JP2012125019A - Stabilizer for power system - Google Patents

Stabilizer for power system Download PDF

Info

Publication number
JP2012125019A
JP2012125019A JP2010272565A JP2010272565A JP2012125019A JP 2012125019 A JP2012125019 A JP 2012125019A JP 2010272565 A JP2010272565 A JP 2010272565A JP 2010272565 A JP2010272565 A JP 2010272565A JP 2012125019 A JP2012125019 A JP 2012125019A
Authority
JP
Japan
Prior art keywords
power
target value
power system
active
control target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010272565A
Other languages
Japanese (ja)
Other versions
JP5436400B2 (en
Inventor
Toshifumi Sugawara
敏文 菅原
Masako Sato
雅子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2010272565A priority Critical patent/JP5436400B2/en
Publication of JP2012125019A publication Critical patent/JP2012125019A/en
Application granted granted Critical
Publication of JP5436400B2 publication Critical patent/JP5436400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stabilizer for a power system capable of supplying active power and absorbing reactive power at low loss, allowing easy maintenance.SOLUTION: A stabilizer 10 for a power system to be connected to a power system for suppressing and stabilizing a fluctuation of the power system comprises: an electric double-layer capacitor 13 to be used as a power storage device; a power converter 14 to be connected to the electric double-layer capacitor for converting a DC to an AC and an AC to a DC: and a control means 12 for controlling the power converter. The control means comprises: a calculation part 12a to calculate a target value for controlling active/reactive power, which calculates a target value for controlling active power and a target value for controlling reactive power according to a state quantity of the power system; and a calculation part 12b to calculate a command value for amplitude/phase difference, which calculates a command value of amplitude of an output voltage being output from the electric power converter and a command value of phase difference between the power system voltage and an output voltage being output from the power converter, according to the target value for controlling active power and the target value for controlling reactive power both of which are calculated by the calculation part to calculate a target value for controlling active/reactive power.

Description

本発明は、電力系統安定化装置に関し、特に、事故などにより発生した電力系統の動揺を抑制し電力系統を安定化させる電力系統安定化装置に関するものである。   The present invention relates to a power system stabilization device, and more particularly to a power system stabilization device that stabilizes a power system by suppressing fluctuations in the power system caused by an accident or the like.

近年の電力系統は、電源立地の困難化による電源の遠隔化・偏在化と需要の都市部への集中化に伴い、長距離重潮流送電線が増加する傾向にある。送電線の距離が長く重潮流である程、電力系統を安定化させることが困難になるため、その対策の必要性が増してきている。   In recent power systems, long-distance heavy tidal power transmission lines tend to increase as power sources become remote and unevenly distributed due to difficulties in power location and demand is concentrated in urban areas. The longer the distance of the transmission line and the heavy tidal current, the more difficult it is to stabilize the power system, and the need for countermeasures is increasing.

電力系統を安定化させるためには、送電線新設などの電力系統の増強が有効であるが、送電線の建設には莫大な投資が必要となる。送電線建設と比べて比較的安価で工期的にも比較的短期間で設置が可能な電力系統安定化装置の設置が次善の策として考えられる。   In order to stabilize the electric power system, it is effective to reinforce the electric power system such as a new transmission line, but a huge investment is required for the construction of the transmission line. The installation of a power system stabilization device that is relatively inexpensive and can be installed in a relatively short period of time is considered as the next best measure compared to the construction of transmission lines.

電力系統の事故等の様々な要因により、電力系統のエネルギーバランスが崩れると電力系統の発電機が加速または減速し電力系統の動揺が発生する。この動揺を抑制し電力系統を安定化させるためには、電力系統のエネルギーのアンバランスを縮小することが有効である。電力系統の動揺に応じた有効電力の適切な供給・吸収による有効電力補償を行うことで電力系統でのエネルギーのアンバランスを軽減できる。また、無効電力の適切な供給・吸収による無効電力補償を行い電力系統の電圧を維持することで電力系統でのエネルギーの流れを制御し、電力系統のエネルギーバランスを改善できる。   When the energy balance of the power system is lost due to various factors such as a power system accident, the power system generator is accelerated or decelerated and the power system is shaken. In order to suppress this fluctuation and stabilize the power system, it is effective to reduce the energy imbalance of the power system. Energy imbalance in the power system can be reduced by performing effective power compensation through appropriate supply and absorption of active power according to fluctuations in the power system. In addition, reactive power compensation by appropriately supplying and absorbing reactive power is performed to maintain the voltage of the power system, thereby controlling the flow of energy in the power system and improving the energy balance of the power system.

電力系統を安定化させる方法は、上記に示すとおり有効電力補償と無効電力補償があるが、電力系統の動揺の原因となるエネルギーアンバランスを直接的に解消する有効電力補償の効果が一般的に高いとされている。   As shown above, there are active power compensation and reactive power compensation as methods for stabilizing the power system, but the effect of active power compensation that directly eliminates the energy imbalance that causes the power system oscillation is generally effective. It is said to be expensive.

有効電力および無効電力補償が可能な装置としては、超電導電力貯蔵装置(SMES)、フライホイール発電機などが提案されている。また、無効電力補償のみが可能な装置としては、特許文献1に開示されるような自励式無効電力補償装置(STATCOM)や静止型無効電力補償装置(SVC)などの無効電力補償装置がある。これらのうち、SMES・フライホイール発電機・STATCOMは、各々、蓄電装置である超電導コイル・フライホイール・電解コンデンサに蓄えられたエネルギーを電力変換装置等により任意の交流電力に変換し、有効および無効電力補償、または無効電力補償を行うものである。   As devices capable of compensating active power and reactive power, superconducting power storage devices (SMES), flywheel generators, and the like have been proposed. As a device capable of only reactive power compensation, there is a reactive power compensation device such as a self-excited reactive power compensation device (STATCOM) or a static reactive power compensation device (SVC) as disclosed in Patent Document 1. Of these, SMES, flywheel generator, and STATCOM each convert energy stored in superconducting coils, flywheels, and electrolytic capacitors, which are power storage devices, into arbitrary AC power using a power converter, etc. Power compensation or reactive power compensation is performed.

電力系統安定化装置とは目的が異なる装置であるが、電力系統事故時に電力系統の電圧が低下した際、電圧低下による負荷への影響を回避するため、事故検出後、即座に負荷を電力系統から切離し、適正な電圧で電力を供給することを目的とした瞬低補償装置において、特許文献2に開示されるように、その蓄電装置に電気二重層キャパシタが適用されており、数秒程度の有効電力の供給を可能としている。しかし、この瞬低対策装置においては、電力系統の安定化に必要な大容量の有効電力の供給は困難である。   Although the purpose of the power system stabilizer is different from that of the power system stabilization device, when the power system voltage drops in the event of a power system failure, the load is immediately connected to the power system after the accident is detected in order to avoid the impact on the load due to the voltage drop. In the voltage sag compensator intended to supply power at an appropriate voltage, as disclosed in Patent Document 2, an electric double layer capacitor is applied to the power storage device, which is effective for several seconds. Electric power can be supplied. However, in this instantaneous voltage drop countermeasure device, it is difficult to supply a large amount of active power necessary for stabilizing the power system.

特開2003−61249号公報JP 2003-61249 A 特開2009−27844号公報JP 2009-27844 A

有効電力補償が可能なSMES・フライホイール発電機には、蓄電装置の損失が大きく、保守上の負担が大きいという問題がある。つまり、SMESはその蓄電装置である超電導コイルの極低温状態を維持するため冷却損失が発生する。フライホール発電機は回転機であるため、軸受け損失が発生し、各々、装置としての総合効率は80〜90%程度である。また、SMESはその極低温状態を維持する補機類の、フライホイール発電機は磨耗する回転部の定期的なメンテナンスが必要であるなど保守上の負担が大きい。これらの課題があるためSMES・フライホイール発電機は電力系統安定化装置としての実用レベルでの適用例はない。   The SMES / flywheel generator capable of active power compensation has a problem that the loss of the power storage device is large and the maintenance burden is large. In other words, SMES maintains a cryogenic state of the superconducting coil that is the power storage device, and cooling loss occurs. Since the flyhole generator is a rotating machine, bearing loss occurs, and the overall efficiency of each device is about 80 to 90%. In addition, SMES is an auxiliary machine that maintains its cryogenic state, and a flywheel generator has a heavy maintenance burden, such as periodic maintenance of the rotating parts that wear out. Because of these problems, the SMES / flywheel generator has no practical application as a power system stabilizing device.

さらに、特許文献1に開示されるようなSTATCOMは、蓄電装置に電解コンデンサを用いており、SMESのような極低温状態の維持・そのための冷却装置のメンテナンスやフライホイール発電機のような可動部の定期的なメンテナンスを必要としないことから上記の有効電力補償装置と比べて保守が容易であること、また、蓄電装置であるコンデンサにおいて、充電後の待機中の損失はほとんどなく、装置としての損失を低く抑えられることから、広く電力系統に適用されている。しかし、一方で、STATCOMは、蓄電装置である電解コンデンサのエネルギー密度が低いため、電力系統の動揺周期と同じ1〜2秒周期での有効電力の供給・吸収ができず、安定化効果が高い有効電力補償はできないという課題があった。   Furthermore, STATCOM as disclosed in Patent Document 1 uses an electrolytic capacitor as a power storage device, maintains a cryogenic state like SMES, maintenance of a cooling device for that purpose, and a movable part such as a flywheel generator Therefore, it is easier to maintain than the above active power compensator, and in the capacitor, which is a power storage device, there is almost no loss during standby after charging. Since loss can be kept low, it is widely applied to power systems. However, STATCOM, on the other hand, has a high stabilization effect because it cannot supply and absorb active power in the same 1-2 second period as the power system oscillation period because the energy density of the electrolytic capacitor, which is a power storage device, is low. There was a problem that active power compensation was not possible.

本発明の目的は、上記の課題に鑑み、有効電力と無効電力の供給・吸収が可能な電力系統安定化装置を提供することにある。すなわち、本発明の電力系統安定化装置は、事故検出直後に系統事故検出部によって母線電圧および線路潮流等事故時に急変する情報から系統事故を検出し、制御目標値を強制的に最大の吸収量となるよう強制制御して電力系統安定化効果が高い有効電力を補償することができるものである。   In view of the above problems, an object of the present invention is to provide a power system stabilizing device capable of supplying and absorbing active power and reactive power. That is, the power system stabilizing device of the present invention detects a system fault from information that suddenly changes at the time of an accident such as a bus voltage and a line power flow by the system fault detection unit immediately after the accident detection, and forcibly sets the control target value to the maximum absorption amount. By compulsorily controlling so that the active power becomes effective, the active power having a high power system stabilizing effect can be compensated.

本発明に係る電力系統安定化装置は、上記の目的を達成するため、次のように構成される。
第1の電力系統安定化装置(請求項1に対応)は、電力系統に接続され、前記電力系統の動揺を抑制して安定化させる電力系統安定化装置であって、蓄電装置として用いる電気二重層キャパシタと、該電気二重層キャパシタに接続され、直流を交流に、交流を直流に変換する電力変換装置と、該電力変換装置を制御する制御手段とを備え、該制御手段は、前記電力系統の状態量に基づいて、有効電力制御目標値および無効電力制御目標値を演算する有効・無効電力制御目標値演算部と、前記有効・無効電力制御目標値演算部によって演算された前記有効電力制御目標値と前記無効電力制御目標値に基づいて、前記電力変換装置から出力する出力電圧の振幅および電力系統電圧との位相差の指令値を演算する振幅・位相差指令値演算部とを有することを特徴とする。
第2の電力系統安定化装置(請求項2に対応)は、上記の構成において、好ましくは、前記電力系統の状態量は、前記有効電力制御用入力信号としての母線周波数または発電機速度であり、前記無効電力制御用入力信号としての母線電圧であることを特徴とする。
第3の電力系統安定化装置(請求項3に対応)は、上記の構成において、好ましくは、前記有効・無効電力制御目標値演算部は、系統事故を検出する系統事故検出部と、前記母線周波数または発電機速度に基づいて周波数変動を検出する周波数変動検出部と、前記周波数変動検出部から検出される周波数変動に基づいて有効電力制御目標値を算定する有効電力制御目標値算定部と、事故時と平常時との制御を切り替える事故時・平常時制御切替部とを備え、前記事故時・平常時制御切替部は、前記事故時には、前記有効電力制御目標値を強制的に最大の吸収量とするよう演算するように制御を切り替えることを特徴とする。
第4の電力系統安定化装置(請求項4に対応)は、上記の構成において、好ましくは、前記事故時・平常時制御切替部は、前記事故時の制御を、発電機が減速を開始する前に終了させ、平常時の制御に切り替えることを特徴とする。
The power system stabilizing device according to the present invention is configured as follows to achieve the above object.
A first power system stabilizing device (corresponding to claim 1) is a power system stabilizing device that is connected to the power system and suppresses fluctuations of the power system to stabilize the power system. A multi-layer capacitor; a power converter connected to the electric double layer capacitor and converting direct current to alternating current; alternating current to direct current; and control means for controlling the power conversion apparatus, the control means comprising the power system An active / reactive power control target value calculation unit that calculates an active power control target value and a reactive power control target value based on a state quantity of the active power control, and the active power control calculated by the active / reactive power control target value calculation unit Based on the target value and the reactive power control target value, an amplitude / phase difference command value calculation unit that calculates a command value of the phase difference between the amplitude of the output voltage output from the power converter and the power system voltage is provided. It is characterized in.
In the above configuration, the second power system stabilizing device (corresponding to claim 2) is preferably configured such that the state quantity of the power system is a bus frequency or a generator speed as the active power control input signal. A bus voltage as the reactive power control input signal.
In the above configuration, the third power system stabilizing device (corresponding to claim 3) is preferably configured such that the active / reactive power control target value calculation unit includes a system fault detection unit that detects a system fault, and the bus A frequency fluctuation detecting unit that detects a frequency fluctuation based on a frequency or a generator speed; an active power control target value calculating unit that calculates an active power control target value based on the frequency fluctuation detected from the frequency fluctuation detecting unit; An accident / normal control switching unit that switches between an accident control and a normal control is provided, and the accident / normal control switching unit compulsorily absorbs the active power control target value at the time of the accident. The control is switched so as to calculate the quantity.
In the above configuration, the fourth power system stabilizing device (corresponding to claim 4) is preferably configured such that the accident / normal-time control switching unit starts the deceleration by the generator during the accident control. It is characterized in that it is terminated before and switched to normal control.

本発明によれば、電気二重層キャパシタを蓄電装置として用いることで、有効電力と無効電力の供給・吸収が可能であり、既存の有効・無効電力補償装置と比べて損失が少なく、保守が容易で実用的な電力系統安定化装置を提供することができる。   According to the present invention, by using an electric double layer capacitor as a power storage device, it is possible to supply and absorb active power and reactive power, and there is less loss than existing active / reactive power compensation devices, and maintenance is easy. Thus, a practical power system stabilizing device can be provided.

本発明の実施形態に係る電力系統安定化装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power system stabilization apparatus which concerns on embodiment of this invention. 図1に示す有効・無効電力制御目標値演算部を示すブロック図である。It is a block diagram which shows the active / reactive power control target value calculating part shown in FIG. 図1に示す制御装置での制御の原理を示す図である。It is a figure which shows the principle of control with the control apparatus shown in FIG. 図1に示す電力系統安定化装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the power system stabilizing device shown in FIG. 1. 図1に示す電力系統安定化装置における事故時強制制御を説明する図である。It is a figure explaining the forced control at the time of an accident in the electric power system stabilization apparatus shown in FIG.

以下に、本発明の好適な実施の形態を添付図面に基づいて説明する。
まず、本実施形態に係る電力系統安定化装置が接続された電力系統の構成について説明する。図1は、電力系統の一部を示しており、母線1と、母線1が接続され、発電機を含む部分電力系統2とから概略構成されている。この電力系統に本発明による電力系統安定化装置が接続されている。電力系統安定化装置10は、電力系統情報検出部11と、制御装置12と、電気二重層キャパシタ13と、自励式変換装置14と、変圧器15とを有している。電力系統安定化装置10は、部分電力系統2に接続された母線1に変圧器15を介して接続されている。また、母線1および部分電力系統2内の送電線・変圧器等の線路には、電力系統情報を検出する電力系統情報検出部11が接続されており、電力系統情報検出部11からの信号は、制御装置12に入力されている。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the configuration of the power system to which the power system stabilizing device according to the present embodiment is connected will be described. FIG. 1 shows a part of a power system, and is schematically configured from a bus 1 and a partial power system 2 to which the bus 1 is connected and including a generator. The power system stabilizing device according to the present invention is connected to this power system. The power system stabilization device 10 includes a power system information detection unit 11, a control device 12, an electric double layer capacitor 13, a self-excited conversion device 14, and a transformer 15. The power system stabilizing device 10 is connected to the bus 1 connected to the partial power system 2 via a transformer 15. In addition, a power system information detection unit 11 that detects power system information is connected to lines such as a transmission line and a transformer in the bus 1 and the partial power system 2, and a signal from the power system information detection unit 11 is Are input to the control device 12.

電力系統情報検出部11は、母線1ならびに周辺系統の情報、すなわち、母線1ならびに周辺系統の状態量である母線周波数または発電機速度、母線電圧、線路潮流等を電力系統の状態量として検出する装置である。本実施の形態では、母線周波数または発電機速度が有効電力制御用入力信号として、母線電圧が無効電力制御用入力信号として、線路潮流および母線電圧が事故検出用入力信号として、それぞれ電力系統情報検出部11から制御装置12に入力されるものとした。   The power system information detection unit 11 detects information on the bus 1 and the peripheral system, that is, the bus frequency or the generator speed, the bus voltage, the line current, and the like, which are the state quantities of the bus 1 and the peripheral system, as state quantities of the power system. Device. In the present embodiment, the bus frequency or generator speed is used as an active power control input signal, the bus voltage is used as a reactive power control input signal, and the line power and bus voltage are used as accident detection input signals. It is assumed that the data is input from the unit 11 to the control device 12.

ついで、制御装置12に入力される有効電力制御用入力信号と無効電力制御用入力信号について説明する。
有効電力制御目標値Pおよび無効電力制御目標値Qを演算するための有効電力制御用入力信号および無効電力制御用入力信号は、系統解析により、発電機の動揺や電圧の動きを直接捉えることのできる系統状態の変化量を選択する必要がある。汎用性があり(設置個所の制約が少なく)、最もシンプルな信号としては、電力系統安定化装置設置母線から得られる情報である母線周波数および母線電圧が考えられる。これらの電力系統情報に応じ、電力系統の有効・無効電力の変化を補償するように電力系統安定化装置10から有効電力と無効電力を供給・吸収し、電力系統を安定化させる。
Next, the active power control input signal and the reactive power control input signal input to the control device 12 will be described.
The active power control input signal and the reactive power control input signal for calculating the active power control target value P and the reactive power control target value Q can directly capture the fluctuation of the generator and the movement of the voltage by system analysis. It is necessary to select the amount of system state change that can be made. The bus frequency and the bus voltage, which are information obtained from the power system stabilizing device installation bus, can be considered as the simplest signal because it is versatile (there are few restrictions on the installation location). In accordance with the power system information, active power and reactive power are supplied / absorbed from the power system stabilizing device 10 so as to compensate for changes in the active / reactive power of the power system, and the power system is stabilized.

なお、一般に、有効電力補償装置はその効果を得るためには発電機の近傍への設置が必要であり、発電所に設置する場合は発電機の情報を得やすいことから、有効電力補償装置の機能を有する本実施形態に係る電力系統安定化装置10は、有効電力制御用の信号として、母線周波数の代わりに発電機速度を用いることも考えられる。また、電力系統安定化装置10は、電力系統の事故時の制御が主な目的であることから、事故発生を確実に検出し、事故直後の安定化制御として効果の高い有効電力吸収の応答性を上げるため、事故時急激に低下する母線電圧ならびに急激に減少する発電機や送電線などの有効分潮流を補助的な入力信号として組み合わせて利用することも考えられる。   In general, the active power compensator needs to be installed in the vicinity of the generator in order to obtain its effect, and when it is installed in a power plant, it is easy to obtain information on the generator. The power system stabilizing device 10 according to the present embodiment having a function may use the generator speed instead of the bus frequency as the active power control signal. Moreover, since the main purpose of the power system stabilization device 10 is to control the power system at the time of an accident, it is possible to reliably detect the occurrence of the accident and to respond to the effective power absorption that is highly effective as the stabilization control immediately after the accident. In order to increase the power supply voltage, it is conceivable to use a combination of the bus voltage that suddenly decreases at the time of the accident and the effective diversion current such as the generator and transmission line that rapidly decrease as an auxiliary input signal.

制御装置12は、有効電力制御用入力信号と無効電力制御用入力信号に基づいて、有効電力制御目標値Pおよび無効電力制御目標値Qを演算する有効・無効電力制御目標値演算部12aと、有効・無効電力制御目標値演算部12aによって演算された有効電力制御目標値Pと無効電力制御目標値Qに基づいて、自励式変換装置14から出力される出力電圧の振幅VOUTおよび系統電圧Vsとの位相差θの指令値を演算する振幅・位相差指令値演算部12bを備えている。 The control device 12 includes an active / reactive power control target value calculation unit 12a that calculates an active power control target value P and a reactive power control target value Q based on the active power control input signal and the reactive power control input signal, Based on the active power control target value P and the reactive power control target value Q calculated by the active / reactive power control target value calculation unit 12a, the output voltage amplitude VOUT and the system voltage Vs output from the self-excited converter 14 are shown. And an amplitude / phase difference command value calculation unit 12b for calculating a command value of the phase difference θ.

電気二重層キャパシタ13は、既存のSTATCOMに用いられている電解コンデンサと比べ、約100倍のエネルギー密度があるため、同容量では、約100倍の時間の有効電力の供給が可能である。   Since the electric double layer capacitor 13 has an energy density of about 100 times that of the electrolytic capacitor used in the existing STATCOM, the electric power can be supplied for about 100 times the time with the same capacity.

自励式変換装置14は、直流を交流に変換し、交流を直流に変換する電力変換装置であり、例えば素子に流れる電流をオン・オフできる機能を持つGTO(gate turn−off thyristor)やIGBT(insulated gate bipolar transistor)などのスイッチング素子を使用したインバータで構成される。自励式変換装置14は、任意の振幅、位相および周波数の電圧波形を作る機能を有している。   The self-excited conversion device 14 is a power conversion device that converts direct current into alternating current and converts alternating current into direct current. For example, a GTO (gate turn-off thyristor) or IGBT (IGT) having a function of turning on and off the current flowing through the element. An inverter using a switching element such as an insulated gate bipolar transistor). The self-excited conversion device 14 has a function of creating a voltage waveform having an arbitrary amplitude, phase, and frequency.

有効・無効電力制御目標値演算部12aについて図2を用いて説明する。
有効・無効電力制御目標値演算部12aは、電力系統の線路潮流や母線電圧等に基づいて系統事故を検出する系統事故検出部20と、入力される母線周波数または発電機速度に基づいて周波数変動を検出する周波数変動検出部21と、周波数変動検出部21から検出される周波数変動に基づいて有効電力制御目標値を算定する有効電力制御目標値算定部24とを備えている。有効電力制御目標値算定部24は、事故時と平常時の制御を切り換える事故時・平常時制御切替部24aを有している。
また、電気二重層キャパシタ13の直流電圧VDや有効電力出力等に基づいて電気二重層キャパシタ13の充電量を維持制御する目標値を算定するための充電量維持制御目標値算定部26を有している。
また、有効電力制御目標値算定部24からの出力と充電量維持制御目標値算定部26からの出力に基づいて有効電力の制御目標値を合成する有効電力制御目標値合成部27を備えている。
さらに、入力される母線電圧に基づいて電圧変動を検出する電圧変動検出部28と、電圧変動検出部28から出力される電圧変動に基づいて無効電力制御目標値を算定する無効電力制御目標値算定部29を備えている。
さらにまた、有効電力制御目標値合成部27からの出力と無効電力制御目標値算定部29からの出力に基づいて有効電力制御目標値と無効電力制御目標値を出力が可能な容量以下になるように合成して有効電力制御目標値Pと無効電力制御目標値Qを出力する制御目標値合成部30を備えている。
The active / reactive power control target value calculation unit 12a will be described with reference to FIG.
The active / reactive power control target value calculation unit 12a includes a system fault detection unit 20 that detects a system fault based on the line current and bus voltage of the power system, and a frequency fluctuation based on the input bus frequency or generator speed. Is included, and an active power control target value calculator 24 that calculates an active power control target value based on the frequency fluctuation detected from the frequency fluctuation detector 21 is provided. The active power control target value calculation unit 24 includes an accident / normal control switching unit 24a that switches between an accident control and a normal control.
In addition, a charge amount maintenance control target value calculation unit 26 for calculating a target value for maintaining and controlling the charge amount of the electric double layer capacitor 13 based on the DC voltage VD of the electric double layer capacitor 13 and the active power output is provided. ing.
Further, an active power control target value synthesizing unit 27 that synthesizes a control target value of active power based on an output from the active power control target value calculating unit 24 and an output from the charge amount maintenance control target value calculating unit 26 is provided. .
Further, a voltage fluctuation detecting unit 28 that detects a voltage fluctuation based on the input bus voltage, and a reactive power control target value calculation that calculates a reactive power control target value based on the voltage fluctuation output from the voltage fluctuation detecting unit 28. A portion 29 is provided.
Furthermore, based on the output from the active power control target value combining unit 27 and the output from the reactive power control target value calculating unit 29, the active power control target value and the reactive power control target value are set to be equal to or less than the capacity capable of being output. And a control target value synthesizing unit 30 that outputs the active power control target value P and the reactive power control target value Q.

