JP2012126297A - Automobile cooling unit - Google Patents

Automobile cooling unit Download PDF

Info

Publication number
JP2012126297A
JP2012126297A JP2010280767A JP2010280767A JP2012126297A JP 2012126297 A JP2012126297 A JP 2012126297A JP 2010280767 A JP2010280767 A JP 2010280767A JP 2010280767 A JP2010280767 A JP 2010280767A JP 2012126297 A JP2012126297 A JP 2012126297A
Authority
JP
Japan
Prior art keywords
engine
air
vehicle
cooling
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010280767A
Other languages
Japanese (ja)
Inventor
Takuya Nobori
卓也 登里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010280767A priority Critical patent/JP2012126297A/en
Publication of JP2012126297A publication Critical patent/JP2012126297A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an automobile cooling unit, capable of efficiently fluidizing cooling air flowing into an engine room during running, decreasing an air resistance coefficient of the vehicle, and moreover, increasing an engine cooling effect.SOLUTION: Cooling air Fa flows into an inflow ports 19, 21 for cooling air formed on a front wall f of a vehicle 2, wherein a heat exchanger 16 is provided on a rear side of the inflow ports. Then, an automobile cooling unit makes the cooling air Fa, which has passed through the heat exchanger 16, flow downward as a downward cooling air Fd along a front wall 152 of an engine body 151 and then flow into a rear side of an engine room 4. The automobile cooling unit includes a duct 26 having: a front opening end 261 connected to a front lower intake port 24 that is separately formed below the inflow ports 19, 21; and a rear opening end 262 formed to eject a backward flow Fb, toward a position in a space E between the heat exchanger 16 and the engine body and the position below a lower end of the engine body.

Description

本発明は、自動車のエンジンルーム内に装着されるエンジン及びその前方の熱交換器をエンジンルーム内に流入した冷却風で冷却する自動車の冷却装置に関する。   The present invention relates to an engine mounted in an engine room of an automobile and a cooling device for an automobile that cools a heat exchanger in front of the engine with cooling air flowing into the engine room.

自動車の車体においては、突出部、くぼみ部分、等があると、走行時に車体表面で空気が円滑に流れなくなり、空気の渦が発生し、空気抵抗が増大する。このように空気抵抗が増大すると、走行安定性が損なわれ、燃料消費量が増大するので、空気抵抗は、極力少なくすることが望まれる。このため、空気力学的性能を考慮し、なるべく空気抵抗の少ない車体の設計が行われている。   In a vehicle body, if there are protrusions, indentations, etc., air will not flow smoothly on the surface of the vehicle during travel, air vortices will be generated, and air resistance will increase. When the air resistance increases in this way, running stability is impaired and fuel consumption increases. Therefore, it is desirable to reduce the air resistance as much as possible. For this reason, in consideration of aerodynamic performance, a vehicle body with as little air resistance as possible is designed.

例えば、自動車が走行する場合、車体の下側に向かった走行風は、車体前部のエンジンルームの下部にむき出しになっているエンジン本体等とあたって空気の流れが乱れ、エンジンルームの下部の空気抵抗が大きくなる。そこで、車体下部における空気抵抗を低下させるため、一般的には車体下部においてエンジン本体等がむき出しにならないように、エンジンルームの下面を板状のアンダーカバーで覆い、車体下部を平坦化し、空気抵抗係数[CD]を低減する処理が施されている。
ところで、自動車の車体前面には冷却風取入口が設けられ、ここに流入した外気がエンジンルーム内へ冷却風として取り入れられ、これよりエンジンの熱交換器及びその後方のエンジン本体の冷却が行われている。
For example, when a car travels, the traveling wind directed toward the underside of the vehicle body collides with the engine body etc. exposed to the lower part of the engine room at the front part of the vehicle body, and the air flow is disturbed. Increases air resistance. Therefore, in order to reduce the air resistance at the lower part of the vehicle body, in general, the lower surface of the engine room is covered with a plate-like undercover so that the engine body is not exposed at the lower part of the vehicle body, the lower part of the vehicle body is flattened, and the air resistance is reduced. Processing for reducing the coefficient [CD] is performed.
By the way, a cooling air intake is provided in the front of the body of an automobile, and the outside air that has flowed into the vehicle is taken into the engine room as cooling air, thereby cooling the engine heat exchanger and the engine body behind it. ing.

例えば、特許文献1(特開2010−111277号公報)には、走行時において、エンジンとモータの各冷却系の一部をなす上下2つのラジエータへ共に外気を導入する第1の外気導入部と、走行時にエンジン本体へ外気を導入する第2の外気導入部とが設けられ、第1、第2の各外気導入部における外気の導入量をそれぞれに設けたシャッタ板で調整することで、上下2つのラジエータによる冷却水による冷却とエンジン本体の冷却を適正に行なうようにしている。更に、シャッタ板の開閉調整で冷却風が上下2つのラジエータを通過してからエンジン本体の前向き壁等とぶつかり下方及び左右に流動方向を変えた後、エンジンルームの後方に抜けていく過程での流量を調整し、エンジンルーム内での冷却風を調整している。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-111277) discloses a first outside air introduction unit that introduces outside air to both the upper and lower radiators that form part of each cooling system of the engine and the motor during traveling. And a second outside air introduction section for introducing outside air into the engine body during traveling, and by adjusting the amount of outside air introduced in each of the first and second outside air introduction sections with a shutter plate provided respectively, Cooling with cooling water by two radiators and cooling of the engine body are appropriately performed. Furthermore, after the cooling air passes through the upper and lower radiators by adjusting the opening and closing of the shutter plate, it collides with the forward wall of the engine body and changes the flow direction downward and to the left and right, and then escapes to the rear of the engine room. The flow rate is adjusted and the cooling air in the engine room is adjusted.

