門家やオペレータによるそれらの波形データのP波、S波到着時刻の読み取りデータ、及び、それぞれの波形データについての、振幅や周波数が変化する複数の時間区間における、S/N比、卓越周波数、水平動と上下動の振幅比、区間の時間長、区間内での振幅変化、等のデータを用いることを特徴とする、P波、S波到着時刻とノイズの到着時刻とを見分けるための評価関数の決定法。A large number of waveform data generated in the past, P wave and S wave arrival time reading data of those waveform data by earthquake specialists and operators, and a plurality of waveform data whose amplitude and frequency change. Arrival of P wave and S wave characterized by using data such as S / N ratio, dominant frequency, amplitude ratio between horizontal and vertical movement, time length of section, amplitude change in section in time section A method for determining an evaluation function to distinguish time from noise arrival time. 〔請求項1〕の評価関数を用いることを特徴とするP波、S波到着時刻の自動決定法。An automatic determination method for arrival times of P-waves and S-waves using the evaluation function of [Claim 1].
JP2010293855A 2010-12-10 2010-12-10 P-wave/s-wave arrival time of day automatic reading method Pending JP2012127929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293855A JP2012127929A (en) 2010-12-10 2010-12-10 P-wave/s-wave arrival time of day automatic reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293855A JP2012127929A (en) 2010-12-10 2010-12-10 P-wave/s-wave arrival time of day automatic reading method

Publications (1)

Publication Number Publication Date
JP2012127929A true JP2012127929A (en) 2012-07-05

Family

ID=46645114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293855A Pending JP2012127929A (en) 2010-12-10 2010-12-10 P-wave/s-wave arrival time of day automatic reading method

Country Status (1)

Country Link
JP (1) JP2012127929A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224748A (en) * 2013-05-16 2014-12-04 大成建設株式会社 Elastic wave group analysis method
CN109686054A (en) * 2019-01-17 2019-04-26 徐州工业职业技术学院 A kind of self-control Housthold earthquake siren
JP2019197039A (en) * 2018-05-02 2019-11-14 パナソニックIpマネジメント株式会社 Estimation device, living body number estimation device, estimation method, and program
JP7442404B2 (en) 2020-07-09 2024-03-04 大成建設株式会社 Seismic waveform processing method and seismic waveform processing system
JP7480016B2 (en) 2020-10-22 2024-05-09 日東工業株式会社 Vibration detection system for high voltage power receiving equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224748A (en) * 2013-05-16 2014-12-04 大成建設株式会社 Elastic wave group analysis method
JP2019197039A (en) * 2018-05-02 2019-11-14 パナソニックIpマネジメント株式会社 Estimation device, living body number estimation device, estimation method, and program
JP7162192B2 (en) 2018-05-02 2022-10-28 パナソニックIpマネジメント株式会社 Bionumber estimation device, bionumber estimation method, and program
CN109686054A (en) * 2019-01-17 2019-04-26 徐州工业职业技术学院 A kind of self-control Housthold earthquake siren
JP7442404B2 (en) 2020-07-09 2024-03-04 大成建設株式会社 Seismic waveform processing method and seismic waveform processing system
JP7480016B2 (en) 2020-10-22 2024-05-09 日東工業株式会社 Vibration detection system for high voltage power receiving equipment

Similar Documents

Publication Publication Date Title
Stork et al. Application of machine learning to microseismic event detection in distributed acoustic sensing data
Yi et al. Clustering number determination for sparse component analysis during output-only modal identification
Ditommaso et al. Damage detection on framed structures: modal curvature evaluation using Stockwell Transform under seismic excitation
Böse et al. Rapid estimation of earthquake source and ground‐motion parameters for earthquake early warning using data from a single three‐component broadband or strong‐motion sensor
JP2012127929A (en) P-wave/s-wave arrival time of day automatic reading method
CN110023790B (en) Seismic acquisition geometric full-waveform inversion
CN110050205B (en) Latent wave illumination using offset gathers
Chamarczuk et al. Unsupervised learning used in automatic detection and classification of ambient‐noise recordings from a large‐N array
Dumont et al. Deep learning for surface wave identification in distributed acoustic sensing data
Maity et al. Neuro-evolutionary event detection technique for downhole microseismic surveys
Zheng et al. SC-PSNET: A deep neural network for automatic P-and S-phase detection and arrival-time picker using 1C recordings
Zhou et al. An improved onset time picking method for low SNR acoustic emission signals
Zhang et al. Deep convolutional neural network for microseismic signal detection and classification
Yamada et al. Real-time estimation of fault rupture extent using envelopes of acceleration
Adelfio et al. FPCA algorithm for waveform clustering
Mendrok et al. Operational modal filter and its applications
Seylabi et al. Site characterization at Treasure Island and Delaney Park downhole arrays by heterogeneous data assimilation
Walker et al. Wavelength-based axial resolution limitations of flexural wave dispersion sonic logging
CN115826039A (en) Time slice classification model training method and system, and application method and system
Plourde et al. Earthquake depths, focal mechanisms, and stress in the Lower St. Lawrence Seismic Zone
Laouami Proposal for a new site classification tool using microtremor data
Whiteman et al. Convolutional neural network approach for vibration-based damage state prediction in a reinforced concrete building
Polak et al. Seismic signal enhancement via AR filtering and spatial time-frequency denoising
Nepeina Automatic post processing algorithm for passive seismic monitoring data
Kuyuk On the use of Stockwell transform in structural dynamic analysis