JP2012126610A - Baking repairing material - Google Patents
Baking repairing material Download PDFInfo
- Publication number
- JP2012126610A JP2012126610A JP2010279988A JP2010279988A JP2012126610A JP 2012126610 A JP2012126610 A JP 2012126610A JP 2010279988 A JP2010279988 A JP 2010279988A JP 2010279988 A JP2010279988 A JP 2010279988A JP 2012126610 A JP2012126610 A JP 2012126610A
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- specific gravity
- mass
- bulk specific
- crushed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Ceramic Products (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、耐火性粉体と、有機結合剤とを含み、熱焼失性バッグに収容されて補修対象炉に投入される焼付補修材に関する。 The present invention relates to a seizure repair material that contains a refractory powder and an organic binder, and that is housed in a heat-burning bag and placed in a furnace to be repaired.
例えば、転炉や電気炉の内張りの補修方法として、出湯直後の炉に、数100kg〜数t程度の焼付補修材が収容されたフレコンバッグを投入する方法が知られている。焼付補修材は、例えば、電融マグネシアを主材とする耐火性粉体に、ピッチやレジン等の有機結合剤を加えてなる。 For example, as a method for repairing the lining of a converter or an electric furnace, a method is known in which a flexible container bag containing a baking repair material of several hundred kg to several t is placed in a furnace immediately after tapping. The baking repair material is formed by adding an organic binder such as pitch or resin to a refractory powder mainly composed of electrofused magnesia.
フレコンバッグは、炉内に投入後に直ちに炉の熱で焼失する。フレコンバッグ内の焼付補修材は、炉の内張りの損傷部に展開した後、炉の熱による有機結合剤中の揮発分の逸散、及び有機結合剤の固定炭素分によるカーボンボンドの形成を伴いながら固化する。以下、この固化したものを焼付補修材の施工体と呼ぶ。 The flexible container bag is burned away by the heat of the furnace immediately after being put into the furnace. The fired repair material in the flexible container bag is developed in the damaged part of the furnace lining, followed by the dissipation of volatiles in the organic binder due to the heat of the furnace and the formation of carbon bonds due to the fixed carbon content of the organic binder. Solidify while. Hereinafter, this solidified material is referred to as a baked repair material construction.
特許文献1〜3に開示されるように、資源の有効活用の見地から、使用済みの耐火れんがの破砕物を焼付補修材の一部に再利用することが行われている。具体的には、特許文献1及び2では、使用済みのマグネシア‐カーボン質耐火れんが(以下、マグ‐カーボンれんがという)の破砕物を焼付補修材に配合し、特許文献3は、使用済みのマグネシア‐クロム質耐火れんが(マグ‐クロれんがという)の破砕物を焼付補修材に配合している。 As disclosed in Patent Documents 1 to 3, from the viewpoint of effective utilization of resources, crushed material of used refractory bricks is reused as a part of the baking repair material. Specifically, in Patent Documents 1 and 2, a crushed material of used magnesia-carbon refractory brick (hereinafter referred to as “mag-carbon brick”) is blended in a baking repair material, and Patent Document 3 describes used magnesia. -Crushed refractory bricks (called mag-chrome bricks) are blended into the baking repair material.
特許文献4は、焼付補修材に関する文献ではないが、不定形耐火物に耐火れんが破砕物を配合するに際し、耐火れんが破砕物は、使用済品であっても未使用品であってもよいと説明している(特許文献4の段落0012参照)。 Although patent document 4 is not literature regarding a baking repair material, when blending a refractory brick crushed material into an irregular refractory material, the refractory brick crushed material may be a used product or an unused product. (See paragraph 0012 of Patent Document 4).
特許文献2によると、使用済みのマグ‐カーボンれんがの破砕物を焼付補修材に用いることで、その耐食性を向上できるとされる。その理由は次の通りである。使用済みのマグ‐カーボンれんがは、れんがとしての使用中の受熱で内部に微細気孔を有する。焼付補修材としての使用においては、その微細気孔に有機結合剤が浸透し、れんが破砕物中の炭素成分と、有機結合剤中の固定炭素とが一体化したカーボンボンドが形成されることが、耐食性向上に貢献するとされる(特許文献2の段落0030及び0031参照)。 According to Patent Document 2, it is said that the corrosion resistance can be improved by using a crushed material of used mag-carbon brick as a baking repair material. The reason is as follows. Used mag-carbon bricks have fine pores inside due to heat reception during use as bricks. In use as a baking repair material, the organic binder penetrates into the fine pores, and a carbon bond in which the carbon component in the crushed brick and the fixed carbon in the organic binder are integrated is formed. It is said that it contributes to the corrosion resistance improvement (see paragraphs 0030 and 0031 of Patent Document 2).
しかし、実際には、耐火れんが破砕物の使用によって焼付補修材の耐食性を向上させることは難しい。本願発明者によると、この主な原因は次の通りと考えられる。 However, in practice, it is difficult to improve the corrosion resistance of the baking repair material by using refractory bricks. According to the inventor of the present application, the main cause is considered as follows.
上述のように、特に、使用済みの耐火れんがは、内部に微細気孔を有するため、焼付補修材を構成する残部の耐火原料に比べると嵩比重が小さい。また、未使用の耐火れんがであっても、電融マグネシアや焼結マグネシアといった一般的に使用される耐火原料に比べると嵩比重は小さい。このため、使用済品及び未使用品を問わず、耐火れんが破砕物は、施工時に偏析を生じやすい。 As described above, in particular, the used refractory brick has fine pores inside, and therefore has a lower bulk specific gravity than the remaining refractory raw material constituting the baking repair material. Moreover, even if it is an unused refractory brick, the bulk specific gravity is small compared with the refractory raw materials generally used, such as electrofused magnesia and sintered magnesia. For this reason, regardless of whether it is used or unused, crushed refractory bricks are likely to segregate during construction.
特許文献2によると、使用済マグ‐カーボンれんが破砕物と残余のマグネシア質原料との嵩比重差は高々1程度であるが(特許文献2の表1参照)、焼付補修材は、他の不定形耐火物と異なり、施工に際して、投入というプロセスを経るため、原料間の僅かな嵩比重の差も偏析の原因となりうると考えられる。 According to Patent Document 2, although the bulk specific gravity difference between the used mag-carbon brick crushed material and the remaining magnesia raw material is about 1 at most (see Table 1 of Patent Document 2), the seizure repair material is other Unlike a regular refractory, it is thought that a slight difference in bulk specific gravity between raw materials can cause segregation because it undergoes a process of charging during construction.
具体的には、耐火れんが破砕物は、炉内に投入され、炉内面で山状に展開した焼付補修材の表層部に集中しやすい。耐火れんが破砕物は、破砕品であることからその表面形状が粗いため、耐火れんが破砕物が集中して存在する部分では、耐火れんが破砕物によって石垣状の構造物が構築される。こうして施工体の組織の不均一化及び粗雑化が生じる。 Specifically, refractory brick crushed material is put into the furnace and tends to concentrate on the surface layer portion of the baking repair material developed in a mountain shape on the inner surface of the furnace. Since the refractory brick crushed material is a crushed product, the surface shape thereof is rough. Therefore, in the portion where the refractory brick crushed material is concentrated, a stone wall-like structure is constructed by the refractory brick crushed material. In this way, the structure of the construction body becomes uneven and rough.
この結果、焼付補修材の施工体は、耐火れんが破砕物を主体とする部分と、残余の部分との間で、構造的スポーリングを起こしやすい。即ち、たとえ特許文献2が説明するように、耐火れんが破砕物とマトリクスとの間で連続したカーボンボンドを形成できたとしても、耐火れんが破砕物は溶損による寿命の到来を待たずして脱落する。 As a result, the construction body of the seizure repair material is likely to cause structural spalling between the portion mainly composed of refractory bricks and the remaining portion. That is, as explained in Patent Document 2, even if the refractory brick can form a continuous carbon bond between the crushed material and the matrix, the refractory brick crushed material will fall off without waiting for the end of its life due to melting. To do.
特許文献2は、使用済マグ‐カーボンれんが破砕物の使用によって被施工面との接着強度が向上する旨の実施例を開示しているが、実験室において、高々200gの焼付補修材を金枠に載せる試験方法では、実際の使用における上記偏析の問題は反映されない。 Patent Document 2 discloses an example in which the adhesive strength with the work surface is improved by using the crushed material of used mag-carbon bricks. The test method described in the above does not reflect the problem of segregation in actual use.
本発明の目的は、耐火れんが破砕物を使用するにも関らず、組織の不均一化及び粗雑化が生じにくい焼付補修材を提供することである。 An object of the present invention is to provide a seizure repair material that is less likely to cause unevenness and roughening of the structure despite the use of refractory brick crushed material.
本発明の一観点によれば、耐火性粉体と、有機結合剤とを含み、熱焼失性バッグに収容されて補修対象炉に投入される焼付補修材であって、耐火性粉体100質量%中に、粒径1mm以上の耐火れんが破砕物を最大で50質量%、耐火れんが粉砕物との嵩比重差が0.5以下で粒径1mm以上の球状化処理された球状化粒子を9質量%以上、それぞれ含む焼付補修材が提供される。 According to one aspect of the present invention, there is provided a baked repair material that contains a refractory powder and an organic binder, is contained in a heat-burning bag, and is charged into a repair target furnace, and has a mass of refractory powder of 100 mass. % Of refractory bricks having a particle diameter of 1 mm or more and a spheroidized particle having a bulk specific gravity difference of 0.5 or less and a particle diameter of 1 mm or more with a pulverized refractory brick of 9 mm or less. A baking repair material containing at least mass% is provided.
球状化粒子と耐火れんが破砕物との嵩比重が近似するため、施工に際して投入による衝撃を受けた後も、球状化粒子と耐火れんが破砕物との偏析は生じにくい。このため、球状化粒子は、耐火れんが破砕物の粒子間に介在し、耐火れんが破砕物によって石垣状の構造物が構築されることを抑制する。これにより、施工体組織の不均一化及び粗雑化が緩和される。 Since the bulk specific gravity of the spheroidized particles and the refractory brick is approximated, segregation between the spheroidized particles and the refractory brick is less likely to occur even after receiving an impact during the construction. For this reason, the spheroidized particles are interposed between the particles of the refractory bricks and the refractory bricks suppress the construction of the stone wall-like structure by the crushed materials. Thereby, the nonuniformity and roughening of a construction body structure are relieved.
なお、従来、キャスタブル耐火物の分野において、球状化粒子を平均粒径がサブミクロン程度の超微粉域で使用することにより、それよりも粗い粒子間の摩擦を軽減するベアリング効果を得ることは知られている。本発明においても、球状化粒子は、球状化処理されたものである以上、ベアリング効果を奏しうる。 Conventionally, in the field of castable refractories, it has been known that the use of spheroidized particles in the ultrafine powder region with an average particle size of about submicron provides a bearing effect that reduces friction between coarser particles. It has been. Also in the present invention, the spheroidized particles can exhibit a bearing effect as long as they are spheroidized.
しかし、本発明の上記効果は、単にベアリング効果のみによるものではなく、球状化粒子を粒径1mm以上の粗粒域で使用してはじめて得られる。球状化粒子の粒径が1mm未満だと、耐火れんが破砕物の粒子同士を離間させる効果に乏しいため、焼付補修材としての使用においては、耐火れんが破砕物による石垣状の構造物の構築を抑制する効果には不充分である。 However, the above-described effects of the present invention are not merely due to the bearing effect, but can be obtained only when the spheroidized particles are used in a coarse particle region having a particle diameter of 1 mm or more. If the particle size of the spheroidized particles is less than 1 mm, refractory bricks have little effect of separating the particles of the crushed material, so in the use as a baking repair material, the construction of stone-walled structures made of refractory brick crushed materials is suppressed. It is not enough for the effect.
以下、本発明の実施形態による焼付補修材について具体的に説明する。焼付補修材は、耐火性粉体と有機結合剤とを含む。 Hereinafter, the baking repair material by embodiment of this invention is demonstrated concretely. The baking repair material includes a refractory powder and an organic binder.
耐火性粉体は、粒径1mm以上の粗粒域、及び粒径1mm未満の微粒域よりなる。粗粒域と微粒域の質量比は特に規定しないが、粒度構成を最密充填構造に近づけ、実用可能な耐食性を得る等の観点から、当業者の技術常識により自ずと定められるであろう。典型的には、耐火性粉体100質量%は、粗粒域:25〜65質量%と、微粒域:35〜75質量%とよりなることが好ましい。 The refractory powder consists of a coarse particle region having a particle diameter of 1 mm or more and a fine particle region having a particle diameter of less than 1 mm. The mass ratio between the coarse grain region and the fine grain region is not particularly defined, but will be determined by technical common knowledge of those skilled in the art from the viewpoint of bringing the grain size configuration close to the close-packed structure and obtaining practical corrosion resistance. Typically, 100% by mass of the refractory powder is preferably composed of a coarse particle region: 25 to 65% by mass and a fine particle region: 35 to 75% by mass.
本明細書において、粒子の粒径がd以上とは、粒子がJIS‐Z8801に規定する目開きdの篩上に残る粒度であることを意味し、粒子の粒径がd未満とは、粒子が同篩を通過する粒度であることを意味する。 In the present specification, the particle size of the particle is d or more means that the particle is a particle size remaining on the sieve having an opening d defined in JIS-Z8801, and the particle size of the particle is less than d. Means a particle size passing through the same sieve.
粗粒域に、耐火れんが破砕物と、球状化粒子とを配合する。 In the coarse-grained region, refractory brick crushed material and spheroidized particles are blended.
耐火れんが破砕物には、例えば、マグ‐カーボンれんが、及びマグ‐クロれんがから選択される一種以上の破砕物を用いることができる。耐火れんが破砕物は、使用済品、未使用品、又はそれらの混合物のいずれであってもよい。 As the refractory brick crushed material, for example, one or more crushed materials selected from mag-carbon brick and mag-chrome brick can be used. The refractory brick crushed material may be a used product, an unused product, or a mixture thereof.
耐火れんが破砕物の嵩比重は、球状化粒子の嵩比重との差が0.5以下であれば特に制限されない。既述のように、一般に、耐火れんが破砕物は通常の耐火原料に比べると嵩比重が小さい。耐火れんが破砕物の嵩比重は、例えば、2.4〜3.0である。 The bulk specific gravity of the refractory brick crushed material is not particularly limited as long as the difference from the bulk specific gravity of the spheroidized particles is 0.5 or less. As described above, in general, crushed refractory bricks have a lower bulk specific gravity than ordinary refractory raw materials. The bulk specific gravity of the refractory brick crushed material is, for example, 2.4 to 3.0.
本明細書において、嵩比重は、学振法によるマグネシアクリンカーの測定(学振法2)で定められている方法を用いた測定値とする。耐火物業界では、この測定法が一般的である。この測定法は例えば、「耐火物手帳(1981年版)」耐火物技術協会、昭和56年10月31日、第1刷発行、第330〜334頁に記載されている。即ち、耐火れんが破砕物や球状化粒子の嵩比重を、この学振法2に定める方法を用いて測定する。但し、学振法2では、対象粉体の2〜3.36mmの粒度域を測定対象とするが、本明細書では、粒径1mm以上の対象粉体については、粒径1mm以上、25mm未満の粒度域を測定対象とし、粒径1mm未満の対象粉体については、測定対象の粒度域は特に制限せず、粒径1mm未満の粒度域を測定対象とするものとする。 In the present specification, the bulk specific gravity is a measured value using a method defined in the measurement of magnesia clinker by the Gakushin method (Gakushin method 2). This measurement method is common in the refractory industry. This measuring method is described in, for example, “Refractory Notebook (1981 version)”, Refractory Technical Association, October 31, 1981, First Printing, pages 330-334. That is, the bulk specific gravity of the refractory brick crushed material and the spheroidized particles is measured using the method defined in this Gakushin Method 2. However, in Gakushin method 2, the particle size range of 2 to 3.36 mm of the target powder is measured, but in this specification, for the target powder having a particle size of 1 mm or more, the particle size is 1 mm or more and less than 25 mm. As for the target powder having a particle size of less than 1 mm, the particle size range of the object to be measured is not particularly limited, and the particle size of less than 1 mm is to be measured.
耐火れんが破砕物として、できるだけ嵩比重が大きいものを使用することで、球状化粒子として一般の耐火原料又はそれに近い嵩比重をもつ原料を使用することが可能になるとともに、焼付補修材全体としての嵩比重を大きくすることができ、組織の緻密化及び高熱伝導化による焼付け時間の短縮に貢献する。 By using a refractory brick having a bulk specific gravity as large as possible, it becomes possible to use a general refractory raw material or a raw material having a bulk specific gravity close to it as spheroidized particles, and as a whole baking repair material. The bulk specific gravity can be increased, which contributes to shortening the baking time by densifying the structure and increasing the thermal conductivity.
この観点から、耐火れんが破砕物の嵩比重は2.6以上であることが好ましく、2.7以上であることがより好ましい。このような嵩比重の大きな耐火れんが破砕物は、使用済耐火れんがの中から特に劣化の少ない部分を選択し使用するか、又は未使用の耐火れんがの破砕物を使用することで実現することができる。 From this viewpoint, the bulk specific gravity of the refractory brick crushed material is preferably 2.6 or more, more preferably 2.7 or more. Such crushed refractory bricks with a large bulk specific gravity can be realized by selecting and using parts with particularly little deterioration from used refractory bricks, or using crushed refractory bricks that are not used. it can.
粒径1mm以上の耐火れんが破砕物の、耐火性粉体に占める割合は最大で50質量%とする。50質量%を超えると、耐火れんが破砕物の配合量が多すぎるため、たとえ球状化粒子を併用したとしても、結果的に耐火性粉体に占める粗粒域の割合が高すぎることとなり、耐食性の確保が困難となる。粒径1mm以上の耐火れんが破砕物の、耐火性粉体への配合量の下限は特に制限されない。 The ratio of the refractory brick having a particle diameter of 1 mm or more to the refractory powder is 50% by mass at maximum. If the amount exceeds 50% by mass, the blended amount of refractory bricks is too large, so even if spheroidized particles are used in combination, the proportion of coarse particles in the refractory powder will be too high, resulting in corrosion resistance. It will be difficult to ensure. The lower limit of the blending amount of the refractory brick having a particle diameter of 1 mm or more into the refractory powder is not particularly limited.
耐火れんが破砕物を使用する意義について説明する。耐火れんが破砕物は、これが使用済品である場合は、これを焼付補修材に配合することで、リサイクルによって資源を有効活用できるという意義をもつ。未使用品であっても、例えば、耐火れんがの製造工程で発生する屑を使用することで、従来廃棄していた屑を有効活用できるという意義をもつ。また、耐火れんが破砕物が、例えば、マグ‐カーボンれんがのように炭素を含有する耐火れんがの破砕物である場合は、これが使用済品であろうと、未使用品であろうと、これを焼付補修材に配合することで、焼付補修材全体の炭素含有量を高めることに貢献し、その耐食性の向上に寄与しうるという意義をもつ。 The significance of using refractory bricks will be explained. When the refractory brick crushed material is a used product, it has a significance that resources can be effectively utilized by recycling by blending it with a baking repair material. Even if it is an unused product, for example, by using the waste generated in the manufacturing process of refractory bricks, it has the meaning that the waste that has been discarded can be effectively used. In addition, if the refractory brick crushed material is a refractory brick containing carbon such as mag-carbon brick, for example, it is repaired by baking, whether it is used or unused. By blending into the material, it contributes to increasing the carbon content of the entire baking repair material, and has the significance of being able to contribute to improving its corrosion resistance.
耐火れんが破砕物の配合量が少なすぎると、これを用いる意義が小さくなる。この観点から、粒径1mm以上の耐火れんが破砕物の、耐火性粉体に占める割合は10質量%以上であることが好ましく、20質量%以上であることがより好ましい。 When the blending amount of the refractory brick is too small, the significance of using this becomes small. From this viewpoint, the ratio of the refractory brick having a particle diameter of 1 mm or more to the refractory powder is preferably 10% by mass or more, and more preferably 20% by mass or more.
球状化粒子とは、球状化処理された粒子をいう。球状化処理の方法としては、例えば、転動法、加圧成形法、及び高速気流衝撃法等が公知であるが、粒子の形状を球に近づける処理であればこれらに制限されない。 Spheroidized particles refer to particles that have been spheroidized. As the spheroidizing method, for example, a rolling method, a pressure molding method, a high-speed airflow impact method, and the like are known.
転動法とは、対象物を転動させることで球に近づける処理をいう。転動に伴って、粒径が大きくなる成長方式でもよいし、次第に粒子が研磨されて粒径が小さくなる研磨方式でもよい。本手法は、例えば、ロータリーキルン、回転ドラム、回転パン、回転水平円盤等を用いて行うことができる。 The rolling method refers to a process of bringing an object closer to a sphere by rolling. A growth method in which the particle size increases with rolling may be used, or a polishing method in which the particles are gradually polished to reduce the particle size may be used. This method can be performed using, for example, a rotary kiln, a rotating drum, a rotating pan, a rotating horizontal disk, or the like.
加圧成形法とは、対象物を加圧成形することで球に近づける処理をいう。本手法は、例えば、ペレタイザやブリケッタを用いて行うことができる。 The pressure molding method refers to a process of bringing an object close to a sphere by pressure molding. This method can be performed using, for example, a pelletizer or a briquetter.
高速気流衝撃法とは、高速気流中で対象粒子に衝撃を付与することで球に近づける処理をいう。本手法は、例えば、奈良機械製作所社製の衝撃処理装置(例えば、型式NHSシリーズ)を用いて行うことができる。 The high-speed airflow impact method refers to a process of bringing a target particle closer to a sphere by applying an impact to a target particle in a high-speed airflow. This technique can be performed using, for example, an impact treatment apparatus (for example, model NHS series) manufactured by Nara Machinery Co., Ltd.
球状化処理された粒子は、その球形度が0.7以上であることが好ましく、0.9以上であることがより好ましい。 The spheroidized particles preferably have a sphericity of 0.7 or more, and more preferably 0.9 or more.
球形度は、実体顕微鏡(例えば、ニコン社製SMZ−10)や走査型電子顕微鏡(例えば、日本電子社製JXA−8600M)で撮影した試料粒子の像を、画像解析装置(例えば、日本アビオニクス社製)に取り込み、次の要領で求める。試料粒子の像から試料粒子の投影面積SAと、周囲長Lとを測定する。円周Lの真円の面積をSBとすると、試料粒子の球形度はSA/SBと定義される。 The sphericity is obtained by measuring an image of a sample particle photographed with a stereomicroscope (for example, SMZ-10 manufactured by Nikon Corporation) or a scanning electron microscope (for example, JXA-8600M manufactured by JEOL Ltd.) as an image analyzer (for example, Nippon Avionics Co., Ltd.). ) And obtain it as follows. A projected area S A of the sample particles from the image of the sample particles are measured and the perimeter L. When the area of a perfect circle of the circumference L is S B , the sphericity of the sample particle is defined as S A / S B.
なお、充分に均一に混合された対象粉体を上記画像解析装置に取り込み、画像上で隣り合う任意の100個の粒子につき球形度を測定し、その平均値が0.7以上である場合、その対象粉体は球状化処理された粒子からなる。 In addition, when the target powder mixed sufficiently uniformly is taken into the image analysis device, the sphericity is measured for any 100 particles adjacent on the image, and the average value is 0.7 or more, The target powder consists of spheroidized particles.
球状化粒子の素材は、特に限定されず、例えば、マグネシアクリンカー等のマグネシア質原料、オリビン等のマグネシア‐シリカ質原料、ドロマイト質原料、又はアルミナ質原料等を用いることができる。 The material for the spheroidized particles is not particularly limited, and for example, a magnesia material such as magnesia clinker, a magnesia-silica material such as olivine, a dolomite material, or an alumina material can be used.
球状化粒子の嵩比重は、上述した耐火れんが破砕物との嵩比重差が0.5以下であれば特に制限されない。上述したように、耐火れんが破砕物として嵩比重が大きいものを使用する場合は、球状化粒子の嵩比重も大きいことが必要であり、この場合、例えば、マグネシアクリンカー等のマグネシア質原料を用いることができる。また、耐火れんが破砕物として嵩比重が小さいものを使用する場合は、球状化粒子の嵩比重も小さいことが必要であり、この場合、例えば、軽量マグネシアや軽量アルミナ等といった多孔質な耐火原料を用いることができる。 The bulk specific gravity of the spheroidized particles is not particularly limited as long as the bulk specific gravity difference from the refractory brick crushed material is 0.5 or less. As described above, when using a refractory brick having a large bulk specific gravity, the spheroidized particles must also have a large bulk specific gravity. In this case, for example, a magnesia raw material such as magnesia clinker should be used. Can do. In addition, when using a refractory brick having a small bulk specific gravity, it is necessary that the spheroidized particles have a small bulk specific gravity. In this case, for example, a porous refractory raw material such as lightweight magnesia or lightweight alumina is used. Can be used.
球状化粒子と耐火れんが破砕物との嵩比重が近似するため、本焼付補修材は、施工に際して投入による衝撃を受けた後も、球状化粒子と耐火れんが破砕物との偏析が生じにくい。このため、球状化粒子は、耐火れんが破砕物間に介在し、耐火れんが破砕物によって石垣状の構造物が構築されることを抑制する。これにより、施工体組織の不均一化及び粗雑化が緩和される。 Since the bulk specific gravity of the spheroidized particles and the refractory brick is approximated, the seizure of the spheroidized particles and the refractory brick is less likely to occur in the baked repair material even after being subjected to an impact during the construction. For this reason, the spheroidized particles have refractory bricks interposed between the crushed materials and suppress the construction of a stone wall-like structure by the refractory bricks. Thereby, the nonuniformity and roughening of a construction body structure are relieved.
粒径1mm以上の球状化粒子の耐火性粉体に占める割合は、9質量%以上とする。これより少ないと、球状化粒子による上記効果が得られない。球状化粒子の耐火性粉体に占める割合の上限は特に制限されないが、球状化粒子は粒径1mm以上の粗粒域に配合するため、耐火性粉体に占める粗粒域の割合を適切化する観点から自ずと制限されることは当業者に自明であろう。粒径1mm以上の球状化粒子の耐火性粉体に占める割合は、例えば、20質量%以下であることが好ましい。 The ratio of spheroidized particles having a particle diameter of 1 mm or more to the refractory powder is 9% by mass or more. If it is less than this, the above-mentioned effect by the spheroidized particles cannot be obtained. The upper limit of the ratio of the spheroidized particles to the refractory powder is not particularly limited, but since the spheroidized particles are blended in a coarse particle region having a particle size of 1 mm or more, the proportion of the coarse particle region in the refractory powder is optimized. It will be apparent to those skilled in the art that the present invention is naturally limited from this viewpoint. The proportion of spheroidized particles having a particle diameter of 1 mm or more in the refractory powder is preferably 20% by mass or less, for example.
粗粒域の残部は、例えば、マグネシアクリンカーや電融マグネシア等のマグネシア質原料、ドロマイトクリンカ等のドロマイト質原料、カルシアクリンカ等のカルシア質原料、電融アルミナ、ボーキサイト等のアルミナ質原料、スピネルクリンカ等のスピネル質原料、他の酸化物原料、カーボンブラック等の炭素質原料、炭化珪素質原料、窒化珪素質原料、他の非酸化物原料、並びにこれらの少なくともいずれかを主成分とする使用済耐火物から選択される一種以上を用いることができる。 The remainder of the coarse-grained region is, for example, magnesia clinker and electrofused magnesia, dolomite dolica, dolomite clinker, calcia clinker, calcia clinker, alumina, bauxite, alumina, spinel clinker. Spinel material such as carbon dioxide, carbonaceous material such as carbon black, silicon carbide material, silicon nitride material, other non-oxide material, and used mainly composed of at least one of these One or more selected from refractories can be used.
粗粒域は、粒径3mm以上の粒子を含むことが好ましい。仮に本耐火物に亀裂が生じても、その粒子において伝播を阻止できる。粗粒域の最大粒径は特に限定されないが、例えば、8mm未満が好ましく、10mm未満がより好ましい。 The coarse particle region preferably contains particles having a particle size of 3 mm or more. Even if cracks occur in the refractory, propagation of the particles can be prevented. Although the maximum particle size of the coarse grain region is not particularly limited, for example, it is preferably less than 8 mm, and more preferably less than 10 mm.
微粒域を構成する原料は特に限定されず、例えば、粗粒域の場合と同様、上に例示した各原料を用いることができる。なお、微粒域にも耐火れんが破砕物や球状化粒子を配合してもよい。 The raw material which comprises a fine grain area | region is not specifically limited, For example, each raw material illustrated above can be used similarly to the case of a coarse grain area | region. In addition, you may mix | blend a refractory brick crushed material and a spheroidized particle also in a fine grain area.
投入時の偏析を緩和する観点から、耐火性粉体における耐火れんが粉砕物及び球状化粒子以外の残部の殆ど、具体的には、その残部の90質量%以上も、耐火れんが破砕物との嵩比重差0.5以下の原料で構成することが好ましい。このことは、例えば、耐火れんが破砕物として高嵩比重のものを使用することで、容易に実現しうる。 From the viewpoint of alleviating segregation at the time of charging, most of the remainder of the refractory powder other than the pulverized pulverized product and the spheroidized particles, specifically, 90% by mass or more of the remaining part of the refractory brick, It is preferable to use raw materials having a specific gravity difference of 0.5 or less. This can be easily realized, for example, by using a refractory brick having a high bulk specific gravity as a crushed material.
有機結合剤としては、熱間でカーボンボンドを形成する物質、例えば、樹脂、糖類、ピッチ、タール、他の瀝青から選択される一種以上を用いることができる。樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、テルペン樹脂が挙げられる。樹脂と共に、ヘキサメチレンテトラミン等の硬化剤を併用してもよく、この場合は硬化剤も有機結合剤の概念に含めるものとする。糖類としては、グルコース、フルクトース、ガラクトース、及びマンノース等の単糖類や、スクロース、マルトース、ラクトース、セロビオース、及びトレハロース等の二糖類が挙げられる。ピッチ及びタールは、石油系及び石炭系のいずれでもよい。樹脂やピッチと共に、例えば多価アルコール等を含む溶剤を用いてもよく、この場合は溶剤も有機結合剤の概念に含めるものとする。ピッチと樹脂を併用する場合は、両者に相溶性をもつ溶剤が好ましい。 As the organic binder, a substance that forms a carbon bond with heat, for example, one or more selected from resins, saccharides, pitch, tar, and other bitumen can be used. Examples of the resin include phenol resin, furan resin, epoxy resin, melamine resin, and terpene resin. A curing agent such as hexamethylenetetramine may be used in combination with the resin. In this case, the curing agent is also included in the concept of the organic binder. Examples of the saccharide include monosaccharides such as glucose, fructose, galactose, and mannose, and disaccharides such as sucrose, maltose, lactose, cellobiose, and trehalose. Pitch and tar may be either petroleum-based or coal-based. A solvent containing, for example, a polyhydric alcohol may be used together with the resin and pitch, and in this case, the solvent is also included in the concept of the organic binder. When pitch and resin are used in combination, a solvent compatible with both is preferable.
有機結合剤としては、ピッチ及び/又はタールを含むことが好ましい。ピッチやタールは、受熱からカーボンボンド化するまでの間の軟化状態が、樹脂や糖類に比べて長く継続する。本発明において上記球状化粒子は、有機結合剤の軟化期間の長短に関らず、耐火れんが破砕物の粒子間を離間させ、耐火れんが破砕物による石垣状の構造物の構築を抑制する効果をもつが、有機結合剤の軟化状態が長く維持されれば、その分、焼付補修材の展開を促進する効果を更に得ることができる。特に、本焼付補修材を炉内に投入後、炉を傾ける場合は、球状化粒子によるベアリング効果が顕著に現れやすい。焼付補修材が薄く展開することで、偏析の問題を防止する効果が一層顕著となる。 The organic binder preferably contains pitch and / or tar. In the pitch and tar, the softened state from heat reception to carbon bonding continues longer than that of the resin and saccharide. In the present invention, the spheroidized particles have the effect of suppressing the construction of stone-walled structures by refractory bricks by separating the particles of the refractory bricks regardless of the softening period of the organic binder. However, if the softened state of the organic binder is maintained for a long time, the effect of promoting the development of the baking repair material can be further obtained. In particular, when the furnace is tilted after the baking repair material is put into the furnace, the bearing effect due to the spheroidized particles tends to appear remarkably. By developing the baking repair material thinly, the effect of preventing the problem of segregation becomes more remarkable.
有機結合剤の添加量は、特に規定しないが、焼付補修材に施工可能な保形性や強度を与える等の観点から、当業者の技術常識により自ずと定められるであろう。典型的には、有機結合剤の使用量は、耐火性粉体100質量%に対する外かけで、2質量%以上が好ましく、3〜15質量%がより好ましい。3質量%以上であることで強度及び保形性を確実に得、15質量%以下であることでさらに耐食性を確保できる。 The amount of the organic binder to be added is not particularly defined, but will naturally be determined based on the common general technical knowledge of those skilled in the art from the viewpoint of providing shape retention and strength that can be applied to the baked repair material. Typically, the amount of the organic binder used is preferably 2% by mass or more, and more preferably 3 to 15% by mass, based on 100% by mass of the refractory powder. When it is 3% by mass or more, strength and shape retention can be reliably obtained, and when it is 15% by mass or less, further corrosion resistance can be secured.
本焼付補修材は、耐火性粉体及び結合剤のみで構成してもよいが、他の添加物をさらに含んでもよい。 Although this baking repair material may be comprised only with a refractory powder and a binder, it may further contain other additives.
他の添加物としては、例えば、金属粉、粘性調整剤、有機繊維、金属繊維、及び粒径10mm以上の粗大粒から選択される一種以上が挙げられる。 Examples of other additives include one or more selected from metal powders, viscosity modifiers, organic fibers, metal fibers, and coarse particles having a particle size of 10 mm or more.
金属粉としては、Fe粉、Cu粉、Al粉、金属Si粉、Fe-Si合金粉が挙げられる。 Examples of the metal powder include Fe powder, Cu powder, Al powder, metal Si powder, and Fe—Si alloy powder.
粘性調整剤としては、灯油、重油、クレオソート油、アントラセン油等の石炭又は石油系の油、植物油、動物油、エーテル、カプロラクタム等のラクタム類、アセトアニリドやアセト酢酸アニリド等のアセトアニリド類、ブチルフェノール等のアルキルフェノール類が挙げられる。粘性調整剤は、発塵防止や流動促進の効果をもつ。粘性調整剤の概念からは、上述した結合剤に用いる溶剤は除かれるものとする。 Viscosity modifiers include kerosene, heavy oil, creosote oil, anthracene oil and other coal or petroleum-based oils, vegetable oils, animal oils, ethers, lactams such as caprolactam, acetanilides such as acetanilide and acetoacetanilide, and butylphenol. Examples include alkylphenols. The viscosity modifier has the effect of preventing dust generation and promoting flow. From the concept of viscosity modifier, the solvent used in the binder described above is excluded.
有機繊維としては、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、パルプ繊維が挙げられ、作業性の向上、断熱化、及び熱間での応力緩和の効果をもつ。金属繊維としては、ステンレス鋼繊維、Fe繊維、Cu繊維、Al繊維、Ni繊維が挙げられる。 Examples of the organic fiber include vinylon fiber, polyethylene fiber, polypropylene fiber, and pulp fiber, which have an effect of improving workability, heat insulation, and stress relaxation between heat. Examples of the metal fiber include stainless steel fiber, Fe fiber, Cu fiber, Al fiber, and Ni fiber.
本焼付補修材は、熱焼失性バッグに収容されて補修対象炉に投入する方法により施工される。熱焼失性バッグの素材は、炉の熱で焼失するものであれば、特に限定されず、例えば、ポリプロピレンを使用することができる。熱焼失性バッグに収容する焼付補修材の収容量は特に限定されない。本焼付補修材を3〜10kg程度に小口梱包して炉内に投入してもよい。但し、熱焼失性バッグへの収容量が多い場合に特に偏析が深刻となるため、その分、本発明を適用する意義が大きい。具体的には、収容量が、100kg以上の場合に意義が大きく、1t以上の場合に特に意義が大きい。 The seizure repair material is applied by a method in which it is housed in a thermally burnable bag and placed in a repair target furnace. The material of the heat-disappearing bag is not particularly limited as long as it is burned by the heat of the furnace, and for example, polypropylene can be used. The accommodation amount of the baking repair material accommodated in the heat burnout bag is not particularly limited. The bake repair material may be packed in a small package of about 3 to 10 kg and put into the furnace. However, since the segregation becomes particularly serious when the amount contained in the heat-burnable bag is large, it is significant to apply the present invention accordingly. Specifically, the significance is large when the capacity is 100 kg or more, and the significance is particularly significant when the capacity is 1 t or more.
表1に、焼付補修材の実施例及び比較例と評価結果とを示す。 Table 1 shows examples and comparative examples of the baking repair material and evaluation results.
焼付補修材を構成する耐火性粉体が、粒径1mm以上の粗粒域:65質量%と、粒径1mm未満の微粒域:35質量%とからなる条件で、耐火れんが破砕物及び球状化粒子等の嵩比重及び粒径等を種々変更した。 The refractory powder composing the baking repair material is crushed and spheroidized with refractory bricks under the condition that the coarse particle region having a particle size of 1 mm or more: 65% by mass and the fine particle region having a particle size of less than 1 mm: 35% by mass. Various changes were made in the bulk specific gravity and particle size of the particles.
表1で評価は次の要領で行った。各例の焼付補修材20kgをフレコンバッグに収容し、フレコンバッグごと5m投下させる。床面は、予め約800℃に熱しているものとする。 In Table 1, the evaluation was performed as follows. 20 kg of the baking repair material of each example is accommodated in a flexible container bag, and the flexible container bag is dropped 5 m. The floor surface is preheated to about 800 ° C.
偏析しにくさ:床面への焼付けが完了した施工体の平面視中央部の縦断面を目視観察し、耐火れんが破砕物の偏析しにくさを◎、○、△、×の4段階で相対評価した。 Segregation resistance: Observe the longitudinal cross section of the center of the construction body after baking on the floor surface visually, and determine the resistance to segregation of refractory bricks in four stages: ◎, ○, △, and ×. evaluated.
せん断強度:床面への焼付けが完了した施工体の平面視中央部を試料として採取し、その試料の高さ方向に関して略中央部の位置におけるせん断強度によって◎、○、△、×の4段階で相対評価した。 Shear strength: The center part in plan view of the construction body that has been baked on the floor is taken as a sample, and the four stages of ◎, ○, △, and X depending on the shear strength at the position of the substantially central part in the height direction of the sample Relative evaluation.
展開性:床面における焼付補修材の拡がり寸法によって◎、○、△、×の4段階で相対評価した。なお、拡がり寸法は直交する2方向についての直径の平均値とした。 Expandability: Relative evaluation was performed in four stages of ◎, ○, Δ, and × according to the spread dimensions of the baking repair material on the floor surface. In addition, the expansion dimension was made into the average value of the diameter about two orthogonal directions.
易焼付性:フレコンバッグの投下から、焼付補修材中の有機結合剤に由来する発煙が停止するまでの時間の短さによって◎、○、△、×の4段階で相対評価した。 Easily baked: Relative evaluation was made in four stages of ◎, ○, △, and × according to the short time from dropping of the flexible container bag to stopping of smoke generation derived from the organic binder in the baking repair material.
例Aは、耐火れんが破砕物を含むが、球状化粒子を含まない従来の焼付補修材に相当する比較例である。みかけ上、展開性は相対的に良好であるが、施工体の平面視において中央部に粒径1mm以上の耐火れんが破砕物が展開せずに石垣状に堆積し、その石垣状の堆積体から分離してしみだすように、粒径1mm未満のマトリクス部が展開していた。このため、特に、偏析しにくさの点で劣っている。また、石垣状の堆積体の厚さが厚いため、易焼付性に劣る。また、耐火れんが破砕物の偏在に起因して施工体の高さ方向に関する組織の連続性が損なわれたため、せん断強度も相対的に小さい。このような施工体は、実機使用においては構造的スポーリングを生じやすいといえる。 Example A is a comparative example corresponding to a conventional baking repair material containing refractory brick crushed material but no spheroidized particles. Apparently, the expansibility is relatively good, but in the plan view of the construction body, refractory bricks with a particle size of 1 mm or more are accumulated in the shape of a stone wall without developing in the center, and from the stone wall-shaped deposit, A matrix portion having a particle diameter of less than 1 mm was developed so as to separate and exude. For this reason, it is inferior especially in the point of being hard to segregate. Moreover, since the stone wall-like deposits are thick, they are inferior in seizure. Moreover, since the continuity of the structure | tissue regarding the height direction of a construction body was impaired due to uneven distribution of refractory bricks, shear strength is also relatively small. It can be said that such a construction body is likely to cause structural spalling in actual machine use.
例Bは、例Aの粗粒域の一部を、焼付補修材に一般的に使用される嵩比重3.4のマグネシア質原料を球状化処理したものに置換した比較例である。球状化粒子を含むにも関らず、例Aに比べて、偏析しにくさ及びせん断強度の点で改善効果がみられない。また、例Bは球状化粒子を含むにも関らず、施工体表層側への耐火れんが破砕物の偏析の度合いは、例Aよりも悪化していた。このため、例Bのせん断強度は例Aよりも小さい。これは、例Bでは、球状化粒子の嵩比重が耐火れんが破砕物より1.0も大きく、かつ球状化粒子は表面が滑らかで他の粒子との摩擦が小さいため、投下時の衝撃で球状化粒子が耐火れんが破砕物よりも下地側に沈み込んだことに起因すると考えられる。例Bの結果から、単に耐火性粉体における耐火れんが破砕物以外の残部を球状化処理するだけでは、偏析しにくさを緩和できないことがわかる。 Example B is a comparative example in which a part of the coarse-grained region of Example A was replaced with a spheroidized magnesia material having a bulk specific gravity of 3.4, which is generally used for baking repair materials. Despite the inclusion of spheroidized particles, no improvement effect is seen in terms of difficulty in segregation and shear strength as compared to Example A. In addition, although Example B contains spheroidized particles, the degree of segregation of the refractory brick crushed material on the surface side of the construction body was worse than that of Example A. For this reason, the shear strength of Example B is smaller than that of Example A. This is because in Example B, the bulk specific gravity of the spheroidized particles is 1.0 larger than that of the refractory brick crushed material, and the spheroidized particles have a smooth surface and little friction with other particles. This is thought to be due to the refractory particles sinking to the base side of the crushed material. From the results of Example B, it can be seen that the difficulty of segregation cannot be alleviated simply by spheroidizing the remainder of the refractory powder other than the crushed material.
例C及びDは、例Aにおいて、耐火れんが破砕物以外の残部に、通常は焼付補修材には使用されない嵩比重2.9の軽量マグネシアを球状化処理して配合した比較例であり、例Bに比べると、球状化粒子と耐火れんが破砕物との嵩比重が近似するが、球状化粒子の添加量が少ないため、偏析しにくさ及びせん断強度において改善効果がみられなかった。 Examples C and D are comparative examples in which light weight magnesia having a bulk specific gravity of 2.9, which is not normally used for a baking repair material, is spheroidized and blended in the remainder of Example A other than crushed refractory bricks. Compared with B, the bulk specific gravity of the spheroidized particles and the refractory brick was approximated, but since the addition amount of the spheroidized particles was small, segregation resistance and shear strength were not improved.
例E〜Gは、例C及びDよりも球状化粒子を増量した実施例であり、偏析しにくさ及びせん断強度において改善がみられた。これは、球状化粒子の嵩比重が耐火れんが破砕物と近似するのみならず、球状化粒子の配合量が充分であるため、球状化粒子が組織内で耐火れんが破砕物から極度に分離することなく、耐火れんが破砕物と混在したことによる。即ち、耐火れんが破砕物間への球状化粒子の介在により、耐火れんが破砕物の粒子間を離間でき、耐火れんが破砕物による石垣の構築を抑制でき、組織の均一化を達成できた。 Examples E to G are examples in which the amount of spheroidized particles was increased as compared with Examples C and D, and improved in segregation resistance and shear strength. This is because not only the bulk specific gravity of the spheroidized particles approximates that of refractory bricks but also the amount of spheroidized particles is sufficient, so that spheroidized particles are extremely separated from crushed materials in the structure. Not because refractory bricks were mixed with crushed materials. In other words, the presence of spheroidized particles between the refractory bricks and the crushed material allowed the refractory bricks to be separated from each other, and the construction of the stone wall by the refractory bricks was suppressed and the homogenization of the structure was achieved.
例C〜Gの結果から、耐火性粉体に占める耐火れんが破砕物の割合が50質量%の場合に、偏析しにくさ及びせん断強度において改善効果を得るためには、球状化粒子は9質量%以上必要であることがわかる。なお、本発明においては、耐火性粉体に占める耐火れんが破砕物の割合を50質量%以下に制限している。耐火性粉体に占める耐火れんが破砕物の割合が50質量%以下であれば、9質量%以上の球状化粒子によって上記各効果が得られることは自明である。 From the results of Examples C to G, when the ratio of crushed refractory bricks to the refractory powder is 50% by mass, in order to obtain an improvement effect in segregation difficulty and shear strength, % Is necessary. In the present invention, the proportion of refractory bricks in the refractory powder is limited to 50% by mass or less. If the ratio of the refractory bricks to the refractory powder is 50% by mass or less, it is obvious that the above effects can be obtained with 9% by mass or more of spheroidized particles.
例H及びIは、例E〜Gにおいて、耐火性粉体における球状化粒子以外の残部にも、耐火れんが破砕物と嵩比重が近似する軽量マグネシアを配合した実施例であり、偏析しにくさの更なる改善がみられた。 Examples H and I are examples in which, in Examples E to G, the remainder of the refractory powder other than the spheroidized particles was blended with lightweight magnesia that approximates the bulk specific gravity of the refractory brick and is difficult to segregate. Further improvement was observed.
但し、例H及びIでは、展開性及び焼付時間は相対的に悪化した。展開性が悪化した理由は、粗粒域を構成する骨材と、微粒域を構成するマトリクスとの分離が一層抑制され、マトリクスのしみだしが抑制されたためである。焼付時間が悪化した理由は、これに加えて、嵩比重の小さい原料を多用したことによると考えられる。即ち、嵩比重の小さい原料は、熱伝導率が小さい。 However, in Examples H and I, developability and baking time were relatively deteriorated. The reason why the developability deteriorated is that the separation of the aggregate constituting the coarse grain region and the matrix constituting the fine grain region was further suppressed, and the oozing of the matrix was suppressed. In addition to this, the reason why the baking time is deteriorated is considered to be that many raw materials having a small bulk specific gravity were used. That is, a raw material having a small bulk specific gravity has a low thermal conductivity.
なお、例E〜Iは、展開性及び易焼付性においては許容範囲であるか又は相対的に劣る。しかし、本発明では、それらの特性よりも、偏析しにくさ及びせん断強度を重要視する。即ち、展開性の悪さは、複数回の投入施工によって補うことができる。また、易焼付性の悪さは、施工時間を充分に確保すれば問題とはならない。しかし、偏析しにくさ及びせん断強度は、施工体の耐用寿命を表している。本発明では、仮に展開性及び易焼付性が犠牲になったとしても、偏析しにくさ及びせん断強度の改善効果の方を重要視する。 Examples E to I are acceptable or relatively inferior in developability and easy-to-burn. However, in the present invention, importance is placed on segregation resistance and shear strength rather than these characteristics. That is, the poor developability can be compensated for by a plurality of input operations. In addition, the poor seizure property is not a problem if sufficient construction time is secured. However, the difficulty of segregation and the shear strength represent the useful life of the construction body. In the present invention, even if the spreadability and easy seizure are sacrificed, the effect of improving the difficulty of segregation and the shear strength is regarded as important.
例J〜Lは、例E〜Gにおいて、耐火れんが破砕物として嵩比重の大きい未使用品を使用することで、耐火れんが破砕物と球状化粒子との嵩比重を近似させた実施例であり、偏析しにくさ及びせん断強度において優れている。また、焼付補修材全体としての嵩比重が向上したためか、展開性及び易焼付性においても改善がみられた。 Examples J to L are examples in which the bulk specific gravity of the refractory brick crushed material and the spheroidized particles was approximated by using an unused product having a large bulk specific gravity as the refractory brick crushed material in Examples EG. Excellent in segregation resistance and shear strength. Moreover, the expansion | deployment property and easy baking property were also improved because the bulk specific gravity as the whole baking repair material improved.
例M、N、Oは、それぞれ例J、K、Lにおいて、球状化粒子の素材として、一般にマグネシア質原料として使用される高嵩比重のものを採用したものであり、それぞれ例J、K、Lと同様に、偏析しにくさ又はせん断強度において優れている。また、焼付補修材全体としての嵩比重が大きいため、投下の衝撃による拡がりが大きくて展開性に優れる。また、その分、施工厚みが薄く、かつ高嵩比重の原料は、熱伝導率が大きいため、易焼付性も優れる。 Examples M, N, and O employ high bulk specific gravity materials generally used as magnesia materials as examples of spheroidized particles in Examples J, K, and L, respectively. Like L, it is excellent in segregation resistance or shear strength. Moreover, since the bulk specific gravity as a whole of the baking repair material is large, the spread due to the impact of dropping is large and the developability is excellent. In addition, the raw material having a thin construction thickness and a high bulk specific gravity has a high thermal conductivity, and therefore has excellent bakeability.
例P、Qは、それぞれ例I、Oにおいて、球状化粒子を配合する粒度域を粒径1mm未満の微粒域、具体的には、その中でも粒径75μm未満の超微粒域に変更した比較例であり、少なくともせん断強度に劣る結果となった。これは、球状化粒子の粒径が小さすぎたため、耐火れんが破砕物の粒子同士を離して石垣状の構造物の構築を抑制することができなかったためと考えられる。この結果から、球状化粒子を配合する粒度域は、粒径1mm以上の粗粒域であることが必要といえる。 Examples P and Q are comparative examples in which the particle size range in which the spheroidized particles are blended is changed to a fine particle region having a particle size of less than 1 mm, specifically, an ultrafine particle region having a particle size of less than 75 μm. As a result, at least the shear strength was inferior. This is presumably because the particle size of the spheroidized particles was too small, and the construction of the stone wall-like structure could not be suppressed by separating the particles of refractory bricks. From this result, it can be said that the particle size region in which the spheroidized particles are blended is a coarse particle region having a particle size of 1 mm or more.
以上、本発明の具体例について説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。 As mentioned above, although the specific example of this invention was demonstrated, this invention is not limited to this. For example, it will be apparent to those skilled in the art that various combinations and improvements are possible.
本発明の焼付補修材は、熱焼失性バッグに収容されて補修対象炉に投入される施工法に広く利用することができる。例えば、転炉、電気炉、真空脱ガス炉、AOD炉、取鍋、タンディッシュ、高炉樋、その他の溶融金属容器の補修に広く利用することができる。 The seizure repair material of the present invention can be widely used in a construction method that is housed in a heat-burning bag and put into a repair target furnace. For example, it can be widely used for repairing converters, electric furnaces, vacuum degassing furnaces, AOD furnaces, ladles, tundishes, blast furnace furnaces, and other molten metal containers.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279988A JP5679293B2 (en) | 2010-12-16 | 2010-12-16 | Baking repair material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279988A JP5679293B2 (en) | 2010-12-16 | 2010-12-16 | Baking repair material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012126610A true JP2012126610A (en) | 2012-07-05 |
JP5679293B2 JP5679293B2 (en) | 2015-03-04 |
Family
ID=46644082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010279988A Active JP5679293B2 (en) | 2010-12-16 | 2010-12-16 | Baking repair material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5679293B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150886A (en) * | 2015-02-19 | 2016-08-22 | 株式会社セラテクノ | Hot repairing material for dc electric furnace |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58110471A (en) * | 1981-12-23 | 1983-07-01 | 新日本製鐵株式会社 | Thermally baking repairment material |
JPH0259476A (en) * | 1988-08-24 | 1990-02-28 | Sumitomo Metal Ind Ltd | Hot-banking repair material |
JP2000128649A (en) * | 1998-10-21 | 2000-05-09 | Kyushu Refract Co Ltd | Hot-baking repairing material |
JP2004162952A (en) * | 2002-11-11 | 2004-06-10 | Sumitomo Metal Ind Ltd | Hot repairing material and repairing method applying used refractory |
-
2010
- 2010-12-16 JP JP2010279988A patent/JP5679293B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58110471A (en) * | 1981-12-23 | 1983-07-01 | 新日本製鐵株式会社 | Thermally baking repairment material |
JPH0259476A (en) * | 1988-08-24 | 1990-02-28 | Sumitomo Metal Ind Ltd | Hot-banking repair material |
JP2000128649A (en) * | 1998-10-21 | 2000-05-09 | Kyushu Refract Co Ltd | Hot-baking repairing material |
JP2004162952A (en) * | 2002-11-11 | 2004-06-10 | Sumitomo Metal Ind Ltd | Hot repairing material and repairing method applying used refractory |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150886A (en) * | 2015-02-19 | 2016-08-22 | 株式会社セラテクノ | Hot repairing material for dc electric furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5679293B2 (en) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4394144B2 (en) | Carbon-containing refractory, method for producing the same, and pitch-containing refractory material | |
US10800707B2 (en) | Magnesia carbon brick and production method therefor | |
CN102336574A (en) | Method for producing waterless taphole mix for blast furnace from high-alumina waste refractory materials | |
WO2010095637A1 (en) | Unburned alumina-carbon brick and kiln facility utilizing same | |
JP5419231B2 (en) | Indefinite refractory | |
FR3053327A1 (en) | SINKING AGENT FOR DRY REFRACTORY PARTICULATE COMPOSITION | |
JP5679293B2 (en) | Baking repair material | |
US8658552B2 (en) | Chromia-containing refractory | |
JP5590662B2 (en) | Castable refractory manufacturing method | |
JP6361705B2 (en) | Lining method of converter charging wall | |
JP3638081B2 (en) | Refractory material containing low carbonaceous carbon and method for producing the same | |
JP3906500B2 (en) | Method for producing binder for carbon-containing refractory | |
JP5760266B2 (en) | Mud material for molten metal | |
JP2004162952A (en) | Hot repairing material and repairing method applying used refractory | |
US20170081244A1 (en) | Unshaped refractory material | |
JP4703087B2 (en) | Water-based castable refractories | |
JP2004141899A (en) | Sliding nozzle plate for ladle | |
JP3223039B2 (en) | High durability baking repair material | |
JP7329156B1 (en) | Manufacturing method of magnesia carbon brick | |
JP2004161529A (en) | Baking repairing material for spray application, and application method therefor | |
JP6326839B2 (en) | Carbon-containing refractories | |
JP2018168014A (en) | Unfired brick refractory and method for producing unfired brick refractory | |
JP6978677B2 (en) | Refractory lining for secondary refractory equipment with decompression | |
JPH1017357A (en) | Production of carbon-containing refractory | |
JP2008100886A (en) | Mud material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5679293 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |