JP2012122554A - Facility for preservation and re-gasification of liquefied gas, and method for re-liquefying boil-off gas - Google Patents

Facility for preservation and re-gasification of liquefied gas, and method for re-liquefying boil-off gas Download PDF

Info

Publication number
JP2012122554A
JP2012122554A JP2010274631A JP2010274631A JP2012122554A JP 2012122554 A JP2012122554 A JP 2012122554A JP 2010274631 A JP2010274631 A JP 2010274631A JP 2010274631 A JP2010274631 A JP 2010274631A JP 2012122554 A JP2012122554 A JP 2012122554A
Authority
JP
Japan
Prior art keywords
gas
boil
reliquefaction
heat exchanger
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010274631A
Other languages
Japanese (ja)
Other versions
JP5761977B2 (en
Inventor
Masaru Oka
勝 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010274631A priority Critical patent/JP5761977B2/en
Publication of JP2012122554A publication Critical patent/JP2012122554A/en
Application granted granted Critical
Publication of JP5761977B2 publication Critical patent/JP5761977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Abstract

PROBLEM TO BE SOLVED: To provide a facility for preservation and re-gasification of liquefied gas, which can use a compact heat exchanger when performing heat exchange between liquefied gas before re-gasification and boil-off gas to re-liquefy the boil-off gas.SOLUTION: An apparatus 1 for re-liquefying boil-off gas, includes: the heat exchanger 10 for re-liquefying, which concentrates boil-off gas by heat exchange with liquefied natural gas (LNG) introduced to an apparatus for re-gasification; compressors 5, 6, 9 for re-liquefying, which compress the boil-off gas introduced to the heat exchanger 10 for re-liquefying; and a desuperheater 16 disposed upstream of a boil-off gas flow of the heat exchanger 10 for re-liquefying and spraying the LNG to increase the wetness of the boil-off gas.

Description

本発明は、ボイルオフガスを再液化する再液化装置を備えた液化ガス貯蔵・再ガス化設備に関するものである。   The present invention relates to a liquefied gas storage / regasification facility provided with a reliquefaction device for reliquefying boil-off gas.

例えば、LNG(液化天然ガス)を受け取り、貯蔵し、再ガス化する洋上浮体であるFSRU(Floating Storage and Regasification Unit)やFPSO(Floating Production, Storage and Offloading)には、LNGを貯蔵するLNG貯蔵タンク(液化ガス貯蔵タンク)が設けられている。このLNG貯蔵タンク内では、不可避的な侵入熱、及びLNG受け入れによる撹拌等によってLNGが蒸発気化し、ボイルオフガス(以下「BOG」という。)が発生する。このBOGによってLNG貯蔵タンク内の圧力が上昇することを回避しつつ内圧を一定に保つために、BOGをタンクから抜き出して燃焼処理または大気開放するか、再び液に戻して(再液化して)LNG貯蔵タンク内に戻す方法がある。BOGを再液化してLNG貯蔵タンク内に戻す方法としては、LNG貯蔵タンクから抜き出したBOGを圧縮機により加圧して、冷凍機によって発生させた冷熱で冷却させて凝縮させる方法が一般に用いられている(特許文献1参照)。このような用途に用いられる冷凍機としては、窒素等を一次冷媒として用いたブレイトンサイクルが用いられる。   For example, LNG storage tanks that store LNG in FSRU (Floating Storage and Regasification Unit) and FPSO (Floating Production, Storage and Offloading) that receive, store, and regasify LNG (liquefied natural gas) (Liquefied gas storage tank) is provided. In this LNG storage tank, LNG evaporates due to inevitable intrusion heat, stirring by LNG reception, etc., and boil-off gas (hereinafter referred to as “BOG”) is generated. In order to keep the internal pressure constant while avoiding an increase in the pressure in the LNG storage tank due to this BOG, the BOG is extracted from the tank and subjected to combustion treatment or open to the atmosphere, or returned to the liquid (reliquefied again). There is a method of returning to the LNG storage tank. As a method of reliquefying BOG and returning it to the LNG storage tank, a method is generally used in which BOG extracted from the LNG storage tank is pressurized by a compressor, cooled by the cold generated by the refrigerator, and condensed. (See Patent Document 1). As a refrigerator used for such applications, a Brayton cycle using nitrogen or the like as a primary refrigerant is used.

特開2005−265170号公報JP 2005-265170 A

しかし、従来のブレイトンサイクルを用いた冷却方式では、圧縮機や膨張機といった大規模なプラントを構成する必要があり、また、その取扱いにも所定の熟練度を要するといった問題がある。   However, the conventional cooling method using the Brayton cycle requires a large-scale plant such as a compressor or an expander, and has a problem that a predetermined skill level is required for handling the plant.

本発明は、液化ガスを大量にガス化する設備において、液化ガスとボイルオフガスとを熱交換させてボイルオフガスを再液化する際に、コンパクトな特殊熱交換器を用いることができるようにし、液化ガス貯蔵再ガス化設備およびボイルオフガス再液化方法を提供することを目的とする。   The present invention enables a compact special heat exchanger to be used when re-liquefying the boil-off gas by exchanging heat between the liquefied gas and the boil-off gas in a facility for gasifying a large amount of the liquefied gas. An object is to provide a gas storage regasification facility and a boil-off gas reliquefaction method.

上記課題を解決するために、本発明の液化ガス貯蔵再ガス化設備およびボイルオフガス再液化方法は以下の手段を採用する。
すなわち、本発明にかかる液化ガス貯蔵再ガス化設備は、液化ガスを貯蔵する液化ガス貯蔵タンクと、該液化ガス貯蔵タンク内の液化ガスを外部へと払い出す際に液化ガスをガス化する再ガス化装置と、前記液化ガス貯蔵タンク内の液化ガスから気化したボイルオフガスを再液化するボイルオフガス再液化装置と、を備えた液化ガス貯蔵再ガス化設備において、前記ボイルオフガス再液化装置は、前記再ガス化装置へと導かれる液化ガスと熱交換して前記ボイルオフガスを凝縮させる再液化用熱交換器と、該再液化用熱交換器へと導かれるボイルオフガスを圧縮する再液化用圧縮機と、前記再液化用熱交換器のボイルオフガス流れ上流側に配置され、前記液化ガスの一部を噴霧することによって前記ボイルオフガスの湿り度を増加させる緩熱器とを備えていることを特徴とする。
In order to solve the above problems, the liquefied gas storage and regasification facility and the boil-off gas reliquefaction method of the present invention employ the following means.
That is, the liquefied gas storage and regasification facility according to the present invention includes a liquefied gas storage tank that stores the liquefied gas, and a recycle that gasifies the liquefied gas when the liquefied gas in the liquefied gas storage tank is discharged to the outside. In a liquefied gas storage and regasification facility comprising a gasifier and a boiloff gas reliquefaction device for reliquefying the boiloff gas vaporized from the liquefied gas in the liquefied gas storage tank, the boiloff gas reliquefaction device comprises: A heat exchanger for reliquefaction that condenses the boil-off gas by exchanging heat with the liquefied gas led to the regasifier, and a compression for reliquefaction that compresses the boil-off gas led to the heat exchanger for reliquefaction And slow heat that increases the wetness of the boil-off gas by spraying a part of the liquefied gas, disposed on the upstream side of the boil-off gas flow of the reliquefaction heat exchanger Characterized in that it comprises and.

ボイルオフガスを凝縮させる再液化用熱交換器へと導かれるボイルオフガスを、再液化用又はボイラ用等のその他の圧縮機によって昇圧し、凝縮圧力を上げることによって液化ガスとの熱的接触による凝縮能力を得る。凝縮器に導入するガスは事前に、液化ガスを噴霧することによってボイルオフガスの湿り度を増加させる緩熱器を設けることにより、再液化用熱交換器に入る前のボイルオフガスを緩熱することが出きることとし、最も低温にする場合は飽和状態となる。これにより、再液化用熱交換器のボイルオフガス入口における液化ガス(クーラント側)との温度差を小さくすることができるが、これは本発明で使用する事を想定する再液化用熱交換器であるアルミ式プレートフィン熱交換器には温度勾配により発生するストレスへの対策上、不可欠な要件である。
また、本発明によれば、外部に払い出す際に再ガス化装置にて再ガス化される液化ガスの顕熱を再液化用熱交換器にて冷熱として利用してボイルオフガスを再液化することができるので、追加で冷熱を発生させる必要がなく、総合的なエネルギー効率が改善される。
Condensation by thermal contact with the liquefied gas by boosting the condensing pressure by boosting the boil-off gas led to the re-liquefaction heat exchanger that condenses the boil-off gas by another compressor such as re-liquefaction or boiler Gain ability. The gas to be introduced into the condenser is preheated with a slow heat generator that increases the wetness of the boiloff gas by spraying the liquefied gas in advance, thereby slowing down the boiloff gas before entering the heat exchanger for reliquefaction. When it reaches the lowest temperature, it becomes saturated. As a result, the temperature difference from the liquefied gas (coolant side) at the boil-off gas inlet of the reliquefaction heat exchanger can be reduced, but this is a reliquefaction heat exchanger assumed to be used in the present invention. An aluminum plate fin heat exchanger is an indispensable requirement for countermeasures against stress caused by temperature gradients.
Further, according to the present invention, the boil-off gas is reliquefied by using the sensible heat of the liquefied gas that is regasified by the regasifier when discharged outside as cold heat in the reliquefaction heat exchanger. As a result, there is no need to generate additional cooling and overall energy efficiency is improved.

再液化用熱交換器としてプレート式熱交換器を採用することにより、例えばシェル・アンド・チューブ式熱交換器に比べて、よりコンパクトな設備を実現し、狭い船上や浮体上での配置可能性において改善する。プレート式熱交換器としては、例えばステンレス製またはアルミブレーズ式があるが、本案によれば安価なアルミ製プレートのブレーズ接合方式を適用することができる。   By adopting a plate-type heat exchanger as a heat exchanger for reliquefaction, it is possible to realize a more compact facility than a shell-and-tube heat exchanger, for example, and it can be placed on a narrow ship or on a floating body. To improve. As the plate heat exchanger, for example, there are stainless steel or aluminum blazed types, but according to the present plan, an inexpensive blazed joining method of aluminum plates can be applied.

さらに、本発明の液化ガス貯蔵再ガス化設備では、前記液化ガス貯蔵タンク内の前記ボイルオフガスをボイラへと導く燃料ガス圧縮機を備え、該燃料ガス圧縮機は、吐出量を制御する容量制御弁と、ボイルオフガスを圧縮する羽根車を回転させる回転数可変とされたモータとを備えるとともに、前記再液化用圧縮機として併用され、前記容量制御弁は、前記ボイラへ供給する前記ボイルオフガスの流量を調整するボイラ用燃料ガス弁の開度に基づいて、その開度が制御され、前記モータは、前記容量制御弁が所定の開度範囲となるように、その回転数が制御されることを特徴とする。   Furthermore, the liquefied gas storage and regasification facility of the present invention includes a fuel gas compressor that guides the boil-off gas in the liquefied gas storage tank to a boiler, and the fuel gas compressor has a capacity control for controlling a discharge amount. And a motor having a variable rotation speed for rotating an impeller that compresses boil-off gas, and is used in combination as the reliquefaction compressor, and the capacity control valve is configured to supply the boil-off gas to the boiler. The opening degree is controlled based on the opening degree of the boiler fuel gas valve that adjusts the flow rate, and the rotation speed of the motor is controlled so that the capacity control valve is in a predetermined opening range. It is characterized by.

燃料ガス圧縮機の容量制御弁の開度は、ボイラへ供給するボイルオフガスの流量を調整するボイラ用燃料ガス弁の開度に基づいて制御される。ボイラ用燃料ガス弁の開度はボイラの需要に応じて決め、燃料ガス圧縮機の負荷制御はこの弁開度を見ながら最も制御性の良い開度近辺となるように調整するのが一般的であるが、燃料ガス圧縮機の容量制御時に再循環弁が開いたり、急激に圧縮機負荷制御が動いたりした場合、一定の吐出圧力が得られず、ガス燃焼を緊急停止しなければならなくなる場合がある。特にボイラの需要が低下して燃料ガス消費量が減少すると、ボイラ用燃料ガス弁の開度が減少し、これに伴い圧縮機の容量制御手段(通常は吸入にIGVやDGVなどのガイドベーン、又は吸入調整弁が適用する)の開度も減少させられることになるが、これにより圧縮機吐出圧も一緒に下がるので再液化用の一次圧縮機として併用する場合には、再液化プロセスにおける凝縮圧も下がり、凝縮効率が悪化する問題がある。
本発明では、容量制御弁の開度が所定の開度範囲となるように圧縮機モータの回転数を調整し、圧縮機の容量制御機構の開度を所望範囲に維持できる様にする。これにより吐出圧を高く維持し、再液化用熱交換器において高い凝縮能力を得ることができる。
なお、容量制御弁の「所定の開度範囲」としては、容量制御弁の制御性が良い開度範囲例えば、80〜95%の範囲、とする。
The opening degree of the capacity control valve of the fuel gas compressor is controlled based on the opening degree of the boiler fuel gas valve that adjusts the flow rate of the boil-off gas supplied to the boiler. The opening of the fuel gas valve for the boiler is determined according to the demand of the boiler, and the load control of the fuel gas compressor is generally adjusted to be close to the opening with the best controllability while observing this valve opening. However, if the recirculation valve opens or the compressor load control suddenly moves during capacity control of the fuel gas compressor, a constant discharge pressure cannot be obtained, and gas combustion must be stopped urgently. There is a case. In particular, when the demand for boilers decreases and the fuel gas consumption decreases, the opening of the fuel gas valve for the boiler decreases, and accordingly, compressor capacity control means (usually guide vanes such as IGV and DGV for suction, (Or the suction adjustment valve is applied), the compressor discharge pressure will also be reduced, so that when used together as a primary compressor for reliquefaction, condensation in the reliquefaction process will occur. There is a problem that the pressure also decreases and the condensation efficiency deteriorates.
In the present invention, the rotation speed of the compressor motor is adjusted so that the opening degree of the capacity control valve falls within a predetermined opening range, so that the opening degree of the capacity control mechanism of the compressor can be maintained within a desired range. As a result, the discharge pressure can be kept high, and a high condensing capacity can be obtained in the heat exchanger for reliquefaction.
The “predetermined opening range” of the capacity control valve is an opening range where the controllability of the capacity control valve is good, for example, a range of 80 to 95%.

さらに、本発明の液化ガス貯蔵再ガス化設備では、前記燃料ガス圧縮機の吐出圧力が所定値以下となった場合に、前記ボイラ用燃料ガス弁の開度制御の目標値を減じるように再設定することを特徴とする。   Further, in the liquefied gas storage and regasification facility of the present invention, when the discharge pressure of the fuel gas compressor becomes a predetermined value or less, the reopening control target value of the boiler fuel gas valve is reduced so as to reduce the target value. It is characterized by setting.

燃料ガス圧縮機の吐出圧力が低下すると、再液化用熱交換器における凝縮圧力が低下して凝縮能力が減少してしまう。そこで、燃料ガス圧縮機の吐出圧力が所定値以下となった場合には、ボイラ用燃料ガス弁の開度制御の目標値を減じることとすることにより、ボイラ用ガス弁前後における差圧を大きくして、ボイラ用ガス弁の上流側圧力、すなわち燃料ガス圧縮機の吐出圧力を増大させることができる。   When the discharge pressure of the fuel gas compressor is lowered, the condensation pressure in the reliquefaction heat exchanger is lowered and the condensation capacity is reduced. Therefore, when the discharge pressure of the fuel gas compressor becomes a predetermined value or less, the differential pressure before and after the boiler gas valve is increased by reducing the target value of the opening control of the boiler fuel gas valve. Thus, the upstream pressure of the boiler gas valve, that is, the discharge pressure of the fuel gas compressor can be increased.