なお、継続的な有効電力補償のためには、電気二重層キャパシタ13の蓄電量を一定に保つ制御も必要であり、これらの条件を組合せて最適な制御目標を演算することが必要である。そのために、有効・無効電力制御目標値演算部12aは、電気二重層キャパシタ13の蓄電量を検出し、その蓄電量も含めての制御目標の演算を行う。   In order to continuously compensate for active power, it is also necessary to control the electric storage amount of the electric double layer capacitor 13 to be constant, and it is necessary to calculate an optimal control target by combining these conditions. For this purpose, the active / reactive power control target value calculator 12a detects the amount of electricity stored in the electric double layer capacitor 13, and calculates the control target including the amount of electricity stored.

次に、振幅・位相差指令値演算部12bにおける制御原理を図3を用いて説明する。図3(a)は、系統電圧Vsと出力電圧VOUTの波形を示した図である。図3(b)は、有効電力Pと無効電力Qと皮相電力Sの関係をベクトル図によって示した図である。図3(c)は、有効分をd軸に対応させ、無効分をq軸に対応させて出力電圧VOUTと出力電流IOUTと系統電圧Vsとの関係をベクトルを用いて示した図である。図3(b)と図3(c)において記号δはIOUTの系統電圧Vsに対する力率角を示す。図3において、系統電圧Vsと出力電圧VOUTの電圧差はΔVであり、位相差はθであるとする。 Next, the control principle in the amplitude / phase difference command value calculation unit 12b will be described with reference to FIG. FIG. 3A is a diagram showing the waveforms of the system voltage Vs and the output voltage VOUT . FIG. 3B is a vector diagram showing the relationship among the active power P, the reactive power Q, and the apparent power S. FIG. 3C is a diagram showing the relationship among the output voltage V OUT , the output current I OUT, and the system voltage Vs using vectors, with the effective component corresponding to the d-axis and the ineffective component corresponding to the q-axis. is there. In FIG. 3B and FIG. 3C, the symbol δ represents the power factor angle of I OUT with respect to the system voltage Vs. In FIG. 3, it is assumed that the voltage difference between the system voltage Vs and the output voltage VOUT is ΔV, and the phase difference is θ.

また、自励式変換装置14は、図4に示すように2つの交流電圧源E1とE2をリアクタンスXtを介して接続した形で等価的に表すことができる。ここで、リアクタンスXtは変圧器15の等価リアクタンスである。   Further, the self-excited conversion device 14 can be equivalently represented in a form in which two AC voltage sources E1 and E2 are connected via a reactance Xt as shown in FIG. Here, the reactance Xt is an equivalent reactance of the transformer 15.

このとき、出力する有効電力制御目標値Pと無効電力制御目標値Qは、出力電圧VOUTと系統電圧Vsとこれらの位相差θと変圧器15によって生じるリアクタンスXtを用いて、式(1)、式(2)のように表される。 At this time, the active power control target value P and the reactive power control target value Q to be output are expressed by the following equation (1) using the output voltage VOUT , the system voltage Vs, the phase difference θ between them, and the reactance Xt generated by the transformer 15. , Expressed as equation (2).

有効電力制御目標値P=Vs・IOUT・cosδ
=(VOUT・Vs・sinθ)/Xt (1)
無効電力制御目標値Q=Vs・IOUT・sinδ
=(VOUT・Vs・cosθ−Vs)/Xt (2)
上記を満たす自励式変換装置14への指令値VOUT,θは、式(3)、式(4)のように表される。
OUT=(Xt/Vs)×√((Q+(Vs/Xt))+P) (3)
θ=tan−1(P/(Q+(Vs/Xt))) (4)
なお、系統安定化装置の容量=最大の皮相電力Smaxは、式(5)で表される。
Smax≧(Vs/Xt)×√(VOUT +Vs−2VOUT・Vscosθ)
(5)
Active power control target value P = Vs · I OUT · cos δ
= (V OUT · Vs · sin θ) / Xt (1)
Reactive power control target value Q = Vs · I OUT · sin δ
= ( VOUT · Vs · cos θ−Vs 2 ) / Xt (2)
The command value V OUT , θ to the self-excited conversion device 14 that satisfies the above is expressed as Equation (3) and Equation (4).
V OUT = (Xt / Vs) × √ ((Q + (Vs 2 / Xt)) 2 + P 2 ) (3)
θ = tan −1 (P / (Q + (Vs 2 / Xt))) (4)
In addition, the capacity | capacitance of a system stabilization apparatus = maximum apparent power Smax is represented by Formula (5).
Smax ≧ (Vs / Xt) × √ (V OUT 2 + Vs 2 −2VOUT · Vscos θ)
(5)

従って、制御装置12では、有効・無効電力制御目標値演算部12aで母線周波数または発電機速度と母線電圧から有効電力制御目標値P及び無効電力制御目標値Qを求める。そして、振幅・位相差指令値演算部12bで式(3)と式(4)を用いて有効電力制御目標値P及び無効電力制御目標値Qから指令値VOUT、θを算出する。 Therefore, in the control device 12, the active / reactive power control target value calculation unit 12a obtains the active power control target value P and the reactive power control target value Q from the bus frequency or generator speed and the bus voltage. Then, the command values V OUT and θ are calculated from the active power control target value P and the reactive power control target value Q using the equations (3) and (4) in the amplitude / phase difference command value calculation unit 12b.

次に電力系統安定化装置10での実際の制御について説明する。まず、通常時の制御について説明する。制御装置12による制御によって自励式変換装置14が電気二重層キャパシタ13を充電する。そして、その直流電圧から自励式変換装置14を用いて、電力系統とは異なる電圧の交流電圧を制御装置12で算出した指令値VOUTに基づいて作り出し、母線1との電圧差によって無効電力を出力するように制御している。また、電力系統安定化装置10では、有効電力を出力するため、出力電圧の電力系統電圧との位相差を制御装置12で算出した指令値θに基づいて制御し、母線1との位相差により有効電力を出力する制御を行う。また、有効・無効電力制御目標値演算部12aは、電気二重層キャパシタ13の直流電圧VDまたは有効電力出力等を入力し、電気二重層キャパシタ13の電圧を制御する。また、有効・無効電力制御目標値演算部12aは、電力系統情報検出部11より事故検出用入力信号を入力し、事故発生時に集中的に有効電力を電力系統より吸収する強制制御を行う。強制制御については後に詳しく述べる。 Next, actual control in the power system stabilizing device 10 will be described. First, normal control will be described. The self-excited conversion device 14 charges the electric double layer capacitor 13 under the control of the control device 12. Then, by using the self-excited converter 14 from the DC voltage, an AC voltage having a voltage different from that of the power system is generated based on the command value VOUT calculated by the control device 12, and reactive power is generated by the voltage difference with the bus 1. Control to output. Moreover, in order to output active power, the power system stabilizing device 10 controls the phase difference between the output voltage and the power system voltage based on the command value θ calculated by the control device 12, and the phase difference from the bus 1 Control to output active power. The active / reactive power control target value calculation unit 12 a receives the DC voltage VD of the electric double layer capacitor 13 or the active power output, and controls the voltage of the electric double layer capacitor 13. The active / reactive power control target value calculation unit 12a receives an accident detection input signal from the power system information detection unit 11, and performs forced control to absorb active power from the power system intensively when an accident occurs. The forced control will be described in detail later.

次に、事故が検出された際の有効電力制御方法を図5を参照して説明する。図5(a)は、系統事故後の周波数変化を示す図であり、図5(b)は、電力系統安定化装置10の有効電力出力を示す図である。   Next, an active power control method when an accident is detected will be described with reference to FIG. FIG. 5A is a diagram illustrating a frequency change after a system fault, and FIG. 5B is a diagram illustrating an active power output of the power system stabilizing device 10.

事故時制御(近傍事故対策)では、発電機の加減速等の動揺は母線周波数または発電機の回転数の増減として現れ、電気的には周波数の増減として現れるため、発電機の動揺現象を捉えるための電力系統情報として母線周波数または発電機速度が有効であるのは前述のとおりである。発電機は事故発生直後から加速を開始するが、発電機速度および母線周波数は、図5(a)の曲線C1に示すように、点線C2で示される母線電圧や発電機近傍の線路潮流等事故時に急変する情報と比べて、発電機の持つ慣性により事故後緩やかに変化する。よって、母線周波数または発電機速度を制御用入力信号としその変化に応じて有効電力制御目標値Pを演算した場合、図5(b)の点線C3で示されるように、有効電力の吸収量は周波数の増加とともに徐々に増加するため、最も有効電力補償量を多く必要とする事故直後に、安定化効果の高い有効電力の吸収量を多く得られない。   In accident control (countermeasures for nearby accidents), fluctuations such as generator acceleration / deceleration appear as an increase / decrease in bus frequency or generator speed, and appear as an increase / decrease in frequency electrically. As described above, the bus frequency or the generator speed is effective as the power system information for this purpose. The generator starts accelerating immediately after the accident, but the generator speed and bus frequency are as shown by the curve C1 in FIG. 5 (a), such as the bus voltage indicated by the dotted line C2 and the line current near the generator. Compared to information that changes suddenly at times, it changes gradually after an accident due to the inertia of the generator. Therefore, when the bus frequency or the generator speed is used as the control input signal and the active power control target value P is calculated according to the change, the active power absorption amount is as shown by the dotted line C3 in FIG. Since the frequency gradually increases as the frequency increases, it is not possible to obtain a large amount of active power absorption with a high stabilizing effect immediately after an accident that requires the largest amount of active power compensation.

上記のような有効電力の吸収量が多く得られないことを補うため、本実施の形態では事故検出直後の所定時間の制御(強制制御)と、この所定時間を経過した後の平常時制御とに分けて制御を行う。すなわち、事故検出直後は、系統事故検出部20によって、母線電圧および線路潮流等事故時に急変する情報から系統事故を検出し、事故直後、有効電力目標値算定部24によって、図5(b)の曲線C4で示すように安定化効果の高い有効電力補償の制御目標値を強制的に最大の吸収量とするよう演算し、強制制御を行う。   In order to compensate for the fact that a large amount of active power absorption cannot be obtained as described above, in this embodiment, control for a predetermined time immediately after the detection of an accident (forced control) and normal control after the elapse of the predetermined time, Control is divided into two. That is, immediately after the accident detection, the system fault detection unit 20 detects a system fault from information such as a bus voltage and a line power flow that changes suddenly at the time of the accident, and immediately after the accident, the active power target value calculation unit 24 performs the operation shown in FIG. As shown by a curve C4, the control target value of active power compensation having a high stabilization effect is forcibly set to the maximum absorption amount, and forced control is performed.

電力系統安定化装置10は、発電機の加速および減速を打ち消す制御をするのが基本であるが、事故直後の強制制御は、有効電力の吸収により加速する発電機のエネルギーを吸収し減速させる制御のため、発電機が減速を開始する時点まで強制制御を継続すると減速を助長し逆効果となる。また、母線周波数等より演算する有効電力の目標値は、立ち上りは緩やかではあるものの、発電機が減速に転じる前の加速中に最大量に達するよう設定することから、強制制御は、事故検出後、母線周波数等から演算される目標値が最大となるまでは最低限継続し、発電機が減速を開始する前(動揺周期の1/4前、動揺周期が2秒であれば事故直後から0.5s前)には確実にリセットする必要がある。そのリセットをするタイミングを図5(b)の符号trで示している。   The power system stabilization device 10 basically performs control to cancel the acceleration and deceleration of the generator, but the forced control immediately after the accident is a control to absorb and decelerate the energy of the generator that accelerates by absorbing active power. Therefore, if forced control is continued until the generator starts to decelerate, deceleration is promoted and the reverse effect is obtained. The target value of active power calculated from the bus frequency, etc. is set so that the maximum amount is reached during acceleration before the generator starts to decelerate, although the rise is gradual. , Continue as a minimum until the target value calculated from the bus frequency etc. reaches the maximum, before the generator starts decelerating (1/4 before the oscillation cycle, if the oscillation cycle is 2 seconds, 0 immediately after the accident .5s) must be reset reliably. The reset timing is indicated by the symbol tr in FIG.

