JP2012127601A - Total enthalpy heat exchange element - Google Patents

Total enthalpy heat exchange element Download PDF

Info

Publication number
JP2012127601A
JP2012127601A JP2010280938A JP2010280938A JP2012127601A JP 2012127601 A JP2012127601 A JP 2012127601A JP 2010280938 A JP2010280938 A JP 2010280938A JP 2010280938 A JP2010280938 A JP 2010280938A JP 2012127601 A JP2012127601 A JP 2012127601A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange element
partition plate
total heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010280938A
Other languages
Japanese (ja)
Inventor
Takashi Fukumura
貴司 福村
Koichi Noda
公一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Ebara Jitsugyo Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp, Ebara Jitsugyo Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP2010280938A priority Critical patent/JP2012127601A/en
Publication of JP2012127601A publication Critical patent/JP2012127601A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a total enthalpy heat exchange element capable of promoting a heat exchange on the surface of a partition plate.SOLUTION: In the total enthalpy heat exchange element, an intake air flow path 4 and an exhaust air flow path 5 are adjacent using a partition plate 2 as a boundary, and heat exchange is performed between the air flowing in the path 4 and that flowing in the path 5. Since irregularities 21 are formed on the surface of the partition plate 2, an eddy flow is generated on the surface and prevents occurrence of a thin air layer on the surface of the plate 2. Thereby, the heat exchange on the surface of the plate 2 is promoted, thus improving the heat exchange efficiency of the total enthalpy heat exchange element 1.

Description

本発明は、全熱交換器に内蔵され、温度および湿度の異なる給気と排気との間で温度と湿度とを交換する全熱交換素子に関する。   The present invention relates to a total heat exchange element that is built in a total heat exchanger and exchanges temperature and humidity between supply air and exhaust gas having different temperatures and humidity.

全熱交換器に内蔵され、温度および湿度の異なる空気の間で温度と湿度とを交換する全熱交換素子が広く知られている。図8に示すように、全熱交換素子201は、仕切板202と間隔板203とを交互に積層したもので、仕切板202と仕切板202との間隔は間隔板203によって確保される。そして、仕切板202を境にして給気流路と排気流路とが隣接し、給気流路を流れる空気と排気流路を流れる空気との間で温度と湿度とが交換される(たとえば、特許文献1参照)。   A total heat exchange element that is built in a total heat exchanger and exchanges temperature and humidity between air having different temperatures and humidity is widely known. As shown in FIG. 8, the total heat exchange element 201 is obtained by alternately stacking partition plates 202 and interval plates 203, and the interval between the partition plates 202 and the partition plates 202 is secured by the interval plates 203. The air supply flow path and the exhaust flow path are adjacent to each other with the partition plate 202 as a boundary, and the temperature and humidity are exchanged between the air flowing through the air supply flow path and the air flowing through the exhaust flow path (for example, patents). Reference 1).

また、冷媒が流通する流路の表面に微少突起を設け、伝熱面積を増大させ、流路の表面に流れる冷媒の流れを乱流にする熱交換器が知られている(たとえば、特許文献2参照)。   In addition, a heat exchanger is known in which minute protrusions are provided on the surface of the flow path through which the refrigerant flows to increase the heat transfer area, and the flow of the refrigerant flowing on the surface of the flow path is turbulent (for example, Patent Documents). 2).

特開2009−250585号公報JP 2009-250585 A 特開平6−123578号公報JP-A-6-123578

しかしながら、上述した特許文献1に開示された仕切板202の表面は平滑であり、図9に示すように、仕切板202を境にして隣接した給気流路と排気流路とに流れる空気の流れはいずれも層流Sとなり、仕切板202の表面に薄い空気層が生成され、熱交換を妨げていた。   However, the surface of the partition plate 202 disclosed in Patent Document 1 described above is smooth, and as shown in FIG. 9, the flow of air flowing between the supply air channel and the exhaust channel adjacent to each other with the partition plate 202 as a boundary. Both became laminar flows S, and a thin air layer was generated on the surface of the partition plate 202, preventing heat exchange.