さらに、本発明の液化ガス貯蔵再ガス化設備では、前記液化ガス貯蔵タンク内の前記ボイルオフガスをボイラへと導く燃料ガス圧縮機を備え、前記再液化用圧縮機は、前記燃料ガス圧縮機とは別に設けられ、該燃料ガス圧縮機の上流側のボイルオフガスを吸入して前記再液化用熱交換器側へと吐出することを特徴とする。   The liquefied gas storage and regasification facility of the present invention further includes a fuel gas compressor that guides the boil-off gas in the liquefied gas storage tank to a boiler, and the reliquefaction compressor includes the fuel gas compressor and the fuel gas compressor. The boil-off gas upstream of the fuel gas compressor is sucked and discharged to the re-liquefaction heat exchanger side.

再液化用圧縮機を、燃料ガス圧縮機とは別とし(すなわち燃料ガス圧縮機を再液化用圧縮機と併用せず)、燃料ガス圧縮機の上流側のボイルオフガスを導き圧縮することにより、ボイラの需要に応じて運転状態が変更される燃料ガス圧縮機とは独立して再液化用圧縮機を運転することができ、安定した制御が可能となる。特に、燃料ガス圧縮機としての所要容量が大きく、燃料ガス圧縮機の吐出圧力が比較的小さい範囲で運用される場合に有効である。   By separating the reliquefaction compressor from the fuel gas compressor (i.e., not using the fuel gas compressor in combination with the reliquefaction compressor) and guiding and compressing the boil-off gas upstream of the fuel gas compressor, The reliquefaction compressor can be operated independently of the fuel gas compressor whose operation state is changed according to the demand of the boiler, and stable control becomes possible. This is particularly effective when the required capacity of the fuel gas compressor is large and the discharge pressure of the fuel gas compressor is operated in a relatively small range.

また、本発明のボイルオフガス再液化方法は、液化ガスを貯蔵する液化ガス貯蔵タンクと、該液化ガス貯蔵タンク内の液化ガスを外部へと払い出す際に液化ガスをガス化する再ガス化装置と、前記液化ガス貯蔵タンク内の液化ガスから気化したボイルオフガスを再液化するボイルオフガス再液化装置と、を備えた液化ガス貯蔵再ガス化設備に用いられるボイルオフガス再液化方法において、前記ボイルオフガス再液化装置は、前記再ガス化装置へと導かれる液化ガスと熱交換して前記ボイルオフガスを凝縮させる再液化用熱交換器と、該再液化用熱交換器へと導かれるボイルオフガスを圧縮する再液化用圧縮機と、前記再液化用熱交換器のボイルオフガス流れ上流側に配置され、前記液化ガスの一部を噴霧することによって前記ボイルオフガスを減温させる緩熱器とを備え、前記緩熱器から前記再液化用熱交換器へボイルオフガスを供給することによってボイルオフガスの再液化を行うことを特徴とする。   The boil-off gas reliquefaction method of the present invention includes a liquefied gas storage tank that stores liquefied gas, and a regasification device that gasifies the liquefied gas when the liquefied gas in the liquefied gas storage tank is discharged to the outside. And a boil-off gas re-liquefaction device for re-liquefying the boil-off gas vaporized from the liquefied gas in the liquefied gas storage tank, in the boil-off gas re-liquefaction method used in the liquefied gas storage and re-gasification equipment, The reliquefaction device compresses the reliquefaction heat exchanger that exchanges heat with the liquefied gas led to the regasification device to condense the boiloff gas, and the boiloff gas led to the reliquefaction heat exchanger. The reliquefaction compressor and the boiloff gas flow upstream of the reliquefaction heat exchanger are disposed on the upstream side of the boiloff gas flow by spraying a part of the liquefied gas. And a slow heat sink to decrease the temperature of the, and performs re-liquefaction of boil-off gas by supplying the BOG to the reliquefaction heat exchanger from the slow-heater.

ボイルオフガスを凝縮させる再液化用熱交換器へと導かれるボイルオフガスを、再液化用圧縮機によって昇圧し、凝縮圧力を上げることによって液化能力を増大させる。さらに、液化ガスを噴霧することによってボイルオフガスを減温させる緩熱器を設けることにより、再液化用熱交換器に入る前のボイルオフガスを飽和状態に近づけることができる。これにより、再液化用熱交換器のボイルオフガス入口における液化ガス(クーラント)との温度差を小さくして再液化用熱交換器の熱交換負荷を減らすとともに、同温度差に設計上の制限を設けているアルミ製プレートブレーズ式のようなコンパクトな熱交換器の採用も含め、種々の熱交換器を選定することができる。
また、本発明によれば、外部に払い出す際に再ガス化装置にて再ガス化される液化ガスの顕熱を再液化用熱交換器にて冷熱として利用してボイルオフガスを再液化することができるので、液化ガス貯蔵最ガス化設備の総合的なエネルギー効率改善に寄与する。
The boil-off gas led to the re-liquefaction heat exchanger that condenses the boil-off gas is increased in pressure by the re-liquefaction compressor and the liquefaction capacity is increased by increasing the condensation pressure. Furthermore, the boil-off gas before entering the heat exchanger for reliquefaction can be brought close to saturation by providing a slow heat generator that reduces the temperature of the boil-off gas by spraying the liquefied gas. As a result, the temperature difference from the liquefied gas (coolant) at the boil-off gas inlet of the reliquefaction heat exchanger is reduced to reduce the heat exchange load of the reliquefaction heat exchanger, and design restrictions are imposed on the same temperature difference. Various heat exchangers can be selected including the adoption of a compact heat exchanger such as an aluminum plate blazed type.
Further, according to the present invention, the boil-off gas is reliquefied by using the sensible heat of the liquefied gas that is regasified by the regasifier when discharged outside as cold heat in the reliquefaction heat exchanger. Therefore, it contributes to improving the overall energy efficiency of the liquefied gas storage maximum gasification facility.

本発明によれば、液化ガスを噴霧することによってボイルオフガスを減温させる緩熱器を設けることにより、再液化用熱交換器に入る前のボイルオフガスを飽和状態に近づけ、再液化用熱交換器のボイルオフガス入口における液化ガスとの温度差を小さくして再液化用熱交換器の熱交換負荷を減らすとともに、同温度差に設計上の制限を設けているアルミ製プレートブレーズ式のようなコンパクトな熱交換器の採用も含め、種々の熱交換器を選定することができる。   According to the present invention, the boil-off gas before entering the re-liquefaction heat exchanger is brought close to saturation by providing a slow heat generator that reduces the temperature of the boil-off gas by spraying the liquefied gas. The temperature difference with the liquefied gas at the boil-off gas inlet of the cooler is reduced to reduce the heat exchange load of the heat exchanger for reliquefaction, and the aluminum plate blazed type is equipped with design restrictions on the temperature difference. Various heat exchangers can be selected including the adoption of a compact heat exchanger.

本発明の第1実施形態にかかるボイルオフガス再液化装置を示した概略図である。It is the schematic which showed the boil off gas reliquefaction apparatus concerning 1st Embodiment of this invention. 図1に示した緩熱器の具体的構成を示した縦断面図である。It is the longitudinal cross-sectional view which showed the specific structure of the heat sink shown in FIG. 再液化用熱交換器における温度変化を示したグラフである。It is the graph which showed the temperature change in the heat exchanger for reliquefaction. 図1に示した燃料ガス圧縮機の制御を示した制御ブロック図である。FIG. 2 is a control block diagram showing control of the fuel gas compressor shown in FIG. 1. 図4の制御を行った燃料ガス圧縮機の流量と圧力の関係を示したグラフである。It is the graph which showed the relationship between the flow volume and pressure of the fuel gas compressor which performed control of FIG. 比較例としての燃料ガス圧縮機の制御を示した制御ブロック図である。It is the control block diagram which showed control of the fuel gas compressor as a comparative example. 図6の制御を行った燃料ガス圧縮機の流量と圧力の関係を示したグラフである。It is the graph which showed the relationship between the flow volume and pressure of the fuel gas compressor which performed control of FIG. 本発明の第2実施形態にかかるボイルオフガス再液化装置を示した概略図である。It is the schematic which showed the boil off gas reliquefaction apparatus concerning 2nd Embodiment of this invention.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について説明する。
FSRU(Floating Storage and Regasification Unit)やFPSO(Floating Production, Storage and Offloading)といった洋上浮体やLNG船等の船舶には、LNG貯蔵設備(液化ガス貯蔵再ガス化設備)が設けられている。このLNG貯蔵設備のLNG貯蔵タンク(液化ガス貯蔵タンク)内で発生するボイルオフガス(以下「BOG」という。)を再液化するためのBOG再液化装置1が図1に示されている。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
The first embodiment of the present invention will be described below.
LNG storage facilities (liquefied gas storage and regasification facilities) are provided in ships such as floating bodies such as FSRU (Floating Storage and Regasification Unit) and FPSO (Floating Production, Storage and Offloading) and LNG ships. FIG. 1 shows a BOG reliquefaction apparatus 1 for reliquefying boil-off gas (hereinafter referred to as “BOG”) generated in an LNG storage tank (liquefied gas storage tank) of the LNG storage facility.