ついで、上記事故検出直後の所定時間を経過後に、事故時・平常時制御切替部24aの切替により平常時制御に移行する。この平常時制御は、先に説明した通常時の制御と同じ制御とすることができ、上記強制制御に引き続く制御として行うが、遠方事故時、前述の事故検出ができない場合でも、系統の安定度が維持できない場合に母線周波数または発電機速度が閾値を超える場合は、制御する。なお、閾値はシミュレーションなどから、通常運用時の系統動揺で動作せず、事故時など系統の安定度が問題となる場合には動作できる値に設定する。   Then, after a predetermined time has passed immediately after the accident detection, the normal / normal control is switched by the switching of the accident / normal control switching unit 24a. This normal control can be the same control as the normal control described above, and is performed as a control subsequent to the above-mentioned forced control. If the bus frequency or generator speed exceeds the threshold when the power cannot be maintained, control is performed. Note that the threshold value is set to a value that can be operated when the stability of the system becomes a problem, such as during an accident, from a simulation or the like, not operating due to the system fluctuation during normal operation.

以上のように、電力系統安定化装置10では、制御装置12による制御によって電気二重層キャパシタ13を充電し、その直流電圧から自励式変換装置14を用いて、電力系統とは異なる電圧の交流電圧を作り出し、電力系統との電圧差によって無効電力を出力するように制御している。また、電力系統安定化装置10では、有効電力を出力するため、出力電圧の位相を制御し、電力系統との位相差により有効電力を出力する制御を行う。   As described above, in the power system stabilizing device 10, the electric double layer capacitor 13 is charged by the control of the control device 12, and the AC voltage having a voltage different from that of the power system is used from the DC voltage by using the self-excited conversion device 14. And is controlled to output reactive power according to the voltage difference from the power system. Moreover, in order to output active power, the power system stabilization apparatus 10 controls the phase of the output voltage and outputs active power based on the phase difference from the power system.

以上により、本実施形態に係る電力系統安定化装置10では、電気二重層キャパシタを用いているために、既存の有効・無効電力補償装置のような保守・点検の問題がなく、安定化効果の高い有効・無効電力補償装置の電力系統への適用の可能性を高めるものである。そして、有効電力の供給が容易であり、事故時の電力補償を応答が遅れずに行える電力系統安定化装置を提供することができる。   As described above, in the power system stabilizing device 10 according to the present embodiment, since the electric double layer capacitor is used, there is no problem of maintenance / inspection like the existing active / reactive power compensator, and the stabilization effect is improved. This increases the possibility of applying a high effective / reactive power compensator to the power system. In addition, it is possible to provide a power system stabilizing device that can easily supply active power and can perform power compensation at the time of an accident without delay in response.

以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および有効・無効電力制御目標値P・Qの演算方法等については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented, and numerical values and active / reactive power control target values P · The calculation method of Q and the like are merely examples. Therefore, the present invention is not limited to the described embodiments, and can be variously modified without departing from the scope of the technical idea shown in the claims.

1 母線
2 部分電力系統
10 電力系統安定化装置
11 電力系統情報検出部
12 制御装置(制御手段)
12a 有効・無効電力制御目標値演算部
12b 振幅・位相差指令値演算部
13 電気二重層キャパシタ(蓄電装置)
14 自励式変換装置(電力変換装置)
15 変圧器
20 系統事故検出部
21 周波数変動検出部
24 有効電力制御目標値算定部
24a 事故時・平常時制御切替部
26 充電量維持制御目標値算定部
27 有効電力制御目標値合成部
28 電圧変動検出部
29 無効電力制御目標値算定部
30 制御目標値合成部
DESCRIPTION OF SYMBOLS 1 Bus 2 Partial electric power system 10 Electric power system stabilization apparatus 11 Electric power system information detection part 12 Control apparatus (control means)
12a Active / Reactive Power Control Target Value Calculation Unit 12b Amplitude / Phase Difference Command Value Calculation Unit 13 Electric Double Layer Capacitor (Power Storage Device)
14 Self-excited converter (power converter)
DESCRIPTION OF SYMBOLS 15 Transformer 20 System fault detection part 21 Frequency fluctuation detection part 24 Active power control target value calculation part 24a Fault / normal control switching part 26 Charge amount maintenance control target value calculation part 27 Active power control target value synthesis part 28 Voltage fluctuation Detection unit 29 Reactive power control target value calculation unit 30 Control target value synthesis unit

Claims (4)