一方、エンジンルームの下部の流動抵抗を低減するためエンジンルームの下面をアンダーカバーで覆った場合、冷却風がエンジンルーム内を流動した上で、エンジンルーム後方へ排出される際にこのアンダーカバーが流動抵抗を増さないように考慮する必要がある。そこで、アンダーカバーの取り付けでは、エンジンルーム41の下面全体を覆うことを避け、例えば、特許文献2(特許4076099号公報)に開示されるアンダーカバーのように、車両の前壁下端に前端縁が結合され後端縁をエンジン本体の前端部の直下近傍まで延出形成し、その後方は開放してエンジンルーム下方後方への冷却風の排出を容易化している。なお、ここには、冷却ファンの後方の空気が前方の負圧側に再度回り込む流れを抑制する構造が示されている。   On the other hand, when the lower surface of the engine room is covered with an under cover in order to reduce the flow resistance in the lower part of the engine room, the under cover is not removed when cooling air flows through the engine room and is discharged to the rear of the engine room. It is necessary to consider not to increase the flow resistance. Therefore, in attaching the under cover, avoid covering the entire lower surface of the engine room 41. For example, as in the under cover disclosed in Patent Document 2 (Japanese Patent No. 4076099), the front edge of the front wall of the vehicle has a front edge. Combined, the rear edge extends to the vicinity of a position immediately below the front end of the engine body, and the rear thereof is opened to facilitate the discharge of cooling air to the lower rear of the engine room. Here, a structure is shown in which the air behind the cooling fan is restrained from flowing again to the front negative pressure side.

特開2010−111277号公報JP 2010-111277 A 特許4076099号公報Japanese Patent No. 4076099

ところで、自動車の車体前面の冷却風取入口よりエンジンルーム内へ流入した冷却風はエンジン本体の前向き壁とぶつかり、更にエンジンの下方及び左右に流動方向を変えた後、エンジンルームの後方に抜けていく。その際、下向きの冷却風が車体の前面下部の冷却風取入口から流入してきた冷却風と相互にぶつかり、両気流のぶつかる干渉部分で渦が発生し、流動抵抗が増し、これに起因して冷却風量が低減して、冷却効率が低下する。しかも流動抵抗の増加に起因して、空気抵抗係数が増加し、燃費低下の要因ともなっている。   By the way, the cooling air that has flowed into the engine room through the cooling air intake at the front of the car body collides with the forward facing wall of the engine body, and further changes the flow direction downward and to the left and right of the engine, and then escapes to the rear of the engine room. Go. At that time, the downward cooling air collides with the cooling air flowing in from the cooling air intake at the lower part of the front of the car body, vortex is generated at the interference part where both air currents collide, and the flow resistance increases, resulting in this The cooling air volume is reduced and the cooling efficiency is lowered. Moreover, due to the increase in flow resistance, the air resistance coefficient increases, which causes a reduction in fuel consumption.

更に、エンジン本体の前側下部近傍で、下向きの冷却風と前面下部の冷却風取入口からの冷却風とが相互にぶつかった後で、その合流後の冷却風が更に後方に流動し、アンダーカバーの下面側を流動してきたアンダーカバー下側冷却風と更に衝突し、更なる流動抵抗の増加、空気抵抗係数の増加を招くという問題もある。
なお、引用文献1は走行中に冷却風取入口からの外気の導入量をシャッタ板で調整できるが、エンジンルームに流入した冷却風の流動抵抗を抑制する点や、冷却風をエンジンルームより流動抵抗を増すことなく排出させる機能は開示しない。引用文献2には冷却ファンの負圧側に再度流入する冷却風の流れを抑制するのみでエンジンルーム内での冷却風の流動抵抗を抑制することはできない。
Furthermore, in the vicinity of the lower front side of the engine body, the downward cooling air and the cooling air from the cooling air intake at the lower front face collide with each other, and then the combined cooling air flows further to the rear, There is also a problem that it further collides with the under cover lower side cooling air that has flowed on the lower surface side, resulting in further increase in flow resistance and increase in air resistance coefficient.
In Cited Document 1, the amount of outside air introduced from the cooling air intake can be adjusted by the shutter plate during traveling, but the flow resistance of the cooling air flowing into the engine room is suppressed, and the cooling air flows from the engine room. The function of discharging without increasing the resistance is not disclosed. In the cited document 2, the flow resistance of the cooling air in the engine room cannot be suppressed only by suppressing the flow of the cooling air flowing again into the negative pressure side of the cooling fan.

本発明の主たる目的は、走行中にエンジンルームに流入した冷却風を効率良く流動させて、車両の空気抵抗係数を下げ、しかもエンジン冷却効果を高めることができる自動車の冷却装置を提供することにある。   A main object of the present invention is to provide a cooling device for an automobile that can efficiently flow cooling air that has flowed into an engine room during traveling, lower the air resistance coefficient of the vehicle, and enhance the engine cooling effect. is there.

前記課題を達成するため、請求項1に係る発明は、車両の前壁に形成された冷却風の流入口に流入し該流入口の後方に設けられる熱交換器と、前記熱交換器の後方に設けられるエンジン本体とを備えた自動車の冷却装置において、前記流入口の下方に別途形成された前下取入口に前開口端部が連結され、後開口端部が前記熱交換器とエンジン本体との間であって該エンジン本体の下端より下方となる位置に向けて後向き流を噴出すよう形成されたダクトを具備する、ことを特徴とする。   In order to achieve the above object, an invention according to claim 1 is directed to a heat exchanger that flows into an inlet of cooling air formed on a front wall of a vehicle and is provided behind the inlet, and a rear of the heat exchanger. A cooling device for an automobile provided with an engine body, wherein a front opening end is connected to a front lower intake separately formed below the inlet, and a rear opening end is connected to the heat exchanger and the engine body. And a duct formed to eject a backward flow toward a position below the lower end of the engine body.

請求項2に係る発明は、請求項1記載の自動車の冷却装置において、前記車両の前壁下端に前端縁が結合され前記エンジンルームの前側下部を覆うアンダーカバーを備え、前記アンダーカバーの後端は前記後開口端部より後方に位置するように形成された、ことを特徴とする。   According to a second aspect of the present invention, there is provided a cooling apparatus for an automobile according to the first aspect, further comprising an under cover that is coupled to a lower end of a front wall of the vehicle and covers a front lower portion of the engine room, and a rear end of the under cover. Is formed so as to be located behind the rear opening end.

請求項3に係る発明は、請求項1又は2記載の自動車の冷却装置において、前記ダクトの車幅方向の幅は前記熱交換器の車幅方向の幅と同等に設定される、ことを特徴とする。   The invention according to claim 3 is the automobile cooling device according to claim 1 or 2, wherein the width of the duct in the vehicle width direction is set to be equal to the width of the heat exchanger in the vehicle width direction. And

請求項4に係る発明は、請求項1、2又は3記載の自動車の冷却装置において、前記ダクトは車幅方向に並列配備される複数の分割ダクトとして形成される、ことを特徴とする。   According to a fourth aspect of the present invention, in the automobile cooling apparatus according to the first, second, or third aspect, the duct is formed as a plurality of divided ducts arranged in parallel in the vehicle width direction.

請求項1の発明によれば、冷却風をダクトの後開口端部より後向き流として噴出させることで、噴出された冷却風の流速がその周囲より高く負圧化が生じるので、その後向き流に向けて熱交換器を通過してエンジン本体の前壁に沿って流下する下向きの冷却風が引き込まれて合流することで抵抗低減を図れ、その合流位置通過後の冷却風をエンジンルームの後方にスムーズに流動させることができるので、冷却風流量を増加して熱交換器及びエンジン本体の冷却効率を高められる。しかも、後向き流が下向きの冷却風を引き込み合流する際の流動抵抗が比較的小さくなるので、車両の空気抵抗係数を下げ、燃費低減を図ることができる。   According to the invention of claim 1, by causing the cooling air to be ejected as a backward flow from the rear opening end of the duct, the flow velocity of the ejected cooling air is higher than its surroundings and negative pressure is generated. The downward cooling air that flows down along the front wall of the engine body through the heat exchanger toward the engine body is drawn in and merged to reduce the resistance. Since it can be made to flow smoothly, the cooling air flow rate can be increased to increase the cooling efficiency of the heat exchanger and the engine body. In addition, since the flow resistance when the backward flow draws the cooling air flowing downward and merges is relatively small, the air resistance coefficient of the vehicle can be reduced and fuel consumption can be reduced.

請求項2の発明によれば、ダクトの後開口端部より噴出する後向き流にエンジン本体の前壁に沿って流下した下向きの冷却風が引き込まれて合流した上で、その合流位置通過後の冷却風をアンダーカバーの後端上面に沿って車体後方側に案内し、更に、アンダーカバーの後端上面に沿って流動した冷却風を、アンダーカバーの下面とほぼ平行に車体前後方向後方に向かう気流とアンダーカバーの後端後方で流動抵抗が比較的小さく合流させることができ、この点で車両の空気抵抗係数をより低下させることができる。   According to the second aspect of the present invention, the downward cooling air flowing down along the front wall of the engine body is drawn into and merged with the backward flow ejected from the rear opening end portion of the duct, and after passing through the merge position The cooling air is guided to the rear of the vehicle body along the upper surface of the rear end of the under cover, and the cooling air that has flowed along the upper surface of the rear end of the under cover is directed rearward in the longitudinal direction of the vehicle substantially parallel to the lower surface of the under cover. The flow resistance can be relatively small and merged behind the rear end of the airflow and the undercover, and the air resistance coefficient of the vehicle can be further reduced in this respect.

請求項3の発明によれば、熱交換器通過後の下向きの冷却風とダクトからの後向き流との車幅方向の流動幅をほぼ同等とするので、下向きの冷却風を車幅方向全域でほぼ確実に引き込み合流させるよう機能でき、流動抵抗を車幅方向全域で小さくでき、この点で車両の空気抵抗係数を確実に下げることができる。   According to the invention of claim 3, the flow width in the vehicle width direction of the downward cooling air after passing through the heat exchanger and the backward flow from the duct are made substantially equal. It can function to almost surely draw and join, and the flow resistance can be reduced in the entire vehicle width direction, and the air resistance coefficient of the vehicle can be reliably reduced in this respect.

請求項4の発明によれば、複数の分割ダクトを用いることで、各分割ダクトの剛性が高まり、保形性、耐久性を確保できる。   According to invention of Claim 4, the rigidity of each division | segmentation duct increases by using a some division | segmentation duct, and shape retention property and durability can be ensured.

本発明の第1実施形態の自動車の冷却装置を装備する車両の前部の要部切欠側面図である。It is a principal part notched side view of the front part of the vehicle equipped with the cooling device of the motor vehicle of 1st Embodiment of this invention. 図1の車両の前部の概略切欠平面図である。It is a schematic notch top view of the front part of the vehicle of FIG. 図1の車両の前面の正面図である。It is a front view of the front surface of the vehicle of FIG. 図1の自動車の冷却装置で用いるダクトを示し、(a)は拡大平面図、(b)は拡大正面図である。The duct used with the cooling device of the car of Drawing 1 is shown, (a) is an enlarged plan view and (b) is an enlarged front view. 本発明の他の実施形態で用いるダクトを示し、(a)は拡大平面図、(b)は拡大正面図である。The duct used by other embodiment of this invention is shown, (a) is an enlarged plan view, (b) is an enlarged front view. 図1の車両の前部切欠下面図である。It is a front notch bottom view of the vehicle of FIG. 図1の自動車の冷却装置の空気抵抗係数「CD」の特性を説明する線図である。It is a diagram explaining the characteristic of the air resistance coefficient "CD" of the cooling device of the motor vehicle of FIG.

図1、図2にはこの発明の第1の実施形態としての自動車の冷却装置1を適用した車両2の前部車体を示した。
図1および図2に示された車両2の前部車体は、車両の前面fの後方にエンジンルーム4が形成され、エンジンルーム4の後方にダッシュパネル5を介して車室6が形成される。エンジンルーム4はその上部がフード7で、左右側部が左右フロントフェンダー8(図3参照)で、前面fがフロントマスク9及びバンパ11で覆われる。更に、エンジンルーム4の下部前側はバンパ11の下端に連結されたアンダーカバー3で覆われている。なお、図1、図2に示すように、エンジンルーム4の下部には前後に延びる左右のサイドメンバ12や、フロントエンドクロスメンバ13や、フロントクロスメンバ14が相互に結合されて配備され、これによりエンジンルーム4の剛性が確保されている。
1 and 2 show a front vehicle body of a vehicle 2 to which an automobile cooling device 1 according to a first embodiment of the present invention is applied.
In the front body of the vehicle 2 shown in FIGS. 1 and 2, an engine room 4 is formed behind the front surface f of the vehicle, and a vehicle compartment 6 is formed behind the engine room 4 via a dash panel 5. . The engine room 4 is covered with a hood 7 at the top, left and right sides with left and right front fenders 8 (see FIG. 3), and a front face f with a front mask 9 and a bumper 11. Further, the lower front side of the engine room 4 is covered with an under cover 3 connected to the lower end of the bumper 11. As shown in FIGS. 1 and 2, the left and right side members 12, the front end cross member 13, and the front cross member 14 that extend in the front-rear direction are disposed in the lower portion of the engine room 4. Thus, the rigidity of the engine room 4 is ensured.

なお、バンパ11は、車体の幅方向(図1で紙面垂直方向)に延びる樹脂製のバンパフェーシング111と、車幅方向に延びるリンフォース112とリンフォース112を左右のサイドメンバ12、12先端に連結する不図示のバンパブラケット、等を備えている。   The bumper 11 includes a resin bumper facing 111 extending in the width direction of the vehicle body (perpendicular to the plane of FIG. 1), a reinforcement 112 extending in the vehicle width direction, and a reinforcement 112 at the distal ends of the left and right side members 12 and 12. A bumper bracket (not shown) to be connected is provided.

図1、2に示すように、エンジンルーム4内にはエンジン15や回転力伝達系などの各種走行操作装置が配備され、特に、前面fの直後位置で、エンジン15の前方には不図示の冷却装置に接続されたコンデンサ17とエンジン15の冷却水が循環するラジエータ18とがそれぞれの長手方向を車幅方向Y(図1で紙面垂直方向)に向けた上で、前後に並列配備される。
車両2の前面fの上部に配置されたフロントマスク9には、前向き上流入口19が左右に一対形成され、下部に配置されたバンパ11には、その下側中央部全域に前下流入口21が形成される。なお、前向き上流入口19や前下流入口21の直後には上下に並列状を成して複数の整流用のグリル191、211がそれぞれ配備され、これらにより美観及び通気性を確保している。なお、整流用のグリル191、211は不図示のアクチュエーターにより開閉作動でき、前向き上流入口19や前下流入口21の開閉率を調整可能である。
As shown in FIGS. 1 and 2, various traveling operation devices such as an engine 15 and a rotational force transmission system are provided in the engine room 4, and are not shown in front of the engine 15, particularly immediately after the front surface f. A condenser 17 connected to the cooling device and a radiator 18 through which the cooling water of the engine 15 circulates are arranged in parallel in the front-rear direction with their longitudinal directions directed in the vehicle width direction Y (perpendicular to the plane of FIG. 1). .
A pair of forward-facing upstream inlets 19 are formed on the front mask 9 disposed at the upper part of the front surface f of the vehicle 2 on the left and right sides, and the bumper 11 disposed on the lower side has front downstream inlets 21 in the entire lower central part. It is formed. A plurality of rectifying grills 191 and 211 are arranged in parallel in the vertical direction immediately after the forward upstream inlet 19 and the front downstream inlet 21, respectively, thereby ensuring aesthetics and air permeability. The rectifying grills 191 and 211 can be opened and closed by an actuator (not shown), and the opening and closing rates of the forward upstream inlet 19 and the front downstream inlet 21 can be adjusted.

前向き上流入口19及びその直下の前下流入口21の後方には、熱交換器16であるコンデンサ17とラジエータ18と冷却用ファン23とが配置されている。なお、コンデンサ17とラジエータ18は矩形枠状の支持枠22を介してエンジンルーム4の前部基枠の一部であるフロントエンドクロスメンバ13に支持されており、冷却ファン23はコンデンサ17とラジエータ18の後方で支持枠22に支持されている。さらに、冷却用ファン23の後方には所定幅の空間Eを介してエンジン15がその長手方向を車幅方向Yに向けて配備される。(図2参照)
ここで車両の走行時や冷却ファンの駆動時に走行風Foが前向き上流入口19や前下流入口21に流入し、コンデンサ17とラジエータ18を通過した冷却風Faは空間Eに流入する。更に、この冷却風はエンジン15の本体151の前向き壁152に当接して下方に方向転換し、下向き冷却風Fdとしてエンジン本体151の下端側に流動する。この下向き冷却風Fdによりエンジン本体151等が冷却されることより、下向き冷却風Fdの流量が多いほどエンジンの冷却効率が高くなる。ここでは、この点に着目して、下向き冷却風Fdの流動抵抗をより低減して、その流量を増加させる手段について後述する。
図1、6に示すように、バンパ11の下端は車幅方向Yに連続して湾曲した下端縁111を形成され、そこにアンダーカバー3の車幅方向Y全域の前縁部301が重ねられ、下端縁111より延出する複数の止め板112に前縁部301がそれぞれビス止めされている。
A condenser 17, which is a heat exchanger 16, a radiator 18, and a cooling fan 23 are arranged behind the forward upstream inlet 19 and the front downstream inlet 21 immediately below. The condenser 17 and the radiator 18 are supported by a front end cross member 13 which is a part of the front base frame of the engine room 4 via a rectangular frame-like support frame 22, and the cooling fan 23 is connected to the condenser 17 and the radiator. 18 is supported by the support frame 22 behind. Further, the engine 15 is disposed behind the cooling fan 23 through a space E having a predetermined width with its longitudinal direction directed in the vehicle width direction Y. (See Figure 2)
Here, the traveling wind Fo flows into the forward upstream inlet 19 and the front downstream inlet 21 when the vehicle travels and the cooling fan is driven, and the cooling wind Fa that has passed through the condenser 17 and the radiator 18 flows into the space E. Further, the cooling air abuts on the forward wall 152 of the main body 151 of the engine 15 and changes its direction downward, and flows downward as the cooling air Fd to the lower end side of the engine main body 151. Since the engine body 151 and the like are cooled by the downward cooling air Fd, the cooling efficiency of the engine increases as the flow rate of the downward cooling air Fd increases. Here, focusing on this point, means for further reducing the flow resistance of the downward cooling air Fd and increasing the flow rate will be described later.
As shown in FIGS. 1 and 6, the lower end of the bumper 11 is formed with a lower end edge 111 that is continuously curved in the vehicle width direction Y, and a front edge portion 301 of the under cover 3 in the entire vehicle width direction Y is overlapped therewith. The front edge portion 301 is screwed to a plurality of stop plates 112 extending from the lower end edge 111.

図6に示すように、ここでのアンダーカバー3は鋼板のプレス成形品であり、前後に延びる複数のビードbを形成され保形性を保持する。なお、アンダーカバー3は樹脂成形されても良い。
ここで、アンダーカバー3はエンジンルーム4の下部全域を覆うと共に、下面303がなだらかに湾曲して形成され、これにより、走行風Foをエンジンルームの下方域を経て後方にスムーズに流動させる走行風ガイド板として機能する。更に、アンダーカバー3はその後端縁302がエンジン本体151の下端のオイルパン153の直下中央位置まで延出形成される。なお、後述するように後端縁302はダクト26の後開口端部262より後方に位置するよう延出形成されている。
As shown in FIG. 6, the undercover 3 here is a press-formed product of a steel plate, and a plurality of beads b extending in the front-rear direction are formed to maintain shape retention. The under cover 3 may be resin-molded.
Here, the under cover 3 covers the entire lower part of the engine room 4, and the lower surface 303 is formed to be gently curved, whereby the running wind Fo smoothly flows backward through the lower area of the engine room. Functions as a guide plate. Further, the under cover 3 is formed such that a rear end edge 302 extends to a central position immediately below the oil pan 153 at the lower end of the engine body 151. As will be described later, the rear edge 302 is formed so as to be positioned behind the rear opening end 262 of the duct 26.

図1に示すように、バンパフェーシング111の下部には前下流入口21の下方に位置し、車幅方向Yに横長となるように扁平された前下取入口24が別途形成される。
図3に示すように、この前下取入口24は車幅方向Yの横幅Lyがほぼ、熱交換器であるコンデンサ17とラジエータ18の横幅と同等に形成され、高さh(図4、5参照)が比較的小さく形成される。
図1に示すように、アンダーカバー3と支持枠22との間に走行風Foを前下取入口24で吸入してエンジン本体151の下端前部位置に噴き出すダクト26が配備される。
As shown in FIG. 1, a front lower intake port 24 that is positioned below the front downstream inlet 21 and is flat in the vehicle width direction Y is separately formed below the bumper facing 111.
As shown in FIG. 3, the front lower intake 24 is formed such that the lateral width Ly in the vehicle width direction Y is substantially equal to the lateral width of the condenser 17 and the radiator 18 as heat exchangers, and has a height h (FIGS. 4 and 5). Is formed relatively small.
As shown in FIG. 1, a duct 26 is provided between the under cover 3 and the support frame 22 and sucks the traveling wind Fo through the front lower intake 24 and blows it out to the lower end front position of the engine body 151.

図1に示すように、ダクト26は前下取入口24に前開口端部261(図4参照)が連結され、後開口端部262(図4参照)が、冷却用ファン(熱交換器16)とエンジン本体との間の空間Eの直下であってエンジン本体の下端より前側まで(図1参照)延出形成される。
このダクト26は樹脂成形され、全体は支持枠22に対しブラケット27(図1参照)を介して取り付け支持される。このダクト26は、図4に示すように、横幅Lyの方向に3分割して並列配備された分割ダクト26a、26b、26cとして形成され、これにより成形の容易化、形状剛性の保持、耐久性を確保している。
As shown in FIG. 1, the duct 26 has a front opening end 261 (see FIG. 4) connected to the front lower intake 24, and a rear opening end 262 (see FIG. 4) is connected to a cooling fan (heat exchanger 16). ) And the engine body, and extends from the lower end of the engine body to the front side (see FIG. 1).
The duct 26 is resin-molded, and the whole is attached and supported to the support frame 22 via a bracket 27 (see FIG. 1). As shown in FIG. 4, the duct 26 is formed as divided ducts 26a, 26b, and 26c arranged in parallel by being divided into three in the width Ly direction, thereby facilitating molding, maintaining shape rigidity, and durability. Is secured.

各分割ダクト26a、26b、26cの各後開口端部262は空間Eの直下であってエンジン本体151の下端より下側の位置にまで延出形成される。しかも、各分割ダクト26a、26b、26cの後開口端部262の噴出口26exから後向き流である噴出し風Fbを吹き出した際に、図1に示すように、噴出し風Fbの中心線Lcが後エンジン本体151の下端直下に向うように形成される。なお、図4中の符号gpは整流板を示し、これらにより噴出口26exからの噴出し風Fbの直進性を保持している。このため、噴出口26exからの噴出し風Fbに直進性を付与でき、風速をその周囲の気流より早くでき、噴出し風Fbの流動域の負圧化を促進できる。
なお、このダクト26に代えて、図5に示すように、ダクト26dを一体形成しても良い。
Each rear opening end 262 of each of the divided ducts 26 a, 26 b, and 26 c is formed to extend to a position directly below the space E and below the lower end of the engine main body 151. Moreover, when the blowing air Fb that is a backward flow is blown out from the outlet 26ex of the rear opening end 262 of each of the divided ducts 26a, 26b, and 26c, as shown in FIG. 1, the center line Lc of the blowing air Fb Is formed so as to face directly below the lower end of the rear engine main body 151. In addition, the code | symbol gp in FIG. 4 shows the baffle plate, and the straightness of the blowing wind Fb from the jet nozzle 26ex is hold | maintained by these. For this reason, straightness can be imparted to the blown air Fb from the jet outlet 26ex, the wind speed can be made faster than the surrounding air flow, and negative pressure in the flow region of the blown air Fb can be promoted.
Instead of the duct 26, a duct 26d may be integrally formed as shown in FIG.

この場合のダクト26dは内部に隔壁gp1を複数配備し、これにより噴出し風Fbに直進性を与え、しかも、保形性を確保するようにしている。この場合、構成の簡素化を図れる。
更に、図1に示すように、ダクト26の直下にはアンダーカバー3が配備され、噴出口26exからの噴出し風Fbはエンジン本体151の下端直下とアンダーカバー3の上面の間に向けて後方に流動する。
ここでのアンダーカバー3の後端縁302はエンジン本体151のオイルパン153の直下中央位置まで延出形成されるので、後端縁302の上方を通過した噴出し風Fbは後端縁302の下方を通過した走行風Foと合流部C2で合流し、フロントクロスメンバ14の直下を後方に流出することができる。
In this case, the duct 26d is provided with a plurality of partition walls gp1, thereby giving straightness to the blown air Fb and ensuring shape retention. In this case, the configuration can be simplified.
Further, as shown in FIG. 1, the under cover 3 is provided immediately below the duct 26, and the blown air Fb from the outlet 26 ex is rearwardly between the position immediately below the lower end of the engine body 151 and the upper surface of the under cover 3. To flow.
Here, the rear end edge 302 of the under cover 3 is formed to extend to a central position immediately below the oil pan 153 of the engine body 151, so that the blown air Fb that has passed above the rear end edge 302 is generated at the rear end edge 302. The traveling wind Fo that has passed below can be merged at the merging portion C <b> 2, and can flow out directly behind the front cross member 14.

次に、図1の自動車の冷却装置1の作用について説明する。車両2が前進すると、フロントマスク9及びバンパ11の一部に形成された前向き上流入口19や前下流入口21に走行風Foが流入し、熱交換器16を冷却風Faとして通過し、空間Eに流入し、これにより、コンデンサ17とラジエータ18の放熱を促進して冷却効率を高く保持して冷却処理する。
更に、冷却風Faはエンジン15の本体151の前向き壁152に当接して下方に方向転換し、下向き冷却風Fdとしてエンジン本体151の下端側に流動することで、エンジン本体151等を効率よく冷却する。
一方、バンパフェーシング111の前下取入口24よりダクト26に流入した走行風Foがその中心線Lc方向であるエンジン本体151の下端直下とアンダーカバー3の上面の間を後方に流動する。
Next, the operation of the automobile cooling device 1 of FIG. 1 will be described. When the vehicle 2 moves forward, the traveling wind Fo flows into the front upstream inlet 19 and the front downstream inlet 21 formed in a part of the front mask 9 and the bumper 11, passes through the heat exchanger 16 as the cooling wind Fa, and the space E As a result, the heat dissipation of the capacitor 17 and the radiator 18 is promoted to keep the cooling efficiency high and the cooling process is performed.
Further, the cooling air Fa contacts the forward wall 152 of the main body 151 of the engine 15 and changes its direction downward, and flows downward as the cooling air Fd to the lower end side of the engine main body 151, thereby efficiently cooling the engine main body 151 and the like. To do.
On the other hand, the traveling wind Fo that has flowed into the duct 26 from the front lower intake 24 of the bumper facing 111 flows backward between the bottom of the engine body 151 and the upper surface of the under cover 3 in the direction of the center line Lc.

ダクト26の噴出口26exからの噴出し風Fbは直進性を有し、その風速がその周囲の気流より早く、その噴出し風Fbの流動域が負圧化する。このため、エンジン本体151の前向き壁152に沿い下方に方向転換してくる下向き冷却風Fdが噴出口26exからの噴出し風Fbとほぼ直行する方向で衝突する。
この際、負圧化した噴出し風Fbに下向き冷却風Fdが引き込まれて合流することができ、この噴出し風Fbと下向き冷却風Fdの合流部C1での流動抵抗を大幅に低減できる。このように、冷却風流量を増加して熱交換器16及びエンジン本体151の冷却効率を高めるのに寄与できる。
The jet wind Fb from the jet outlet 26ex of the duct 26 has a straight traveling property, the wind speed thereof is faster than the surrounding air flow, and the flow area of the jet wind Fb becomes negative pressure. For this reason, the downward cooling air Fd turning downward along the forward wall 152 of the engine main body 151 collides with the blowout air Fb from the jet outlet 26ex in a direction almost orthogonal.
At this time, the downward cooling air Fd can be drawn into and merged with the blown-down air Fb having a negative pressure, and the flow resistance at the confluence portion C1 of the blowing air Fb and the downward cooling air Fd can be greatly reduced. In this way, it is possible to increase the cooling air flow rate and contribute to improving the cooling efficiency of the heat exchanger 16 and the engine main body 151.

更に、合流部C1を通過した噴出し風Fbはアンダーカバー3の上面に沿い後方に流動する。ここでアンダーカバー3の後端縁302がエンジン本体151のオイルパン153の直下中央位置まで延出形成されているので、即ち、ダクト26の後開口端部262より後方に位置するよう延出形成されるので、後端縁302の上方を通過した噴出し風Fbは後端縁302の下方を通過した走行風Foと互いに合流部C2で合流する。
この際、アンダーカバー3の下側の走行風Foに対してアンダーカバー3の上側の噴出し風Fbはその流速が低いことより、上側の噴出し風Fbより下側の走行風Foの負圧化が進んでいる。このため、上側の噴出し風Fbが下側の走行風Foに引き寄せられ、合流するが、両流動方向がほぼ同一なので、合流部C2ではスムーズに合流でき衝突時の流動抵抗は低い。
Further, the blown air Fb that has passed through the merging portion C <b> 1 flows rearward along the upper surface of the under cover 3. Here, the rear end edge 302 of the under cover 3 extends to the central position immediately below the oil pan 153 of the engine main body 151, that is, extends to be positioned behind the rear opening end 262 of the duct 26. Therefore, the blown air Fb that has passed over the rear end edge 302 merges with the traveling air Fo that has passed under the rear end edge 302 at the junction C2.
At this time, the jet air Fb on the upper side of the under cover 3 has a lower flow velocity than the running wind Fo on the lower side of the under cover 3, so that the negative pressure of the running wind Fo on the lower side of the upper jet wind Fb. Is progressing. For this reason, the upper jet wind Fb is attracted to and merges with the lower travel wind Fo, but since both flow directions are substantially the same, the merge portion C2 can smoothly merge and the flow resistance at the time of collision is low.

このように図1の自動車の冷却装置1では噴出し風Fbと下向き冷却風Fdの合流部C1での流動抵抗を大幅に低減でき、更に、噴出し風Fbと下側の走行風Foとの合流部C2での合流を衝突時の流動抵抗が少ないスムーズな状態で合流させることができるため、走行風Foの一部で熱交換器16を通過する冷却風Fa1、前向き壁152を下方に流動する下向き冷却風Fdの冷却風流量を増加できる。しかも前下取入口24よりダクト26に流入した走行風Foが噴出口26exから噴出し風Fbを直進状態で吹きだすので、これらの点より冷却風流量を増加でき、熱交換器16及びエンジン本体151の冷却効率を高めるのに寄与できる。しかも、車両の空気抵抗係数を下げ、燃費低減を図るのに寄与できる。   Thus, in the automobile cooling device 1 of FIG. 1, the flow resistance at the junction C1 of the blown air Fb and the downward cooling air Fd can be greatly reduced, and further, the flow of the blown air Fb and the lower traveling wind Fo is reduced. Since the merging at the merging portion C2 can be merged in a smooth state with little flow resistance at the time of collision, the cooling air Fa1 that passes through the heat exchanger 16 and a forward wall 152 flows downward with a part of the traveling air Fo The cooling air flow rate of the downward cooling air Fd can be increased. Moreover, since the traveling wind Fo flowing into the duct 26 from the front lower intake 24 blows out the blown air Fb from the outlet 26ex in a straight traveling state, the cooling air flow rate can be increased from these points, and the heat exchanger 16 and the engine main body can be increased. This can contribute to increase the cooling efficiency of 151. Moreover, it can contribute to reducing the air resistance coefficient of the vehicle and reducing fuel consumption.

なお、図7には、本発明の自動車の冷却装置1が適用される前(図7中の□印)と、適用後(図7中の■印)の冷却風の空気抵抗係数とラジエータ18の前部の冷却風Faの通過風速[m/sec]の変位の一例を示す線図である。
ここで、自動車の冷却装置1が適用される前(図7中の□印)とは、バンパフェーシング111に図1、図3に示すような前下取入口24やダクト26が配備されない構造状態であり、その際の冷却風ΔCDが(0.012)で、ラジエータ18の前部冷却風Faの通過風速が{4.75[m/sec]}の状態にあった。これに対し、適用後(図7中の■印)であるバンパフェーシング111に図1、図3に示すような前下取入口24やダクト26が配備された構造をなす状態での冷却風ΔCDが(0.006)で、ラジエータ18の前部冷却風Faの通過風速が{4.8[m/sec]}の状態に達したことを示している。
In FIG. 7, the air resistance coefficient of the cooling air and the radiator 18 before the application of the automobile cooling device 1 of the present invention (□ in FIG. 7) and after application (■ in FIG. 7). It is a diagram which shows an example of the displacement of the passing wind speed [m / sec] of the cooling air Fa of the front part.
Here, before the automobile cooling device 1 is applied (indicated by □ in FIG. 7), the bumper facing 111 is not provided with the front lower intake 24 or the duct 26 as shown in FIGS. The cooling air ΔCD at that time was (0.012), and the passing air speed of the front cooling air Fa of the radiator 18 was {4.75 [m / sec]}. On the other hand, the cooling air ΔCD in a state in which the front lower intake 24 and the duct 26 are arranged on the bumper facing 111 after application (marked with ■ in FIG. 7) as shown in FIGS. (0.006), the passing air speed of the front cooling air Fa of the radiator 18 has reached the state of {4.8 [m / sec]}.

ここで明らかなように、バンパフェーシング111に図1、図3に示すような前下取入口24やダクト26が配備された本発明が適用された状態では、適用前より冷却風ΔCDが(0.012)から(0.006)に変位し、冷却風ΔCDの値が大幅に低減した。この点より、熱交換器16及びエンジン本体151の冷却効率を高め、しかも、車両の空気抵抗係数を下げ、燃費低減を図ることができることが明らかとなった。   As can be seen, in the state where the present invention in which the front lower intake port 24 and the duct 26 as shown in FIGS. 1 and 3 are applied to the bumper facing 111 is applied, the cooling air ΔCD is (0 .012) to (0.006), the value of the cooling air ΔCD was greatly reduced. From this point, it became clear that the cooling efficiency of the heat exchanger 16 and the engine main body 151 can be increased, and further, the air resistance coefficient of the vehicle can be lowered and the fuel consumption can be reduced.

上述のところで、アンダーカバー3の後端縁302がエンジン本体151のオイルパン153の直下中央位置まで延出形成されているが、場合により、図1に2点鎖線で示すように、フロントクロスメンバ14に対して所定量の隙間t1を保持した状態でフロントクロスメンバ14の直後の位置まで延出形成しても良い。この場合、噴出し風Fbと走行風Foとの合流部C2’をフロントクロスメンバ14の後方に位置させることとなるので、フロントクロスメンバ14の影響による流動抵抗の更なる増加を確実に排除でき、しかも、車両の空気抵抗係数を下げ、燃費低減を図ることができる。
以上、本発明の実施形態を説明したが、本発明は係る実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
As described above, the rear end edge 302 of the under cover 3 is formed to extend to the central position immediately below the oil pan 153 of the engine body 151. However, as shown by a two-dot chain line in FIG. 14 may be extended to a position immediately after the front cross member 14 with a predetermined amount of gap t1 held. In this case, the junction C2 ′ between the blowing wind Fb and the traveling wind Fo is positioned behind the front cross member 14, so that further increase in flow resistance due to the influence of the front cross member 14 can be surely eliminated. In addition, the air resistance coefficient of the vehicle can be reduced to reduce fuel consumption.
Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 自動車の冷却装置
2 車両
4 エンジンルーム
9 フロントマスク
11 バンパ
15 エンジン
151 エンジン本体
152 前壁
19、21 流入口
16 熱交換器
17 コンデンサ
18 ラジエータ
23 冷却用ファン
24 前下取入口
26 ダクト
261 前開口端部
262 後開口端部
26ex 噴出口
26a、26b、26c 分割ダクト
f 前壁
E 冷却用ファンとエンジン本体との間の空間
Fa 冷却風
Fb 噴出し風(後向き流)
Fd 下向き冷却風
Fo 走行風
Ly 横幅
X 前後方向
Y 車幅方向
C1,C2 合流部
DESCRIPTION OF SYMBOLS 1 Automobile cooling device 2 Vehicle 4 Engine room 9 Front mask 11 Bumper 15 Engine 151 Engine body 152 Front wall 19, 21 Inlet 16 Heat exchanger 17 Condenser 18 Radiator 23 Cooling fan 24 Front lower intake 26 Duct 261 Front opening End portion 262 Rear opening end portion 26ex Spout 26a, 26b, 26c Split duct f Front wall E Space between cooling fan and engine body Fa Cooling air Fb Blowing air (rearward flow)
Fd Downward cooling air Fo Traveling air Ly Horizontal width X Front-rear direction Y Vehicle width direction C1, C2 Junction

Claims (4)

車両の前壁に形成された前流入口に流入し該前流入口の後方に設けられる熱交換器と、前記熱交換器の後方に設けられるエンジン本体とを備えた自動車の冷却装置において、
前記前流入口の下方に別途形成された前下取入口に前開口端部が連結され、後開口端部が前記熱交換器とエンジン本体との間であって該エンジン本体の下端より下方となる位置に向けて後向き流を噴出すよう形成されたダクトを具備する、ことを特徴とする自動車の冷却装置。
In a cooling apparatus for an automobile, comprising: a heat exchanger that flows into a front inlet formed on a front wall of a vehicle and is provided behind the front inlet; and an engine main body that is provided behind the heat exchanger.
A front opening end is connected to a front lower intake separately formed below the front inlet, and a rear opening end is between the heat exchanger and the engine body and below the lower end of the engine body. A cooling apparatus for an automobile, comprising a duct formed to eject a backward flow toward the position.
前記車両の前壁下端に前端縁が結合され前記エンジンルームの前側下部を覆うアンダーカバーを備え、前記アンダーカバーの後端は前記後開口端部より後方に位置するように形成された、ことを特徴とする請求項1記載の自動車の冷却装置。   A front end edge is coupled to a lower end of the front wall of the vehicle, and an under cover is provided to cover a front lower portion of the engine room, and a rear end of the under cover is formed to be located rearward of the rear opening end. The automobile cooling device according to claim 1, wherein 前記ダクトの車幅方向の幅は前記熱交換器の車幅方向の幅と同等に設定される、ことを特徴とする請求項1又は2記載の自動車の冷却装置。   The vehicle cooling device according to claim 1 or 2, wherein the width of the duct in the vehicle width direction is set to be equal to the width of the heat exchanger in the vehicle width direction. 前記ダクトは車幅方向に並列配備される複数の分割ダクトとして形成される、ことを特徴とする請求項1、2又は3記載の自動車の冷却装置。   4. The automobile cooling apparatus according to claim 1, wherein the duct is formed as a plurality of divided ducts arranged in parallel in the vehicle width direction.
JP2010280767A 2010-12-16 2010-12-16 Automobile cooling unit Withdrawn JP2012126297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280767A JP2012126297A (en) 2010-12-16 2010-12-16 Automobile cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280767A JP2012126297A (en) 2010-12-16 2010-12-16 Automobile cooling unit

Publications (1)

Publication Number Publication Date
JP2012126297A true JP2012126297A (en) 2012-07-05

Family

ID=46643845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280767A Withdrawn JP2012126297A (en) 2010-12-16 2010-12-16 Automobile cooling unit

Country Status (1)

Country Link
JP (1) JP2012126297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132170A (en) * 2020-09-03 2022-03-04 本田技研工业株式会社 Vehicle body front structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132170A (en) * 2020-09-03 2022-03-04 本田技研工业株式会社 Vehicle body front structure
US11584217B2 (en) 2020-09-03 2023-02-21 Honda Motor Co., Ltd. Vehicle body front structure
CN114132170B (en) * 2020-09-03 2023-08-18 本田技研工业株式会社 Front structure of vehicle body

Similar Documents

Publication Publication Date Title
CN108973913B (en) Heat exchanger for vehicle
JP2009248928A (en) Intake duct for vehicle
JP6564130B2 (en) Cooling fan device
JP4935240B2 (en) Body front structure
JP2008049815A (en) Vehicle body front part structure
CN110861486A (en) Duct structure for vehicle
JP2005041456A (en) Baffle structure for motorcycle
JP5519342B2 (en) Vehicle under cover
JP5018967B2 (en) Vehicle intake structure
JP2017013680A (en) Intake system for engine
JP6336883B2 (en) undercover
JP2014125132A (en) Wind guide duct for automobile, wind guide plate for automobile and wind guide structure of automobile front part
JP2012136062A (en) Underfloor structure of vehicle
JP2006347385A (en) Front part structure for vehicle body
JP2012126297A (en) Automobile cooling unit
JP2016078766A (en) Vehicle air-guiding component, undercover and air-guiding duct
JP4985010B2 (en) Automotive front structure
JP2016088244A (en) Intake system for internal combustion engine
JP2000127769A (en) Engine room
JP2010214998A (en) Lower structure of vehicle front part
JP2011235718A (en) Front body structure of vehicle
JP2015145150A (en) vehicle front structure
JP5119799B2 (en) Vehicle structure
EP2282908B1 (en) Arrangement for cooling an area behind a vehicle engine
JP5533369B2 (en) Cooling device for vehicle radiator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304