また、上述した特許文献2に開示された流路の表面は微少突起により凹凸を有するが、仕切板を境にして給気流路と排気流路とが隣接するように構成したものではない。   Moreover, although the surface of the flow path disclosed in Patent Document 2 described above has irregularities due to minute protrusions, the supply flow path and the exhaust flow path are not adjacent to each other with the partition plate as a boundary.

本発明は、上記に鑑みてなされたものであって、仕切板の表面における熱交換を促進できる全熱交換素子を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the total heat exchange element which can accelerate | stimulate the heat exchange in the surface of a partition plate.

上述した課題を解決し、目的を達成するために、本発明は、仕切板を境にして給気流路と排気流路とが隣接し、前記給気流路に流れる空気と前記排気流路に流れる空気との間で熱交換をする全熱交換素子において、前記仕切板の表面に凹凸を形成したことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is such that the air supply flow path and the exhaust flow path are adjacent to each other with the partition plate as a boundary, and the air flowing in the air supply flow path and the exhaust flow path flow. In a total heat exchange element for exchanging heat with air, the surface of the partition plate is formed with irregularities.

また、本発明は、上記全熱交換素子において、前記凹凸は、表面を盛り上げるとともに裏面を落とし入れた凹凸であることを特徴とする。   Moreover, the present invention is characterized in that, in the total heat exchange element, the irregularities are irregularities in which the front surface is raised and the back surface is dropped.

また、本発明は、上記全熱交換素子において、前記凹凸は、表面と裏面とを交互に盛り上げた凹凸であることを特徴とする。   In the total heat exchange element according to the present invention, the unevenness is an unevenness in which a front surface and a back surface are alternately raised.

本発明にかかる全熱交換素子は、仕切板の表面に凹凸を形成したので、仕切板の表面を空気が流れると、仕切板の表面に乱流が生成され、仕切板の表面に薄い空気層が生成されるのを妨げる。これにより、仕切板の表面における熱交換が促進され、全熱交換素子の熱交換効率が向上する。   Since the total heat exchange element according to the present invention has irregularities formed on the surface of the partition plate, when air flows on the surface of the partition plate, turbulent flow is generated on the surface of the partition plate, and a thin air layer is formed on the surface of the partition plate. Is prevented from being generated. Thereby, the heat exchange in the surface of a partition plate is accelerated | stimulated, and the heat exchange efficiency of a total heat exchange element improves.

図1は、本発明の実施の形態である全熱交換素子を内蔵した全熱交換器を示す概念図である。FIG. 1 is a conceptual diagram showing a total heat exchanger incorporating a total heat exchange element according to an embodiment of the present invention. 図2は、本発明の実施の形態である全熱交換素子を示す概念図である。FIG. 2 is a conceptual diagram showing a total heat exchange element according to an embodiment of the present invention. 図3は、図2に示した全熱交換素子の構造を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the structure of the total heat exchange element shown in FIG. 図4は、エンボス加工により仕切板の表面に形成した凹凸を示す図である。FIG. 4 is a diagram showing irregularities formed on the surface of the partition plate by embossing. 図5は、コルゲート加工により仕切板の表面に形成した凹凸を示す図である。FIG. 5 is a view showing the irregularities formed on the surface of the partition plate by corrugating. 図6は、仕切板と仕切板との間に画成された流路を示す断面図である。FIG. 6 is a cross-sectional view showing a flow path defined between the partition plate and the partition plate. 図7は、給気流路および排気流路を流れる空気流を示す概念図である。FIG. 7 is a conceptual diagram showing an air flow flowing through the air supply passage and the exhaust passage. 図8は、公知の直交流型の全熱交換素子を示す概念図である。FIG. 8 is a conceptual diagram showing a known cross-flow type total heat exchange element. 図9は、給気流路および排気流路を流れる空気流を示す概念図である。FIG. 9 is a conceptual diagram showing an air flow flowing through the air supply passage and the exhaust passage.

以下に、本発明にかかる全熱交換素子の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a total heat exchange element according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施の形態である全熱交換素子を内蔵した全熱交換器を示す概念図である。本発明の実施の形態である全熱交換素子1を内蔵した全熱交換器100は、静止形の全熱交換器であって、温度および湿度の異なる空気と空気との間で温度と湿度とを交換する。   FIG. 1 is a conceptual diagram showing a total heat exchanger incorporating a total heat exchange element according to an embodiment of the present invention. A total heat exchanger 100 including a total heat exchange element 1 according to an embodiment of the present invention is a stationary total heat exchanger, and the temperature and humidity between air and air having different temperatures and humidity. Replace.

図1に示すように、全熱交換器100は、屋外から室内に連通する給気流路101と、室内から屋外に連通する排気流路102とを有している。本発明の実施の形態である全熱交換素子1は、給気流路101と排気流路102とに跨いで設けられ、給気流路101を流れる空気と排気流路102を流れる空気との間で温度と湿度とが交換される。   As shown in FIG. 1, the total heat exchanger 100 includes an air supply passage 101 that communicates from the outside to the room and an exhaust passage 102 that communicates from the room to the outside. The total heat exchange element 1 according to the embodiment of the present invention is provided across the supply air flow path 101 and the exhaust flow path 102, and between the air flowing through the supply air flow path 101 and the air flowing through the exhaust flow path 102. Temperature and humidity are exchanged.

給気流路101の途中には、ファンFが設けてあり、屋外から外気OAを導入し、全熱交換素子1に供給し、全熱交換素子1から室内に給気SAを供給する。同様に、排気流路102の途中には、ファンFが設けてあり、室内から還気RAを導入し、全熱交換素子1に供給し、全熱交換素子1から屋外に排気EAを排出する。   A fan F is provided in the middle of the air supply channel 101, and the outside air OA is introduced from the outside and supplied to the total heat exchange element 1, and the supply air SA is supplied from the total heat exchange element 1 to the room. Similarly, a fan F is provided in the middle of the exhaust flow path 102, and the return air RA is introduced from the room, supplied to the total heat exchange element 1, and the exhaust EA is discharged from the total heat exchange element 1 to the outdoors. .

図2は、本発明の実施の形態である全熱交換素子の外観を示す概念図であり、図3は図2に示した全熱交換素子の構造を示す概念図である。図2および図3に示すように、本発明の実施の形態である全熱交換素子1は、対向流型の全熱交換素子であって、平面視六角形(ヘキサゴン)に形成してある。全熱交換素子1は、仕切板2と間隔板3とを交互に積層したもので、仕切板2と仕切板2との間隔は間隔板3によって確保されている。そして、仕切板2の積層方向に仕切板2を境にして給気流路4と排気流路5とが隣接するように、交互に画成され、給気流路4を流れる空気と排気流路5を流れる空気との間で温度と湿度とが交換される。   FIG. 2 is a conceptual diagram showing the appearance of the total heat exchange element according to the embodiment of the present invention, and FIG. 3 is a conceptual diagram showing the structure of the total heat exchange element shown in FIG. As shown in FIGS. 2 and 3, the total heat exchange element 1 according to the embodiment of the present invention is a counterflow type total heat exchange element, and is formed in a hexagonal shape (hexagon) in a plan view. The total heat exchange element 1 is configured by alternately laminating partition plates 2 and spacing plates 3, and the spacing between the partition plates 2 and the partition plates 2 is secured by the spacing plates 3. The air supply passage 4 and the exhaust passage 5 are alternately defined so that the partition plate 2 is adjacent to the partition plate 2 in the stacking direction of the partition plate 2. The temperature and humidity are exchanged with the air flowing through.

本発明の実施の形態である全熱交換素子1のように、対向流型の全熱交換素子1は、六角形の一辺に給気流路4の吸込口41を有しており、吸込口41と対向する他辺に給気流路4の吐出口42を有している。また、給気流路4の吐出口42を有する一辺と隣り合う辺に排気流路5の吸込口を有しており、吸込口と対向する他辺に排気流路5の吐出口52を有している。また、対向流型の全熱交換素子1は、給気流路4と排気流路5とが平行となる部分を有しており、給気流路4を流れる空気と排気流路5を流れる空気とがすれ違うことにより、効率的な熱交換を可能にしている。   Like the total heat exchange element 1 which is an embodiment of the present invention, the counterflow type total heat exchange element 1 has a suction port 41 of the air supply passage 4 on one side of the hexagon, and the suction port 41 The discharge port 42 of the air supply flow path 4 is provided on the other side facing the. In addition, the suction passage of the exhaust passage 5 is provided on the side adjacent to the one side having the discharge port 42 of the supply passage 4, and the discharge port 52 of the exhaust passage 5 is provided on the other side opposite to the suction port. ing. Further, the counter flow type total heat exchange element 1 has a portion in which the air supply flow path 4 and the exhaust flow path 5 are parallel to each other. By passing each other, efficient heat exchange is possible.

本発明の実施の形態である全熱交換素子1において、上述した仕切板2は、温度および湿度の交換に好適な熱交換紙により構成され、上述した間隔板3は、樹脂性のセパレータにより構成されている。   In the total heat exchange element 1 according to the embodiment of the present invention, the partition plate 2 described above is configured by heat exchange paper suitable for exchanging temperature and humidity, and the above-described interval plate 3 is configured by a resin separator. Has been.

また、本発明の実施の形態である全熱交換素子1の仕切板2は、その表面に微細な凹凸21が形成してある。この凹凸21は、仕切板2の表面を流れる空気の接触面積を増大させること、仕切板2の表面に乱流を生成させることを目的としている。   The partition plate 2 of the total heat exchange element 1 according to the embodiment of the present invention has fine irregularities 21 formed on the surface thereof. The unevenness 21 is intended to increase the contact area of the air flowing on the surface of the partition plate 2 and to generate turbulent flow on the surface of the partition plate 2.

凹凸21は、浮き出し模様のように、表面を盛り上げるとともに裏面を落とし入れた凹凸(図4参照)、または、折り目のように、表面と裏面とを交互に盛り上げた凹凸(図5参照)のほか、任意の形状が想定される。   Concavities and convexities 21 are not only raised and raised surfaces such as embossed patterns (see FIG. 4), or uneven and raised surfaces alternately and alternately like folds (see FIG. 5). Any shape is envisaged.

たとえば、図4に示すように、不規則的に表面を盛り上げるとともに裏面を落とし入れた凹凸は、仕切板2にエンボス加工を施すことにより、容易に作成できる。また、エンボス加工は、任意の位置に凹凸21を形成できるので、間隔板3の配設位置を平滑なままにすることにより、仕切板2と間隔板3とを密着させれば、加工を施さない仕切板2と同程度の気密を得ることができる。   For example, as shown in FIG. 4, irregularities with irregularly raised surfaces and dropped back surfaces can be easily created by embossing the partition plate 2. Moreover, since the embossing can form the unevenness 21 at an arbitrary position, if the partition plate 2 and the interval plate 3 are brought into close contact with each other by keeping the arrangement position of the interval plate 3 smooth, the embossing is performed. The same degree of airtightness as that of the partition plate 2 can be obtained.

たとえば、図5に示すように、規則的に表面と裏面とを交互に盛り上げた凹凸21は、仕切板2にコルゲート加工を施すことにより、容易に作成できる。なお、仕切板2にコルゲート加工を施すことにより、表面と裏面とを交互に盛り上げた凹凸21を形成した仕切板2は、間隔板3との密着をどのように確保するかが課題となるが、図6に示すように、間隔板3の上端と下端とに仕切板2の凹凸21と整合する凹凸31を形成することにより、課題は解消され、仕切板2と間隔板3との間における気密が確保できる。   For example, as shown in FIG. 5, the irregularities 21 that are regularly raised alternately on the front surface and the back surface can be easily created by corrugating the partition plate 2. In addition, although the partition plate 2 which formed the unevenness | corrugation 21 which raised the surface and the back surface alternately by giving a corrugation process to the partition plate 2 becomes a subject, how to ensure contact | adherence with the space | interval board 3 becomes a subject. As shown in FIG. 6, by forming unevenness 31 that matches the unevenness 21 of the partition plate 2 at the upper and lower ends of the spacing plate 3, the problem is solved, and between the partitioning plate 2 and the spacing plate 3. Airtightness can be secured.

上述した本発明の実施の形態である全熱交換素子1を内蔵した全熱交換器100は、屋外から外気OAを導入し、全熱交換素子1に供給するとともに、室内から還気RAを導入し、全熱交換素子1に供給する。   The total heat exchanger 100 incorporating the total heat exchange element 1 according to the embodiment of the present invention described above introduces outside air OA from the outside and supplies it to the total heat exchange element 1 and also introduces return air RA from the room. And supplied to the total heat exchange element 1.

全熱交換素子1に導入された外気OAは、給気流路4に流入する。図7に示すように、給気流路4に流入した空気は、仕切板2の表面に形成した凹凸21により、仕切板2の表面に乱流を生成し、仕切板2の表面に薄い空気層が生成されるのを妨げる。   The outside air OA introduced into the total heat exchange element 1 flows into the supply air flow path 4. As shown in FIG. 7, the air flowing into the air supply flow path 4 generates turbulence on the surface of the partition plate 2 due to the unevenness 21 formed on the surface of the partition plate 2, and a thin air layer is formed on the surface of the partition plate 2. Is prevented from being generated.

同様に、全熱交換素子1に導入された還気RAは、排気流路5に流入する。給気流路に流入した空気は、仕切板2の表面に形成した凹凸21により、仕切板2の表面に乱流Rを生成し、仕切板2の表面に薄い空気層が生成されるのを妨げる。   Similarly, the return air RA introduced into the total heat exchange element 1 flows into the exhaust passage 5. The air that has flowed into the air supply channel generates turbulence R on the surface of the partition plate 2 due to the unevenness 21 formed on the surface of the partition plate 2, and prevents a thin air layer from being generated on the surface of the partition plate 2. .

そして、給気流路4に流れる空気と排気流路5に流れる空気との間で温度と湿度が交換され、外気OAは給気SAとなり室内に供給され、還気RAは排気となり屋外に排出される。   Then, the temperature and humidity are exchanged between the air flowing through the air supply flow path 4 and the air flowing through the exhaust flow path 5, the outside air OA is supplied into the room as supply air SA, and the return air RA is exhausted and discharged outside. The

上述した本発明の実施の形態である全熱交換素子1は、仕切板2の表面に微細な凹凸21を形成したので、仕切板2の表面を空気が流れると、仕切板2の表面に乱流が生成され、仕切板2の表面に空気層が生成されるのを妨げる。これにより、仕切板2の表面における熱交換が促進され、全熱交換素子1の熱交換効率が向上する。   Since the total heat exchange element 1 according to the embodiment of the present invention described above has the fine irregularities 21 formed on the surface of the partition plate 2, if air flows on the surface of the partition plate 2, the surface of the partition plate 2 is disturbed. A flow is generated and prevents an air layer from being generated on the surface of the partition plate 2. Thereby, the heat exchange in the surface of the partition plate 2 is accelerated | stimulated, and the heat exchange efficiency of the total heat exchange element 1 improves.

なお、上述した本発明の実施の形態では、対向流型の全熱交換素子を例に説明したが、対向流型の全熱交換素子に限られるものではなく、直交流型の全熱交換素子としてもよい。   In the above-described embodiment of the present invention, the counter flow type total heat exchange element has been described as an example. However, the counter flow type total heat exchange element is not limited to the counter flow type total heat exchange element. It is good.

1 全熱交換素子
2 仕切板
21 凹凸
3 間隔板
31 凹凸
4 給気流路
41 吸込口
42 吐出口
5 排気流路
52 吐出口
100 全熱交換器
101 給気流路
102 排気流路
F ファン
OA 外気
SA 給気
EA 排気
RA 還気
DESCRIPTION OF SYMBOLS 1 Total heat exchange element 2 Partition plate 21 Concavity and convexity 3 Space | interval plate 31 Concavity and convexity 4 Air supply flow path 41 Suction port 42 Discharge port 5 Exhaust flow path 52 Discharge port 100 Total heat exchanger 101 Air supply flow path 102 Exhaust flow path F Fan OA Outside air SA Supply air EA exhaust RA return air

Claims (3)

仕切板を境にして給気流路と排気流路とが隣接し、前記給気流路に流れる空気と前記排気流路に流れる空気との間で熱交換をする全熱交換素子において、
前記仕切板の表面に凹凸を形成したことを特徴とする全熱交換素子。
In the total heat exchange element that adjoins the air supply flow path and the exhaust flow path with the partition plate as a boundary, and performs heat exchange between the air flowing through the air supply flow path and the air flowing through the exhaust flow path,
A total heat exchanging element, wherein irregularities are formed on the surface of the partition plate.
前記凹凸は、表面を盛り上げるとともに裏面を落とし入れた凹凸であることを特徴とする請求項1に記載の全熱交換素子。   2. The total heat exchange element according to claim 1, wherein the unevenness is an unevenness in which a surface is raised and a back surface is dropped. 前記凹凸は、表面と裏面とを交互に盛り上げた凹凸であることを特徴とする請求項1に記載の全熱交換素子。   2. The total heat exchange element according to claim 1, wherein the unevenness is unevenness in which a front surface and a back surface are alternately raised.
JP2010280938A 2010-12-16 2010-12-16 Total enthalpy heat exchange element Pending JP2012127601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280938A JP2012127601A (en) 2010-12-16 2010-12-16 Total enthalpy heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280938A JP2012127601A (en) 2010-12-16 2010-12-16 Total enthalpy heat exchange element

Publications (1)

Publication Number Publication Date
JP2012127601A true JP2012127601A (en) 2012-07-05

Family

ID=46644848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280938A Pending JP2012127601A (en) 2010-12-16 2010-12-16 Total enthalpy heat exchange element

Country Status (1)

Country Link
JP (1) JP2012127601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145068A (en) * 2012-01-13 2013-07-25 Panasonic Corp Heat exchange element and heat exchange type ventilator using the same
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145068A (en) * 2012-01-13 2013-07-25 Panasonic Corp Heat exchange element and heat exchange type ventilator using the same
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it
US10408479B2 (en) 2013-11-28 2019-09-10 F2A-Fabrication Aeraulique Et Acoustique Dual-flow air/air exchanger, apparatus for processing air and method for protecting such an exchanger against ice and for cleaning same

Similar Documents

Publication Publication Date Title
SG195226A1 (en) Heating element undulation patterns
JP4303679B2 (en) Heat exchanger
JPH09152292A (en) Heat exchanging element
JP2014016144A (en) Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
JP2012127601A (en) Total enthalpy heat exchange element
SE0700570L (en) Cross current type heat exchanger
TW201038906A (en) Heat exchange element
CN207163278U (en) A kind of heat exchange structure of Total heat exchange core body
KR101730890B1 (en) Plastic Heat Exchanger for Heat Recovery
JP2005195190A (en) Multiplate heat exchanger
KR20130016586A (en) Heat exchanger for exhaust-heat recovery
JP4466156B2 (en) Heat exchanger
KR100732375B1 (en) Ventilation equipment with heat transfer passages of non-straight line
KR101368309B1 (en) Heat exchanger for exhaust heat recovery
JP2012141121A (en) Total heat exchange element
JP2014163571A (en) Heat exchange element
JP2010151344A (en) Total heat exchanger
CN203772082U (en) Total heat exchanger
KR20100059140A (en) Heat exchange element for ventilating duct
JP2012127602A (en) Total heat exchange element
CN202350284U (en) Total heat exchange unit
JP6028214B2 (en) Heat exchange element and heat exchange type ventilation equipment using it
TW201702548A (en) Air total heat exchanger using metal as material for channel members and partitioning plates to greatly enhance heat exchange performance
RU154107U1 (en) PACKAGE OF PLATE HEAT EXCHANGER
JP3156162U (en) Total heat exchange element