電力系統に接続され、前記電力系統の動揺を抑制して安定化させる電力系統安定化装置であって、
蓄電装置として用いる電気二重層キャパシタと、
該電気二重層キャパシタに接続され、直流を交流に、交流を直流に変換する電力変換装置と、
該電力変換装置を制御する制御手段とを備え、
該制御手段は、前記電力系統の状態量に基づいて、有効電力制御目標値および無効電力制御目標値を演算する有効・無効電力制御目標値演算部と、前記有効・無効電力制御目標値演算部によって演算された前記有効電力制御目標値と前記無効電力制御目標値に基づいて、前記電力変換装置から出力する出力電圧の振幅および電力系統電圧との位相差の指令値を演算する振幅・位相差指令値演算部とを有することを特徴とする電力系統安定化装置。
An electric power system stabilizing device connected to an electric power system and suppressing and stabilizing the electric power system,
An electric double layer capacitor used as a power storage device;
A power converter connected to the electric double layer capacitor and converting direct current to alternating current and alternating current to direct current;
Control means for controlling the power converter,
The control means includes an active / reactive power control target value calculation unit that calculates an active power control target value and a reactive power control target value based on a state quantity of the power system, and the active / reactive power control target value calculation unit. Based on the active power control target value and the reactive power control target value calculated by the above, the amplitude / phase difference for calculating the command value of the phase difference between the amplitude of the output voltage output from the power converter and the power system voltage A power system stabilizing device having a command value calculation unit.
前記電力系統の状態量は、有効電力制御用入力信号としての母線周波数または発電機速度であり、無効電力制御用入力信号としての母線電圧であることを特徴とする請求項1記載の電力系統安定化装置。   2. The power system stability according to claim 1, wherein the state quantity of the power system is a bus frequency or a generator speed as an input signal for active power control and a bus voltage as an input signal for reactive power control. Device. 前記有効・無効電力制御目標値演算部は、系統事故を検出する系統事故検出部と、
前記母線周波数または発電機速度に基づいて周波数変動を検出する周波数変動検出部と、前記周波数変動検出部から検出される周波数変動に基づいて有効電力制御目標値を算定する有効電力制御目標値算定部と、事故時と平常時との制御を切り替える事故時・平常時制御切替部とを備え、前記事故時・平常時制御切替部は、前記事故時には、前記有効電力制御目標値を強制的に最大の吸収量とするよう演算するように制御を切り替えることを特徴とする請求項1または2記載の電力系統安定化装置。
The active / reactive power control target value calculation unit includes a system fault detection unit for detecting a system fault,
A frequency fluctuation detection unit that detects a frequency fluctuation based on the bus frequency or the generator speed, and an active power control target value calculation part that calculates an active power control target value based on the frequency fluctuation detected from the frequency fluctuation detection unit And an accident / normal control switching unit that switches between an accident control and a normal control, and the accident / normal control switching unit compulsorily maximizes the active power control target value during the accident. The power system stabilizing device according to claim 1, wherein the control is switched so that the amount of absorption is calculated.
前記事故時・平常時制御切替部は、前記事故時の制御を、発電機が減速を開始する前に終了させ、平常時の制御に切り替えることを特徴とする請求項3記載の電力系統安定化装置。   The power system stabilization according to claim 3, wherein the accident / normal-time control switching unit terminates the control at the time of the accident before the generator starts decelerating and switches to normal-time control. apparatus.
JP2010272565A 2010-12-07 2010-12-07 Power system stabilizer Expired - Fee Related JP5436400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272565A JP5436400B2 (en) 2010-12-07 2010-12-07 Power system stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272565A JP5436400B2 (en) 2010-12-07 2010-12-07 Power system stabilizer

Publications (2)

Publication Number Publication Date
JP2012125019A true JP2012125019A (en) 2012-06-28
JP5436400B2 JP5436400B2 (en) 2014-03-05

Family

ID=46505898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272565A Expired - Fee Related JP5436400B2 (en) 2010-12-07 2010-12-07 Power system stabilizer

Country Status (1)

Country Link
JP (1) JP5436400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003619A1 (en) * 2018-06-27 2020-01-02 株式会社日立製作所 Power conversion system
JP6888173B1 (en) * 2020-03-30 2021-06-16 三菱電機株式会社 How to control frequency fluctuations in storage battery systems and AC power systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585276B (en) * 2020-05-18 2021-08-17 国网重庆市电力公司电力科学研究院 PSS parameter online setting method and device and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150744A (en) * 1990-10-15 1992-05-25 Hitachi Ltd Controller for superconducting energy storing system
JPH1127874A (en) * 1997-07-04 1999-01-29 Hitachi Ltd Power storage system usign secondary battery
WO2009136640A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150744A (en) * 1990-10-15 1992-05-25 Hitachi Ltd Controller for superconducting energy storing system
JPH1127874A (en) * 1997-07-04 1999-01-29 Hitachi Ltd Power storage system usign secondary battery
WO2009136640A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003619A1 (en) * 2018-06-27 2020-01-02 株式会社日立製作所 Power conversion system
JP2020005395A (en) * 2018-06-27 2020-01-09 株式会社日立製作所 Power conversion system
JP7054653B2 (en) 2018-06-27 2022-04-14 株式会社日立インダストリアルプロダクツ Power conversion system
JP6888173B1 (en) * 2020-03-30 2021-06-16 三菱電機株式会社 How to control frequency fluctuations in storage battery systems and AC power systems
WO2021199125A1 (en) * 2020-03-30 2021-10-07 三菱電機株式会社 Storage battery system and method for suppressing fluctuation in frequency of ac power system
US11973347B2 (en) 2020-03-30 2024-04-30 Mitsubishi Electric Corporation Storage battery system and method for suppressing fluctuation in frequency of AC power system

Also Published As

Publication number Publication date
JP5436400B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Lundberg Wind farm configuration and energy efficiency studies-series DC versus AC layouts
AU2012201439B2 (en) Circuits for DC energy stores
Terazono et al. Grid frequency regulation support from back-to-back motor drive system with virtual-synchronous-generator-based coordinated control
RU2682917C2 (en) Static exciter system for generators
JP2007129845A (en) Power quality maintaining controller
Gkavanoudis et al. Fault ride-through capability of a DFIG in isolated grids employing DVR and supercapacitor energy storage
JP2016538819A (en) Power generation system, power control method, and device protection method
JP5436400B2 (en) Power system stabilizer
JP4166216B2 (en) Electric railway AC feeder system
Bisen et al. Comparison between SVC and STATCOM FACTS devices for power system stability enhancement
Wang et al. Start-up control and grid integration characteristics of 300 MVar synchronous condenser with voltage sourced converter-based SFC
Li et al. Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system
KR100768391B1 (en) A reduction conntrol of output harmonics in statcom circuit
Salemnia et al. Mitigation of subsynchronous oscillations by 48-pulse VSC STATCOM using remote signal
Sekhar et al. Application of DVR to improve voltage profile of indian railway traction system
Al-Diab et al. Integration of flywheel energy storage system in production lines for voltage drop compensation
Rajpoot et al. Review and utility of FACTS controller for traction system
JP2016535583A (en) Method for protecting device and power generation system
JP7054653B2 (en) Power conversion system
Kinjo et al. Output leveling of wind power generation system by EDLC energy storage system
JP2016101030A (en) Power transmission system and control method therefor
Al-Diab et al. Unbalanced voltage drops compensations using flywheel energy storage system
Annakkage et al. Control of VSC to emulate the inertia support of a synchronous machine
D’Ambrosio et al. Design of power peak shaving controller for single-phase AC railway systems
Meng et al. Fault mechanism analysis and ride-through strategy of adjustable speed drive to voltage sag

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees