JP2012126604A - METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS - Google Patents

METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS Download PDF

Info

Publication number
JP2012126604A
JP2012126604A JP2010279471A JP2010279471A JP2012126604A JP 2012126604 A JP2012126604 A JP 2012126604A JP 2010279471 A JP2010279471 A JP 2010279471A JP 2010279471 A JP2010279471 A JP 2010279471A JP 2012126604 A JP2012126604 A JP 2012126604A
Authority
JP
Japan
Prior art keywords
acid
water
temperature
molded body
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010279471A
Other languages
Japanese (ja)
Inventor
Yasushi Maeno
裕史 前野
Kanji Arai
完爾 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010279471A priority Critical patent/JP2012126604A/en
Publication of JP2012126604A publication Critical patent/JP2012126604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an SiC member for a semiconductor production process, by a cleaning method with an acid, which is low-cost and has a small environmental load, relative to a low-cost molding method such as extrusion molding.SOLUTION: After drying a molded body in aqueous-system extrusion molding, a degreasing step by heat treatment at a temperature of 350-450°C in an inert gas atmosphere and an acid cleaning step are carried out.

Description

本発明は、半導体製造の熱処理プロセスに用いられるSiC製処理治具の製造方法に関するものである。   The present invention relates to a method for manufacturing a SiC processing jig used in a heat treatment process for semiconductor manufacturing.

半導体製造プロセス用SiC製治具は、半導体製造時に治具から半導体製品への不純物元素による汚染を防ぐために、高い純度であることが要求されている。このため、冶具を製造する際には、高純度原料を用い、製造時に不純物の混入が無いように細心の注意を払って作業を行う。通常、冶具の製造プロセスとしては主に金属の混入を極力避ける方法を選択する。   A SiC jig for a semiconductor manufacturing process is required to have a high purity in order to prevent contamination by impurity elements from the jig to a semiconductor product during semiconductor manufacturing. For this reason, when manufacturing a jig, a high-purity raw material is used, and work is performed with great care so that impurities are not mixed during the manufacturing. Usually, a method for avoiding metal contamination as much as possible is selected as the jig manufacturing process.

冶具の成形方法としては、鋳込み成形、押出成形、静水圧プレス成形、射出成形などが用いられる。このうち、鋳込み成形、静水圧プレス成形は、成形時に金属部品との接触がなく、成形体の金属による汚染は少ないという利点があるが、成形タクト、コストに課題があった。一方、押出成形は、原理的に成形タクトの向上やコスト削減に対応可能だが、原料であるセラミックスの混練物を押出金型を通過させる際に高い圧力をかけて成形体を得る方法であるため、混練物と金属製のスクリューなどの加圧部品との接触が避けにくい。また、SiCは極めて硬度の高い物質であるため、加圧部品との接触において無視できない量の金属の混入がある可能性がある。   As a method for forming the jig, casting molding, extrusion molding, isostatic pressing, injection molding, or the like is used. Among these, casting molding and isostatic pressing have the advantage that there is no contact with metal parts during molding and the molded body is less contaminated with metal, but there are problems in molding tact and cost. On the other hand, extrusion molding can be used to improve molding tact and reduce costs in principle, but it is a method to obtain a molded body by applying high pressure when passing a kneaded material of ceramics as a raw material through an extrusion die. It is difficult to avoid contact between the kneaded material and a pressure component such as a metal screw. Further, since SiC is a very hard substance, there is a possibility that a non-negligible amount of metal may be mixed in contact with the pressurized part.

このような場合、一般には、成形体を焼成後、HCLガスを流して、焼成プロセスにより形成された焼成体中の不純物元素を分解・揮散させる方法により、半導体製造プロセス用SiC製治具(以下、製品ともいう)の高純度化をはかっている(たとえば特許文献1参照)。   In such a case, in general, a SiC jig for semiconductor manufacturing process (hereinafter referred to as “a jig for semiconductor manufacturing process”) is produced by a method of decomposing and volatilizing impurity elements in the fired body formed by firing process by flowing HCL gas after firing the molded body. (Referred to as Patent Document 1).

しかし、この方法の場合、焼成炉にHCLガスの導入設備並びに排ガスの処理設備などの環境対策設備が必要であり、かつ、2000℃を超える高温での処理のため、製品の高コスト化が懸念材料になっていた。また処理設備は処理ガスを再使用せずに連続的に排出するため、環境への負荷が高く、処理設備を嫌う傾向が高まっていた。特に押出成形法による場合、原理的に金属の汚染の程度は高い。このため、押出成型により形成された成形体を酸などの水溶液に浸漬して、金属または金属酸化物を溶出除去する方法が発案されている(たとえば特許文献2参照)。   However, in the case of this method, environmental measures equipment such as HCL gas introduction equipment and exhaust gas treatment equipment is necessary for the firing furnace, and since the treatment is performed at a high temperature exceeding 2000 ° C., there is a concern about high cost of the product. It was a material. Further, since the processing equipment continuously discharges the processing gas without reusing it, the load on the environment is high, and the tendency to dislike the processing equipment has increased. In particular, in the case of the extrusion method, the degree of metal contamination is high in principle. For this reason, a method has been proposed in which a molded body formed by extrusion molding is immersed in an aqueous solution such as an acid to elute and remove the metal or metal oxide (for example, see Patent Document 2).

特許第3543529号公報Japanese Patent No. 3543529 特許第2867623号公報Japanese Patent No. 2867623

しかし、特許文献2にはセラミックス材料の具体例や製造物中または製造プロセス中の純度に関する具体的な記載がない。また、特許文献2の仮焼工程をそのまま、具体的には600℃乃至800℃の条件を適用すると、温度が高すぎるため、Feなどの金属元素はSiCの内部に拡散し、洗浄工程によっても高純度化ができないため、製品を製造することができなかった。   However, Patent Document 2 does not include specific examples of ceramic materials or specific descriptions regarding purity in a product or a manufacturing process. Further, if the calcination process of Patent Document 2 is applied as it is, specifically, when the conditions of 600 ° C. to 800 ° C. are applied, the temperature is too high, so that metal elements such as Fe diffuse into the SiC, and the cleaning process also The product could not be manufactured because it could not be highly purified.

本発明は、このような課題を鑑み、押出成形など、低コストの成形方法に対して、同じく低コストでかつ環境負荷が少ない酸による洗浄法による、半導体製造プロセス用SiC部材の製造方法を提供するものである。   In view of the above problems, the present invention provides a method for producing a SiC member for a semiconductor manufacturing process, which uses an acid cleaning method that is also low in cost and has a low environmental impact with respect to a low-cost molding method such as extrusion molding. To do.

