JP2012127581A - Method of building pipe member for underground heat exchanger in borehole of ground - Google Patents

Method of building pipe member for underground heat exchanger in borehole of ground Download PDF

Info

Publication number
JP2012127581A
JP2012127581A JP2010279747A JP2010279747A JP2012127581A JP 2012127581 A JP2012127581 A JP 2012127581A JP 2010279747 A JP2010279747 A JP 2010279747A JP 2010279747 A JP2010279747 A JP 2010279747A JP 2012127581 A JP2012127581 A JP 2012127581A
Authority
JP
Japan
Prior art keywords
pipe
pipe member
liquid
heat exchanger
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010279747A
Other languages
Japanese (ja)
Other versions
JP5712597B2 (en
Inventor
Tadashi Kaneko
正 金子
Yasuyuki Maida
泰之 毎田
Kenji Mikota
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010279747A priority Critical patent/JP5712597B2/en
Publication of JP2012127581A publication Critical patent/JP2012127581A/en
Application granted granted Critical
Publication of JP5712597B2 publication Critical patent/JP5712597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To facilitate build of a pipe member into a target depth without using a large-scale auxiliary member such as a balance weight when the pipe member whose specific gravity is smaller than liquid is lowered and built along its pipe axis direction, into a borehole filled with liquid.SOLUTION: The method is related to lowering and build of the pipe member of an underground heat exchanger, whose specific gravity is smaller than the liquid, along the pipe axis direction of the pipe member, into the borehole filled with the liquid. By extracting the liquid in the borehole by a predetermined quantity during build of the pipe member, the level of the liquid is lowered.

Description

本発明は、地中熱交換器に使用される管部材の地面の掘削孔への建て込み方法に関する。   The present invention relates to a method for installing a pipe member used in a ground heat exchanger into a ground excavation hole.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. For example, heat is dissipated to the ground in summer and heat is collected from the ground in winter.

この地中熱交換器は、地盤に鉛直に埋設される管部材を有する。そして、この管部材内に熱媒体を流し込むとともに、地中熱と熱交換後に当該熱媒体を取り出す等して、ヒートポンプへ送出して利用する。   This underground heat exchanger has a pipe member embedded vertically in the ground. Then, the heat medium is poured into the pipe member, and the heat medium is taken out after exchanging heat with the underground heat, and sent to the heat pump for use.

かかる地中熱交換器は、例えば次のようにして地中に設置される。
先ず、ボーリングマシンやオーガ等の掘削機により、地面に掘削孔を形成する。そして、掘削孔に、その上方から管部材を管軸方向に沿って建て込み(挿入のこと)、しかる後に、掘削孔と管部材との間の隙間を適宜な充填材で埋め戻す。
Such an underground heat exchanger is installed in the ground as follows, for example.
First, an excavation hole is formed in the ground by an excavator such as a boring machine or an auger. Then, the pipe member is built (inserted) into the excavation hole from above along the pipe axis direction, and then the gap between the excavation hole and the pipe member is backfilled with an appropriate filler.

ここで、通常、上述の掘削には削孔水も使用され、よって、掘削後の建て込み時には掘削孔内には削孔水が充満している。また、最近では管部材には樹脂管が使用され、当該樹脂管は水よりも比重が小さい。よって、管軸方向に沿って管部材を掘削孔内に、その上方から沈降して建て込む際には、削孔水との比重差に基づく浮力が管部材に働いて浮いてしまい、管部材を目標の建て込み深さまで建て込むことは困難であった。   Here, the drilling water is usually used for the above-described excavation, and therefore, the drilling hole is filled with the drilling water at the time of construction after excavation. Recently, a resin pipe is used as the pipe member, and the resin pipe has a specific gravity smaller than that of water. Therefore, when the pipe member is set in the excavation hole along the pipe axis direction from below, the buoyancy based on the specific gravity difference with the drilling water acts on the pipe member and floats. It was difficult to build up to the target building depth.

この点につき、特許文献1には、目標の建て込み深さまで建て込み易くすべく、補助部材としてバランスウエイトを用いることが記載されている。すなわち、管部材にバランスウエイトを取り付けることにより、建て込み時に管部材に作用する浮力に対抗することが開示されている。   In this regard, Patent Document 1 describes that a balance weight is used as an auxiliary member in order to make it easy to build up to a target building depth. In other words, it is disclosed that a buoyancy acting on the pipe member at the time of installation is countered by attaching a balance weight to the pipe member.

特開平8−29079号公報JP-A-8-29079

しかしながら、かかるバランスウエイトたる補助部材の用意や取り付けには、手間がかかり、工期の長期化やコストアップを招き得る。   However, the preparation and attachment of the auxiliary member as the balance weight takes time and can lead to a long construction period and an increase in cost.

本発明は、上記のような従来の問題に鑑みなされたものであって、その主な目的は、削孔水のような液体が入った掘削孔内に、液体よりも比重の小さい管部材を、その管軸方向に沿って沈降して建て込む際に、バランスウエイトの如き大掛かりな補助部材を用いずに、管部材を目標の建て込み深さまで建て込み易くすることにある。   The present invention has been made in view of the above-described conventional problems, and its main purpose is to provide a pipe member having a specific gravity smaller than that of a liquid in a drilling hole containing a liquid such as drilling water. It is to make it easy to install the pipe member to the target installation depth without using a large auxiliary member such as a balance weight when building by sinking along the pipe axis direction.

かかる目的を達成するために請求項1に示す発明は、
液体の入った掘削孔に、前記液体よりも比重の小さい管部材を前記管部材の管軸方向に沿って沈降して建て込む方法であって、
前記管部材の建て込み中に、前記掘削孔内の液体を所定量だけ抜くことにより、前記液体の液位を低下することを特徴とする。
In order to achieve this object, the invention shown in claim 1
A method in which a pipe member having a specific gravity smaller than that of the liquid is set in the borehole containing the liquid by sinking along the pipe axis direction of the pipe member,
During the installation of the pipe member, the liquid level of the liquid is lowered by removing a predetermined amount of liquid in the excavation hole.

上記請求項1に示す発明によれば、液位を低下する。そして、この液位低下により、液中に没している管部材の部分の長さが相対的に減って浮力が小さくなり、また、没していない管部材の部分の長さが相対的に増える。そして、この没していない管部材の部分の重量と浮力とが釣り合うまで、管部材は水中に没していく。つまり、管部材は掘削孔内を沈降することになり、その結果、管部材を目標の建て込み深さまで建て込み易くなる。   According to the first aspect of the present invention, the liquid level is lowered. And by this liquid level drop, the length of the portion of the tube member submerged in the liquid is relatively reduced, the buoyancy is reduced, and the length of the portion of the tube member not submerged is relatively Increase. Then, the pipe member is submerged in water until the weight and buoyancy of the portion of the pipe member not submerged are balanced. That is, the pipe member sinks in the excavation hole, and as a result, the pipe member can be easily built up to a target embedment depth.

請求項2に記載の発明は、請求項1に記載の地面の掘削孔への地中熱交換器に係る管部材の建て込み方法であって、
前記管部材は、その管内に液体が入った状態で前記掘削孔に沈降されて建て込まれることを特徴とする。
The invention according to claim 2 is a method of laying a pipe member according to the underground heat exchanger in the excavation hole of the ground according to claim 1,
The pipe member is built by being settled in the excavation hole in a state where liquid is contained in the pipe.

上記請求項2に示す発明によれば、管部材は、その管内空気による浮力の影響を受け難くなり、よって、目標の建て込み深さまで更に建て込み易くなる。   According to the second aspect of the present invention, the pipe member is not easily affected by the buoyancy caused by the air in the pipe, and therefore, the pipe member is further easily built up to the target build-in depth.

請求項3に記載の発明は、請求項1又は2に記載の地面の掘削孔への地中熱交換器に係る管部材の建て込み方法であって、
前記管部材の建て込み深さが目標の建て込み深さに到達するまで、前記液位の低下を繰り返し行うことを特徴とする。
The invention according to claim 3 is a method of erection of the pipe member according to the underground heat exchanger in the ground excavation hole according to claim 1 or 2,
The lowering of the liquid level is repeatedly performed until the embedment depth of the pipe member reaches a target embedment depth.

上記請求項3に示す発明によれば、前記液位を低下することを繰り返し行う。そして、液位低下を行う度に、管部材は掘削孔内を沈降する。よって、目標の建て込み深さまで確実に建て込むことができる。   According to the third aspect of the invention, the liquid level is repeatedly lowered. Each time the liquid level is lowered, the pipe member sinks in the borehole. Therefore, it is possible to reliably build up to the target building depth.

本発明によれば、削孔水のような液体が入った掘削孔内に、液体よりも比重の小さい管部材を、その管軸方向に沿って沈降して建て込む際に、バランスウエイトの如き大掛かりな補助部材を用いずに、管部材を目標の建て込み深さまで建て込み易くなる。   According to the present invention, when a pipe member having a specific gravity smaller than that of a liquid is set in the borehole containing liquid such as drilling water, the balance weight or the like is set. Without using a large auxiliary member, it becomes easy to install the pipe member to the target installation depth.

本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 21 which concerns on this embodiment. 図2Aは、地盤Gの竪孔23を透視して見た地中熱交換器21の側面図であり、図2Bは、図2A中のB−B断面図である。2A is a side view of the underground heat exchanger 21 seen through the hole 23 of the ground G, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A. 図3A及び図3Bは、地中熱交換器21の設置工事の施工手順の説明図である。3A and 3B are explanatory diagrams of the construction procedure of the installation work of the underground heat exchanger 21. FIG. 図4A乃至図4Cは、同施工手順の説明図である。4A to 4C are explanatory diagrams of the construction procedure. 図5A乃至図5Cは、同施工手順の説明図である。5A to 5C are explanatory diagrams of the construction procedure. 図6Aは、建て込み序盤の状態の説明図であり、図6Bは、建て込み終盤の状態の説明図であり、図6Cは、建て込み終盤の釣り合い状態において行う削孔水23wの水位低下の説明図であり、図6Dは、同水位低下により更に建て込みが可能になることを示す図である。6A is an explanatory diagram of the state of the early stage of erection, FIG. 6B is an explanatory diagram of the state of the erection end, and FIG. It is explanatory drawing and FIG. 6D is a figure which shows that further embedment becomes possible by the same water level fall.

===本実施形態===
<<<地中熱交換器21について>>>
図1は、本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。図2Aは、地盤Gの竪孔23を透視して見た地中熱交換器21の側面図であり、図2Bは、図2A中のB−B断面図である。
=== This Embodiment ===
<<< About the underground heat exchanger 21 >>>
FIG. 1 is an explanatory diagram of a ground heat utilization system 11 using a ground heat exchanger 21 according to the present embodiment. 2A is a side view of the underground heat exchanger 21 seen through the hole 23 of the ground G, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.

この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器21と、地中熱交換器21の熱媒体26からの熱を利用して建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、循環ポンプ17とを有する。なお、ヒートポンプ15の構成は周知なので、その説明は省略する。   The ground heat utilization system 11 is for heating the building 1 by using heat from the ground heat exchanger 21 that performs heat exchange with the ground G and the heat medium 26 of the ground heat exchanger 21. A heat pump 15 that generates hot water and cold water for cooling, and a circulation pump 17. In addition, since the structure of the heat pump 15 is known, the description is abbreviate | omitted.

図2A及び図2Bに示すように、この地中熱交換器21は、所謂「ボアホール方式」である。すなわち、地盤Gに形成された掘削孔としての竪孔23と、竪孔23に挿入されるU字管30と、竪孔23とU字管30との間の空間SP23に充填される充填材27と、を有している。そして、U字管30の一方の管端開口35aには、ヒートポンプ15から熱媒体26として水又は不凍液等が送り込まれ、当該熱媒体26は、U字管30を流れる間に地盤Gの地中熱により加熱又は冷却され、しかる後に、U字管30の他方の管端開口35bから、循環ポンプ17によりヒートポンプ15へ向けて送られて、ヒートポンプ15にて温水生成や冷水生成に供される。   As shown in FIGS. 2A and 2B, the underground heat exchanger 21 is a so-called “borehole system”. That is, the filling material filled in the space SP23 between the borehole 23 and the U-shaped pipe 30 and the U-shaped pipe 30 inserted into the borehole 23, and the space SP23 between the borehole 23 and the U-shaped pipe 30. 27. Then, water or antifreeze or the like is sent as heat medium 26 from the heat pump 15 to one pipe end opening 35 a of the U-shaped pipe 30, and the heat medium 26 flows into the ground G while flowing through the U-shaped pipe 30. Heated or cooled by heat, and then sent from the other pipe end opening 35 b of the U-shaped pipe 30 toward the heat pump 15 by the circulation pump 17, and used for hot water generation or cold water generation by the heat pump 15.

竪孔23は、ボーリングマシンやオーガ等の掘削機により地面Gにほぼ垂直に掘削された孔であり、その直径は100〜200mm、深さは30〜150mである。   The hole 23 is a hole excavated almost perpendicularly to the ground G by an excavator such as a boring machine or an auger, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m.

U字管30は、例えば高密度ポリエチレン等の樹脂製のU字形状の管である。詳しくは、当該U字管30は、熱媒体26の流路の折り返し部分をなすU字継手部31と、U字継手部31に連結される二本の単管35,35とを有し、当該U字継手部31を竪孔23の最深部に位置させつつ、2本の単管35,35の各管端開口35a,35bを、それぞれ竪孔23の外に突出させている。そして、これら管端開口35a,35bのうちの一方35aは、ヒートポンプ15から送られる熱媒体26の取入口となり、他方35bは、地盤Gとの間で熱交換した熱媒体26をヒートポンプ15へ送り出す送出口となる。   The U-shaped tube 30 is a U-shaped tube made of resin such as high-density polyethylene. Specifically, the U-shaped tube 30 includes a U-shaped joint portion 31 that forms a folded portion of the flow path of the heat medium 26, and two single tubes 35 and 35 that are connected to the U-shaped joint portion 31. The pipe end openings 35 a and 35 b of the two single pipes 35 and 35 are respectively protruded from the hole 23 while the U-shaped joint part 31 is positioned at the deepest part of the hole 23. One of the tube end openings 35a and 35b serves as an intake port for the heat medium 26 sent from the heat pump 15, and the other 35b sends the heat medium 26 exchanged with the ground G to the heat pump 15. It becomes a delivery exit.

なお、図示例では、一つの竪孔23につき、かかるU字管30,30が一対設けられている。つまり、図2Aでは、奥側に隠れて見えないが、先端のU字継手部31,31を重ね合わせた状態で、一対のU字管30,30が竪孔23内に建て込まれており、これにより、図2Bに示すように計4本の単管35,35,35,35が配されている。よって、本実施形態では、一対のU字管30,30のひとまとまりが、請求項に係る「管部材」に相当する。但し、U字管30の数は何等一対に限るものではなく、一つでも良い。ちなみに、U字管30,30を一対で設ける場合には、建て込み時の竪孔23への挿入性を考えると、U字継手部31,31同士を互いに上下にずらして固定すると良く、このようにすれば、これらU字管30,30において建て込み時に先頭になる部分のサイズが小さくなって、竪孔23内へ建て込み易くなる。   In the illustrated example, a pair of such U-shaped tubes 30, 30 are provided for each fistula 23. In other words, in FIG. 2A, the pair of U-shaped tubes 30, 30 are built in the fistula 23 with the U-shaped joint portions 31, 31 at the leading ends being overlapped, although they are hidden behind and cannot be seen. Thus, as shown in FIG. 2B, a total of four single tubes 35, 35, 35, 35 are arranged. Therefore, in this embodiment, a group of a pair of U-shaped pipes 30 and 30 corresponds to a “pipe member” according to the claims. However, the number of U-shaped tubes 30 is not limited to a pair, and may be one. Incidentally, in the case of providing a pair of U-shaped tubes 30 and 30, considering the insertability into the fist hole 23 at the time of erection, the U-shaped joint portions 31 and 31 may be fixed by shifting each other up and down. If it does in this way, the size of the part which becomes the head at the time of erection in these U-shaped pipes 30 and 30 will become small, and it will become easy to erection into the fistula 23.

充填材27は、例えば、モルタル、川砂や山砂、珪砂等を基材とし、U字管30と竪孔23との間の空間SP23に密実に充填される。これにより、充填材27を介して、U字管30内の熱媒体26と地盤Gとの間で熱交換が行われる。なお、この熱交換効率を高めるべく、充填材27に対して、1〜20%の容積含有率(=長粒物の総容積/充填材27の総容積)で、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を混入しても良い。   The filler 27 is made of, for example, mortar, river sand, mountain sand, quartz sand, or the like as a base material, and is densely filled into the space SP23 between the U-shaped tube 30 and the fistula 23. Thereby, heat exchange is performed between the heat medium 26 in the U-shaped tube 30 and the ground G through the filler 27. In order to increase the heat exchange efficiency, silicon carbide, alumina, and blast furnace with a volume content of 1 to 20% with respect to the filler 27 (= total volume of long particles / total volume of the filler 27). You may mix the long grain thing which consists of at least any 1 type of slag.

<<<地中熱交換器21の設置工事について>>>
図3A乃至図5Cは、地中熱交換器21の設置工事の施工手順の説明図である。なお、図3A乃至図5Cでは、一部の構成を側面視で示し、それ以外の構成は縦断面視で示している。また、図の錯綜を防ぐ目的で、一部の断面部位についてはハッチングを省略している。
<<< About installation work of underground heat exchanger 21 >>>
3A to 5C are explanatory diagrams of the construction procedure of the installation work of the underground heat exchanger 21. FIG. 3A to 5C, a part of the configuration is shown in a side view, and the other configuration is shown in a vertical sectional view. In addition, hatching is omitted for some cross-sectional portions for the purpose of preventing complication of the drawing.

先ず、図3Aに示すように、対象地盤Gに、土留め用の塩化ビニル製等の樹脂管22を、管軸方向を鉛直方向に向けつつ打ち込む。この樹脂管22は、地盤表層部の崩落を防ぐものであり、その長さは、例えば1〜5mの短尺なものである。但し、その管径にあっては、その内周側に上述の竪孔23が形成されることから、樹脂管22の内径は、竪孔23の孔径よりも若干大径に設定される。   First, as shown in FIG. 3A, a resin pipe 22 made of vinyl chloride or the like for retaining earth is driven into the target ground G while the pipe axis direction is directed in the vertical direction. The resin tube 22 prevents the ground surface layer from collapsing, and the length thereof is, for example, a short one of 1 to 5 m. However, with respect to the tube diameter, since the above-described pores 23 are formed on the inner peripheral side thereof, the inner diameter of the resin tube 22 is set slightly larger than the diameter of the pores 23.

次に、図3Bに示すように、樹脂管22の内側の地盤Gの部分を掘削することにより、最終的に図4Aのような孔径100〜200mm、深さ30〜150mの竪孔23を形成する。この掘削は、ボーリングマシンやオーガ等の掘削機によってなされ、また、孔壁保護や削孔自体の目的で、竪孔23には、その掘削と同時並行又はその直後に、竪孔23のサイズに合ったケーシング鋼管24が挿入されている。なお、このケーシング鋼管24は無くても良い。更には、竪孔23の内側(正確には、「ケーシング鋼管24の内側」と言うべきであるが、以下では、ケーシング鋼管24も含めて単に竪孔23と言うことにする)には削孔水23wが充満している。この削孔水23wは、掘削時に使用されたものであり、つまり、掘削時に竪孔23の下方へ向けて圧送され、これにより、掘削土を泥状にして上方への排土に用いられたり、掘削面に高圧で噴射されて掘削自体を行うのに用いられたものである。よって、掘削終了時には、一般に竪孔23内には、当該使用済みの削孔水23wが充満している。   Next, as shown in FIG. 3B, by excavating the portion of the ground G inside the resin tube 22, a hole 23 having a hole diameter of 100 to 200 mm and a depth of 30 to 150 m as shown in FIG. 4A is finally formed. To do. This excavation is performed by an excavating machine such as a boring machine or an auger. For the purpose of protecting the hole wall or drilling itself, the excavator 23 has the same size as the excavator 23 at the same time or immediately after the excavation. A matching casing steel pipe 24 is inserted. The casing steel pipe 24 may be omitted. Further, in the inside of the borehole 23 (to be exact, it should be referred to as “inside of the casing steel pipe 24”, but in the following, the borehole 23 including the casing steel pipe 24 will be simply referred to as the borehole 23). Water 23w is full. This drilling water 23w is used at the time of excavation. In other words, the drilling water 23w is pumped toward the lower side of the borehole 23 at the time of excavation. It is used to perform excavation itself by being injected at a high pressure on the excavation surface. Therefore, at the end of excavation, the borehole 23 is generally filled with the used drilling water 23w.

そうしたら、この削孔水23wが充満する竪孔23内に、図4B及び図4Cに示すように、U字管30,30を、その管軸方向(単管35の管軸方向のこと)たる長手方向を鉛直方向に沿わせつつ沈降させて設置する。   Then, as shown in FIG. 4B and FIG. 4C, the U-shaped tubes 30 and 30 are arranged in the tube axis direction (the tube axis direction of the single tube 35) in the hole 23 filled with the drilling water 23 w. Installed with the longitudinal direction of the barrel settling down along the vertical direction.

詳しくは、先ず、U字管30をコイル状に巻き取った状態で現場搬入する。この例では、前述のように竪孔23には一対のU字管30,30が建て込まれるので、コイル状に巻き取り状態のU字管30r,30rも一対で現場搬入され、そして、地面Gに直置きされた一対のリール装置70,70に取り付けられる。そして、各リール装置70は、同巻き取り状態のU字管30rを水平回転して繰り出す。すると、繰り出されたU字管30は、竪孔23の上方に配置された引き上げ機構80により所定高さまで引き上げられた後に、竪孔23の略直上で垂下された状態で竪孔23内へ入っていくという建て込みルートを辿って順次建て込まれる。   Specifically, first, the U-shaped tube 30 is carried in the field with the coil wound up. In this example, since the pair of U-shaped tubes 30 and 30 are built in the fistula 23 as described above, a pair of U-shaped tubes 30r and 30r wound in a coil shape are also carried in the field, and the ground It is attached to a pair of reel devices 70 and 70 placed directly on G. Each reel device 70 rotates the U-shaped tube 30r in the same winding state horizontally and feeds it. Then, the fed U-shaped tube 30 is pulled up to a predetermined height by a pulling mechanism 80 disposed above the hole 23 and then enters the hole 23 in a state where it is suspended just above the hole 23. It is built sequentially by following the built-in route of going.

なお、この建て込み中には、竪孔23内に建て込まれたU字管30,30の容積分だけ、竪孔23内の削孔水23wは、竪孔23の口部23euたる上端縁部23euから自然に外へ溢れ出て排水される。よって、概ね常に、竪孔23の口部23euには削孔水23wが満ちた状態になっている。   During this erection, the drilling water 23w in the pit 23 is the upper edge of the mouth 23eu of the pit 23 by the volume of the U-shaped tubes 30 and 30 built in the pit 23. It naturally overflows from the section 23eu and is drained. Therefore, almost always, the mouth portion 23eu of the hole 23 is filled with the drilling water 23w.

また、U字管30の下端部30dを建て込む際には、一対のU字管30,30のU字継手部31,31同士を重ね合わせて番線等の適宜な結束具により分離不能に結束固定し、しかる後に、竪孔23の口部23euへ一緒に挿入する。よって、それ以降は、これら一対のリール装置70,70同士は互いに連動して、互いの繰り出し量を揃えながら各々担当するU字管30,30を繰り出していく。   Further, when the lower end portion 30d of the U-shaped tube 30 is installed, the U-shaped joint portions 31, 31 of the pair of U-shaped tubes 30, 30 are overlapped with each other and bound together with an appropriate binding tool such as a number wire. After fixing, it is inserted together into the mouth 23eu of the fistula 23. Therefore, after that, the pair of reel devices 70 and 70 are interlocked with each other, and the U-shaped tubes 30 and 30 that are in charge of the reel devices 70 and 30 are fed out while aligning the feeding amounts.

ところで、この建て込み中には、U字管30,30内への通水を行う。すなわち、U字管30において少なくとも竪孔23内に建て込まれている部分については、管内に水を充満させている。この理由は、当該部分の管内空気を無くすことで、U字管30,30の管内空気起因の浮力の発生を無くして、削孔水23w内でのU字管30,30の沈降たる建て込みを円滑に行うためである。   By the way, during this erection, water is passed into the U-shaped tubes 30 and 30. That is, at least a portion of the U-shaped tube 30 built in the fistula 23 is filled with water. The reason for this is that the buoyancy due to the air in the U-shaped tubes 30 and 30 is eliminated by eliminating the air in the tube, and the U-shaped tubes 30 and 30 are submerged in the drilling water 23w. It is for performing smoothly.

但し、この管内空気起因の浮力の影響を無くしても、U字管30,30には、削孔水23wとの比重差に起因した浮力は作用している。すなわち、削孔水23wの密度は約1kg/mであるところ、U字管30の密度は0.93〜0.96kg/mであるので、当該U字管30の比重が削孔水23wよりも小さいことに起因して、この比重差に基づく浮力FfがU字管30,30に働いている。 However, even if the influence of the buoyancy due to the air in the pipe is eliminated, the buoyancy due to the specific gravity difference with the drilling water 23w is acting on the U-shaped tubes 30 and 30. That is, the density of the drilling water 23w is about 1 kg / m 3 , and the density of the U-shaped tube 30 is 0.93 to 0.96 kg / m 3 , so that the specific gravity of the U-shaped tube 30 is the drilling water. Due to being smaller than 23 w, the buoyancy Ff based on this specific gravity difference acts on the U-shaped tubes 30 and 30.

ここで、この比重差起因の浮力Ffは、図6Aに示すような建て込みの序盤にあっては、建て込み深さLtが深くないことから、ごく小さく建て込みには殆ど影響しない。詳しくは、当該浮力Ffは、U字管30,30のうちで引き上げ機構80から略垂下された部分30s,30s(図4B)の重量よりも小さいので、基本的に、U字管30,30は、引き上げ機構80から送り出されれば、送り出された分だけ順次竪孔23内へ沈降していく。   Here, the buoyancy Ff caused by the specific gravity difference is very small and hardly affects the erection since the erection depth Lt is not deep in the early stage of erection as shown in FIG. 6A. Specifically, since the buoyancy Ff is smaller than the weight of the portions 30s, 30s (FIG. 4B) of the U-shaped tubes 30, 30 that are substantially suspended from the lifting mechanism 80, basically, the U-shaped tubes 30, 30 are used. If it is sent out from the pulling mechanism 80, it will sink into the hole 23 sequentially by the amount sent out.

ところが、図6Bに示すような建て込みの終盤になると、引き上げ機構80がいくら送り出しても、U字管30,30がそれ以上沈降しなくなることがある。これは、浮力Ffと前述のU字管30,30の部分30s,30sの重量とが概ね釣り合うためである。そして、この釣り合い状態が、図6Dの目標の建て込み深さLtaへの到達前に起きると、図6Bに示すように、それ以上の建て込みが不可能となり、つまり、U字管30,30を目標の建て込み深さLtaまで建て込めなくなる。   However, at the end of the erection as shown in FIG. 6B, the U-shaped tubes 30 and 30 may not settle further no matter how much the lifting mechanism 80 is sent out. This is because the buoyancy Ff and the weights of the portions 30 s and 30 s of the U-shaped tubes 30 and 30 are substantially balanced. When this balanced state occurs before reaching the target erection depth Lta in FIG. 6D, as shown in FIG. 6B, further erection is impossible, that is, the U-shaped tubes 30, 30 Cannot be built up to the target build-up depth Lta.

そこで、本実施形態では、この釣り合い状態に至った際に、不図示の排水ポンプやエアブロー装置等を利用して、当該削孔水23wを所定量だけ竪孔23から抜き出して、当該水位を下げている。すなわち、図6Bに示す状態から図6Cに示す状態へと変更している。   Therefore, in this embodiment, when this balanced state is reached, the drilling water 23w is extracted from the borehole 23 by a predetermined amount by using a drainage pump, an air blower or the like (not shown), and the water level is lowered. ing. That is, the state shown in FIG. 6B is changed to the state shown in FIG. 6C.

すると、この水位低下によって、水没しているU字管30,30の部分30wd,30wdの長さが相対的に減って浮力が小さくなり、また、水没していないU字管30,30の部分30wu,30wuの長さが相対的に増えるので、この水没していないU字管30,30の部分30wu,30wuの重量と浮力Ffとが釣り合うまで、図6Cから図6Dの状態へと、U字管30,30は水中に没していく。つまり、U字管30,30は竪孔23内を沈降することになり、その結果、U字管30,30を目標の建て込み深さLtaまで建て込み易くなる。   Then, due to this lowering of the water level, the lengths of the portions 30wd and 30wd of the U-shaped tubes 30 and 30 that are submerged are relatively reduced and the buoyancy is reduced, and the portions of the U-shaped tubes 30 and 30 that are not submerged. Since the lengths of 30 wu and 30 wu are relatively increased, the state of FIG. 6C is changed to the state of FIG. The tube 30, 30 is immersed in water. That is, the U-shaped tubes 30 and 30 settle in the fistula 23, and as a result, the U-shaped tubes 30 and 30 can be easily built up to the target building depth Lta.

更に、本実施形態では、上記所定量の削孔水23wを抜き出すことにより、当該水位を、建て込み深さLtの起算位置(この例では、竪孔23の口部たる上端縁部23eu)よりも所定長Lw以上低くしており、これにより、上記釣り合い状態になる建て込み深さLtを、目標の建て込み深さLtaと同値またはそれよりも深くなるようにしている。その結果、これ以降に再び上述の釣り合い状態が、目標の建て込み深さLtaへの到達前に現れることは無く、これにより、U字管30,30を、同図6Dに示すような目標の建て込み深さLtaまで建て込み可能となる。   Furthermore, in this embodiment, by extracting the predetermined amount of the drilling water 23w, the water level is calculated from the starting position of the erection depth Lt (in this example, the upper edge 23eu which is the mouth of the fist hole 23). Is set to be lower than the predetermined length Lw, so that the erection depth Lt that achieves the balanced state is equal to or deeper than the target erection depth Lta. As a result, after that, the above-mentioned balanced state does not appear again before reaching the target embedment depth Lta, so that the U-shaped tubes 30 and 30 can be connected to the target as shown in FIG. 6D. It is possible to build up to the build-up depth Lta.

但し、万一何らかの原因により、再度上記の釣り合い状態となって建て込み不能状態に陥った場合には、その時点でもう一度、削孔水23wを抜き出して水位を下げれば良い。そうすれば、再びU字管30,30は上述のメカニズムに基づいて沈降を開始する。つまり、削孔水23wの抜き出しによる水位低下は、何等一回に限るものではなく、U字管30,30が目標の建て込み深さLtaに到達するまで、複数回繰り返しても良い。   However, if, for some reason, the above-mentioned balanced state is entered again and the construction becomes impossible, the hole water 23w may be extracted once again to lower the water level. Then, again, the U-shaped tubes 30 and 30 start to settle based on the above-described mechanism. That is, the water level reduction due to the extraction of the drilling water 23w is not limited to once, and may be repeated a plurality of times until the U-shaped tubes 30 and 30 reach the target built-in depth Lta.

なお、この所定長Lwは、目標の建て込み深さLtaや比重差等に応じて変化するものであり、その算定方法については後述する。また、上述の建て込み深さLtの起算位置は、一般には、この図6Cの例のように、竪孔23の口部23euたる上端縁部23euであり、また、建て込み深さLtとは、具体的には、U字管30の下端部30dたるU字継手部31が位置する深さのことを言う。   The predetermined length Lw changes according to the target embedding depth Lta, specific gravity difference, and the like, and the calculation method will be described later. Further, the starting position of the above-described erection depth Lt is generally the upper edge 23eu which is the mouth 23eu of the fistula 23, as in the example of FIG. 6C. What is the erection depth Lt? Specifically, it refers to the depth at which the U-shaped joint portion 31 which is the lower end portion 30d of the U-shaped tube 30 is located.

そして、このようにして目標の建て込み深さLtaに到達したら(図4C)、次に、各U字管30を各リール装置70から分離すべくU字管30を切断する。これにより、図5Aに示すように、U字管30の上端部30u(35a),30u(35b)が形成され、また、これら上端部30u,30uたるU字管30における両方の管端開口35a,35bは、竪孔23の口部23euよりも上方に突出した状態になる。   When the target erection depth Lta is reached in this way (FIG. 4C), the U-tubes 30 are then cut to separate the U-tubes 30 from the reel devices 70. As a result, as shown in FIG. 5A, upper end portions 30u (35a) and 30u (35b) of the U-shaped tube 30 are formed, and both tube end openings 35a in the U-shaped tube 30 serving as the upper end portions 30u and 30u. , 35b protrudes upward from the mouth 23eu of the hole 23.

次に、図5Aのようにケーシング鋼管24を挿入していた場合には、図5Bに示すようにケーシング鋼管24を上方へ引き抜いて同鋼管24を竪孔23から取り出すが、ここで、このケーシング鋼管24を引き抜く際には、U字管30,30の上端部30u,30u…がケーシング鋼管24の内周面と接触等して損傷の虞がある。そのため、この引き抜きの前に、図5Aのように、U字管30,30の上端部30u,30u…には、保護キャップ90を被せている。   Next, when the casing steel pipe 24 is inserted as shown in FIG. 5A, the casing steel pipe 24 is pulled upward as shown in FIG. 5B, and the steel pipe 24 is taken out from the bore hole 23. When the steel pipe 24 is pulled out, the upper end portions 30u, 30u... Of the U-shaped pipes 30 and 30 may come into contact with the inner peripheral surface of the casing steel pipe 24 and may be damaged. Therefore, before this extraction, as shown in FIG. 5A, the upper end portions 30u, 30u... Of the U-shaped tubes 30, 30 are covered with a protective cap 90.

保護キャップ90は、円筒部90aを本体とする。そして、この円筒部90aの外径は、ケーシング鋼管24の内径よりも小さく、且つ、同円筒部90aの内径は、一対のU字管30,30の計4本の上端部30u,30u…をひとまとめに収容可能な寸法に設定されている。また、同円筒部90aは、蓋部90bを有する有蓋円筒体であり、U字管30,30の上端部30u,30u…の上に蓋部90bが乗ることにより、保護キャップ90はU字管30,30に吊り下げ支持され、更に、保護キャップ90は或る程度の重みを有するステンレス鋼等の金属製である。   The protective cap 90 has a cylindrical portion 90a as a main body. The outer diameter of the cylindrical portion 90a is smaller than the inner diameter of the casing steel tube 24, and the inner diameter of the cylindrical portion 90a is a total of four upper end portions 30u, 30u,. It is set to a size that can be accommodated together. The cylindrical portion 90a is a covered cylindrical body having a lid portion 90b. When the lid portion 90b is placed on the upper end portions 30u, 30u,. Further, the protective cap 90 is made of a metal such as stainless steel having a certain weight.

よって、図5Bに示すように、上方へ引き抜かれるケーシング鋼管24と大きく干渉することも無く、また、その重みに基づいて保護キャップ90は確実にU字管30,30の上端部30u,30u…にしっかりと留まることができて、結果、効果的にU字管30,30の上端部30u,30u…の損傷を防ぐ。   Therefore, as shown in FIG. 5B, there is no significant interference with the casing steel pipe 24 drawn upward, and the protective cap 90 is surely secured to the upper ends 30u, 30u,. As a result, the upper ends 30u of the U-shaped tubes 30, 30 are effectively prevented from being damaged.

そして、このケーシング鋼管24の引き抜き作業が終わったら、最後に、図5Cに示すように竪孔23内に充填材27を入れてU字管30,30を埋め、これにより、地中熱交換器21の設置工事が完了する。   When the casing steel pipe 24 is pulled out, finally, as shown in FIG. 5C, a filler 27 is inserted into the hole 23 to fill the U-shaped pipes 30 and 30, thereby providing a ground heat exchanger. 21 installation work is completed.

この充填材27を入れる方法としては、例えば漏斗95を用いることが挙げられ、また、その場合には、U字管30,30の上端部30u,30u…には上述の保護キャップ90を被せたままにしておく。すなわち、竪孔23の内周面と保護キャップ90の外周面との間に、漏斗95の下端部の略円筒部95pが入るように漏斗95を配置する。また、この時、漏斗95の下端部たる略円筒部95pの内周面と保護キャップ90の外周面との間にはクリアランスが形成されるように配置する。   For example, a funnel 95 can be used as a method for putting the filler 27. In this case, the upper caps 30u, 30u,... Of the U-shaped tubes 30, 30 are covered with the protective cap 90 described above. Leave it alone. That is, the funnel 95 is disposed so that the substantially cylindrical portion 95p at the lower end portion of the funnel 95 enters between the inner peripheral surface of the stoma 23 and the outer peripheral surface of the protective cap 90. At this time, the funnel 95 is arranged so that a clearance is formed between the inner peripheral surface of the substantially cylindrical portion 95p which is the lower end portion of the funnel 95 and the outer peripheral surface of the protective cap 90.

そうしたら、充填材27を貯留するホッパー98を漏斗95の上方にミニクレーン99等で持ち上げ、その状態でホッパー98の下端開口98aを開く。すると、漏斗95上に充填材27が落下するが、これら落下した充填材27は、漏斗95上を滑落しながらその平面中心側へと誘導されて、同漏斗95の下端部の略円筒部95pと保護キャップ90との間のクリアランスを通って竪孔23内へと順次落ちていく。これにより、充填材27が竪孔23内に充填されてU字管30,30が埋設される。なお、この時、ホッパー98から落下する充填材27は保護キャップ90に直接当たるが、このことにより、U字管30,30の上端部30u,30u…は充填材27の衝突から保護されるので、同上端部30u,30u…の損傷は確実に防止される。   Then, the hopper 98 storing the filler 27 is lifted above the funnel 95 with a mini crane 99 or the like, and the lower end opening 98a of the hopper 98 is opened in that state. Then, the filler 27 falls on the funnel 95. These dropped fillers 27 are guided to the center of the plane while sliding down on the funnel 95, and the substantially cylindrical portion 95p at the lower end of the funnel 95 is introduced. Through the clearance between the protective cap 90 and the protective cap 90. As a result, the filler 27 is filled in the fist hole 23 and the U-shaped tubes 30 and 30 are embedded. At this time, the filler 27 falling from the hopper 98 directly hits the protective cap 90, but this protects the upper ends 30u, 30u... Of the U-shaped tubes 30, 30 from collision of the filler 27. The upper end portions 30u, 30u, ... are reliably prevented from being damaged.

<<<削孔水23wの水位低下に係る所定長Lwの算出方法について>>>
上述の説明では、建て込み中において、削孔水23wの水位を、建て込み深さLtの起算位置よりも所定長Lw以上低くしており、これにより、比重差起因の浮力とU字管30,30の重量とが釣り合い状態となる建て込み深さLtを、目標の建て込み深さLtaと同値又はそれよりも深くしている旨を述べたが、以下、この所定長Lwの算出方法について説明する。
<<< Regarding the Calculation Method of the Predetermined Length Lw According to the Water Level Reduction of the Drilling Water 23w >>>
In the above description, during the erection, the water level of the drilling water 23w is lower than the starting position of the erection depth Lt by a predetermined length Lw, and thereby the buoyancy caused by the specific gravity difference and the U-shaped tube 30 , 30 has been described that the built-in depth Lt that is in a balanced state is equal to or deeper than the target built-in depth Lta. Hereinafter, the calculation method of the predetermined length Lw will be described. explain.

先ず、建て込み時に作用する浮力の大きさについてであるが、U字管30,30の管内空気起因の浮力を無視すれば、前述したように、他の考慮すべき浮力は、削孔水23wとU字管30との間の比重差に基づく浮力Ffであり、当該浮力Ffの大きさは下式1で表すことができる。
Ff(kg)=(Dw−Du)×(π×(φ2/2)−π×(φ1/2))×Lt×4 …(1)
なお、上式1中のφ1及びφ2は、それぞれU字管30の単管35の内/外径(m)であり、Ltは建て込み深さ(m)であり、Dw及びDuは、削孔水23w及びU字管30の密度(kg/m)である。また、右辺の末尾の数値の「4」の意味は、U字管30,30は一対設けられ、これにより4本の単管35,35,35,35を有しているためである。
First, regarding the size of the buoyancy acting at the time of erection, if the buoyancy due to the air in the pipes 30 and 30 is ignored, as described above, the other buoyancy to be considered is the drilling water 23w. And the buoyancy Ff based on the specific gravity difference between the U-shaped tube 30 and the magnitude of the buoyancy Ff can be expressed by the following formula 1.
Ff (kg) = (Dw−Du) × (π × (φ2 / 2) 2 −π × (φ1 / 2) 2 ) × Lt × 4 (1)
In the above equation 1, φ1 and φ2 are the inner / outer diameter (m) of the single tube 35 of the U-shaped tube 30, Lt is the built-in depth (m), and Dw and Du are the cutting depths. It is the density (kg / m 3 ) of the pore water 23w and the U-shaped tube 30. Moreover, the meaning of the numerical value “4” at the end of the right side is that a pair of U-shaped tubes 30 and 30 are provided, thereby having four single tubes 35, 35, 35 and 35.

ここで、よりわかりやすくする目的で、上式1に、地中熱交換器21の標準仕様の数値を代入してみる。なお、この標準仕様の数値としては、例えば次が挙げられる。U字管30の単管35の内/外径は27/34mmであり、目標の建て込み深さLtaは100mであり、削孔水23wの密度Dwは1000kg/mであり、U字管30の密度Duは954kg/mである。そして、これら数値を上式1に代入すると、下式のようになり、結果、目標の建て込み深さLtaに到達するより前に、6.2kgの浮力Ffが作用することがわかる。
Ff=(1000−954)×(π×(0.034/2)−π×(0.027/2))×100×4
=6.2kg
よって、この6.2kgの浮力Ff分だけ目標の建て込み深さLtaよりも上方にずれた位置で、U字管30,30は建て込み不能の釣り合い状態になってしまい、つまり、目標の建て込み深さLtaに到達することができない。
Here, for the purpose of making it easier to understand, the numerical value of the standard specification of the underground heat exchanger 21 is substituted into the above equation 1. In addition, as a numerical value of this standard specification, the following is mentioned, for example. The inner / outer diameter of the single pipe 35 of the U-shaped pipe 30 is 27/34 mm, the target embedment depth Lta is 100 m, the density Dw of the drilling water 23 w is 1000 kg / m 3 , and the U-shaped pipe The density Du of 30 is 954 kg / m 3 . When these numerical values are substituted into the above equation 1, the following equation is obtained. As a result, it is understood that 6.2 kg of buoyancy Ff acts before reaching the target erection depth Lta.
Ff = (1000−954) × (π × (0.034 / 2) 2 −π × (0.027 / 2) 2 ) × 100 × 4
= 6.2kg
Therefore, the U-shaped pipes 30 and 30 are in a balance state incapable of being built at a position shifted upward from the target building depth Lta by the buoyancy Ff of 6.2 kg. The penetration depth Lta cannot be reached.

ここで、図6Bの状態に対して水位低下を行うことにより、図6Cに示すように、建て込み深さLtの起算位置よりも削孔水23wの水位を下方に移動することで、水中から空中へと出てくるU字管30,30の部分30g,30gの重量は、浮力Ffに対抗してU字管30,30を沈降させるための新たな力(以下、沈降力とも言う)となる。そして、この部分30g,30gの重量と浮力Ffとが釣り合うまで、図6Dに示すようにU字管30,30は水中に没していく。そのため、上記浮力Ffに相当する重量分のU字管30,30の長さが、上述の所定長Lwに相当することになる。   Here, by lowering the water level with respect to the state of FIG. 6B, as shown in FIG. 6C, by moving the water level of the drilling water 23w downward from the starting position of the erection depth Lt, The weights of the portions 30g and 30g of the U-shaped tubes 30 and 30 coming out into the air are a new force (hereinafter also referred to as a settling force) for sinking the U-shaped tubes 30 and 30 against the buoyancy Ff. Become. Then, until the weights of the portions 30g and 30g and the buoyancy Ff are balanced, the U-shaped tubes 30 and 30 are submerged in water as shown in FIG. 6D. Therefore, the length of the U-shaped tubes 30 and 30 corresponding to the weight corresponding to the buoyancy Ff corresponds to the predetermined length Lw.

よって、単位長さ当たりのU字管30,30の重量をUWuとすると、所定長Lwは下式2で計算される。
Lw=Ff/UWu … (2)
ここで、Ffは、前述したように6,2kgであり、また、単位長さ当たりのU字管30,30の重量UWuは、2.56kg/m(=(π×(34/2)−π×(27/2))×954×2)なので、これらを上式2に代入すると、この例の場合の所定長Lwは、2.4m(=6.2/2.56)となる。ちなみに、上記重量UWuの算出式に係る末尾の数値の「2」の意味は、U字管30,30は一対で設けられているからである。
Therefore, when the weight of the U-shaped tubes 30 and 30 per unit length is UWu, the predetermined length Lw is calculated by the following equation 2.
Lw = Ff / UWu (2)
Here, as described above, Ff is 6,2 kg, and the weight UWu of the U-shaped tubes 30, 30 per unit length is 2.56 kg / m (= (π × (34/2) 2 Since −π × (27/2) 2 ) × 954 × 2), when these are substituted into the above equation 2, the predetermined length Lw in this example is 2.4 m (= 6.2 / 2.56). By the way, the meaning of “2” at the end of the formula for calculating the weight UWu is because the U-shaped tubes 30 and 30 are provided as a pair.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、液位低下としての水位低下を、建て込み中における建て込み不能な釣り合い状態になった際に行っていたが、実行タイミングは何等これに限らない。例えば、建て込み不能になるよりも前の時点で行っても良い。但し、その場合には、上述の所定長Lwよりも水位が更に低下するような水量で、削孔水23wが抜き出されることになる。換言すると、この水量は、上記時点での実際の建て込み深さLt(所定深さに相当)から目標の建て込み深さまで、U字管30,30が、削孔水23wからの浮力に対抗しながら、U字管30,30の重量に基づいて沈降するような量に設定される。   In the above-described embodiment, the water level reduction as the liquid level reduction is performed when a balance state in which the water level cannot be built during the erection is reached, but the execution timing is not limited to this. For example, it may be performed at a time before the installation becomes impossible. However, in that case, the drilling water 23w is extracted in such a water amount that the water level is further lowered than the predetermined length Lw. In other words, this amount of water counters the buoyancy from the drilling water 23w from the actual erection depth Lt (corresponding to a predetermined depth) at the above time point to the target erection depth. However, the amount is set so as to settle based on the weight of the U-shaped tubes 30 and 30.

上述の実施形態では、比重が水よりも小さい管部材の一例として樹脂製の一対のU字管30,30を例示したが、管形状は何等U字状に限るものではない。
例えば、二重管式の地中熱交換器の場合には、同熱交換器の本体として、外筒と、外筒内に挿入配置される内筒とが使用され、そして、外筒としては、下端部が密閉封止された単管状の管部材が竪孔に建て込まれることになるが、比重が水よりも小さい管部材であれば、当該単管状の管部材であっても本発明に係る建て込み方法を適用可能である。
なお、この単管状の管部材の一例としては、コルゲート管(corrugated pipe:波形管)が挙げられ、当該管によれば、その外周面及び内周面の螺旋波形形状に基づく表面積の拡大効果により、地盤Gとコルゲート管内の熱媒体との熱交換効率を高めることができる。
In the embodiment described above, the pair of U-shaped tubes 30 and 30 made of resin is illustrated as an example of a tube member having a specific gravity smaller than that of water, but the tube shape is not limited to a U shape.
For example, in the case of a double pipe type underground heat exchanger, an outer cylinder and an inner cylinder inserted and arranged in the outer cylinder are used as the main body of the heat exchanger, and the outer cylinder is A single tubular tube member whose bottom end is hermetically sealed is built in the fistula, but if the specific gravity is smaller than water, the present invention is applicable to the single tubular tube member. It is possible to apply the building method related to.
In addition, as an example of this single tubular pipe member, a corrugated pipe (corrugated pipe) is cited, and according to the pipe, due to the effect of expanding the surface area based on the helical corrugated shape of the outer peripheral surface and the inner peripheral surface. The heat exchange efficiency between the ground G and the heat medium in the corrugated pipe can be increased.

上述の実施形態では、掘削孔たる竪孔23に入った「液体」として削孔水23wを例示したが、何等これに限るものではない。例えば、削孔水23wを用いずに掘削孔23を掘削した場合に、地下水や雨水等により掘削孔23に入り込んだ水であっても、掘削孔23内に入っていれば、それは、請求項に記載の「液体」に相当する。つまり、液体よりも比重の小さいU字管30などの管部材を掘削孔23に建て込む前に、同掘削孔23内に入っている液体は、すべからく、請求項に記載の「液体」に相当する。   In the above-described embodiment, the drilling water 23w is exemplified as the “liquid” that has entered the borehole 23 that is a drilling hole, but the present invention is not limited to this. For example, when the excavation hole 23 is excavated without using the drilling water 23w, even if the water has entered the excavation hole 23 due to ground water, rain water, or the like, if it is in the excavation hole 23, it is claimed It corresponds to the “liquid” described in 1. That is, before the pipe member such as the U-shaped pipe 30 having a specific gravity smaller than that of the liquid is built in the excavation hole 23, the liquid contained in the excavation hole 23 is completely covered and corresponds to the “liquid” according to the claims. To do.

上述の実施形態では、掘削孔たる竪孔23内への建て込み時に、削孔水23wからU字管30に付与される管内空気起因の浮力の影響を無くすべく、同U字管30内に液体として水を入れていたが、何等これに限るものではない。例えば、地中熱交換器21の運転時に、U字管30内を流れる熱媒体26として不凍液を用いる場合には、U字管30内に不凍液を入れておいても良い。   In the above-described embodiment, in order to eliminate the influence of the buoyancy caused by the air in the pipe applied from the drilling water 23w to the U-shaped pipe 30 when the digging hole 23 is built in the borehole 23, Although water was added as a liquid, it is not limited to this. For example, when the antifreeze liquid is used as the heat medium 26 flowing in the U-shaped tube 30 during the operation of the underground heat exchanger 21, the antifreeze liquid may be put in the U-shaped tube 30.

1 建物、11 地中熱利用システム、15 ヒートポンプ、
17 循環ポンプ、21 地中熱交換器、22 樹脂管、
23 竪孔(掘削孔)、23eu 口部(上端縁部)、
23w 削孔水(液体)、24 ケーシング鋼管、26 熱媒体、
27 充填材、30 U字管(管部材)、30u 上端部、30d 下端部、
30g 部分、30s 部分、30r 巻き取り状態のU字管(管部材)、
30wd 水没しているU字管の部分、30wu 水没していないU字管の部分、
31 U字継手部、35 単管、35a 管端開口、35b 管端開口、
70 リール装置、80 引き上げ機構、90 保護キャップ、
90a 円筒部、90b 蓋部、95 漏斗、95p 略円筒部、
98 ホッパー、98a 下端開口、99 ミニクレーン
SP23 空間、G 地盤(地面)、Ff 浮力
1 building, 11 geothermal heat utilization system, 15 heat pump,
17 circulation pump, 21 underground heat exchanger, 22 resin pipe,
23 hole (drilling hole), 23eu mouth (upper edge),
23w drilling water (liquid), 24 casing steel pipe, 26 heat medium,
27 Filler, 30 U-shaped tube (tube member), 30u upper end, 30d lower end,
30g part, 30s part, 30r U-shaped pipe (pipe member) in a wound state,
30wd U-tube part submerged, 30wu U-tube part not submerged,
31 U-shaped joint part, 35 single pipe, 35a pipe end opening, 35b pipe end opening,
70 reel device, 80 lifting mechanism, 90 protective cap,
90a cylindrical part, 90b lid part, 95 funnel, 95p substantially cylindrical part,
98 Hopper, 98a Lower end opening, 99 Mini crane SP23 Space, G Ground (ground), Ff Buoyancy

Claims (3)

液体の入った掘削孔に、前記液体よりも比重の小さい管部材を前記管部材の管軸方向に沿って沈降して建て込む方法であって、
前記管部材の建て込み中に、前記掘削孔内の液体を所定量だけ抜くことにより、前記液体の液位を低下することを特徴とする地面の掘削孔への地中熱交換器に係る管部材の建て込み方法。
A method in which a pipe member having a specific gravity smaller than that of the liquid is set in the borehole containing the liquid by sinking along the pipe axis direction of the pipe member,
The pipe according to the underground heat exchanger to the ground excavation hole, wherein the liquid level of the liquid is lowered by removing a predetermined amount of liquid in the excavation hole during the installation of the pipe member. How to build components.
請求項1に記載の地面の掘削孔への地中熱交換器に係る管部材の建て込み方法であって、
前記管部材は、その管内に液体が入った状態で前記掘削孔に沈降されて建て込まれることを特徴とする地面の掘削孔への地中熱交換器に係る管部材の建て込み方法。
A method for building a pipe member according to the underground heat exchanger into a ground excavation hole according to claim 1,
The tube member is installed in a ground excavation hole in a ground heat exchanger, wherein the tube member is settled and built in the excavation hole in a state where liquid is contained in the tube.
請求項1又は2に記載の地面の掘削孔への地中熱交換器に係る管部材の建て込み方法であって、
前記管部材の建て込み深さが目標の建て込み深さに到達するまで、前記液位の低下を繰り返し行うことを特徴とする地面の掘削孔への地中熱交換器に係る管部材の建て込み方法。
A method for building a pipe member according to an underground heat exchanger into a ground excavation hole according to claim 1 or 2,
The construction of the pipe member according to the underground heat exchanger in the ground excavation hole is characterized by repeatedly reducing the liquid level until the construction depth of the pipe member reaches a target construction depth. Method.
JP2010279747A 2010-12-15 2010-12-15 Method of installing pipe member related to underground heat exchanger in ground excavation hole Active JP5712597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279747A JP5712597B2 (en) 2010-12-15 2010-12-15 Method of installing pipe member related to underground heat exchanger in ground excavation hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279747A JP5712597B2 (en) 2010-12-15 2010-12-15 Method of installing pipe member related to underground heat exchanger in ground excavation hole

Publications (2)

Publication Number Publication Date
JP2012127581A true JP2012127581A (en) 2012-07-05
JP5712597B2 JP5712597B2 (en) 2015-05-07

Family

ID=46644828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279747A Active JP5712597B2 (en) 2010-12-15 2010-12-15 Method of installing pipe member related to underground heat exchanger in ground excavation hole

Country Status (1)

Country Link
JP (1) JP5712597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031914A (en) * 2012-08-02 2014-02-20 Mitani Sekisan Co Ltd Method for burying heat exchange pipe of underground heat, and propeller for burying
JP6085756B1 (en) * 2016-06-07 2017-03-01 株式会社浪速試錐工業所 Installation method of heat pipe and construction tool used when installing heat pipe
JP2017096095A (en) * 2016-12-28 2017-06-01 三谷セキサン株式会社 Method for burying heat exchange pipe for underground heat

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829079A (en) * 1994-07-15 1996-02-02 Fujikura Ltd Heat pipe installation method of heat pipe type terrestrial heat extraction apparatus
JPH08285480A (en) * 1995-04-19 1996-11-01 Fujikura Ltd Heat pipe laying method of heat pipe type geothermal energy extraction apparatus
JPH11182942A (en) * 1997-12-25 1999-07-06 Kubota Corp Underground heat exchanger
JP2003130471A (en) * 2001-10-18 2003-05-08 National Institute Of Advanced Industrial & Technology Underground heat exchanger
JP2005351558A (en) * 2004-06-11 2005-12-22 Asahi Kasei Homes Kk Geothermal heat exchanging device designing method
JP2008267773A (en) * 2007-04-23 2008-11-06 Koichi Takezaki Installation and management method of hollow pipe (space) below underground water level for geothermal air-conditioning system
JP2009228419A (en) * 2008-02-27 2009-10-08 Jfe Steel Corp Construction method for geothermal heat exchanger, hollow pipe body used in this method, and casing
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829079A (en) * 1994-07-15 1996-02-02 Fujikura Ltd Heat pipe installation method of heat pipe type terrestrial heat extraction apparatus
JPH08285480A (en) * 1995-04-19 1996-11-01 Fujikura Ltd Heat pipe laying method of heat pipe type geothermal energy extraction apparatus
JPH11182942A (en) * 1997-12-25 1999-07-06 Kubota Corp Underground heat exchanger
JP2003130471A (en) * 2001-10-18 2003-05-08 National Institute Of Advanced Industrial & Technology Underground heat exchanger
JP2005351558A (en) * 2004-06-11 2005-12-22 Asahi Kasei Homes Kk Geothermal heat exchanging device designing method
JP2008267773A (en) * 2007-04-23 2008-11-06 Koichi Takezaki Installation and management method of hollow pipe (space) below underground water level for geothermal air-conditioning system
JP2009228419A (en) * 2008-02-27 2009-10-08 Jfe Steel Corp Construction method for geothermal heat exchanger, hollow pipe body used in this method, and casing
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031914A (en) * 2012-08-02 2014-02-20 Mitani Sekisan Co Ltd Method for burying heat exchange pipe of underground heat, and propeller for burying
JP6085756B1 (en) * 2016-06-07 2017-03-01 株式会社浪速試錐工業所 Installation method of heat pipe and construction tool used when installing heat pipe
JP2017096095A (en) * 2016-12-28 2017-06-01 三谷セキサン株式会社 Method for burying heat exchange pipe for underground heat

Also Published As

Publication number Publication date
JP5712597B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
KR101425632B1 (en) Underground Heat Exchanger Coil Weighing Device and Installation Method for High Precision
KR101554668B1 (en) Underground water circulator of Geohill open type geothermal system and method for constructing the same
US7841383B2 (en) Encasement assembly for installation of sub-surface refrigerant tubing in a direct exchange heating/cooling system
JP2012524235A (en) Underground continuous loop heat exchanger, its manufacturing method and heating, cooling or energy storage method
JP5621218B2 (en) Underground heat exchanger and filler
JP5397044B2 (en) Installation method of underground heat exchanger
JP5659767B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
JP5471074B2 (en) Underground heat exchanger
JP2002303088A (en) Method of installing heat-exchanger tube for utilizing underground heat
JP5712597B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
CN111238085A (en) Ground source heat pump buried pipe construction method based on stratum formed by soil rock in alternation
JP5678637B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
JP5659766B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
KR20150032677A (en) Method of grouting rockpowder to natural water level for upgrading geothermal trance
RU2005102878A (en) METHOD FOR INSTALLING PILES IN MULTI-FROZEN SOIL
JP6232962B2 (en) How to build pipe members
JP5612505B2 (en) Heat collection tube construction method
JP5533620B2 (en) Method of installing U-shaped pipe in ground excavation hole for underground heat exchanger
EP3940313A1 (en) Borehole heat exchanger with macro-encapsulated phase change material
JP2013145072A (en) Method for laying heat collection pipe and excavation tool for laying
AU2006348699B2 (en) Encasement assembly for installation of sub-surface refrigerant tubing in a direct exchange heating/cooling system
JP6099889B2 (en) Heat exchanger construction method and heat exchange construction unit
JP6796689B1 (en) How to install the heat collection tube
JP5887128B2 (en) Installation method of underground heat exchanger
KR102257087B1 (en) A method for protecting geothermal heat exchanging pipe by using back-up rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5712597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150