JP2012127204A - Valve unit and exhaust reflux device of internal combustion engine equipped with valve unit - Google Patents

Valve unit and exhaust reflux device of internal combustion engine equipped with valve unit Download PDF

Info

Publication number
JP2012127204A
JP2012127204A JP2010276809A JP2010276809A JP2012127204A JP 2012127204 A JP2012127204 A JP 2012127204A JP 2010276809 A JP2010276809 A JP 2010276809A JP 2010276809 A JP2010276809 A JP 2010276809A JP 2012127204 A JP2012127204 A JP 2012127204A
Authority
JP
Japan
Prior art keywords
shaft
intake passage
valve
passage
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010276809A
Other languages
Japanese (ja)
Other versions
JP5454460B2 (en
Inventor
Yuichiro Moriya
勇一朗 守谷
Koji Hashimoto
考司 橋本
Shinsuke Miyazaki
真輔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010276809A priority Critical patent/JP5454460B2/en
Publication of JP2012127204A publication Critical patent/JP2012127204A/en
Application granted granted Critical
Publication of JP5454460B2 publication Critical patent/JP5454460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a valve unit that can prevent the adhesion of a shaft of an intake throttle valve and a bearing.SOLUTION: A valve housing 20 has a shaft penetration part 20b at which a penetration hole 20a for making the shaft 22 penetrate it is formed, and the shaft penetration part 20b is formed so as to protrude toward the inside of an air intake passage 2. A cup-shaped part 23c formed with a cup-shaped hollow part at one side in the radial direction which is fixed to the shaft 22 is formed at the intake throttle valve 23, and the cup-shaped part 23c is arranged so as to surround an outer periphery of the shaft penetration part 20b which protrudes toward the inside of the air intake passage 2. By this arrangement, a passage in which part of a low-pressure ERG gas which reflows to the air intake passage 2 from a low-pressure EGR passage 18 intrudes into the bearing which is a sliding gap between the bearing 21 and the shaft 22 can be formed into a labyrinth structure, so that a particulate substance contained in the low-pressure EGR gas hardly intrudes into the bearing, and thereby the adhesion of the bearing 21 and the shaft 22 can be prevented.

Description

本発明は、内燃機関の吸気通路に設けられるバルブユニットおよびバルブユニットを備える排気還流装置に関する。   The present invention relates to a valve unit provided in an intake passage of an internal combustion engine and an exhaust gas recirculation device including the valve unit.

従来、エンジンの排気に含まれるNOx(窒素酸化物)を抑制する手段として、排気の一部をEGRガスとして吸気に再循環させるEGR技術が公知である。
このEGR技術は、EGRガスの量を増やすことでNOxの量を減らすことができる反面、EGRガスを過剰に再循環させると、粒子状物質である黒鉛(PM)が発生しやすくなる。このため、黒鉛の発生を抑制しつつ、NOxを大幅に削減するためには、あらゆる運転条件に応じた最適なEGR制御が必要である。
これに対し、近年、高圧EGR系と低圧EGR系とを組み合わせることで、きめの細かいEGR制御を可能とする技術が提案されている(特許文献1参照)。
Conventionally, as a means for suppressing NOx (nitrogen oxide) contained in engine exhaust, an EGR technique in which a part of the exhaust is recirculated to the intake air as EGR gas is known.
Although this EGR technique can reduce the amount of NOx by increasing the amount of EGR gas, when EGR gas is recirculated excessively, graphite (PM), which is a particulate material, is likely to be generated. For this reason, in order to significantly reduce NOx while suppressing the generation of graphite, optimum EGR control corresponding to all operating conditions is required.
On the other hand, in recent years, a technique has been proposed that enables fine-grained EGR control by combining a high-pressure EGR system and a low-pressure EGR system (see Patent Document 1).

例えば、ターボチャージャを搭載する車両では、排気タービンの排気上流側からコンプレッサの吸気下流側にEGRガスを戻す高圧EGR装置と、排気タービンの排気下流側からコンプレッサの吸気上流側にEGRガスを戻す低圧EGR装置とが組み合わされる。
しかし、低圧EGR装置は、排気圧が比較的低い領域から吸気負圧の発生が弱い領域にEGRガスを戻すため、少量のEGRガスをエンジンに戻すことは可能であるが、多量のEGRガスをエンジンに戻すことは困難であり、多量のEGRガスをエンジンに戻すことが要求される運転領域が存在しても、その要求に応えることは出来なかった。
For example, in a vehicle equipped with a turbocharger, a high pressure EGR device that returns EGR gas from the exhaust upstream side of the exhaust turbine to the intake downstream side of the compressor, and a low pressure that returns EGR gas from the exhaust downstream side of the exhaust turbine to the intake upstream side of the compressor Combined with EGR device.
However, since the low pressure EGR device returns the EGR gas from the region where the exhaust pressure is relatively low to the region where the generation of the intake negative pressure is weak, it is possible to return a small amount of EGR gas to the engine. Returning to the engine is difficult, and even if there is an operation region in which a large amount of EGR gas is required to be returned to the engine, the request cannot be met.

そこで、特許文献2には、図7に示す様に、低圧EGRガスを吸気通路100に還流させる低圧EGR通路110との合流部より吸気上流側の吸気通路100に吸気絞りバルブ120を配設して、多量の低圧EGRガスをエンジンに戻すことが要求される運転領域では、図示矢印で示す様に、吸気通路100を閉じる方向、つまり、吸気負圧が発生する方向に吸気絞りバルブ120の開度を制御する技術が開示されている。   Therefore, in Patent Document 2, as shown in FIG. 7, an intake throttle valve 120 is disposed in the intake passage 100 upstream of the merging portion with the low pressure EGR passage 110 that recirculates the low pressure EGR gas to the intake passage 100. Thus, in an operation region where a large amount of low-pressure EGR gas is required to be returned to the engine, as shown by the arrows in the drawing, the intake throttle valve 120 is opened in the direction in which the intake passage 100 is closed, that is, in the direction in which intake negative pressure is generated. A technique for controlling the degree is disclosed.

特開2008−150955号公報JP 2008-150955 A 特開2010−190116号公報JP 2010-190116 A

ところが、吸気絞りバルブ120を備える特許文献2の従来技術では、排気ガスの一部であるEGRガスが、吸気絞りバルブ120のシャフト130を支持する軸受側へ流れ込むと、EGRガスに含まれる粒子状物質(PM)が軸受とシャフト130との摺動隙間に入り込むことにより、軸受とシャフト130とが固着して吸気絞りバルブ120の作動不良を招く恐れがあった。特に、図7に示した様に、低圧EGR通路110と吸気通路100との合流部に近い位置に吸気絞りバルブ120を配置する場合(例えば、低圧EGRバルブ140と吸気絞りバルブ120とを一つの電動アクチュエータにより駆動する場合)は、吸気通路100に還流したEGRガスの一部が吸気絞りバルブ120の軸受側へ流れ込み易くなるため、軸受とシャフト130との固着防止に必要な対策が望まれている。   However, in the prior art of Patent Document 2 including the intake throttle valve 120, when EGR gas, which is part of the exhaust gas, flows into the bearing side that supports the shaft 130 of the intake throttle valve 120, the particulate matter contained in the EGR gas When the substance (PM) enters the sliding gap between the bearing and the shaft 130, the bearing and the shaft 130 may be fixed to cause malfunction of the intake throttle valve 120. In particular, as shown in FIG. 7, when the intake throttle valve 120 is disposed at a position close to the junction between the low pressure EGR passage 110 and the intake passage 100 (for example, the low pressure EGR valve 140 and the intake throttle valve 120 are combined into one When driven by an electric actuator), part of the EGR gas recirculated into the intake passage 100 is likely to flow into the bearing side of the intake throttle valve 120. Therefore, measures necessary to prevent the bearing and the shaft 130 from sticking are desired. Yes.

また、EGRガスの影響とは別に、吸入空気中の水分が氷結して軸受とシャフト130とが固着する恐れもある。この水分氷結によって軸受とシャフト130とが固着する問題は、上記の吸気絞りバルブ120に限らず、例えば、エンジンの吸入空気量を調整するスロットルバルブにも同様に起こり得る。
本発明は、上記事情に基づいて成されたもので、その目的は、吸気絞りバルブのシャフトと軸受との固着を防止できる内燃機関のバルブユニットおよび排気還流装置を提供することにある。
In addition to the influence of EGR gas, the moisture in the intake air may freeze and the bearing and the shaft 130 may be fixed. The problem that the bearing and the shaft 130 are fixed due to moisture icing is not limited to the intake throttle valve 120 described above, and may occur in the same manner, for example, in a throttle valve that adjusts the intake air amount of the engine.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a valve unit and an exhaust gas recirculation device for an internal combustion engine that can prevent the shaft of an intake throttle valve and a bearing from sticking to each other.

(請求項1の発明)
本発明は、内燃機関の吸気通路に設けられるバルブユニットであって、吸気通路の一部を形成するバルブハウジングと、このバルブハウジングに軸受を介して回転自在に支持され、吸気通路の径方向に配置されるシャフトと、このシャフトに固定され、シャフトの回転に伴って吸気通路の開度を調整する円板状の弁体とを有し、この弁体には、シャフトに固定される径方向の一端側にカップ状の空洞部を形成するカップ形状部が設けられ、バルブハウジングは、軸受より軸方向バルブ側の内周にシャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が吸気通路の内部へ突き出て設けられ、且つ、カップ形状部によってシャフト挿通部の外周が所定の隙間を有して覆われていることを特徴とする。
(Invention of Claim 1)
The present invention is a valve unit provided in an intake passage of an internal combustion engine, a valve housing forming a part of the intake passage, and rotatably supported by the valve housing via a bearing in a radial direction of the intake passage. A shaft that is arranged, and a disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage according to the rotation of the shaft. The valve body has a radial direction fixed to the shaft. A cup-shaped portion that forms a cup-shaped cavity is provided on one end of the shaft, and the valve housing has a shaft insertion portion in which an insertion hole is formed to allow the shaft to pass from the bearing to the inner periphery on the axial valve side. The shaft insertion portion is provided so as to protrude into the intake passage, and the outer periphery of the shaft insertion portion is covered with a predetermined gap by a cup-shaped portion.

上記の構成によれば、シャフト挿通部が吸気通路の内部へ突き出て設けられるので、シャフト挿通部の先端に開口する挿通孔の開口面が吸気通路の円周上ではなく、吸気通路の内部へ突き出た位置に形成される。この挿通孔を有するシャフト挿通部の外周が弁体に設けられたカップ形状部によって覆われているため、吸気通路を流れる空気の一部が軸受内(軸受とシャフトとの摺動隙間)へ入り込むまでの経路を迷路構造にできる。これにより、軸受内まで入り込む空気を少なくできる。言い換えると、軸受内に空気が入り込み難くなり、例えば、空気中の水分氷結に起因する軸受とシャフトとの固着を防止できるので、弁体の作動不良を回避できる。
なお、本発明の弁体は、例えば、内燃機関の吸入空気量を調整するためのスロットルバルブに適用できる。
According to the above configuration, since the shaft insertion portion is provided to protrude into the intake passage, the opening surface of the insertion hole that opens at the tip of the shaft insertion portion is not on the circumference of the intake passage, but to the inside of the intake passage. It is formed at the protruding position. Since the outer periphery of the shaft insertion portion having the insertion hole is covered with a cup-shaped portion provided in the valve body, a part of the air flowing through the intake passage enters the bearing (sliding gap between the bearing and the shaft). The route up to can be a maze structure. Thereby, the air which enters into the bearing can be reduced. In other words, it becomes difficult for air to enter the bearing, and for example, the bearing can be prevented from sticking to the shaft due to moisture icing in the air, so that malfunction of the valve body can be avoided.
The valve body of the present invention can be applied to, for example, a throttle valve for adjusting the intake air amount of an internal combustion engine.

(請求項2の発明)
本発明は、内燃機関より排出される排気ガスの一部をEGRガスとして吸気通路に還流させるEGR通路と、このEGR通路と吸気通路との合流部より吸気上流側の吸気通路に設けられるバルブユニットとを備える内燃機関の排気還流装置であって、バルブユニットは、吸気通路の一部を形成するバルブハウジングと、このバルブハウジングに軸受を介して回転自在に支持され、吸気通路の径方向に配置されるシャフトと、このシャフトに固定され、シャフトの回転に伴って吸気通路の開度を調整する円板状の弁体とを有し、この弁体には、シャフトに固定される径方向の一端側にカップ状の空洞部を形成するカップ形状部が設けられ、バルブハウジングは、軸受より軸方向バルブ側の内周にシャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が吸気通路の内部へ突き出て設けられ、且つ、カップ形状部によってシャフト挿通部の外周が所定の隙間を有して覆われていることを特徴とする。
(Invention of Claim 2)
The present invention relates to an EGR passage that recirculates a part of exhaust gas discharged from an internal combustion engine to the intake passage as EGR gas, and a valve unit that is provided in the intake passage on the intake upstream side from the junction of the EGR passage and the intake passage. An exhaust gas recirculation device for an internal combustion engine comprising: a valve housing that forms a part of an intake passage; and a valve housing that is rotatably supported by a bearing through a bearing and is disposed in a radial direction of the intake passage And a disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage as the shaft rotates. The valve body has a radial direction that is fixed to the shaft. A cup-shaped portion that forms a cup-shaped cavity on one end side is provided, and the valve housing is a shuffling in which an insertion hole for passing a shaft is formed on the inner periphery of the axial valve side from the bearing. Has an insertion portion, the shaft insertion portion is provided protruding into the interior of the intake passage, and, the outer periphery of the shaft insertion portion is characterized in that it is covered with a predetermined gap by the cup-shaped portion.

上記の構成によれば、シャフト挿通部が吸気通路の内部へ突き出て設けられるので、シャフト挿通部の先端に開口する挿通孔の開口面が吸気通路の円周上ではなく、吸気通路の内部へ突き出た位置に形成される。この挿通孔を有するシャフト挿通部の外周が弁体に設けられたカップ形状部によって覆われているため、EGR通路から吸気通路に還流するEGRガスの一部が軸受内(軸受とシャフトとの摺動隙間)へ入り込むまでの経路を迷路構造にできる。これにより、EGRガスに含まれる粒子状物質(PM)が軸受内に入り込み難くなるので、軸受とシャフトとの固着を防止でき、弁体の作動不良を回避できる。   According to the above configuration, since the shaft insertion portion is provided to protrude into the intake passage, the opening surface of the insertion hole that opens at the tip of the shaft insertion portion is not on the circumference of the intake passage, but to the inside of the intake passage. It is formed at the protruding position. Since the outer periphery of the shaft insertion portion having the insertion hole is covered with a cup-shaped portion provided in the valve body, a part of the EGR gas that recirculates from the EGR passage to the intake passage is in the bearing (sliding between the bearing and the shaft). The path to enter the dynamic gap can be a maze structure. This makes it difficult for particulate matter (PM) contained in the EGR gas to enter the bearing, thereby preventing sticking between the bearing and the shaft and avoiding malfunction of the valve body.

(請求項3の発明)
本発明は、内燃機関より排出される排気ガスの一部をEGRガスとして吸気通路に還流させるEGR通路と、このEGR通路と吸気通路との合流部より吸気上流側の吸気通路に設けられるバルブユニットとを備える内燃機関の排気還流装置であって、バルブユニットは、吸気通路の一部を形成するバルブハウジングと、このバルブハウジングに軸受を介して回転自在に支持され、吸気通路の径方向に配置されるシャフトと、このシャフトに固定され、シャフトの回転に伴って吸気通路の開度を調整する円板状の弁体とを有し、この弁体が吸気通路を閉じた状態で弁体の吸気下流側となる面を一方のバルブ面と呼ぶ時に、弁体は、シャフトに固定される径方向の一端側が一方のバルブ面側へ凸となる様に半円形状に湾曲して形成される半カップ形状部が設けられ、バルブハウジングは、軸受より軸方向バルブ側の内周にシャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が吸気通路の内部へ突き出て設けられ、且つ、シャフト挿通部の円周方向の略半周分が半カップ形状部に所定の隙間を有して覆われていることを特徴とする。
(Invention of Claim 3)
The present invention relates to an EGR passage that recirculates a part of exhaust gas discharged from an internal combustion engine to the intake passage as EGR gas, and a valve unit that is provided in the intake passage on the intake upstream side from the junction of the EGR passage and the intake passage. An exhaust gas recirculation device for an internal combustion engine comprising: a valve housing that forms a part of an intake passage; and a valve housing that is rotatably supported by a bearing through a bearing and is disposed in a radial direction of the intake passage And a disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage as the shaft rotates, and the valve body is closed with the intake passage closed. When the surface on the downstream side of the intake is referred to as one valve surface, the valve body is formed in a semicircular shape so that one end side in the radial direction fixed to the shaft is convex toward the one valve surface side. Half cup The valve housing has a shaft insertion portion in which an insertion hole for passing the shaft is formed on the inner periphery of the axial valve side from the bearing, and the shaft insertion portion protrudes into the intake passage. It is provided, and a substantially half circumference in the circumferential direction of the shaft insertion portion is covered with a predetermined gap in the half cup-shaped portion.

上記の構成によれば、シャフト挿通部が吸気通路の内部へ突き出て設けられるので、シャフト挿通部の先端に開口する挿通孔の開口面が吸気通路の円周上ではなく、吸気通路の内部へ突き出た位置に形成される。この挿通孔を有するシャフト挿通部の円周方向の略半周分が弁体に設けられた半カップ形状部によって覆われているため、EGR通路から吸気通路に還流するEGRガスの一部が軸受内(軸受とシャフトとの摺動隙間)へ入り込むまでの経路を迷路構造にできる。これにより、EGRガスに含まれる粒子状物質(PM)が軸受内に入り込み難くなるので、軸受とシャフトとの固着を防止でき、弁体の作動不良を回避できる。   According to the above configuration, since the shaft insertion portion is provided to protrude into the intake passage, the opening surface of the insertion hole that opens at the tip of the shaft insertion portion is not on the circumference of the intake passage, but to the inside of the intake passage. It is formed at the protruding position. Since a substantially half circumference in the circumferential direction of the shaft insertion portion having the insertion hole is covered by a half cup-shaped portion provided in the valve body, a part of the EGR gas returning from the EGR passage to the intake passage is contained in the bearing. The path to enter the (sliding gap between the bearing and the shaft) can be a maze structure. This makes it difficult for particulate matter (PM) contained in the EGR gas to enter the bearing, thereby preventing sticking between the bearing and the shaft and avoiding malfunction of the valve body.

(請求項4の発明)
請求項2または3に記載した内燃機関の排気還流装置において、内燃機関の排気通路に配置される排気タービン及び吸気通路に配置されるコンプレッサを有するターボチャージャを備え、EGR通路は、排気タービンより下流の排気通路から排気の一部を低圧EGRガスとして取り込み、コンプレッサより上流の吸気通路へ還流させる低圧EGR通路であり、バルブユニットは、低圧EGR通路との合流部より吸気上流側の吸気通路に設けられていることを特徴とする。
本発明では、バルブユニットの弁体を負圧発生弁として使用することができる。つまり、吸気通路を閉じる方向に弁体の開度を制御して、低圧EGR通路と吸気通路との合流部に吸気負圧を発生させることにより、多量の低圧EGRガスをエンジンに戻すことが可能である。
(Invention of Claim 4)
The exhaust gas recirculation apparatus for an internal combustion engine according to claim 2 or 3, further comprising a turbocharger having an exhaust turbine disposed in the exhaust passage of the internal combustion engine and a compressor disposed in the intake passage, wherein the EGR passage is downstream of the exhaust turbine. This is a low pressure EGR passage that takes in part of the exhaust gas from the exhaust passage as low pressure EGR gas and recirculates it to the intake passage upstream of the compressor. The valve unit is provided in the intake passage upstream of the joint with the low pressure EGR passage. It is characterized by being.
In the present invention, the valve body of the valve unit can be used as a negative pressure generating valve. In other words, a large amount of low-pressure EGR gas can be returned to the engine by controlling the opening of the valve body in the direction of closing the intake passage and generating intake negative pressure at the junction of the low-pressure EGR passage and the intake passage. It is.

実施例1に係るバルブユニットの断面図である。1 is a cross-sectional view of a valve unit according to Embodiment 1. FIG. (a)実施例1に係る吸気絞りバルブの平面図、(b)吸気絞りバルブの軸方向正面図である。(A) The top view of the intake throttle valve which concerns on Example 1, (b) The axial direction front view of an intake throttle valve. 実施例1に係る吸気絞りバルブの斜視図である。1 is a perspective view of an intake throttle valve according to Embodiment 1. FIG. エンジンの吸排気系を示す説明図である。It is explanatory drawing which shows the intake / exhaust system of an engine. 実施例2に係る吸気絞りバルブの軸方向正面図である。6 is an axial front view of an intake throttle valve according to Embodiment 2. FIG. 実施例2に係る吸気絞りバルブの配置を示す吸気系の模式図である。FIG. 6 is a schematic diagram of an intake system showing an arrangement of intake throttle valves according to Embodiment 2. 従来技術に係る吸気絞りバルブの配置を示す吸気系の模式図である。It is a schematic diagram of the intake system showing the arrangement of the intake throttle valve according to the prior art.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the following examples.

(実施例1)
実施例1では、EGR装置を搭載するエンジンの吸気通路に本発明のバルブユニットを設けた一例を説明する。
先ず、エンジン1の吸排気系について図4を基に説明する。
エンジン1は、吸入空気を気筒内に導入する吸気通路2と、気筒内で燃料の燃焼によって発生した排気ガスを大気に排出する排気通路3とを備える。なお、本実施例のエンジン1は、例えば、燃料に軽油を使用するディーゼルエンジン、あるいは、ガソリンを使用するガソリンエンジンに適用できる。
Example 1
In the first embodiment, an example in which the valve unit of the present invention is provided in an intake passage of an engine equipped with an EGR device will be described.
First, the intake / exhaust system of the engine 1 will be described with reference to FIG.
The engine 1 includes an intake passage 2 for introducing intake air into the cylinder, and an exhaust passage 3 for exhausting exhaust gas generated by combustion of fuel in the cylinder to the atmosphere. In addition, the engine 1 of a present Example is applicable to the diesel engine which uses light oil for a fuel, or the gasoline engine which uses gasoline, for example.

吸気通路2には、吸気口2aより取り込んだ外気に含まれる砂埃などの異物を取り除くエアクリーナ4、本発明に係るバルブユニット5、吸入空気を圧縮してエンジン1に過給するターボチャージャのコンプレッサ6、このコンプレッサ6で圧縮された空気を冷却するインタークーラ7、吸気量を調整するためのスロットルバルブ8を組み込んだスロットルボディ9、および、所定の容積室を形成するサージタンク10等が設けられている。
排気通路3には、排気ガスの圧力を回転力に変換するターボチャージャの排気タービン11、排気ガスに含まれる粒子状物質(PM)を補集するDPF12(ディーゼルパティキュレートフィルターの略)等が設けられている。
In the intake passage 2, an air cleaner 4 that removes foreign matters such as dust contained in the outside air taken in from the intake port 2 a, a valve unit 5 according to the present invention, and a turbocharger compressor 6 that compresses intake air and supercharges the engine 1. An intercooler 7 for cooling the air compressed by the compressor 6, a throttle body 9 incorporating a throttle valve 8 for adjusting the intake air amount, a surge tank 10 forming a predetermined volume chamber, and the like are provided. Yes.
The exhaust passage 3 is provided with an exhaust turbine 11 of a turbocharger that converts exhaust gas pressure into rotational force, a DPF 12 (abbreviation of diesel particulate filter) that collects particulate matter (PM) contained in the exhaust gas, and the like. It has been.

次に、EGR装置について説明する。
エンジン1の吸排気系には、高圧EGR装置と低圧EGR装置とが設けられている。
高圧EGR装置は、エンジン1から排出された直後の比較的高温および高圧の排気ガスの一部を高圧EGRガスとして吸気側へ還流させる高圧系の排気還流装置である。この高圧EGR装置は、排気タービン11より排気上流側の排気通路3とスロットルバルブ8より吸気下流側の吸気通路2(本実施例ではサージタンク10)とを接続する高圧EGR通路13と、この高圧EGR通路13を通って吸気側へ還流する高圧EGRガスの流量を調整する高圧EGRバルブ14と、高圧EGR通路13を通って吸気側へ還流する高圧EGRガスを冷却する高圧EGRクーラ15と、この高圧EGRクーラ15をバイパスするバイパスEGR通路16と、高圧EGRガスが高圧EGRクーラ15を経由して吸気側に還流する経路とバイパスEGR通路16を通って吸気側に還流する経路とを切り替えるEGR通路切替弁17とを備える。
Next, the EGR device will be described.
The intake and exhaust system of the engine 1 is provided with a high pressure EGR device and a low pressure EGR device.
The high-pressure EGR device is a high-pressure exhaust gas recirculation device that recirculates a part of relatively high-temperature and high-pressure exhaust gas immediately after being discharged from the engine 1 to the intake side as high-pressure EGR gas. The high-pressure EGR device includes a high-pressure EGR passage 13 that connects the exhaust passage 3 upstream of the exhaust turbine 11 and the intake passage 2 (surge tank 10 in this embodiment) downstream of the throttle valve 8, and the high-pressure EGR device. A high pressure EGR valve 14 that adjusts the flow rate of the high pressure EGR gas that recirculates to the intake side through the EGR passage 13, a high pressure EGR cooler 15 that cools the high pressure EGR gas that recirculates to the intake side through the high pressure EGR passage 13, and A bypass EGR passage 16 that bypasses the high pressure EGR cooler 15, and an EGR passage that switches between a route through which the high pressure EGR gas returns to the intake side via the high pressure EGR cooler 15 and a route through which the high pressure EGR gas flows back to the intake side through the bypass EGR passage 16. And a switching valve 17.

低圧EGR装置は、比較的低温および低圧の排気ガスの一部を低圧EGRガスとして吸気側へ還流させる低圧系の排気還流装置である。この低圧EGR装置は、排気タービン11より排気下流側(本実施例ではDPF12の排気下流側)の排気通路3とコンプレッサ6より吸気上流側の吸気通路2とを接続する低圧EGR通路18と、この低圧EGR通路18を通って吸気側へ還流する低圧EGRガスの流量を調整する低圧EGRバルブ19と、低圧EGR通路18を通って吸気側へ還流する低圧EGRガスを冷却する低圧EGRクーラ20とが設けられている。   The low-pressure EGR device is a low-pressure exhaust gas recirculation device that recirculates a part of relatively low-temperature and low-pressure exhaust gas to the intake side as low-pressure EGR gas. This low-pressure EGR device includes a low-pressure EGR passage 18 that connects an exhaust passage 3 on the exhaust downstream side of the exhaust turbine 11 (in this embodiment, on the exhaust downstream side of the DPF 12) and an intake passage 2 on the intake upstream side of the compressor 6; A low pressure EGR valve 19 that adjusts the flow rate of the low pressure EGR gas that recirculates to the intake side through the low pressure EGR passage 18, and a low pressure EGR cooler 20 that cools the low pressure EGR gas that recirculates to the intake side through the low pressure EGR passage 18. Is provided.

続いて、図1〜図3を基にバルブユニット5について説明する。
バルブユニット5は、低圧EGR通路18との合流部より吸気上流側の吸気通路2に設けられる(図4参照)。このバルブユニット5は、図1に示す様に、吸気通路2の一部を形成するバルブハウジング20と、このバルブハウジング20に軸受21を介して回転自在に支持され、吸気通路2の径方向に配置されるシャフト22と、このシャフト22に固定される円板状の吸気絞りバルブ23(本発明の弁体)とを有し、電動アクチュエータ(図示せず)によりシャフト22が駆動され、そのシャフト22と共に吸気絞りバルブ23が回転することで吸気通路2の開度を調整する。
バルブハウジング20は、図1に示す様に、内周にシャフト22を通すための挿通孔20aが形成されたシャフト挿通部20bを有し、このシャフト挿通部20bが吸気通路2の内部へ突き出て設けられている。シャフト挿通部20bは、吸気通路2の内部に突き出る先端に向かって外径が次第に小さくなるテーパ形状に設けられ、先端面に挿通孔20aが開口している。
Next, the valve unit 5 will be described with reference to FIGS.
The valve unit 5 is provided in the intake passage 2 on the intake upstream side from the junction with the low-pressure EGR passage 18 (see FIG. 4). As shown in FIG. 1, the valve unit 5 is rotatably supported by a valve housing 20 that forms a part of the intake passage 2 and a bearing 21 through the valve housing 20. The shaft 22 is arranged, and a disk-like intake throttle valve 23 (the valve body of the present invention) fixed to the shaft 22 is driven by an electric actuator (not shown). The opening degree of the intake passage 2 is adjusted by rotating the intake throttle valve 23 together with 22.
As shown in FIG. 1, the valve housing 20 has a shaft insertion portion 20 b in which an insertion hole 20 a for passing a shaft 22 is formed on the inner periphery, and this shaft insertion portion 20 b protrudes into the intake passage 2. Is provided. The shaft insertion portion 20b is provided in a tapered shape with an outer diameter gradually decreasing toward the tip protruding into the intake passage 2, and an insertion hole 20a is opened at the tip surface.

シャフト挿通部20bには、挿通孔20aの軸方向反バルブ側にガスシール24が配設され、このガスシール24の反挿通孔側に軸受21が配置される。
軸受21は、円筒形のメタル軸受(すべり軸受)であり、バルブハウジング20に圧入固定される。また、軸受21の反ガスシール側には、シャフト22のスラスト荷重を受けるボールベアリング25が配置される。
吸気絞りバルブ23は、多量の低圧EGRガスを吸気側へ還流させることが要求される運転領域において、吸気通路2を閉じる方向、つまり、吸気負圧を発生させる方向に駆動される吸気負圧発生弁として使用される。この吸気絞りバルブ23は、図2に示す様に、円板状の中央部に軸孔23aを形成する筒状部23bが設けられ、その筒状部23bの軸孔23aにシャフト22を圧入して固定される。
In the shaft insertion portion 20b, a gas seal 24 is disposed on the side opposite to the valve in the axial direction of the insertion hole 20a, and a bearing 21 is disposed on the side opposite to the insertion hole of the gas seal 24.
The bearing 21 is a cylindrical metal bearing (slide bearing), and is press-fitted and fixed to the valve housing 20. A ball bearing 25 that receives the thrust load of the shaft 22 is disposed on the side opposite to the gas seal of the bearing 21.
The intake throttle valve 23 generates intake negative pressure that is driven in a direction in which the intake passage 2 is closed, that is, in a direction in which intake negative pressure is generated, in an operation region in which a large amount of low-pressure EGR gas is required to recirculate to the intake side. Used as a valve. As shown in FIG. 2, the intake throttle valve 23 is provided with a cylindrical portion 23b that forms a shaft hole 23a in a disc-shaped central portion, and the shaft 22 is press-fitted into the shaft hole 23a of the cylindrical portion 23b. Fixed.

吸気絞りバルブ23には、図3に示す様に、シャフト22に固定される径方向の一端側、つまり、筒状部23bの一端側にカップ状の空洞部を形成するカップ形状部23cが設けられ、このカップ形状部23cの底面に筒状部23bの軸孔23aが開口している。
カップ形状部23cは、図1に示す様に、バルブハウジング20に設けられるシャフト挿通部20bの外周を一定の隙間を有して包み込む形状に設けられている。言い換えると、軸孔23aが開口するカップ形状部23cの底面側から吸気絞りバルブ23の外径側へ向かって、空洞部の内径が次第に大きくなるテーパ形状に設けられている。すなわち、吸気絞りバルブ23は、吸気通路2の内部でシャフト挿通部20bの外周をカップ形状部23cが所定の隙間を有して包み込むように配置されている。
As shown in FIG. 3, the intake throttle valve 23 is provided with a cup-shaped portion 23c that forms a cup-shaped cavity on one end side in the radial direction fixed to the shaft 22, that is, on one end side of the tubular portion 23b. The shaft hole 23a of the cylindrical portion 23b is opened on the bottom surface of the cup-shaped portion 23c.
As shown in FIG. 1, the cup-shaped portion 23 c is provided in a shape that wraps the outer periphery of the shaft insertion portion 20 b provided in the valve housing 20 with a certain gap. In other words, it is provided in a taper shape in which the inner diameter of the cavity portion gradually increases from the bottom surface side of the cup-shaped portion 23 c where the shaft hole 23 a opens to the outer diameter side of the intake throttle valve 23. That is, the intake throttle valve 23 is arranged so that the cup-shaped portion 23c wraps around the outer periphery of the shaft insertion portion 20b inside the intake passage 2 with a predetermined gap.

(実施例1の作用および効果)
実施例1に示すバルブユニット5は、バルブハウジング20のシャフト挿通部20bが吸気通路2の内部へ突き出て設けられるので、シャフト挿通部20bの先端に開口する挿通孔20aの開口面、つまり、吸気通路2に向けて開口する挿通孔20aの開口面が吸気通路2の円周上ではなく、吸気通路2の内部へ突き出た位置に形成される。この挿通孔20aを有するシャフト挿通部20bの外周が吸気絞りバルブ23に設けられたカップ形状部23cによって覆われている、すなわち、カップ形状部23cがシャフト挿通部20bの外周を所定の隙間を有して包み込んでいるので、低圧EGR通路18から吸気通路2に還流する低圧EGRガスの一部が軸受21とシャフト22との摺動隙間(以下、軸受内と言う)へ入り込むまでの経路を迷路構造にできる。
(Operation and Effect of Example 1)
In the valve unit 5 shown in the first embodiment, the shaft insertion portion 20b of the valve housing 20 is provided so as to protrude into the intake passage 2, so that the opening surface of the insertion hole 20a opened at the tip of the shaft insertion portion 20b, that is, the intake air The opening surface of the insertion hole 20 a that opens toward the passage 2 is formed not at the circumference of the intake passage 2 but at a position protruding into the intake passage 2. The outer periphery of the shaft insertion portion 20b having the insertion hole 20a is covered with a cup-shaped portion 23c provided on the intake throttle valve 23. That is, the cup-shaped portion 23c has a predetermined gap between the outer periphery of the shaft insertion portion 20b. The maze is a path until a part of the low-pressure EGR gas returning from the low-pressure EGR passage 18 to the intake passage 2 enters a sliding gap between the bearing 21 and the shaft 22 (hereinafter referred to as the inside of the bearing). Can be structured.

上記の迷路構造を具体的に説明すると、低圧EGR通路18から吸気通路2に還流した低圧EGRガスの一部は、カップ形状部23cの外側からカップ形状部23cの内部、つまり、カップ形状部23cとシャフト挿通部20bとの間に形成される所定の隙間へ入り込み、その隙間を通ってカップ形状部23cの底面側(シャフト挿通部20bの先端部)へ回り込んだ後、流れの向きを変えて、シャフト挿通部20bの先端に開口する挿通孔20aからシャフト22との間に形成される隙間を通り抜けて軸受内へ入り込む。このように、軸受内へ低圧EGRガスが入り込むまでの経路を迷路構造にできるので、軸受内まで入り込む低圧EGRガスを少なくできる。これにより、低圧EGRガスに含まれる粒子状物質(PM)が軸受内に入り込み難くなるので、軸受21とシャフト22との固着を防止でき、吸気絞りバルブ23の作動不良を回避できる。
また、吸入空気中の水分が氷結することによる軸受21とシャフト22との固着防止にも効果を期待できる。
Specifically, the labyrinth structure will be described. Part of the low-pressure EGR gas recirculated from the low-pressure EGR passage 18 to the intake passage 2 is inside the cup-shaped portion 23c from the outside of the cup-shaped portion 23c, that is, the cup-shaped portion 23c. And enters the predetermined gap formed between the shaft insertion portion 20b and passes through the gap toward the bottom side of the cup-shaped portion 23c (the tip portion of the shaft insertion portion 20b), and then changes the flow direction. Thus, the shaft passes through the gap formed between the shaft 22 and the insertion hole 20a opened at the tip of the shaft insertion portion 20b and enters the bearing. Thus, since the path until the low pressure EGR gas enters the bearing can be a maze structure, the low pressure EGR gas entering the bearing can be reduced. This makes it difficult for particulate matter (PM) contained in the low-pressure EGR gas to enter the bearing, so that the bearing 21 and the shaft 22 can be prevented from sticking, and malfunction of the intake throttle valve 23 can be avoided.
In addition, an effect can be expected to prevent the bearing 21 and the shaft 22 from sticking due to icing of moisture in the intake air.

(実施例2)
この実施例2は、図5に示す様に、吸気絞りバルブ23に半カップ形状部23dを設け、この半カップ形状部23dによってシャフト挿通部20bの外周を円周方向の略半周分だけ覆うように構成した一例である。
上記の半カップ形状部23dは、実施例1に記載したカップ形状部23cを径方向に略半分割した形状である。具体的に説明すると、吸気絞りバルブ23が吸気通路2を閉じた状態で吸気絞りバルブ23の吸気下流側となる面(図5に示す吸気絞りバルブ23の図示左側の面)を一方のバルブ面と呼ぶ時に、シャフト22に固定される吸気絞りバルブ23の径方向一端側には、一方のバルブ面側へ凸となる様に半円形状に湾曲して形成された半カップ形状部23dが設けられている。
(Example 2)
In the second embodiment, as shown in FIG. 5, the intake throttle valve 23 is provided with a half cup-shaped portion 23d, and the half cup-shaped portion 23d covers the outer periphery of the shaft insertion portion 20b by a substantially half circumference in the circumferential direction. This is an example of the configuration.
Said half cup-shaped part 23d is the shape which divided the cup-shaped part 23c described in Example 1 into the substantially half direction in radial direction. More specifically, the surface (the left side surface of the intake throttle valve 23 shown in FIG. 5) on the intake downstream side of the intake throttle valve 23 when the intake throttle valve 23 closes the intake passage 2 is the one valve surface. When the intake throttle valve 23 is fixed to the shaft 22, a half cup-shaped portion 23d that is curved in a semicircular shape so as to protrude toward one valve surface is provided on one end in the radial direction of the intake throttle valve 23. It has been.

バルブハウジング20は、吸気通路2の内部に突き出るシャフト挿通部20bの円周方向の略半周分(図6に破線で示す範囲)が吸気絞りバルブ23に設けられた半カップ形状部23dによって覆われている。これにより、シャフト挿通部20bが低圧EGRガスに晒されることを抑制でき、且つ、低圧EGR通路18から吸気通路2に還流する低圧EGRガスの一部が軸受内へ入り込むまでの経路を迷路構造にできる。その結果、低圧EGRガスに含まれる粒子状物質(PM)が軸受内に入り込み難くなるので、軸受21とシャフト22との固着を防止でき、吸気絞りバルブ23の作動不良を回避できる。   The valve housing 20 is covered with a semi-cup-shaped portion 23 d provided in the intake throttle valve 23 for a substantially half circumference (a range indicated by a broken line in FIG. 6) of the shaft insertion portion 20 b protruding into the intake passage 2. ing. As a result, the shaft insertion portion 20b can be prevented from being exposed to the low pressure EGR gas, and the path until a part of the low pressure EGR gas returning from the low pressure EGR passage 18 to the intake passage 2 enters the bearing has a maze structure. it can. As a result, particulate matter (PM) contained in the low-pressure EGR gas is difficult to enter the bearing, so that the bearing 21 and the shaft 22 can be prevented from sticking, and malfunction of the intake throttle valve 23 can be avoided.

(変形例)
実施例1では、バルブユニット5を低圧EGR通路18との合流部より吸気上流側の吸気通路2に設ける一例を記載したが、高圧EGR通路13との合流部より吸気上流側の吸気通路2にバルブユニット5を設けることも出来る。この場合、低圧EGR装置を搭載していない、つまり、高圧EGR装置のみを搭載するエンジンにも適用できる。
また、実施例1では、吸気絞りバルブ23に筒状部23bを設けて、この筒状部23bの軸孔23aにシャフト22を圧入して固定する一例を記載したが、吸気絞りバルブ23をシャフト22にスクリュー等で締め付け固定する構造でも良い。
実施例1では、本発明の弁体を吸気負圧発生弁である吸気絞りバルブ23に使用しているが、エンジン1の吸入空気量を調整するスロットルバルブ8に適用することも出来る。この場合、実施例1に記載したカップ形状部23cをスロットルバルブ8に設けることで、空気中の水分が氷結することによる軸受とシャフトとの固着防止に効果がある。
(Modification)
In the first embodiment, an example in which the valve unit 5 is provided in the intake passage 2 on the intake upstream side from the junction with the low pressure EGR passage 18 is described. However, the valve unit 5 is provided in the intake passage 2 on the intake upstream side from the junction with the high pressure EGR passage 13. A valve unit 5 can also be provided. In this case, the present invention can also be applied to an engine that is not equipped with a low-pressure EGR device, that is, only a high-pressure EGR device.
Further, in the first embodiment, an example in which the intake throttle valve 23 is provided with the cylindrical portion 23b and the shaft 22 is press-fitted and fixed to the shaft hole 23a of the cylindrical portion 23b is described. A structure that is fastened and fixed to 22 with a screw or the like may be used.
In the first embodiment, the valve body of the present invention is used for the intake throttle valve 23 which is an intake negative pressure generating valve, but it can also be applied to the throttle valve 8 for adjusting the intake air amount of the engine 1. In this case, by providing the throttle valve 8 with the cup-shaped portion 23c described in the first embodiment, it is effective for preventing the bearing and the shaft from sticking due to icing of moisture in the air.

1 エンジン(内燃機関)
2 吸気通路
3 排気通路
5 バルブユニット
6 コンプレッサ
11 タービン
13 高圧EGR通路
18 低圧EGR通路
20 バルブハウジング
20a 挿通孔
20b シャフト挿通部
21 軸受
22 シャフト
23 吸気絞りバルブ(弁体)
23c カップ形状部
23d 半カップ形状部
1 engine (internal combustion engine)
2 intake passage 3 exhaust passage 5 valve unit 6 compressor 11 turbine 13 high pressure EGR passage 18 low pressure EGR passage 20 valve housing 20a insertion hole 20b shaft insertion portion 21 bearing 22 shaft 23 intake throttle valve (valve element)
23c cup shape part 23d half cup shape part

Claims (4)

内燃機関の吸気通路に設けられるバルブユニットであって、
前記吸気通路の一部を形成するバルブハウジングと、
このバルブハウジングに軸受を介して回転自在に支持され、前記吸気通路の径方向に配置されるシャフトと、
このシャフトに固定され、前記シャフトの回転に伴って前記吸気通路の開度を調整する円板状の弁体とを有し、
前記弁体には、前記シャフトに固定される径方向の一端側にカップ状の空洞部を形成するカップ形状部が設けられ、
前記バルブハウジングは、前記軸受より軸方向バルブ側の内周に前記シャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が前記吸気通路の内部へ突き出て設けられ、且つ、前記カップ形状部によって前記シャフト挿通部の外周が所定の隙間を有して覆われていることを特徴とするバルブユニット。
A valve unit provided in an intake passage of an internal combustion engine,
A valve housing forming part of the intake passage;
A shaft that is rotatably supported by the valve housing via a bearing and is arranged in the radial direction of the intake passage;
A disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage with the rotation of the shaft;
The valve body is provided with a cup-shaped portion that forms a cup-shaped cavity on one end side in the radial direction fixed to the shaft,
The valve housing has a shaft insertion portion in which an insertion hole for passing the shaft is formed on the inner periphery on the axial valve side from the bearing, and the shaft insertion portion protrudes into the intake passage. The valve unit is characterized in that the outer periphery of the shaft insertion portion is covered with a predetermined gap by the cup-shaped portion.
内燃機関より排出される排気ガスの一部をEGRガスとして吸気通路に還流させるEGR通路と、
このEGR通路と前記吸気通路との合流部より吸気上流側の前記吸気通路に設けられるバルブユニットとを備える内燃機関の排気還流装置であって、
前記バルブユニットは、
前記吸気通路の一部を形成するバルブハウジングと、
このバルブハウジングに軸受を介して回転自在に支持され、前記吸気通路の径方向に配置されるシャフトと、
このシャフトに固定され、前記シャフトの回転に伴って前記吸気通路の開度を調整する円板状の弁体とを有し、
前記弁体には、前記シャフトに固定される径方向の一端側にカップ状の空洞部を形成するカップ形状部が設けられ、
前記バルブハウジングは、前記軸受より軸方向バルブ側の内周に前記シャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が前記吸気通路の内部へ突き出て設けられ、且つ、前記カップ形状部によって前記シャフト挿通部の外周が所定の隙間を有して覆われていることを特徴とするバルブユニット。
An EGR passage that recirculates a portion of the exhaust gas discharged from the internal combustion engine to the intake passage as EGR gas;
An exhaust gas recirculation device for an internal combustion engine, comprising: a valve unit provided in the intake passage upstream of the merging portion of the EGR passage and the intake passage;
The valve unit is
A valve housing forming part of the intake passage;
A shaft that is rotatably supported by the valve housing via a bearing and is arranged in the radial direction of the intake passage;
A disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage with the rotation of the shaft;
The valve body is provided with a cup-shaped portion that forms a cup-shaped cavity on one end side in the radial direction fixed to the shaft,
The valve housing has a shaft insertion portion in which an insertion hole for passing the shaft is formed on the inner periphery on the axial valve side from the bearing, and the shaft insertion portion protrudes into the intake passage. The valve unit is characterized in that the outer periphery of the shaft insertion portion is covered with a predetermined gap by the cup-shaped portion.
内燃機関より排出される排気ガスの一部をEGRガスとして吸気通路に還流させるEGR通路と、
このEGR通路と前記吸気通路との合流部より吸気上流側の前記吸気通路に設けられるバルブユニットとを備える内燃機関の排気還流装置であって、
前記バルブユニットは、
前記吸気通路の一部を形成するバルブハウジングと、
このバルブハウジングに軸受を介して回転自在に支持され、前記吸気通路の径方向に配置されるシャフトと、
このシャフトに固定され、前記シャフトの回転に伴って前記吸気通路の開度を調整する円板状の弁体とを有し、
前記弁体が前記吸気通路を閉じた状態で前記弁体の吸気下流側となる面を一方のバルブ面と呼ぶ時に、前記弁体は、前記シャフトに固定される径方向の一端側が前記一方のバルブ面側へ凸となる様に半円形状に湾曲して形成される半カップ形状部が設けられ、
前記バルブハウジングは、前記軸受より軸方向バルブ側の内周に前記シャフトを通すための挿通孔が形成されたシャフト挿通部を有し、このシャフト挿通部が前記吸気通路の内部へ突き出て設けられ、且つ、前記シャフト挿通部の円周方向の略半周分が前記半カップ形状部に所定の隙間を有して覆われていることを特徴とする内燃機関の排気還流装置。
An EGR passage that recirculates a portion of the exhaust gas discharged from the internal combustion engine to the intake passage as EGR gas;
An exhaust gas recirculation device for an internal combustion engine, comprising: a valve unit provided in the intake passage upstream of the merging portion of the EGR passage and the intake passage;
The valve unit is
A valve housing forming part of the intake passage;
A shaft that is rotatably supported by the valve housing via a bearing and is arranged in the radial direction of the intake passage;
A disc-shaped valve body that is fixed to the shaft and adjusts the opening degree of the intake passage with the rotation of the shaft;
When the valve body is referred to as one valve surface when the valve body closes the intake passage, the valve body has one end side in the radial direction fixed to the shaft as the one valve surface. A semi-cup-shaped part that is curved in a semicircular shape so as to be convex toward the valve surface side is provided,
The valve housing has a shaft insertion portion in which an insertion hole for passing the shaft is formed on the inner periphery on the axial valve side from the bearing, and the shaft insertion portion protrudes into the intake passage. An exhaust gas recirculation device for an internal combustion engine, wherein a substantially half circumference in a circumferential direction of the shaft insertion portion is covered with a predetermined gap in the half cup-shaped portion.
請求項2または3に記載した内燃機関の排気還流装置において、
前記内燃機関の排気通路に配置される排気タービン及び前記吸気通路に配置されるコンプレッサを有するターボチャージャを備え、
前記EGR通路は、前記排気タービンより下流の前記排気通路から排気の一部を低圧EGRガスとして取り込み、前記コンプレッサより上流の前記吸気通路へ還流させる低圧EGR通路であり、
前記バルブユニットは、前記低圧EGR通路との合流部より吸気上流側の前記吸気通路に設けられていることを特徴とする内燃機関の排気還流装置。
The exhaust gas recirculation device for an internal combustion engine according to claim 2 or 3,
A turbocharger having an exhaust turbine disposed in an exhaust passage of the internal combustion engine and a compressor disposed in the intake passage;
The EGR passage is a low-pressure EGR passage that takes in a part of exhaust gas as low-pressure EGR gas from the exhaust passage downstream from the exhaust turbine and returns it to the intake passage upstream from the compressor.
The exhaust gas recirculation device for an internal combustion engine, wherein the valve unit is provided in the intake passage upstream of the junction with the low-pressure EGR passage.
JP2010276809A 2010-12-13 2010-12-13 Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit Expired - Fee Related JP5454460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276809A JP5454460B2 (en) 2010-12-13 2010-12-13 Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276809A JP5454460B2 (en) 2010-12-13 2010-12-13 Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit

Publications (2)

Publication Number Publication Date
JP2012127204A true JP2012127204A (en) 2012-07-05
JP5454460B2 JP5454460B2 (en) 2014-03-26

Family

ID=46644524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276809A Expired - Fee Related JP5454460B2 (en) 2010-12-13 2010-12-13 Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit

Country Status (1)

Country Link
JP (1) JP5454460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113302A1 (en) 2013-09-19 2015-03-19 Denso Corporation valve device
JP2018132064A (en) * 2018-04-23 2018-08-23 株式会社デンソー Valve unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113302A1 (en) 2013-09-19 2015-03-19 Denso Corporation valve device
JP2018132064A (en) * 2018-04-23 2018-08-23 株式会社デンソー Valve unit

Also Published As

Publication number Publication date
JP5454460B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US9175578B2 (en) Turbocharger
US10934945B2 (en) Internal combustion engine with compressor, exhaust-gas recirculation arrangement and pivotable flap
EP2642108A1 (en) Low-pressure loop egr device
US9309805B2 (en) Turbocharger
JP2013515207A (en) Internal combustion engine
US20140102093A1 (en) Multistage turbocharging system
US11015517B2 (en) Rotary axial valve
JP2012167610A (en) Exhaust device for internal combustion engine
US10683795B2 (en) Turbine for an exhaust turbocharger having a dual branch turbine housing and valve arrangement for branch connection and waste gate control
US10428728B2 (en) Method for operating an internal combustion engine with parallel supercharging and with an activatable turbine, and internal combustion engine for carrying out a method of said type
JP5454460B2 (en) Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit
JP5912240B2 (en) Exhaust gas recirculation device
US9708970B2 (en) Housing for turbocharger
JP2009270537A (en) Turbocharger
JP2008261294A (en) Control device for internal combustion engine with supercharger
US10711738B2 (en) Electric supercharger
JP2006233940A (en) Variable displacement turbocharger
JP2010223077A (en) Internal combustion engine
JP6590745B2 (en) Exhaust gas recirculation valve
JP2009002305A (en) Supercharger
WO2012063801A1 (en) Low-pressure loop egr devices
JP2008075466A (en) Exhaust gas device
JP2020041425A (en) Egr flow rate control valve
KR100774336B1 (en) Turbo charger system for diesel engine
JP2014521871A (en) Supercharged internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

LAPS Cancellation because of no payment of annual fees