図1に示すように、BOG再液化装置1は、LNG貯蔵タンクの蒸発ヘッダ3から導かれるBOGを圧縮する2台の燃料ガス圧縮機5,6を備えている。各燃料ガス圧縮機5,6は、ボイラ7へ燃料であるBOGを圧送するものである。各燃料ガス圧縮機5,6からの吐出ガスは、ボイラ7に導かれるだけでなく、後述する再液化用熱交換器10側にも導かれるようになっている。すなわち、燃料ガス圧縮機5,6は、再液化用圧縮機としても併用されるようになっている。各燃料ガス圧縮機5,6は、ターボ式の圧縮機とされ、インバータ装置によって回転数可変とされたモータ(図4の符号14参照)によって羽根車が回転させられるようになっている。また、各燃料ガス圧縮機5,6には、容量制御弁としてのIGV(Inlet Guide Vane;図4の符号12参照)が設けられており、吐出容量が可変とされている。なお、容量制御弁として、DGV(Discharge Guide Vane)を用いても良い。   As shown in FIG. 1, the BOG reliquefaction device 1 includes two fuel gas compressors 5 and 6 that compress BOG guided from the evaporation header 3 of the LNG storage tank. Each of the fuel gas compressors 5 and 6 pumps BOG as fuel to the boiler 7. The gas discharged from each of the fuel gas compressors 5 and 6 is guided not only to the boiler 7 but also to the reliquefaction heat exchanger 10 described later. That is, the fuel gas compressors 5 and 6 are used together as a reliquefaction compressor. Each of the fuel gas compressors 5 and 6 is a turbo type compressor, and an impeller is rotated by a motor (see reference numeral 14 in FIG. 4) whose rotational speed is variable by an inverter device. Each of the fuel gas compressors 5 and 6 is provided with an IGV (Inlet Guide Vane; see reference numeral 12 in FIG. 4) as a capacity control valve, and the discharge capacity is variable. Note that a DGV (Discharge Guide Vane) may be used as the capacity control valve.

燃料ガス圧縮機5,6の再液化用熱交換器10側の下流側には、ブースタ9が設けられている。ブースタ9は、ターボ式の圧縮機とされ、燃料ガス圧縮機5,6から吐出されたBOGを更に昇圧する。ブースタ9及び燃料ガス圧縮機5,6によって、再液化用圧縮機が構成される。なお、燃料ガス圧縮機5,6から得られる吐出ガス圧力が十分に高い圧力(例えば0.45MPa(絶対圧)以上)が得られる場合には、ブースタ9を省略することができる。   A booster 9 is provided downstream of the fuel gas compressors 5 and 6 on the reliquefaction heat exchanger 10 side. The booster 9 is a turbo compressor, and further boosts the BOG discharged from the fuel gas compressors 5 and 6. The booster 9 and the fuel gas compressors 5 and 6 constitute a reliquefaction compressor. Note that the booster 9 can be omitted when the discharge gas pressure obtained from the fuel gas compressors 5 and 6 is sufficiently high (for example, 0.45 MPa (absolute pressure) or more).

ブースタ9の下流側には、緩熱器16が設けられている。緩熱器16は、LNGを噴霧することによってBOGを減温させる。緩熱器16では、飽和状態まで減温することが好ましいが、飽和状態近傍まで到達すれば目的は果たす。図2には、緩熱器16の詳細が示されている。緩熱器16は、中空円筒状の容器18を備えている。容器18の上部には排出口20が設けられ、容器18の側部には導入口22が設けられている。導入口22はブースタ9の吐出側に接続され、排出口は再液化用熱交換器10に接続する。容器18の上方側部には、LNG導入管24が挿入する。LNG導入管24は、再液化用熱交換器10にて熱交換を終えたLNGの一部を分岐して導くLNG分岐管26(図1参照)に接続される。LNG導入管24の下部には複数の散布孔が形成されており、導入されたLNGが下方に向けて散布されるようになっている。LNG導入管24と下方の導入口22との間の空間には、気液接触用多孔体28が配置されており、散布されたLNGと導入されたBOGとが接触してBOG温度が減温されるようになっている。LNG導入管24と排出口20との間の空間には、ミストセパレータ30が配置されており、再液化用熱交換器10へ向けて排出される前のBOGからミストを分離除去する。   A slow heat generator 16 is provided on the downstream side of the booster 9. The slow heatr 16 reduces the temperature of the BOG by spraying LNG. In the slow heatr 16, it is preferable to reduce the temperature to the saturated state, but the purpose is achieved if the temperature reaches the vicinity of the saturated state. FIG. 2 shows details of the heat sink 16. The slow heatr 16 includes a hollow cylindrical container 18. A discharge port 20 is provided at the top of the container 18, and an introduction port 22 is provided at the side of the container 18. The inlet 22 is connected to the discharge side of the booster 9, and the outlet is connected to the reliquefaction heat exchanger 10. An LNG introduction tube 24 is inserted into the upper side portion of the container 18. The LNG introduction pipe 24 is connected to an LNG branch pipe 26 (see FIG. 1) that branches and guides a part of the LNG that has been subjected to heat exchange in the reliquefaction heat exchanger 10. A plurality of spray holes are formed in the lower part of the LNG introduction pipe 24, and the introduced LNG is sprayed downward. A gas-liquid contact porous body 28 is disposed in the space between the LNG introduction pipe 24 and the lower introduction port 22, and the sprayed LNG comes into contact with the introduced BOG to reduce the BOG temperature. It has come to be. A mist separator 30 is disposed in the space between the LNG introduction pipe 24 and the discharge port 20, and separates and removes the mist from the BOG before being discharged toward the reliquefaction heat exchanger 10.

図1に示すように、緩熱器16を通過して減温したBOGは、再液化用熱交換器10へと導かれ、LNGとの熱交換によって凝縮液化される。
再液化用熱交換器10は、アルミブレーズ式のプレート式熱交換器とされている。なお、ステンレス製も候補ではあるが、アルミブレーズ式の方が安価である。
再液化用熱交換器10へ導かれるクーラント(冷熱源)としてのLNGは、再ガス化して外部へと払い出される前のLNGが用いられ、具体的には、LNG貯蔵タンクから吸入ドラム32まで加圧移送される際のLNGが用いられる。この吸入ドラム32は、再ガス化する前の高圧液ポンプ(図示せず)の吸入部に設けられる。図1に示したLNGライン34は、LNG貯蔵タンクから高圧液ポンプへと導かれる主LNGライン(図示せず)から分岐して再合流する傍流ラインとなっている。
再液化用熱交換器10を通過した熱交換後のLNGの一部は、分岐LNG管26を介して緩熱器16へと導かれるようになっている。なお、緩熱器16へと導くLNGとして、再液化用熱交換器10に入る前のLNGを分岐したLNGを用いても良い。
As shown in FIG. 1, the BOG that has passed through the slow heatr 16 and reduced in temperature is led to the re-liquefaction heat exchanger 10 and condensed and liquefied by heat exchange with LNG.
The liquefaction heat exchanger 10 is an aluminum blazed plate heat exchanger. Stainless steel is also a candidate, but the aluminum blaze type is less expensive.
The LNG as the coolant (cold heat source) led to the reliquefaction heat exchanger 10 is LNG before being regasified and discharged to the outside. Specifically, the LNG is added from the LNG storage tank to the suction drum 32. LNG used for pressure transfer is used. The suction drum 32 is provided in a suction portion of a high-pressure liquid pump (not shown) before regasification. The LNG line 34 shown in FIG. 1 is a sidestream line that branches off from a main LNG line (not shown) led from the LNG storage tank to the high-pressure liquid pump and rejoins.
A part of the LNG after the heat exchange that has passed through the reliquefaction heat exchanger 10 is led to the slow heat exchanger 16 via the branch LNG pipe 26. In addition, as the LNG guided to the slow heat exchanger 16, an LNG branched from the LNG before entering the reliquefaction heat exchanger 10 may be used.

再液化用熱交換器10にてBOGが再液化されたLNGは、セパレータ36へと導かれる。セパレータ36では、気液が分離され、気体成分は蒸発ヘッダ3へと導かれ、液体成分はLNG貯蔵タンクへと導かれる。   The LNG from which BOG has been reliquefied by the reliquefaction heat exchanger 10 is guided to the separator 36. In the separator 36, the gas and liquid are separated, the gas component is guided to the evaporation header 3, and the liquid component is guided to the LNG storage tank.

次に、本実施形態の作用効果について説明する。
BOGを凝縮させる再液化用熱交換器10へと導かれるBOGを、再液化用圧縮機である燃料ガス圧縮機5,6及びブースタ9によって昇圧し、凝縮圧力を上げることによって液化能力を増大させることとした。さらに、LNGを噴霧することによってBOGを減温する緩熱器16を設けることにより、再液化用熱交換器10に入る前のBOGを飽和状態に近づけることができる。これにより、再液化用熱交換器10のBOG入口におけるLNG(クーラント)との温度差を小さくして再液化用熱交換器10の負荷を減らすことができる。
図3には、再液化用熱交換器10におけるBOGおよびLNG(クーラント)の温度変化が示されている。同図における横軸は熱負荷[kW]であり、縦軸は流体温度[℃]である。同図において、右側がBOG上流側、左側がLNG上流側となる。黒四角がLNGを示し、流量65kg/h,圧力0.6MPa(絶対圧)における状態を示す。黒菱形がBOGを示し、流量5560kg/h,圧力0.45MPa(絶対圧)における状態を示す。同図から分かるように、温度差が最大になるBOG入口付近でも、20℃以下の温度差に抑えることができる。これは、上述したように、減温して飽和状態に近いBOGを再液化用熱交換器10に導入したことによる効果である。BOGとLNGとの温度差が20℃以下であれば、再液化用熱交換器10にはコンパクトなアルミブレーズ式のプレート熱交換器を採用することができる。
また、外部に払い出す際に再ガス化装置にて再ガス化されるLNGの顕熱を再液化用熱交換器10にて冷熱として利用してBOGを再液化することができるので、エネルギー効率が良い。
Next, the effect of this embodiment is demonstrated.
The BOG led to the reliquefaction heat exchanger 10 that condenses the BOG is boosted by the fuel gas compressors 5 and 6 and the booster 9 which are reliquefaction compressors, and the liquefaction capacity is increased by increasing the condensation pressure. It was decided. Furthermore, by providing the slow heat generator 16 that reduces the temperature of the BOG by spraying LNG, the BOG before entering the reliquefaction heat exchanger 10 can be brought close to saturation. Thereby, the temperature difference with the LNG (coolant) at the BOG inlet of the reliquefaction heat exchanger 10 can be reduced, and the load on the reliquefaction heat exchanger 10 can be reduced.
FIG. 3 shows temperature changes of BOG and LNG (coolant) in the reliquefaction heat exchanger 10. The horizontal axis in the figure is the heat load [kW], and the vertical axis is the fluid temperature [° C.]. In the figure, the right side is the BOG upstream side, and the left side is the LNG upstream side. A black square indicates LNG, and shows a state at a flow rate of 65 kg / h and a pressure of 0.6 MPa (absolute pressure). A black rhombus indicates BOG, and shows a state at a flow rate of 5560 kg / h and a pressure of 0.45 MPa (absolute pressure). As can be seen from the figure, even in the vicinity of the BOG inlet where the temperature difference is maximum, the temperature difference can be suppressed to 20 ° C. or less. As described above, this is an effect obtained by introducing the BOG near the saturation state after reducing the temperature into the re-liquefaction heat exchanger 10. If the temperature difference between BOG and LNG is 20 ° C. or less, a compact aluminum blazed plate heat exchanger can be adopted as the reliquefaction heat exchanger 10.
In addition, since the sensible heat of LNG regasified by the regasifier when discharged to the outside can be used as cold heat in the reliquefaction heat exchanger 10, BOG can be reliquefied, so that energy efficiency Is good.

次に、図4及び図5を用いて、図1に示した燃料ガス圧縮機5,6の制御方法について説明する。以下では、説明の簡略化のために、一方の燃料ガス圧縮機6を代表例として説明する。他方の燃料ガス圧縮機5についても同様の制御が行われる。
燃料ガス圧縮機6は、上述のように、容量制御弁としてのIGV12と、回転数可変とされた電動モータ14とを備えている。
燃料ガス圧縮機6から吐出されたBOGは、図1に示したブースタ9へと導かれる一方で、ボイラ7側に導かれる。ボイラ7側へと導かれたBOGは、加熱器40を通過した後に、ボイラ用燃料ガス弁42によってボイラが所要するガス流量に調整された後に、ボイラ7へと供給されて燃焼させられる。
Next, a method for controlling the fuel gas compressors 5 and 6 shown in FIG. 1 will be described with reference to FIGS. In the following, one fuel gas compressor 6 will be described as a representative example for simplification of description. The same control is performed for the other fuel gas compressor 5.
As described above, the fuel gas compressor 6 includes the IGV 12 serving as a capacity control valve and the electric motor 14 having a variable rotation speed.
The BOG discharged from the fuel gas compressor 6 is guided to the booster 9 shown in FIG. The BOG guided to the boiler 7 side passes through the heater 40, is adjusted to a gas flow rate required by the boiler by the boiler fuel gas valve 42, and then is supplied to the boiler 7 and burned.

ボイラ用燃料ガス弁42の開度は、ボイラ7の需要に応じてその開度が決定される。具体的には、ボイラ7の需要が大きく燃料ガス消費量が増加する場合はボイラ用燃料ガス弁42の開度が大きくなる方に動き、ボイラ7の需要が小さく燃料ガス消費量が減少する場合はボイラ用燃料ガス弁42の開度が小さくなる方に動く。   The opening degree of the boiler fuel gas valve 42 is determined according to the demand of the boiler 7. Specifically, when the demand for the boiler 7 is large and the fuel gas consumption is increased, the opening degree of the boiler fuel gas valve 42 is increased, and the demand for the boiler 7 is small and the fuel gas consumption is decreased. Moves toward the smaller opening of the boiler fuel gas valve 42.

ボイラ用燃料ガス弁42が複数ある場合、現在における実開度は、高値を選択するハイセレクタ44へと入力され、例えば2つのボイラ用燃料ガス弁42の実開度のうち大きい方の開度を選択して出力され、第1PID制御器46の入力となる。第1PID制御器46には、第3PID制御器49によって設定されたボイラ用燃料ガス弁42の設定値としてのSP1が入力される。第1PID制御器46では、ハイセレクタ44から入力された実開度とSP1とを比較し、実開度がSP1よりも大きい場合は、ボイラ7側の需要が大きいと判断できるのでIGV12の開度が大きくなるように指令を出し、実開度がSP1よりも小さい場合はボイラ7側の需要が小さいと判断できるのでIGV12の開度が小さくなるように指令を出す。   When there are a plurality of boiler fuel gas valves 42, the current actual opening is input to a high selector 44 that selects a high value, for example, the larger opening of the actual opening of the two boiler fuel gas valves 42. Is selected and output, and becomes the input of the first PID controller 46. SP1 as a set value of the boiler fuel gas valve 42 set by the third PID controller 49 is input to the first PID controller 46. The first PID controller 46 compares the actual opening input from the high selector 44 with SP1, and when the actual opening is larger than SP1, it can be determined that the demand on the boiler 7 side is large, so the opening of the IGV 12 Is issued, and when the actual opening is smaller than SP1, it can be determined that the demand on the boiler 7 side is small, so the instruction is issued so that the opening of the IGV 12 is reduced.

IGV12の現在における実開度は、第2PID制御器48へと入力される。第2PID制御器48には、IGV開度設定値としてのSP2が入力される。SP2の設定値としては、IGV12の制御性が良い開度範囲とされ、例えば、70〜95%、好ましくは80〜95%の範囲とされる。第2PID制御器48では、IGV12の実開度とSP2を比較し、実開度がSP2よりも大きい場合は、IGV12の実開度が小さくなるように電動モータ14へ増速指令を出す。IGV12の実開度がSP2よりも小さい場合は、IGV12の実開度が大きくなるように電動モータ14へ減速指令を出す。   The actual actual opening of the IGV 12 is input to the second PID controller 48. The second PID controller 48 receives SP2 as the IGV opening setting value. The set value of SP2 is an opening range in which the controllability of the IGV 12 is good, for example, 70 to 95%, preferably 80 to 95%. The second PID controller 48 compares the actual opening of the IGV 12 with SP2, and if the actual opening is larger than SP2, issues a speed increase command to the electric motor 14 so that the actual opening of the IGV 12 becomes smaller. When the actual opening of the IGV 12 is smaller than SP2, a deceleration command is issued to the electric motor 14 so that the actual opening of the IGV 12 is increased.

燃料ガス圧縮機6の下流には、吐出圧力を計測するための圧力センサ50が設けられており、この圧力センサ50によって検出された圧力値Pが第3PID制御器49へと入力される。第3PID制御器49には、燃料ガス圧縮機6の吐出圧力の下限設定値としてのSP3が入力される。第3PID制御器49では、第1PID制御器46に入力されるSP1を出力するようになっており、圧力値PがSP3よりも小さい場合には、SP1が小さくなるように制御する。
第3PID制御器49の指令によってSP1が小さくなると、ボイラ用燃料ガス弁42の開度が小さくなり、ボイラ用ガス弁42における圧力損失を増大させて差圧を大きくすることができるので、同じ流量であってもボイラ用ガス弁42の上流側における圧力すなわち燃料ガス圧縮機6の吐出圧力を増大させることができる。
なお、SP1の設定は、第3PID制御器49を用いて自動的に行っても良いが、オペレータが圧力値Pを確認してSP1を手動によって変更できる構成としても良い。
A pressure sensor 50 for measuring the discharge pressure is provided downstream of the fuel gas compressor 6, and the pressure value P detected by the pressure sensor 50 is input to the third PID controller 49. The third PID controller 49 receives SP3 as a lower limit set value of the discharge pressure of the fuel gas compressor 6. The third PID controller 49 outputs SP1 input to the first PID controller 46. When the pressure value P is smaller than SP3, control is performed so that SP1 becomes smaller.
When SP1 is reduced by the command of the third PID controller 49, the opening degree of the boiler fuel gas valve 42 is reduced, and the pressure loss in the boiler gas valve 42 can be increased to increase the differential pressure. Even so, the pressure on the upstream side of the boiler gas valve 42, that is, the discharge pressure of the fuel gas compressor 6 can be increased.
The setting of SP1 may be automatically performed using the third PID controller 49, but the operator may check the pressure value P and manually change SP1.

以上のように燃料ガス圧縮機6を制御することにより、以下の作用効果が得られる。
燃料ガス圧縮機6のIGV12の開度は、ボイラ7へ供給するBOGの流量を調整するボイラ用燃料ガス弁42の開度をある一定開度にするように制御される。ボイラ用燃料ガス弁42の開度はボイラ7の需要に応じて決まるので、燃料ガス圧縮機6のIGV12の開度をボイラ用燃料ガス弁42の開度のみに依存して決定することとすると、所望の吐出圧力が得られない場合がある。すなわち、ボイラ7の需要が低下して燃料ガス消費量が減少すると、ボイラ用燃料ガス弁42の開度が減少し、これに伴いIGVの開度も減少させられることになる。
By controlling the fuel gas compressor 6 as described above, the following effects can be obtained.
The opening degree of the IGV 12 of the fuel gas compressor 6 is controlled such that the opening degree of the boiler fuel gas valve 42 that adjusts the flow rate of the BOG supplied to the boiler 7 is a certain opening degree. Since the opening degree of the boiler fuel gas valve 42 is determined according to the demand of the boiler 7, the opening degree of the IGV 12 of the fuel gas compressor 6 is determined depending only on the opening degree of the boiler fuel gas valve 42. In some cases, a desired discharge pressure cannot be obtained. That is, when the demand for the boiler 7 is reduced and the fuel gas consumption is reduced, the opening degree of the boiler fuel gas valve 42 is reduced, and accordingly, the opening degree of the IGV is also reduced.

例えば、比較例として図6に示すように、ボイラ用燃料ガス弁42の実開度とボイラ用燃料ガス弁42の開度設定値であるSP1との偏差に基づいて指令値を出力する第1PID制御器46と、この第1PID制御器46から出力される指令値に応じて一定の関数の下にIGV12及びモータ14を制御する制御部52とを備えた構成を考える。これは、一般的に考えられる燃料ガス圧縮機6のカスケード制御である。この場合、図7に示すように、流量が所定値以上の場合には、モータ14による回転数制御FQを行う。すなわち、高流量から低流量になっていくに従い、回転数を1.0から0.9,0.8といったように0.5まで徐々に回転数を下げていく。なお、回転数は定格を1.0として規格化した数値である。そして、流量が下がり所定値以下の場合には、IGV12の開度を絞っていく制御となる。すなわち、IGV12の開度を−20%,−40%というように徐々にIGV開度を徐々に絞っていく。このような制御を行うと、図7から明らかなように、低流領域でのサージラインLが下がり、すなわち低流量で高い吐出圧力が得られない運転となってしまう。これでは、燃料ガス圧縮機6を再液化用圧縮機として併用する本実施形態の場合には、再液化用熱交換器10における凝縮のために必要な圧力を得ることができない場合が発生する。   For example, as shown in FIG. 6 as a comparative example, the first PID that outputs the command value based on the deviation between the actual opening of the boiler fuel gas valve 42 and SP1 that is the opening setting value of the boiler fuel gas valve 42. Consider a configuration including a controller 46 and a controller 52 that controls the IGV 12 and the motor 14 under a certain function in accordance with a command value output from the first PID controller 46. This is generally considered cascade control of the fuel gas compressor 6. In this case, as shown in FIG. 7, when the flow rate is equal to or higher than a predetermined value, the rotational speed control FQ by the motor 14 is performed. That is, as the flow rate increases from a high flow rate to a low flow rate, the rotation number is gradually decreased from 0.5 to 0.5, such as 1.0 to 0.9, 0.8. The rotation speed is a numerical value normalized with a rating of 1.0. Then, when the flow rate decreases and is equal to or less than a predetermined value, the opening degree of the IGV 12 is controlled to be reduced. That is, the IGV opening is gradually reduced so that the opening of the IGV 12 is -20% and -40%. When such control is performed, as is apparent from FIG. 7, the surge line L in the low flow region is lowered, that is, an operation in which a high discharge pressure cannot be obtained at a low flow rate. In this case, in the case of the present embodiment in which the fuel gas compressor 6 is used as a reliquefaction compressor, the pressure required for condensation in the reliquefaction heat exchanger 10 may not be obtained.

そこで、本実施形態では、さらに、IGV12の開度が所定の開度範囲となるようにモータ14の回転数を制御することとした。これにより、IGV12の開度を所望範囲に維持できるので、所望の吐出量すなわち所望の吐出圧力を維持することができる。具体的には、図5に示すように、IGV12が所定の開度範囲となるようにIGV12の開度を制御するので、高流量側(高回転側)からIGV12の開度を絞ることになり、サージラインがL1やL2と行ったように上昇させることができる。同図におけるサージラインL1は、モータ14の回転数が1.0のときからIGV12の開度を絞り始めた場合のサージラインを示し、サージラインL2は、モータ14の回転数が0.7のときからIGV12の開度を絞り始めた場合のサージラインを示している。   Therefore, in this embodiment, the rotational speed of the motor 14 is further controlled so that the opening degree of the IGV 12 falls within a predetermined opening degree range. Thereby, since the opening degree of IGV12 can be maintained in the desired range, a desired discharge amount, ie, a desired discharge pressure, can be maintained. Specifically, as shown in FIG. 5, since the opening of the IGV 12 is controlled so that the IGV 12 falls within a predetermined opening range, the opening of the IGV 12 is reduced from the high flow rate side (high rotation side). The surge line can be raised as with L1 and L2. A surge line L1 in the figure indicates a surge line when the opening degree of the IGV 12 starts to be reduced when the rotational speed of the motor 14 is 1.0, and the surge line L2 indicates that the rotational speed of the motor 14 is 0.7. The surge line when the opening of the IGV 12 starts to be reduced is shown.

このように、本実施形態の制御方法によれば、低流量であっても高い吐出圧力をもって燃料ガス圧縮機6を運転することができる。これにより、再液化用熱交換器10へと供給されるBOGの圧力を所定値以上に維持することができ、再液化用熱交換器10において高い凝縮能力を得ることができる。   Thus, according to the control method of the present embodiment, the fuel gas compressor 6 can be operated with a high discharge pressure even at a low flow rate. As a result, the pressure of the BOG supplied to the reliquefaction heat exchanger 10 can be maintained at a predetermined value or higher, and a high condensing capacity can be obtained in the reliquefaction heat exchanger 10.

[第2実施形態]
次に、本発明の第2実施形態について、図8を用いて説明する。
本実施形態は、第1実施形態に対して、燃料ガス圧縮機を再液化用圧縮機として用いない点が相違する。したがって、第1実施形態と共通する構成については同一符号を付しその説明を省略するとともに、相違点について説明する。
図8に示されているように、2台のブースタ9a,9bが直列に接続されている。これにより、BOGは2段圧縮される。ブースタ9bの上流側は、燃料ガス圧縮機5,6の上流側に接続されている。すなわち、蒸発ヘッダ3から燃料ガス圧縮機5,6側へと導かれずに分岐点Aにて分岐されたBOGのみがブースタ9a,9bへと導かれるようになっている。
本実施形態は、上記構成とすることにより、ボイラ7の需要に応じて運転状態が変更される燃料ガス圧縮機5,6とは独立して再液化用圧縮機であるブースタ9a,9bを運転することができ、安定した制御が可能となる。特に、燃料ガス圧縮機5,6の容量が大きく、燃料ガス圧縮機5,6の吐出圧力が比較的小さい範囲で運転されるシステムに対して有効である。
なお、緩熱器16を設けることによって再液化用熱交換器10における温度差を小さくしてコンパクトな熱交換器を採用できるという効果については第1実施形態と同様である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
This embodiment is different from the first embodiment in that the fuel gas compressor is not used as a reliquefaction compressor. Therefore, components common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences are described.
As shown in FIG. 8, two boosters 9a and 9b are connected in series. As a result, the BOG is compressed in two stages. The upstream side of the booster 9 b is connected to the upstream side of the fuel gas compressors 5 and 6. That is, only the BOG branched at the branch point A without being led from the evaporation header 3 to the fuel gas compressors 5 and 6 is led to the boosters 9a and 9b.
This embodiment operates the boosters 9a and 9b, which are reliquefaction compressors, independently of the fuel gas compressors 5 and 6 whose operation state is changed according to the demand of the boiler 7 by adopting the above configuration. And stable control is possible. In particular, the present invention is effective for a system that operates in a range where the capacity of the fuel gas compressors 5 and 6 is large and the discharge pressure of the fuel gas compressors 5 and 6 is relatively small.
In addition, the effect that the temperature difference in the reliquefaction heat exchanger 10 can be reduced by providing the slow heat exchanger 16 and a compact heat exchanger can be adopted is the same as that of the first embodiment.

1 ボイルオフガス再液化装置
5,6 燃料ガス圧縮機
7 ボイラ
9,9a,9b ブースタ(再液化用圧縮機)
10 再液化用熱交換器
12 IGV(容量制御弁)
14 電動モータ
16 緩熱器
1 Boil-off gas reliquefaction device 5, 6 Fuel gas compressor 7 Boiler 9, 9a, 9b Booster (reliquefaction compressor)
10 Heat exchanger for reliquefaction 12 IGV (capacity control valve)
14 Electric motor 16 Slow heater

Claims (6)

液化ガスを貯蔵する液化ガス貯蔵タンクと、
該液化ガス貯蔵タンク内の液化ガスを外部へと払い出す際に液化ガスをガス化する再ガス化装置と、
前記液化ガス貯蔵タンク内の液化ガスから気化したボイルオフガスを再液化するボイルオフガス再液化装置と、
を備えた液化ガス貯蔵再ガス化設備において、
前記ボイルオフガス再液化装置は、前記再ガス化装置へと導かれる液化ガスと熱交換して前記ボイルオフガスを凝縮させる再液化用熱交換器と、
該再液化用熱交換器へと導かれるボイルオフガスを圧縮する再液化用圧縮機と、
前記再液化用熱交換器のボイルオフガス流れ上流側に配置され、前記液化ガスの一部を噴霧することによって前記ボイルオフガスの温度を減温させる緩熱器と、
を備えていることを特徴とする液化ガス貯蔵再ガス化設備。
A liquefied gas storage tank for storing liquefied gas; and
A regasification device for gasifying the liquefied gas when the liquefied gas in the liquefied gas storage tank is discharged to the outside;
A boil-off gas reliquefaction device for reliquefying the boil-off gas vaporized from the liquefied gas in the liquefied gas storage tank;
In the liquefied gas storage and regasification facility with
The boil-off gas reliquefaction device includes a reliquefaction heat exchanger that exchanges heat with the liquefied gas guided to the regasification device to condense the boil-off gas;
A reliquefaction compressor that compresses boil-off gas that is directed to the reliquefaction heat exchanger;
A slow heat exchanger disposed upstream of the boil-off gas flow of the re-liquefaction heat exchanger, and for reducing the temperature of the boil-off gas by spraying a part of the liquefied gas;
A liquefied gas storage and regasification facility characterized by comprising:
前記再液化用熱交換器は、アルミ製プレートブレーズ式熱交換器とされていることを特徴とする請求項1に記載の液化ガス貯蔵再ガス化設備。   The liquefied gas storage and regasification facility according to claim 1, wherein the reliquefaction heat exchanger is an aluminum plate-blazed heat exchanger. 前記液化ガス貯蔵タンク内の前記ボイルオフガスをボイラへと導く燃料ガス圧縮機を備え、
該燃料ガス圧縮機は、吐出量を制御する容量制御弁と、ボイルオフガスを圧縮する羽根車を回転させる回転数可変とされた電動モータとを備えるとともに、前記再液化用圧縮機として併用され、
前記容量制御弁は、前記ボイラへ供給する前記ボイルオフガスの流量を調整するボイラ用燃料ガス弁の開度に基づいて、その開度が制御され、
前記電動モータは、前記容量制御弁が所定の開度範囲となるように、その回転数が制御されることを特徴とする請求項1又は2に記載の液化ガス貯蔵再ガス化設備。
A fuel gas compressor for guiding the boil-off gas in the liquefied gas storage tank to a boiler;
The fuel gas compressor includes a capacity control valve for controlling the discharge amount and an electric motor having a variable rotation speed for rotating an impeller for compressing boil-off gas, and is used in combination as the reliquefaction compressor,
The opening of the capacity control valve is controlled based on the opening of a boiler fuel gas valve that adjusts the flow rate of the boil-off gas supplied to the boiler.
The liquefied gas storage and regasification facility according to claim 1 or 2, wherein the electric motor is controlled so that the rotation speed of the capacity control valve is within a predetermined opening range.
前記燃料ガス圧縮機の吐出圧力が所定値以下となった場合に、前記ボイラ用燃料ガス弁の開度を減じるように制御することを特徴とする請求項3に記載の液化ガス貯蔵再ガス化設備。   4. The liquefied gas storage and regasification according to claim 3, wherein when the discharge pressure of the fuel gas compressor becomes equal to or lower than a predetermined value, control is performed so as to reduce the opening of the fuel gas valve for the boiler. Facility. 前記液化ガス貯蔵タンク内の前記ボイルオフガスをボイラへと導く燃料ガス圧縮機を備え、
前記再液化用圧縮機は、前記燃料ガス圧縮機とは別に設けられ、該燃料ガス圧縮機の上流側のボイルオフガスを吸入して前記再液化用熱交換器側へと吐出することを特徴とする請求項1又は2に記載の液化ガス貯蔵再ガス化設備。
A fuel gas compressor for guiding the boil-off gas in the liquefied gas storage tank to a boiler;
The reliquefaction compressor is provided separately from the fuel gas compressor, and sucks boil-off gas upstream of the fuel gas compressor and discharges it to the reliquefaction heat exchanger side. The liquefied gas storage regasification facility according to claim 1 or 2.
液化ガスを貯蔵する液化ガス貯蔵タンクと、
該液化ガス貯蔵タンク内の液化ガスを外部へと払い出す際に液化ガスをガス化する再ガス化装置と、
前記液化ガス貯蔵タンク内の液化ガスから気化したボイルオフガスを再液化するボイルオフガス再液化装置と、
を備えた液化ガス貯蔵再ガス化設備に用いられるボイルオフガス再液化方法において、
前記ボイルオフガス再液化装置は、前記再ガス化装置へと導かれる液化ガスと熱交換して前記ボイルオフガスを凝縮させる再液化用熱交換器と、
該再液化用熱交換器へと導かれるボイルオフガスを圧縮する再液化用圧縮機と、
前記再液化用熱交換器のボイルオフガス流れ上流側に配置され、前記液化ガスの一部を噴霧することによって前記ボイルオフガスの湿り度を増加させる緩熱器と、
を備え、
前記緩熱器から前記再液化用熱交換器へボイルオフガスを供給することによってボイルオフガスの再液化を行うことを特徴とするボイルオフガス再液化方法。
A liquefied gas storage tank for storing liquefied gas; and
A regasification device for gasifying the liquefied gas when the liquefied gas in the liquefied gas storage tank is discharged to the outside;
A boil-off gas reliquefaction device for reliquefying the boil-off gas vaporized from the liquefied gas in the liquefied gas storage tank;
In a boil-off gas reliquefaction method used in a liquefied gas storage regasification facility comprising:
The boil-off gas reliquefaction device includes a reliquefaction heat exchanger that exchanges heat with the liquefied gas guided to the regasification device to condense the boil-off gas;
A reliquefaction compressor that compresses boil-off gas that is directed to the reliquefaction heat exchanger;
A slow heat exchanger disposed upstream of the boil-off gas flow of the reliquefaction heat exchanger, and increasing the wetness of the boil-off gas by spraying a part of the liquefied gas;
With
A boil-off gas re-liquefaction method, wherein boil-off gas is re-liquefied by supplying boil-off gas from the slow heat exchanger to the re-liquefaction heat exchanger.
JP2010274631A 2010-12-09 2010-12-09 Liquefied gas storage regasification facility and boil-off gas reliquefaction method Active JP5761977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274631A JP5761977B2 (en) 2010-12-09 2010-12-09 Liquefied gas storage regasification facility and boil-off gas reliquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274631A JP5761977B2 (en) 2010-12-09 2010-12-09 Liquefied gas storage regasification facility and boil-off gas reliquefaction method

Publications (2)

Publication Number Publication Date
JP2012122554A true JP2012122554A (en) 2012-06-28
JP5761977B2 JP5761977B2 (en) 2015-08-12

Family

ID=46504203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274631A Active JP5761977B2 (en) 2010-12-09 2010-12-09 Liquefied gas storage regasification facility and boil-off gas reliquefaction method

Country Status (1)

Country Link
JP (1) JP5761977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152608A1 (en) * 2015-03-20 2016-09-29 千代田化工建設株式会社 Bog treatment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106793A (en) * 1991-04-30 1993-04-27 Chiyoda Corp Bog liquefying system for lng storage equipment and liquefying device thereof
JP2001132898A (en) * 1999-11-05 2001-05-18 Osaka Gas Co Ltd Pressure control device and pressure control method for cargo tank in liquefied natural gas carrier
JP2001235275A (en) * 2000-02-23 2001-08-31 Kobe Steel Ltd Method for producing oxygen
JP2002338977A (en) * 2001-05-16 2002-11-27 Kobe Steel Ltd Process and apparatus for reliquefying boil-off gas from liquefied natural gas
US20030054307A1 (en) * 2001-08-24 2003-03-20 Helmut Gerstendorfer Natural gas supply apparatus
JP2005265170A (en) * 2004-03-22 2005-09-29 Mitsubishi Heavy Ind Ltd Apparatus and method of reliquefying gas
JP2007155060A (en) * 2005-12-07 2007-06-21 Chubu Electric Power Co Inc Boiled-off gas re-liquefying method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106793A (en) * 1991-04-30 1993-04-27 Chiyoda Corp Bog liquefying system for lng storage equipment and liquefying device thereof
JP2001132898A (en) * 1999-11-05 2001-05-18 Osaka Gas Co Ltd Pressure control device and pressure control method for cargo tank in liquefied natural gas carrier
JP2001235275A (en) * 2000-02-23 2001-08-31 Kobe Steel Ltd Method for producing oxygen
JP2002338977A (en) * 2001-05-16 2002-11-27 Kobe Steel Ltd Process and apparatus for reliquefying boil-off gas from liquefied natural gas
US20030054307A1 (en) * 2001-08-24 2003-03-20 Helmut Gerstendorfer Natural gas supply apparatus
JP2005265170A (en) * 2004-03-22 2005-09-29 Mitsubishi Heavy Ind Ltd Apparatus and method of reliquefying gas
JP2007155060A (en) * 2005-12-07 2007-06-21 Chubu Electric Power Co Inc Boiled-off gas re-liquefying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152608A1 (en) * 2015-03-20 2016-09-29 千代田化工建設株式会社 Bog treatment device
JP2016176534A (en) * 2015-03-20 2016-10-06 千代田化工建設株式会社 Bog processing device
US11029085B2 (en) * 2015-03-20 2021-06-08 Chiyoda Corporation BOG processing apparatus

Also Published As

Publication number Publication date
JP5761977B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
EP2307694B1 (en) Gas supply systems for gas engines
KR102192811B1 (en) Method and apparatus for reliquefying natural gas
US8117852B2 (en) LNG vapor handling configurations and methods
CN103857955B (en) Pressure rise suppression device for storage tank, pressure rise suppression system provided therewith, suppression method therefor, liquefied gas carrying vessel provided therewith, and liquefied gas storage facility provided therewith
RU2733125C2 (en) System for treating gas obtained during cryogenic liquid evaporation, and feeding compressed gas into gas engine
KR20160055830A (en) Device for recovering vapours from a cryogenic tank
JP6158725B2 (en) Boil-off gas recovery system
KR100747372B1 (en) Bog reliquefaction apparatus and method
KR102011863B1 (en) Boil-Off Gas Reliquefaction System and Method for Vessels
RU2719258C2 (en) System and method of treating gas obtained during cryogenic liquid evaporation
CN108025804B (en) Ship comprising engine, method for improving efficiency of reliquefaction and self-heat exchange
JP6501527B2 (en) Boil-off gas reliquefaction plant
KR102632400B1 (en) Gas processing system for vessel and gas processing method using the same
JP5761977B2 (en) Liquefied gas storage regasification facility and boil-off gas reliquefaction method
JP6429159B2 (en) Boil-off gas recovery system
KR102150153B1 (en) Gas treatment system and ship having the same
KR101784530B1 (en) Floating Liquefaction Gas Production Storage Apparatus
KR100747371B1 (en) Bog reliquefaction apparatus and constructing method thereof
WO2022058543A1 (en) A system for conditioning of lng
JP6341523B2 (en) Boil-off gas recovery system
KR20180076940A (en) Fuel supply system for ship
KR20160150346A (en) Vessel Including Storage Tanks
KR20170004697A (en) Control System Of Boil Off Gas Treatment System
KR101714675B1 (en) Vessel Including Storage Tanks
KR101670880B1 (en) BOG Re-liquefaction Apparatus and Method for Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R151 Written notification of patent or utility model registration

Ref document number: 5761977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350