本発明は、
SiCの粉体と、水溶性樹脂を主成分とする有機バインダーおよび表面処理剤と、水とを混練して混練物を得る混練工程と、
前記混練物を押出成形して成形体を得る成形工程と、
前記成形体を乾燥する乾燥工程と、
乾燥工程後の前記成形体を不活性ガス雰囲気中で350〜450℃の温度で熱処理する脱脂工程と、
脱脂工程後の前記成形体を酸で洗浄する酸洗浄工程と、
を有することにより半導体製造プロセス用SiC部材を製造する、半導体製造プロセス用SiC部材の製造方法。
The present invention
A kneading step of kneading SiC powder, an organic binder mainly composed of a water-soluble resin, a surface treatment agent, and water to obtain a kneaded product;
A molding step of obtaining a molded body by extruding the kneaded product;
A drying step of drying the molded body;
A degreasing step of heat-treating the molded body after the drying step in an inert gas atmosphere at a temperature of 350 to 450 ° C;
An acid washing step of washing the molded body after the degreasing step with an acid;
The manufacturing method of the SiC member for semiconductor manufacturing processes which manufactures the SiC member for semiconductor manufacturing processes by having.

前記酸は、塩酸と硝酸と水の混合酸、弗硝酸または塩酸であってもよい。   The acid may be a mixed acid of hydrochloric acid, nitric acid and water, hydrofluoric acid or hydrochloric acid.

前記製造方法は5〜20℃の温度で混練して混練物を得る混練工程と、前記混練物を5〜20℃の温度で押出成形して成形体を得る成形工程と、前記成形体を50℃以上の温度で乾燥する乾燥工程とを含んでもよい。   The manufacturing method includes a kneading step of kneading at a temperature of 5 to 20 ° C. to obtain a kneaded product, a molding step for obtaining a molded product by extruding the kneaded product at a temperature of 5 to 20 ° C., and 50 And a drying step of drying at a temperature of at least ° C.

前記酸は、50〜100℃の塩酸と硝酸と水の混合酸または50〜100℃の塩酸または常温の弗硝酸であってもよい。   The acid may be a mixed acid of hydrochloric acid, nitric acid and water at 50 to 100 ° C., hydrochloric acid at 50 to 100 ° C. or hydrofluoric acid at normal temperature.

前記不活性ガスが窒素でもよい。   The inert gas may be nitrogen.

前記SiCの粉体の平均粒子径が1〜10μmであり、SiCの粉体の割合は、混練材料の総量に対して66〜78wt%であってもよい。   The average particle diameter of the SiC powder may be 1 to 10 μm, and the proportion of the SiC powder may be 66 to 78 wt% with respect to the total amount of the kneaded material.

前記水溶性樹脂として、メチルセルロースと、分子量が250〜550のポリエチレングリコールとを含んでもよい。   As the water-soluble resin, methylcellulose and polyethylene glycol having a molecular weight of 250 to 550 may be included.

前記水溶性樹脂として、メチルセルロースと、ポリエチレングリコールとを含み、ポリエチレングリコールのメチルセルロースに対する質量比が0.67〜1.5であり、メチルセルロースと水とで15〜25wt%水溶液となっていてもよい。   As said water-soluble resin, methylcellulose and polyethyleneglycol are included, The mass ratio with respect to methylcellulose of polyethyleneglycol is 0.67-1.5, and it may be 15-25 wt% aqueous solution with methylcellulose and water.

本発明によれば、半導体製造プロセスに好適なきわめて高純度のSiC部材を、低コストかつ環境負荷が少ない方法で製造することができる。   According to the present invention, an extremely high-purity SiC member suitable for a semiconductor manufacturing process can be manufactured by a method with low cost and low environmental load.

図1は本発明による、半導体製造プロセス用SiC部材の製造プロセスの工程図。FIG. 1 is a process diagram of a manufacturing process of an SiC member for a semiconductor manufacturing process according to the present invention.

図1は本発明による、半導体製造プロセス用SiC部材の製造プロセスの工程を示したものである。本発明の実施の形態を、図1を参照して主要部分、すなわち酸洗浄工程までを中心に説明する。   FIG. 1 shows steps of a manufacturing process of a SiC member for a semiconductor manufacturing process according to the present invention. The embodiment of the present invention will be described with reference to FIG. 1 focusing on the main part, that is, the acid cleaning step.

<混練工程>
まず混練する材料(以下、混練材料ともいう)として、SiCの粉体と、水溶性樹脂と、水とを用意する。このような、水を含む原料による押出成形(以下、水系押出成形ともいう)は、ポリエチレン、ポリプロピレン、ポリスチレンなどの熱可塑性樹脂を含む樹脂系押出成形と比較すると、焼成工程においてガスや有害物質を発生しないため、環境対策設備の負荷を軽減できる。
<Kneading process>
First, SiC powder, a water-soluble resin, and water are prepared as materials to be kneaded (hereinafter also referred to as kneaded materials). Such extrusion molding using water-containing raw materials (hereinafter, also referred to as water-based extrusion molding) is more effective in removing gases and harmful substances in the firing process than resin-based extrusion molding including thermoplastic resins such as polyethylene, polypropylene, and polystyrene. Since it does not occur, the load on the environmental countermeasure equipment can be reduced.

混練材料の総量に対するSiCの粉体の割合は、66〜78wt%が好ましい。更には68〜74.5wt%が更に好ましい。66wt%を下回ると、後に行われる酸洗浄工程で成形体の強度が不足し形状を保持しにくくなる。また、さらに後に行われる焼成工程後の成形体(以下、焼成体ともいう)の気孔率が高くなり機械的な強度が不足し、金属シリコン含浸工程においてSi(シリコン)の膨張により発生する応力に耐えることができず、Si含浸後にクラックが生じ不良となるおそれがある。74.5wt%を超えるとFeなどの磨耗量が増えて酸洗浄工程に長時間を要する。さらに78wt%を超えると混練後の混合体(以下、混練物ともいう)が硬くなりすぎ、押出成形が困難になる。   The ratio of the SiC powder to the total amount of the kneaded material is preferably 66 to 78 wt%. Furthermore, 68-74.5 wt% is more preferable. If it is less than 66 wt%, the strength of the molded product will be insufficient in the subsequent acid cleaning step, making it difficult to maintain the shape. Further, the porosity of the molded body (hereinafter also referred to as a fired body) after the firing process to be performed later becomes high and the mechanical strength is insufficient, and the stress generated by the expansion of Si (silicon) in the metal silicon impregnation process. It cannot withstand, and there is a risk of cracking after impregnation with Si, resulting in failure. If it exceeds 74.5 wt%, the amount of wear of Fe or the like increases and the acid cleaning process takes a long time. Further, if it exceeds 78 wt%, the mixture after kneading (hereinafter also referred to as kneaded product) becomes too hard and extrusion molding becomes difficult.

SiCの平均粒子径は、押出成形に対応するために、100μm以下が好ましい。また金属汚染の主要因は押出工程での摩耗であることが多い。SiCは極めて硬度の高い物質だからである。この摩耗低減の観点から、SiCの平均粒子径は10μm以下がより好ましい。最も好ましくは1μm以上5μm以下である。5μm以下では、SiCの粒子間を埋めるSiが微細ネットワークを組むようになり、製品としても高強度にすることができる。また1μmより細かいと、金属Si含浸工程において冷却時のSiが膨張してクラックを発生するおそれがある。なお、平均粒子径の測定は、堀場製作所株式会社製のレーザー回折散乱式粒度分布測定装置(LA−950V2)で行った。   The average particle diameter of SiC is preferably 100 μm or less in order to cope with extrusion molding. The main factor of metal contamination is often wear during the extrusion process. This is because SiC is a very hard substance. From the viewpoint of reducing the wear, the average particle size of SiC is more preferably 10 μm or less. Most preferably, they are 1 micrometer or more and 5 micrometers or less. When the thickness is 5 μm or less, Si filling between the SiC particles forms a fine network, and the product can have high strength. On the other hand, if it is finer than 1 μm, there is a possibility that Si at the time of cooling expands and cracks occur in the metal Si impregnation step. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer (LA-950V2) manufactured by Horiba, Ltd.

水溶性樹脂として、混練時に有機バインダーとして機能するものと、SiCの粉体との混合時にSiC粒子の表面処理剤として機能するものとを両方含むことが好ましい。たとえばメチルセルロースと、ポリアルキレングリコールとを両方含むことが好ましい。メチルセルロースは混練時の有機バインダーとして、またポリアルキレングリコールはSiC粒子との混合時に表面処理剤として、それぞれ機能する。なお、ポリアルキレングリコールは一般には水溶性樹脂である。このように、水溶性樹脂としては、成形工程中において可塑性を付与すること、各工程において保形性を維持できることなど考慮して、乾燥工程中を含む広い温度範囲で成形体の変形を防止する「のり」として機能しうるように、材料や添加量を調整する。以下に説明する。   The water-soluble resin preferably includes both a resin that functions as an organic binder at the time of kneading and a resin that functions as a surface treatment agent for SiC particles when mixed with the SiC powder. For example, it is preferable to contain both methylcellulose and polyalkylene glycol. Methylcellulose functions as an organic binder during kneading, and polyalkylene glycol functions as a surface treatment agent when mixed with SiC particles. Polyalkylene glycol is generally a water-soluble resin. As described above, the water-soluble resin prevents deformation of the molded body in a wide temperature range including during the drying process in consideration of imparting plasticity during the molding process and maintaining shape retention in each process. The material and the amount of addition are adjusted so that it can function as “paste”. This will be described below.

有機バインダーとして機能する水溶性樹脂としては、例えば、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース塩などおよびそれらに水溶性フェノール樹脂を混合した樹脂などが適する。混練材料の総量に対する有機バインダーとして機能する水溶性樹脂の割合は、3.5〜7.5wt%が好ましい。更には4〜7wt%が更に好ましい。以下、メチルセルロースの場合を例に説明する。メチルセルロースは、一般に熱可逆のゲル化特性を有する。特にゲル化に伴って粘度上昇するタイプが好ましい。ゲル化温度はメチルセルロースの水溶液濃度にも依存する。たとえばSM−8000(商品名メトローズ、信越化学社製)の場合、メチルセルロースに水を加えて15〜25wt%(好ましくは17〜22wt%)の水溶液とすることにより、ゲル化温度を50℃以上にすることができ、かつ取扱いが容易となる。この場合、混練材料の総量に対する水の割合は、10〜40wt%が好ましい。これにより、乾燥工程での成形体の強度向上および変形防止の効果を得ることができる。なお、この他の有機バインダーとして機能する水溶性樹脂の場合も、同様に粘度特性やゲル化温度などを勘案しつつ、水溶液濃度を調整すればよい。また、有機バインダーとして複数の水溶性樹脂を含んでもよい。   As the water-soluble resin that functions as an organic binder, for example, methyl cellulose, ethyl cellulose, carboxymethyl cellulose salt and the like, and a resin obtained by mixing them with a water-soluble phenol resin are suitable. The ratio of the water-soluble resin that functions as an organic binder to the total amount of the kneaded material is preferably 3.5 to 7.5 wt%. Furthermore, 4-7 wt% is more preferable. Hereinafter, the case of methylcellulose will be described as an example. Methylcellulose generally has thermoreversible gelling properties. A type that increases in viscosity with gelation is particularly preferable. The gelation temperature also depends on the aqueous concentration of methylcellulose. For example, in the case of SM-8000 (trade name Metroze, manufactured by Shin-Etsu Chemical Co., Ltd.), by adding water to methylcellulose to obtain an aqueous solution of 15 to 25 wt% (preferably 17 to 22 wt%), the gelation temperature is increased to 50 ° C or higher. And can be handled easily. In this case, the ratio of water to the total amount of the kneaded material is preferably 10 to 40 wt%. Thereby, the effect of the strength improvement of a molded object and a deformation | transformation prevention in a drying process can be acquired. In the case of water-soluble resins that function as other organic binders, the concentration of the aqueous solution may be adjusted while taking into consideration the viscosity characteristics and the gelation temperature. Further, a plurality of water-soluble resins may be included as the organic binder.

SiCの表面処理剤として機能する水溶性樹脂としては、例えば、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコールが挙げられる。SiCの粉体は、まずポリアルキレングリコールと混合して、SiC粒子表面にポリアルキレングリコールがコーティング処理された粉体とし、続いて前記有機バインダーとして機能する水溶性樹脂と混合する。SiC粒子の表面を予めコーティング処理することにより、SiC粒子間隔を均一にし、かつSiC粉体表面を親水性とすることで有機バインダーへの分散性を向上させる効果がある。この効果や作業温度などを勘案して、添加量や分子量等を決定する。   Examples of the water-soluble resin that functions as a surface treatment agent for SiC include polyalkylene glycols such as polyethylene glycol and polypropylene glycol. The SiC powder is first mixed with polyalkylene glycol to form a powder in which the surface of the SiC particles is coated with polyalkylene glycol, and then mixed with the water-soluble resin that functions as the organic binder. By pre-coating the surface of the SiC particles, the SiC particle spacing is made uniform, and the SiC powder surface is made hydrophilic, thereby improving the dispersibility in the organic binder. The addition amount, molecular weight, etc. are determined in consideration of this effect and working temperature.

SiCの表面処理剤として機能する水溶性樹脂の投入量は、有機バインダーとして機能する水溶性樹脂に対する質量比で0.67〜1.5であることが好ましい。質量比0.67より小さい場合は柔軟性が不足し、質量比1.5より大きい場合は成形そのものがしにくくなるためである。さらには、質量比0.9〜1.1で投入すると、変形を抑制した精度の良い成形体を得ることができるので、最も好ましい。   The amount of the water-soluble resin that functions as a surface treatment agent for SiC is preferably 0.67 to 1.5 in terms of mass ratio with respect to the water-soluble resin that functions as an organic binder. This is because the flexibility is insufficient when the mass ratio is less than 0.67, and the molding itself is difficult when the mass ratio is greater than 1.5. Furthermore, it is most preferable to add at a mass ratio of 0.9 to 1.1 because a highly accurate molded body with suppressed deformation can be obtained.

以下、ポリエチレングリコールの場合を例に説明する。ポリエチレングリコールは常温で液体であり、水に溶解して水溶液となる。ポリエチレングリコールの投入量は、有機バインダーとして機能するメチルセルロースに対する質量比で0.67〜1.5であることが好ましい。前記質量比とすることで、成形後の乾燥工程において、50℃以上でゲル化して水溶性を失ったメチルセルロースに代わって上記ポリエチレングリコール水溶液が成形体を覆い、柔軟性を付与し、乾燥中の割れや変形を抑制する効果があると考えられる。質量比0.67より小さい場合は柔軟性が不足し、質量比1.5を超えると水の取り合いになりメチルセルロース水溶液が不足するようになるため、成形しにくくなる。さらには、質量比0.9〜1.1で投入すると、変形を抑制した精度の良い成形体を得ることができるので、最も好ましい。なお、この他のSiC粒子の表面処理剤として機能するポリアルキレングリコールの場合にも、同様に作業温度や有機バインダーへの分散性を考慮して、組成を決定すればよい。   Hereinafter, the case of polyethylene glycol will be described as an example. Polyethylene glycol is a liquid at room temperature and dissolves in water to form an aqueous solution. The input amount of polyethylene glycol is preferably 0.67 to 1.5 in terms of mass ratio with respect to methylcellulose functioning as an organic binder. By setting the mass ratio, in the drying step after molding, the polyethylene glycol aqueous solution covers the molded body in place of methylcellulose that has gelled at 50 ° C. or higher and lost water solubility, imparts flexibility, and is being dried. It is considered that there is an effect of suppressing cracking and deformation. When the mass ratio is smaller than 0.67, the flexibility is insufficient, and when the mass ratio exceeds 1.5, water becomes in contact with each other and the aqueous methylcellulose solution becomes insufficient. Furthermore, it is most preferable to add at a mass ratio of 0.9 to 1.1 because a highly accurate molded body with suppressed deformation can be obtained. In the case of polyalkylene glycol that functions as a surface treating agent for other SiC particles, the composition may be determined in consideration of the working temperature and dispersibility in an organic binder.

5〜20℃の混練温度において成形可能な混練物を得るには、ポリエチレングリコールの分子量は205〜595であることが好ましい。さらに、ポリエチレングリコールの分子量は250〜550であることがより好ましい。分子量200以下のポリエチレングリコールとメチルセルロースとを、前記質量比で、5〜20℃の温度で混練すると、メチルセルロースとポリエチレングリコールとで水分の取り合いを起こし、成形工程以前の混練物として安定的に得るのが難しい。また、分子量600以上の分子量のポリエチレングリコールとメチルセルロースとを、前記質量比で、5〜20℃の温度で混練すると、ポリエチレングリコールは水溶性を発現することが難しく、均一に分散しにくくなるため、これを成形することが著しく困難となる。従って、ポリエチレングリコールの分子量を250〜550とすることで、5〜20℃の温度で混練しても水溶性で均一に分散して安定な混練物を作製でき、かつ成形温度5〜20℃にて成形して所定の押出成形体を得ることができる。   In order to obtain a kneaded product that can be molded at a kneading temperature of 5 to 20 ° C., the molecular weight of polyethylene glycol is preferably 205 to 595. Furthermore, the molecular weight of polyethylene glycol is more preferably 250 to 550. When polyethylene glycol having a molecular weight of 200 or less and methylcellulose are kneaded at a temperature of 5 to 20 ° C. in the above-mentioned mass ratio, moisture is brought into contact with methylcellulose and polyethylene glycol, which can be stably obtained as a kneaded product before the molding step. Is difficult. In addition, when polyethylene glycol having a molecular weight of 600 or more and methylcellulose are kneaded at a mass ratio of 5 to 20 ° C., polyethylene glycol is difficult to express water solubility and is difficult to disperse uniformly. It becomes extremely difficult to mold this. Therefore, by setting the molecular weight of polyethylene glycol to 250 to 550, even when kneaded at a temperature of 5 to 20 ° C., a water-soluble and uniformly dispersed kneaded product can be produced, and the molding temperature is set to 5 to 20 ° C. To obtain a predetermined extruded product.

この他の材料として、押出成形機での摩耗低減の観点から、潤滑剤を含んでもよい。潤滑剤は水溶性でなくてもよいが、少なくとも水に対する分散性が良好であることが好ましい。   As other materials, a lubricant may be included from the viewpoint of reducing wear in an extruder. Although the lubricant may not be water-soluble, it is preferable that at least the dispersibility in water is good.

以上の材料を混練機でよく混練する。   The above materials are kneaded well with a kneader.

<成形工程>
押出成形機に、所定の押出金型を取り付けて、上記の混練物を投入して押出成形を行い、所望のサイズと形状を備える成形体を得る。成形温度はたとえば5〜20℃である。
<Molding process>
A predetermined extrusion die is attached to the extrusion molding machine, and the kneaded material is put into the extrusion molding to perform extrusion molding to obtain a molded body having a desired size and shape. The molding temperature is, for example, 5 to 20 ° C.

<乾燥工程>
成形体を樹脂製ラップによって露出のないように包み、たとえば50℃で3時間乾燥炉にいれ、その後ラップを外して同じ温度で乾燥させる。最初にラップをかけるのは、表面からの乾燥を防ぎながら成形体全体をメチルセルロースのゲル化温度以上にすることにより均質な組織を得て、割れや変形などの不具合をなくすためである。このように、乾燥条件としては、成形体全体をできるだけ均一にある程度の湿度を保ちながら乾燥する方法であればよい。この観点から、最初は高湿度低温とし、時間の経過とともに低湿度高温としていく方法もある。
<Drying process>
The molded body is wrapped with resin wrap so as not to be exposed, placed in a drying oven at 50 ° C. for 3 hours, for example, and then the wrap is removed and dried at the same temperature. The reason why the wrap is applied first is to obtain a homogeneous structure by preventing the drying from the surface while making the entire molded body at or above the gelation temperature of methylcellulose, thereby eliminating defects such as cracking and deformation. As described above, the drying condition may be a method in which the entire molded body is dried while maintaining a certain degree of humidity as much as possible. From this point of view, there is also a method in which the high humidity and low temperature are initially set, and the low humidity and high temperature are increased with time.

<脱脂工程>
乾燥後の成形体を不活性ガス雰囲気中で350〜450℃の温度で熱処理する。後述の通り、脱脂の条件が脱脂後の純度と脱脂工程後の成形体(以下、脱脂体ともいう)の強度に影響することを見いだした。
<Degreasing process>
The molded body after drying is heat-treated at a temperature of 350 to 450 ° C. in an inert gas atmosphere. As will be described later, it has been found that the degreasing conditions affect the purity after degreasing and the strength of the molded body after the degreasing step (hereinafter also referred to as degreased body).

まず、効果的な酸洗浄の前提条件として、酸洗浄工程の前に脱脂を実施することが好ましい。このようにすることで、乾燥工程後の段階では不純物であるFeなどの無機物の周囲を取り囲んでいる有機物を先に除去して、後の酸での洗浄が有効に働くようにする。このようにして、無機物、主としてFe濃度を下げることができる。   First, as a precondition for effective acid cleaning, degreasing is preferably performed before the acid cleaning step. In this way, in the stage after the drying process, the organic matter surrounding the periphery of the inorganic substance such as Fe, which is an impurity, is first removed, and the subsequent cleaning with acid works effectively. In this way, the inorganic substance, mainly the Fe concentration, can be lowered.

脱脂の雰囲気については、不活性ガスが好ましい。不活性ガスとは窒素やアルゴンが例示される。最も簡便には、大気雰囲気下で脱脂することが脱脂設備上は好ましいと考えられる。しかし、大気脱脂では脱脂体の強度が低く、酸に浸漬したときに、溶解反応により粒子間の結合力が失われ、崩壊する可能性がある。酸素濃度は5%以下が好ましく、2%以下がより好ましい。また、脱脂を真空中で実施すると、大気中に比べて成形体の強度が向上する。しかしながら、次の酸洗浄工程において、液体中でサンプルを動かしたり、水中から引き揚げたりするときにサンプルに力がかかり、破損することがある。このように、真空中の脱脂では、取り扱いを注意深く行えば酸洗浄をすることは可能であるが、工業的に生産することは難しい。   An inert gas is preferred for the degreasing atmosphere. Examples of the inert gas include nitrogen and argon. Most simply, degreasing in an air atmosphere is considered preferable in terms of degreasing equipment. However, in the case of atmospheric degreasing, the strength of the degreased body is low, and when immersed in an acid, the bonding force between the particles is lost due to the dissolution reaction, and there is a possibility that it will collapse. The oxygen concentration is preferably 5% or less, and more preferably 2% or less. Moreover, when degreasing is performed in a vacuum, the strength of the molded body is improved as compared with that in the air. However, in the next acid washing step, when the sample is moved in the liquid or pulled out of the water, the sample is subjected to force and may be damaged. Thus, in degreasing in vacuum, acid cleaning is possible if handled carefully, but it is difficult to produce industrially.

発明者らの知見では、次の酸洗浄工程終了後において曲げ強度が1MPa以上あることが重要であり、真空中での脱脂ではこの条件を満たさない。ここで、曲げ強度とは、島津製作所製万能試験装置AGS−Jによる3点曲げ試験によるものである。   According to the knowledge of the inventors, it is important that the bending strength is 1 MPa or more after the completion of the next acid cleaning step, and degreasing in vacuum does not satisfy this condition. Here, the bending strength is based on a three-point bending test using a universal testing apparatus AGS-J manufactured by Shimadzu Corporation.

これに対して不活性ガス中、特に窒素中で脱脂すると、脱脂体の強度を1MPa以上にすることができる。洗浄品の分析によって、窒素中の脱脂により脱脂体中に炭素分が残留し、これがバインダーの役目を果たすことにより強度が発現することを見いだした。なお、アルゴンガス中でも同様の効果が得られる。脱脂後の炭素の含有量は少なくとも1wt%以上であることが好ましい。以上のように、脱脂雰囲気は不活性ガスが好ましく、安価で容易に入手可能な窒素が最も好ましい。   On the other hand, when degreasing in an inert gas, particularly in nitrogen, the strength of the degreased body can be increased to 1 MPa or more. Through analysis of the washed product, it was found that carbon remains in the defatted body due to degreasing in nitrogen, and that this exerts the role of a binder, thereby developing strength. The same effect can be obtained even in argon gas. The carbon content after degreasing is preferably at least 1 wt%. As described above, the degreasing atmosphere is preferably an inert gas, most preferably nitrogen that is inexpensive and easily available.

脱脂の温度条件としては、350〜450℃が好ましい。450℃よりも温度を高くすると、成形工程で付着した不純物である金属元素が、SiCの表層のSiO2の膜を通過してSiCの粒子の内部に拡散してしまい、もはや酸洗浄では溶解除去することが困難になる。焼成体のFe濃度は、5ppm以下であることが好ましい。そのためにはさらに、その直前の酸洗浄工程後の成形体(以下、洗浄体ともいう)のFe濃度が20ppm以下であることが好ましい。450℃より高温での脱脂では、酸洗浄工程を経ても成形体中のFe濃度が十分に下がらず、半導体製造プロセス用として好ましくない。 As temperature conditions for degreasing, 350 to 450 ° C. is preferable. If the temperature is higher than 450 ° C., the metal element, which is an impurity attached in the molding process, passes through the SiO 2 film on the surface of the SiC and diffuses into the SiC particles. It becomes difficult to do. The Fe concentration in the fired body is preferably 5 ppm or less. For that purpose, it is further preferable that the Fe concentration of the molded body (hereinafter also referred to as a cleaning body) after the immediately preceding acid cleaning step is 20 ppm or less. Degreasing at a temperature higher than 450 ° C. is not preferable for a semiconductor manufacturing process because the Fe concentration in the molded body does not sufficiently decrease even after an acid cleaning step.

熱処理温度を下げると、金属元素の拡散はしにくくなり、洗浄しやすくなるが、350℃より低温では、脱脂体の強度が不足し、酸洗浄工程において崩壊する。実際の炉の温度分布を考慮すると400〜450℃が確実な脱脂を行う上でより好ましい。   When the heat treatment temperature is lowered, it becomes difficult for the metal element to diffuse and easy to clean, but at a temperature lower than 350 ° C., the strength of the degreased body is insufficient and the acid cleaning process collapses. In consideration of the actual furnace temperature distribution, 400 to 450 ° C. is more preferable for reliable degreasing.

熱処理時間については適宜調整しうるが、たとえば2〜5時間程度である。   The heat treatment time can be adjusted as appropriate, and is, for example, about 2 to 5 hours.

<酸洗浄工程>
脱脂体を酸で洗浄する。脱脂体には混練機、成形機の金属部品の磨耗により金属の不純物が混入する。混練機、成形機に使用される金属の種類により混入する元素が変わるが、主にFeやNi、Crなどである。これらの金属を除去するために、脱脂体を、塩酸:硝酸:水=1:1:2の濃度で作成した混合酸(以後、混合酸という)に浸漬することが好ましい。混合酸の温度は、50〜100℃が好ましい。酸洗浄効果がより効果的に発揮されるためである。混合酸の他に、常温の弗硝酸(HNO:HF:HO=1:1:10)によっても同等の効果をもたらす。また、除去すべき金属がFeに限られる場合は、50〜100℃の塩酸だけでも洗浄可能である。いずれの酸の場合にも、浸漬時間については、成形体の汚染状態や成形体の形状などにより調整すればよい。
<Acid cleaning process>
Wash the defatted body with acid. Metal impurities are mixed into the degreased body due to wear of the metal parts of the kneader and molding machine. The elements to be mixed vary depending on the type of metal used in the kneader and molding machine, but mainly Fe, Ni, Cr and the like. In order to remove these metals, the degreased body is preferably immersed in a mixed acid (hereinafter referred to as mixed acid) prepared at a concentration of hydrochloric acid: nitric acid: water = 1: 1: 2. The temperature of the mixed acid is preferably 50 to 100 ° C. This is because the acid cleaning effect is more effectively exhibited. In addition to the mixed acid, normal temperature hydrofluoric acid (HNO 3 : HF: H 2 O = 1: 1: 10) also provides the same effect. Further, when the metal to be removed is limited to Fe, it can be cleaned only with hydrochloric acid at 50 to 100 ° C. In any case, the immersion time may be adjusted depending on the contamination state of the molded body, the shape of the molded body, and the like.

<焼成工程以降>
酸洗浄後の成形体、すなわち洗浄体を乾燥後、雰囲気焼成炉に入れ、真空中で焼成して焼成体を得る。
<After firing step>
The molded product after acid cleaning, that is, the cleaned product is dried, placed in an atmosphere firing furnace, and fired in vacuum to obtain a fired product.

続いて別の雰囲気炉に入れ、高純度のSi金属を焼成体と近接させ、Si含浸処理を行い、Si含浸SiCを得ることができる。これをさらに機械加工し、CVD工程を経ることによって、半導体製造プロセスに好適なきわめて高純度のSiC製処理冶具とすることができる。   Then, it puts into another atmospheric furnace, Si metal of high purity is made to adjoin with a calcination object, Si impregnation processing can be performed, and Si impregnation SiC can be obtained. By further machining this and passing through a CVD process, it can be set as the extremely high purity SiC processing jig suitable for a semiconductor manufacturing process.

<実施例1>
まず重量比で混練材料の総量の68wt%に相当する平均粒子径2.3μmのSiC粒子と、混練材料の総量の5.2wt%に相当するポリエチレングリコール(分子量400、日油株式会社製)をエタノール溶液中で超音波照射しながら分散撹拌した。続いてエバポレータでエタノールを蒸発させ、ポリエチレングリコールによってコーティングされたSiC粒子を得た。続いてそのSiC粒子に混練材料の総量の同じく5.2wt%(ポリエチレングリコールのメチルセルロースに対する質量比は1.0)に相当するメチルセルロース(型番SM−8000、商品名メトローズ、信越化学工業株式会社製)を20wt%水溶液になるように水で希釈した溶液と、潤滑剤としてユニルーブ(商品名50MB26、日油株式会社製)とオレイン酸(一級、純正化学社製)をそれぞれ混練材料の総量の0.7wt%、0.1wt%に相当する量を加え、10℃に温度制御された混練機により均一になるまで良く混練した。なお原料のSiCから分析用サンプル5gを採取した(サンプル1)。
<Example 1>
First, SiC particles having an average particle size of 2.3 μm corresponding to 68 wt% of the total amount of the kneaded material by weight ratio and polyethylene glycol (molecular weight 400, manufactured by NOF Corporation) corresponding to 5.2 wt% of the total amount of the kneaded material. The mixture was dispersed and stirred while being irradiated with ultrasonic waves in an ethanol solution. Subsequently, ethanol was evaporated by an evaporator to obtain SiC particles coated with polyethylene glycol. Subsequently, methyl cellulose equivalent to 5.2 wt% of the total amount of the kneaded material in the SiC particles (mass ratio of polyethylene glycol to methyl cellulose is 1.0) (model number SM-8000, trade name Metrolose, manufactured by Shin-Etsu Chemical Co., Ltd.) Of the total amount of the kneaded materials, each of which is obtained by diluting a 20 wt% aqueous solution with water, unilube (trade name 50MB26, manufactured by NOF Corporation) and oleic acid (first grade, manufactured by Junsei Co., Ltd.) as lubricants. The amounts corresponding to 7 wt% and 0.1 wt% were added and kneaded well with a kneader controlled to a temperature of 10 ° C. until uniform. An analytical sample 5 g was collected from the raw material SiC (sample 1).

次に10℃で温度制御された押出成形機に所定の押出金型を取り付けて、混練物を投入して押出成形を行った。これにより、厚み5mm(ミリメートル)×幅50mm×300mmの成形体を得た。   Next, a predetermined extrusion die was attached to an extrusion molding machine whose temperature was controlled at 10 ° C., and the kneaded material was charged to perform extrusion molding. As a result, a molded body having a thickness of 5 mm (millimeters) × width of 50 mm × 300 mm was obtained.

すぐに成形体にラップをかけ、50℃で3時間乾燥炉にいれ、その後ラップを外して同じ温度で165時間乾燥させた。   The molded body was immediately wrapped and placed in a drying oven at 50 ° C. for 3 hours, and then the wrap was removed and dried at the same temperature for 165 hours.

続いて、成形体中の有機物を除去するために、窒素(流量5L/min)を炉内に流しながら425℃で3時間熱処理することによって、脱脂を行った。この脱脂体から分析用サンプルとして5g採取した(サンプル2)。続いて得られた脱脂体を、混合酸を温度80℃に加熱して、その中に6時間浸漬した。その後、サンプルを取り出した後に、純水中に30分間浸漬する作業を3回繰り返した。この洗浄体から分析用サンプルとして5g採取した(サンプル3)。   Subsequently, degreasing was performed by heat treatment at 425 ° C. for 3 hours while flowing nitrogen (flow rate 5 L / min) into the furnace in order to remove organic substances in the molded body. From this degreased body, 5 g was collected as a sample for analysis (sample 2). Subsequently, the resulting defatted body was immersed in the mixed acid for 6 hours by heating the mixed acid to a temperature of 80 ° C. Then, after taking out a sample, the operation | work immersed in pure water for 30 minutes was repeated 3 times. From this washed body, 5 g was collected as a sample for analysis (sample 3).

この洗浄体を乾燥後、雰囲気焼成炉に入れ、1700℃の真空中で焼成し、焼成体を得た。再び分析用のサンプルを約5g採取した(サンプル4)。   The washed body was dried, placed in an atmosphere firing furnace, and fired in a vacuum at 1700 ° C. to obtain a fired body. Again, about 5 g of a sample for analysis was collected (Sample 4).

続いて別の雰囲気炉に入れ、高純度のSi金属を焼成体と近接させSi含浸処理を行い、Si含浸SiC体を得た。   Then, it put into another atmospheric furnace, Si impregnation process was performed by making high purity Si metal adjoin to a calcination object, and Si impregnation SiC object was obtained.

この操作で得られたサンプル1、サンプル2、サンプル3、サンプル4を、あらかじめ検量線を作成してある蛍光X線装置により、不純物である鉄(Fe)の分析を行った。その結果を表1に示す。この結果の通り、洗浄後のFe濃度は20ppm以下であり、かつ焼成後のFe濃度として重要である、Fe濃度5ppm以下となった。   Sample 1, Sample 2, Sample 3, and Sample 4 obtained by this operation were analyzed for iron (Fe) as an impurity using a fluorescent X-ray apparatus in which a calibration curve had been prepared in advance. The results are shown in Table 1. As a result, the Fe concentration after washing was 20 ppm or less, and the Fe concentration was 5 ppm or less, which is important as the Fe concentration after firing.

また、洗浄体から、幅11〜12mm、厚み8〜9mm、長さ50mmの試験片を5本切り出し、島津製作所製万能試験装置AGS−Jを用い、ヘッドスピード0.1mm/min、スパン40mmの条件で3点曲げ試験を行った。この結果、曲げ強度は平均で1.9MPaを示した。これは、洗浄後に必要な曲げ強度1MPa以上を満たしている。   In addition, five test pieces having a width of 11 to 12 mm, a thickness of 8 to 9 mm, and a length of 50 mm were cut out from the cleaned body, and a head speed of 0.1 mm / min and a span of 40 mm were used using a universal testing apparatus AGS-J manufactured by Shimadzu Corporation. A three-point bending test was performed under the conditions. As a result, the bending strength showed an average of 1.9 MPa. This satisfies the bending strength of 1 MPa or more required after washing.

Figure 2012126604
Figure 2012126604

<実施例2>
450℃で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄品の曲げ強度は2.0MPa、Fe濃度は4ppmだった。
<Example 2>
A washed body was obtained in the same manner as in Example 1 except that degreasing was performed at 450 ° C. The bending strength of the cleaned product was 2.0 MPa, and the Fe concentration was 4 ppm.

<実施例3>
400℃で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄品の曲げ強度は1.6MPaだった。
<Example 3>
A washed body was obtained in the same manner as in Example 1 except that degreasing was performed at 400 ° C. The bending strength of the washed product was 1.6 MPa.

<実施例4>
375℃で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄品の曲げ強度は1.6MPaだった。
<Example 4>
A washed product was obtained in the same manner as in Example 1 except that the degreasing was performed at 375 ° C. The bending strength of the washed product was 1.6 MPa.

<実施例5>
350℃で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄品の曲げ強度は1.6MPa、洗浄後のFe濃度は9ppmであった。この洗浄品を乾燥後、雰囲気焼成炉に入れ、1700℃の真空中で焼成し、焼成体を得た。焼成体のFe濃度は2ppmで、焼成後のFe濃度として必要である、Fe濃度5ppm以下となった。
<Example 5>
A washed product was obtained in the same manner as in Example 1 except that degreasing was performed at 350 ° C. The bending strength of the cleaned product was 1.6 MPa, and the Fe concentration after cleaning was 9 ppm. The washed product was dried, placed in an atmosphere firing furnace, and fired in a vacuum at 1700 ° C. to obtain a fired body. The Fe concentration of the fired body was 2 ppm, and the Fe concentration required as the Fe concentration after firing was 5 ppm or less.

<実施例6>
425℃で脱脂し、常温の弗硝酸で洗浄する点以外は、実施例1と同様にして、洗浄体を得た。洗浄品の曲げ強度は2.0MPa、Fe濃度は10ppmであった。この洗浄品を乾燥後、雰囲気焼成炉に入れ、1700℃の真空中で焼成し、焼成体を得た。焼成体のFe濃度は3ppmで、焼成後のFe濃度として必要である、Fe濃度5ppm以下となった。
<Example 6>
A cleaning body was obtained in the same manner as in Example 1 except that it was degreased at 425 ° C. and washed with hydrofluoric acid at room temperature. The washed product had a bending strength of 2.0 MPa and an Fe concentration of 10 ppm. The washed product was dried, placed in an atmosphere firing furnace, and fired in a vacuum at 1700 ° C. to obtain a fired body. The Fe concentration of the fired body was 3 ppm, and the Fe concentration required as the Fe concentration after firing was 5 ppm or less.

<比較例1>
実施例1と同じ方法で混練、成形、乾燥した成形体を、325℃の窒素雰囲気中で脱脂し、混合酸で洗浄した。混合酸で洗浄後、容器から取り出す際に成形体が破損した。
<Comparative Example 1>
A molded body kneaded, molded and dried in the same manner as in Example 1 was degreased in a nitrogen atmosphere at 325 ° C. and washed with a mixed acid. After being washed with the mixed acid, the molded body was damaged when taken out from the container.

<比較例2>
500℃で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄後のFe濃度は40ppmであった。この洗浄品を乾燥後、雰囲気焼成炉に入れ、1700℃の真空中で焼成し、焼成体を得た。焼成体のFe濃度は10ppmで、焼成後のFe濃度として必要である、5ppm以下にならなかった。
<Comparative example 2>
A washed product was obtained in the same manner as in Example 1 except that degreasing was performed at 500 ° C. The Fe concentration after washing was 40 ppm. The washed product was dried, placed in an atmosphere firing furnace, and fired in a vacuum at 1700 ° C. to obtain a fired body. The Fe concentration of the fired body was 10 ppm, and did not become 5 ppm or less, which is necessary as the Fe concentration after firing.

<比較例3>
実施例1と同じ方法で混練、成形、乾燥した成形体を、450℃の大気中で脱脂し、混合酸で洗浄した。脱脂体は酸の溶液中で複数に割れた。
<Comparative Example 3>
A molded body kneaded, molded and dried in the same manner as in Example 1 was degreased in the atmosphere at 450 ° C. and washed with a mixed acid. The degreased body was cracked in the acid solution.

<比較例4>
450℃の真空中で脱脂する点以外は、実施例1と同様にして、洗浄体を得た。洗浄後のFe濃度は10ppmであった。洗浄体の曲げ強度は0.5MPaで、洗浄後に必要な曲げ強度1MPaに満たなかった。
<Comparative example 4>
A washed body was obtained in the same manner as in Example 1 except that the degreasing was performed in a vacuum of 450 ° C. The Fe concentration after washing was 10 ppm. The bending strength of the cleaned body was 0.5 MPa, which was less than the required bending strength of 1 MPa after cleaning.

以上の結果を表2にまとめた。なお、保形性は、強度に起因した特性であり、製造工程中で破損する場合(取扱上の事故やミスを除く)に×としたものである。   The above results are summarized in Table 2. In addition, shape retention property is a property resulting from strength, and it is marked as “X” when it is damaged during the manufacturing process (excluding accidents and mistakes in handling).

Figure 2012126604
Figure 2012126604

本願の製造プロセス、特に酸洗浄プロセスは、半導体製造の熱処理プロセスに用いられるSiC製処理治具を、押出成形法で低コスト、かつ環境負荷が少ない方法で製造するのに適する。   The manufacturing process of the present application, particularly the acid cleaning process, is suitable for manufacturing a SiC processing jig used in a heat treatment process of semiconductor manufacturing by an extrusion method at a low cost and with a low environmental load.

Claims (8)

SiCの粉体と、水溶性樹脂と、水とを混練して混練物を得る混練工程と、
前記混練物を押出成形して成形体を得る成形工程と、
前記成形体を乾燥する乾燥工程と、
乾燥工程後の前記成形体を不活性ガス雰囲気中で350〜450℃の温度で熱処理する脱脂工程と、
脱脂工程後の前記成形体を酸で洗浄する酸洗浄工程と
を有する半導体製造プロセス用SiC部材の製造方法。
A kneading step of kneading SiC powder, a water-soluble resin, and water to obtain a kneaded product;
A molding step of obtaining a molded body by extruding the kneaded product;
A drying step of drying the molded body;
A degreasing step of heat-treating the molded body after the drying step in an inert gas atmosphere at a temperature of 350 to 450 ° C;
The manufacturing method of the SiC member for semiconductor manufacturing processes which has an acid cleaning process which wash | cleans the said molded object after a degreasing process with an acid.
前記酸は、塩酸と硝酸と水の混合酸、弗硝酸、または塩酸である、請求項1に記載の製造方法。   The production method according to claim 1, wherein the acid is a mixed acid of hydrochloric acid, nitric acid and water, hydrofluoric acid, or hydrochloric acid. SiCの粉体と、水溶性樹脂と、水とを5〜20℃の温度で混練して混練物を得る混練工程と、
前記混練物を5〜20℃の温度で押出成形して成形体を得る成形工程と、
前記成形体を50℃以上の温度で乾燥する乾燥工程と、
乾燥工程後の前記成形体を不活性ガス雰囲気中で350〜450℃の温度で熱処理する脱脂工程と、
脱脂工程後の前記成形体を酸で洗浄する酸洗浄工程と
を有する半導体製造プロセス用SiC部材の製造方法。
A kneading step of obtaining a kneaded product by kneading SiC powder, a water-soluble resin, and water at a temperature of 5 to 20 ° C .;
A molding step of extruding the kneaded material at a temperature of 5 to 20 ° C. to obtain a molded body;
A drying step of drying the molded body at a temperature of 50 ° C. or higher;
A degreasing step of heat-treating the molded body after the drying step in an inert gas atmosphere at a temperature of 350 to 450 ° C;
The manufacturing method of the SiC member for semiconductor manufacturing processes which has an acid cleaning process which wash | cleans the said molded object after a degreasing process with an acid.
前記酸は、50〜100℃の塩酸と硝酸と水の混合酸または50〜100℃の塩酸または常温の弗硝酸である、請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the acid is a mixed acid of hydrochloric acid, nitric acid and water at 50 to 100 ° C, hydrochloric acid at 50 to 100 ° C, or hydrofluoric acid at room temperature. 不活性ガスが窒素である、請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-4 whose inert gas is nitrogen. SiCの粉体の平均粒子径が1〜10μmであり、SiCの粉体の割合は混練材料の総量に対して66〜78wt%含まれる、請求項1〜5のいずれか1項に記載の製造方法。   The average particle diameter of SiC powder is 1-10 micrometers, The ratio of SiC powder is 66-78 wt% with respect to the total amount of a kneading | mixing material, The manufacture of any one of Claims 1-5 Method. 水溶性樹脂として、メチルセルロースと、分子量が250〜550のポリエチレングリコールとを含む、請求項1〜6のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-6 containing methylcellulose and polyethyleneglycol whose molecular weight is 250-550 as water-soluble resin. 水溶性樹脂として、メチルセルロースと、ポリエチレングリコールとを含み、ポリエチレングリコールのメチルセルロースに対する質量比が0.67〜1.5である、請求項1〜7のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-7 containing methylcellulose and polyethyleneglycol as water-soluble resin, and mass ratio with respect to methylcellulose of polyethyleneglycol is 0.67-1.5.
JP2010279471A 2010-12-15 2010-12-15 METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS Pending JP2012126604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279471A JP2012126604A (en) 2010-12-15 2010-12-15 METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279471A JP2012126604A (en) 2010-12-15 2010-12-15 METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS

Publications (1)

Publication Number Publication Date
JP2012126604A true JP2012126604A (en) 2012-07-05

Family

ID=46644076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279471A Pending JP2012126604A (en) 2010-12-15 2010-12-15 METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS

Country Status (1)

Country Link
JP (1) JP2012126604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511918A (en) * 2021-06-30 2021-10-19 武汉工程大学 SiC smoke particle collector and preparation method thereof
JP7467188B2 (en) 2020-03-24 2024-04-15 キオクシア株式会社 CMP method and CMP cleaning agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467188B2 (en) 2020-03-24 2024-04-15 キオクシア株式会社 CMP method and CMP cleaning agent
US11986920B2 (en) 2020-03-24 2024-05-21 Kioxia Corporation Polishing method, polishing agent and cleaning agent for polishing
CN113511918A (en) * 2021-06-30 2021-10-19 武汉工程大学 SiC smoke particle collector and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5562842B2 (en) Method for producing anisotropic bulk material
JP6154194B2 (en) Bonding metal paste
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
Rauchenecker et al. Additive manufacturing of aluminum nitride ceramics with high thermal conductivity via digital light processing
JP2017514780A (en) Honeycomb structure with cement skin composition containing crystalline inorganic fiber material
CN104876624A (en) Silicon carbide honeycomb ceramic pug and pugging method
JP2012126604A (en) METHOD FOR PRODUCING SiC MEMBER FOR SEMICONDUCTOR PRODUCTION PROCESS
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP2018065727A (en) Binder for wet molding
WO2011125244A1 (en) Clay-like composition for forming a sintered object, powder for a clay-like composition for forming a sintered object, method for manufacturing a clay-like composition for forming a sintered object, sintered silver object, and method for manufacturing a sintered silver object
WO2012043595A1 (en) Process for producing welding material, and welding material
JP2007113107A (en) Metal formed body and its production method
KR20170117171A (en) Porous body, porous bonded body, filtration filter for metal melt, firing jig and manufacturing method of porous body
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JP2012223920A (en) Method for drying, heating and straightening thick ceramic extrusion molded body
JP2010052963A (en) METHOD FOR PRODUCING SILICON NITRIDE-BONDED SiC REFRACTORY
JP2012092375A (en) Method for manufacturing silver sintered body and copper oxide-containing clay-like composition
JP2015034325A (en) Crucible for metal vapor deposition
JP2015131309A (en) Core repair agent, core, and core repair method
RU2558876C1 (en) Silicon carbide reinforced with heat-resistant fibres and method of producing from it hermetic thin-wall products
JP5861321B2 (en) Powder for clay-like composition for forming silver-copper alloy sintered body using copper compound, clay-like composition, and method for producing clay-like composition
JP5741827B2 (en) Clay-like composition for forming silver alloy sintered body, powder for clay-like composition for forming silver alloy sintered body, and method for producing silver alloy sintered body
WO2012053640A1 (en) Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, gold sintered body, and method for producing gold sintered body
JP2012076954A (en) Method for producing silicon carbide honeycomb body
JP2784837B2 (en) Degreasing method of ceramic molded body