JP2012122545A - Torsional vibration control device - Google Patents

Torsional vibration control device Download PDF

Info

Publication number
JP2012122545A
JP2012122545A JP2010273725A JP2010273725A JP2012122545A JP 2012122545 A JP2012122545 A JP 2012122545A JP 2010273725 A JP2010273725 A JP 2010273725A JP 2010273725 A JP2010273725 A JP 2010273725A JP 2012122545 A JP2012122545 A JP 2012122545A
Authority
JP
Japan
Prior art keywords
torsional vibration
movable body
disk
fluid
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010273725A
Other languages
Japanese (ja)
Other versions
JP5683244B2 (en
Inventor
Naoya Okamoto
直也 岡本
Koji Oyama
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010273725A priority Critical patent/JP5683244B2/en
Publication of JP2012122545A publication Critical patent/JP2012122545A/en
Application granted granted Critical
Publication of JP5683244B2 publication Critical patent/JP5683244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a torsional vibration control device which changes liquid loads without special electric control and effectively controls the torsional vibration by automatically changing the state under the load from the liquid when the rotational direction of a disk is forward/backward.SOLUTION: The torsional vibration control device for attenuating the torsional vibration of a rotary shaft from which the torsional vibration occurs, includes: a disk 11 fixed to the rotary shaft; a casing which covers the entire disk and in which a fluid R is sealed; a movable body 13 stored in a recess 14 formed in an end face of the disk 11 in a projecting/retracting manner; and an urging member 16 for urging the movable body 13 to the outside of the recess 14. The movable body 13 has a first pressure-receiving surface 13a for receiving the pressure from the fluid R so that the movable body 13 is absorbed in the recess 14 against the urging force of the urging member 16 when the rotary shaft is rotated to one side, and a second pressure-receiving surface 13b for receiving the pressure in the tangential direction of the rotary shaft from the fluid R when the rotary shaft is rotated to the other side.

Description

本発明は、例えば、同一回転軸上に駆動側回転体と従動側回転体とを備え、駆動側回転体と従動側回転体との間の回転軸に従動側回転体からの負荷に起因して捩り振動が発生した場合にその捩り振動を制振する捩り振動制振装置に関する。   The present invention includes, for example, a driving-side rotating body and a driven-side rotating body on the same rotating shaft, and is caused by a load from the driven-side rotating body between the driving-side rotating body and the driven-side rotating body. The present invention relates to a torsional vibration damping device that suppresses torsional vibration when torsional vibration occurs.

従来、例えば、同一回転軸上に配置された駆動側回転体としてのタービンと従動側回転体としての発電機とを備えた装置では、タービンと発電機との間の回転軸に発電機からの負荷に起因して捩り振動が発生することがある。
特許文献1には、このような捩り振動が発生する装置において、逆起電力の直流成分と捩り振動による交流波形成分を制御装置で分離し、この分離した捩り振動による交流波形成分をとり出して位相を180°反転、即ち符号を反転させた信圧を電動機へ入力することで捩り振動成分を打ち消すように制御する技術が開示されている。
Conventionally, for example, in an apparatus including a turbine as a driving-side rotating body and a generator as a driven-side rotating body arranged on the same rotating shaft, the rotating shaft between the turbine and the generator is connected to the rotating shaft from the generator. Torsional vibration may occur due to the load.
In Patent Document 1, in a device in which such torsional vibration is generated, a direct current component of back electromotive force and an alternating current waveform component due to torsional vibration are separated by a control device, and an alternating current waveform component due to this separated torsional vibration is extracted. A technique is disclosed in which a torsional vibration component is controlled to be canceled by inputting a signal pressure whose phase is inverted by 180 °, that is, whose sign is inverted, to an electric motor.

特開平09−329191号公報JP 09-329191 A

しかしながら、従来の捩り振動を制御する技術においては、以下に示すような問題が生じていた。
すなわち、2サイクルエンジンのように、往復運動を行うクランク軸やカム軸といった比較的小型な回転軸に対しては有効であるものの、例えば、タービンと発電機との間で発生する捩り振動に対しては不向きであるという問題が生じていた。
より詳細に説明すると、同一回転軸上にタービンと発電機とが設けられ、タービン側で回転トルクを掛けて発電機側で発電を行う場合、発電機側では発電のための負荷が掛かることから、回転軸には回転方向と逆方向への力が作用した状態となっている。ここで、発電機はこの負荷が瞬間的に抜ける場合があり、この負荷が抜けた瞬間に回転軸には捩り振動が発生する。
従って、その際の直流成分と捩り振動による交流成分とを具体的に制御することは非常に困難であるという問題が生じていた。
さらに、近年のタービンは大型化する傾向に有り、相対的にタービンと発電機とを繋ぐ部分が細くなっているため、その細い部分に捩り振動による負荷が集中し易いことから、単に180°反転させた信圧を発電機側に入力するといった制御では捩り振動を有効に打ち消すことができないという問題が生じていた。
However, the conventional techniques for controlling torsional vibrations have the following problems.
That is, it is effective for relatively small rotating shafts such as a crankshaft and a camshaft that perform reciprocating motions, such as a two-cycle engine, but for example, torsional vibration generated between a turbine and a generator. There was a problem of being unsuitable.
More specifically, when a turbine and a generator are provided on the same rotating shaft, and when generating power on the generator side by applying rotational torque on the turbine side, a load for power generation is applied on the generator side. The rotating shaft is in a state where a force in the direction opposite to the rotating direction is applied. Here, the generator may momentarily remove this load, and the torsional vibration is generated on the rotating shaft at the moment when this load is removed.
Therefore, there is a problem that it is very difficult to specifically control the direct current component and the alternating current component caused by torsional vibration.
Furthermore, recent turbines tend to be larger, and the portion connecting the turbine and the generator is relatively thin, so the load due to torsional vibration tends to concentrate on the narrow portion, so it is simply 180 ° inverted. There is a problem that the torsional vibration cannot be effectively canceled by the control in which the received signal pressure is input to the generator side.

本発明は、上述する問題点に鑑みてなされたもので、簡素でしかも安価な構成でありながら、回転軸に瞬間的に発生する捩り振動に対して有効的に制振することができる捩り振動制振装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is a torsional vibration capable of effectively suppressing a torsional vibration that occurs instantaneously on a rotating shaft while having a simple and inexpensive configuration. An object is to provide a vibration damping device.

上記目的を達成するため、本発明に係る捩り振動制振装置は、回転軸の捩り振動を減衰させる減衰させる捩り振動制振装置であって、回転軸に固定されたディスクと、該ディスク全体を覆い、内部に流体が封入されたケーシングと、前記ディスクの端面に形成された凹部に突没可能に収納された可動体と、該可動体を前記凹部外に向けて付勢する付勢部材とを備え、前記可動体は、前記回転軸が一方側に回転した際に前記付勢部材の付勢力に抗して前記凹部内に没入するように前記流体から圧力を受ける第1受圧面を有するとともに、前記回転軸が他方側に回転した際に前記流体から前記回転軸の接線方向に圧力を受ける第2受圧面を有することを特徴とする。   In order to achieve the above object, a torsional vibration damping device according to the present invention is a torsional vibration damping device that attenuates torsional vibration of a rotating shaft, and includes a disk fixed to the rotating shaft and the entire disk. A casing that covers and encloses a fluid; a movable body that is retractably housed in a recess formed in an end surface of the disk; and a biasing member that biases the movable body toward the outside of the recess. The movable body has a first pressure receiving surface that receives pressure from the fluid so as to be immersed in the recess against the urging force of the urging member when the rotating shaft rotates to one side. And a second pressure receiving surface that receives pressure from the fluid in a tangential direction of the rotating shaft when the rotating shaft rotates to the other side.

本発明では、ディスクの回転方向によって流体からの負荷を受けて自動的に状態を切り替えることにより、特別な電気的な制御無しに流体負荷を切り替えることができ、捩り振動を有効的に制振することができる。   In the present invention, by automatically switching the state in response to the load from the fluid depending on the rotation direction of the disk, the fluid load can be switched without special electrical control, and the torsional vibration is effectively suppressed. be able to.

また、本発明に係る捩り振動制振装置は、前記第1受圧面は、前記可動体が前記凹部から突出した状態で、前記回転軸が一方側に回転した時の流体の流れ方向に沿って前記ディスクの端面から徐々に離間する傾斜面を有していることを特徴とする請求項1に記載の捩り振動制振装置。   Further, in the torsional vibration damping device according to the present invention, the first pressure receiving surface has a fluid flow direction when the rotating shaft rotates to one side with the movable body protruding from the recess. The torsional vibration damping device according to claim 1, further comprising an inclined surface that gradually separates from an end surface of the disk.

本発明では、ディスクの回転方向が切り替わった際の可動体の凹部外への突出が、第2受圧面によって促進される。また、第2受圧面から凹部内に至る広い範囲で流体負荷を増大することができることから捩り振動の負荷が大きい場合であっても捩り振動の制振を容易に対応することが可能となる。   In the present invention, the protrusion of the movable body to the outside of the recess when the rotation direction of the disk is switched is promoted by the second pressure receiving surface. In addition, since the fluid load can be increased in a wide range from the second pressure receiving surface to the inside of the recess, the torsional vibration can be easily controlled even when the torsional vibration load is large.

また、本発明に係る捩り振動制振装置は、前記第2受圧面は、前記可動体が前記凹部から突出した状態で、前記ディスクの端面に直交しまたは前記回転軸が他方側に回転した時の流体の流れ方向に沿って前記ディスクの端面に徐々に近接する1次面を有することを特徴とする。   Further, in the torsional vibration damping device according to the present invention, the second pressure receiving surface is perpendicular to the end surface of the disk or the rotation shaft rotates to the other side with the movable body protruding from the recess. And a primary surface gradually approaching the end surface of the disk along the fluid flow direction.

このような構成によれば、第2受圧面の1次面が流体から受ける力は、可動体が付勢部材から受ける付勢力の方向への分力成分を有する。これにより、可動体の凹部外への突出動作が促進される。   According to such a configuration, the force that the primary surface of the second pressure receiving surface receives from the fluid has a component component in the direction of the urging force that the movable body receives from the urging member. Thereby, the protrusion operation | movement outside the recessed part of a movable body is accelerated | stimulated.

また、本発明に係る捩り振動制振装置は、前記第2受圧面は、前記1次面における前記可動体の突出側に、前記回転軸が他方側に回転した時の流体の流れ方向に沿って前記1次面より緩やかに傾斜する2次面を有することを特徴とする。   In the torsional vibration damping device according to the present invention, the second pressure-receiving surface may be along a fluid flow direction when the rotating shaft rotates to the other side on the projecting side of the movable body on the primary surface. And a secondary surface that is gently inclined from the primary surface.

このような構成によれば、1次面より可動体の突出側に設けられた2次面が流体から受ける力も、可動体が付勢部材から受ける付勢力の方向への分力成分を有し、その大きさは1次面が流体より受ける力よりも大きい。従って、可動体の凹部外への突出動作が一層促進される。   According to such a configuration, the force received from the fluid by the secondary surface provided on the projecting side of the movable body from the primary surface also has a component component in the direction of the urging force that the movable body receives from the urging member. The magnitude is larger than the force that the primary surface receives from the fluid. Accordingly, the protruding operation of the movable body out of the recess is further promoted.

本発明の捩り振動制振装置によれば、ディスクの回転方向によって可動体の凹部内への没入または凹部外への突出を、流体からの負荷を利用して自動的に切り替えることにより、特別な電気的な制御無しに流体負荷を切り替えることができ、捩り振動を有効的に制振することができる。   According to the torsional vibration damping device of the present invention, the immersion of the movable body into the concave portion or the protrusion outside the concave portion is automatically switched by using the load from the fluid depending on the rotation direction of the disk. The fluid load can be switched without electrical control, and the torsional vibration can be effectively suppressed.

本発明による捩り振動制振装置の一例を示し、(A)は本発明の捩り振動制振装置を搭載したタービン発電機プラントを示す模式図、(B)は捩り振動発生時の負荷変化を示すグラフ図である。1 shows an example of a torsional vibration damping device according to the present invention, (A) is a schematic diagram showing a turbine generator plant equipped with the torsional vibration damping device of the present invention, and (B) shows a load change when torsional vibration occurs. FIG. 本発明の第1の実施の形態による捩り振動制振装置を示し、(A)はディスク正回転時の捩り振動制振装置の縦断面図、(B)はディスク逆回転時の捩り振動制振装置の縦断面図である。1 shows a torsional vibration damping device according to a first embodiment of the present invention, in which (A) is a longitudinal sectional view of the torsional vibration damping device during normal disk rotation, and (B) is a torsional vibration damping during disk reverse rotation. It is a longitudinal cross-sectional view of an apparatus. 本発明の第1の実施の形態による捩り振動制振装置を示し、ディスクの正面図である。1 shows a torsional vibration damping device according to a first embodiment of the present invention and is a front view of a disk. FIG. 本発明の第1の実施の形態による捩り振動制振装置を示し、(A)はディスク正回転時の可動体の状態を示す要部の説明図、(B)はディスク逆回転時の可動体の状態を示す要部の説明図である。1 shows a torsional vibration damping device according to a first embodiment of the present invention, (A) is an explanatory view of a main part showing a state of a movable body during normal rotation of the disk, and (B) is a movable body during reverse rotation of the disk. It is explanatory drawing of the principal part which shows the state. 本発明の第2の実施の形態による捩り振動制振装置を示し、(A)はディスク正回転時の可動体の状態を示す要部の説明図、(B)はディスク逆回転時の可動体の状態を示す要部の説明図である。FIG. 2 shows a torsional vibration damping device according to a second embodiment of the present invention, in which (A) is an explanatory view of the main part showing the state of the movable body during normal rotation of the disk, and (B) is the movable body during reverse rotation of the disk It is explanatory drawing of the principal part which shows the state. 本発明の第3の実施の形態による捩り振動制振装置を示し、(A)はディスク正回転時の可動体の状態を示す要部の説明図、(B)はディスク逆回転時の可動体の状態を示す要部の説明図である。FIG. 6 shows a torsional vibration damping device according to a third embodiment of the present invention, where (A) is an explanatory view of the main part showing the state of the movable body during normal rotation of the disk, and (B) is the movable body during reverse rotation of the disk. It is explanatory drawing of the principal part which shows the state.

以下、本発明の実施の形態による捩り振動制振装置について、タービン発電機プラントに適用し、図面に基づいて説明する。尚、以下に示す実施例は本発明の捩り振動制振装置における好適な具体例であり、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術的範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、以下に示す実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。   Hereinafter, a torsional vibration damping device according to an embodiment of the present invention is applied to a turbine generator plant and described with reference to the drawings. The following embodiments are preferred specific examples of the torsional vibration damping device of the present invention, and may have various technically preferable limitations, but the technical scope of the present invention is particularly limited. As long as there is no description which limits this invention, it is not limited to these aspects. In addition, the constituent elements in the embodiments shown below can be appropriately replaced with existing constituent elements and the like, and various variations including combinations with other existing constituent elements are possible. Therefore, the description of the embodiment described below does not limit the contents of the invention described in the claims.

図1(A)に示すように、本発明の捩り振動制振装置10は、例えば、高圧の蒸気タービン20と発電機21とがタービン軸22及び発電機軸23を介して同軸上に回転可能に設けられており、図示を略すクラッチ機構等によって蒸気タービン20の回転力が発電機21に伝達されるタービン発電機プラント24に適用されている。
なお、捩り振動制振装置10は、本実施の形態においては、発電機21を挟んで両側に延びる発電機軸23(回転軸)のうち、捩り振動の要因となる負荷が発生し易いタービン20側の発電機軸23に捩り振動制振装置10が設けられているが、その設置位置は限定されるものではない。
As shown in FIG. 1 (A), the torsional vibration damping device 10 of the present invention enables, for example, a high-pressure steam turbine 20 and a generator 21 to rotate coaxially via a turbine shaft 22 and a generator shaft 23. It is provided and applied to a turbine generator plant 24 in which the rotational force of the steam turbine 20 is transmitted to the generator 21 by a clutch mechanism (not shown).
In the present embodiment, the torsional vibration damping device 10 is the turbine 20 side where a load that causes torsional vibration is likely to occur among the generator shafts 23 (rotating shafts) extending on both sides of the generator 21. Although the torsional vibration damping device 10 is provided on the generator shaft 23, the installation position is not limited.

発電機21は、発電のための負荷が掛かっていることからタービン20の正回転方向とは逆向きの負荷が発生している。そして、このタービン20の正回転時における発電機21での逆回転方向の負荷によって、特に発電機軸23側に捩りが発生している。また、発電機21は、発電のための負荷が瞬間的に抜ける場合がある。   Since the generator 21 is loaded for power generation, a load in the direction opposite to the forward rotation direction of the turbine 20 is generated. The torsion is generated particularly on the generator shaft 23 side due to the load in the reverse rotation direction of the generator 21 during the forward rotation of the turbine 20. Further, the generator 21 may momentarily remove the load for power generation.

これにより、図1(B)に示すように、発電機軸23には、瞬間的に無負荷状態の状態が存在し、その後、発電による負荷が再び加わる。尚、図1(B)のグラフ図では、無負荷状態の前後の負荷が同一レベルとなっているが、発電機軸23にかかる負荷は、厳密には、捩り状態にある発電機軸23が無負荷によって捩り解消方向、即ち、逆回転方向に回転しようとするため、無負荷状態から再び発電機軸23に逆向きの力が作用した際にはカウンタ的に負荷が増大することとなり、この負荷増大に起因して発電機軸23が損傷しやすい状態となってしまう。   As a result, as shown in FIG. 1B, the generator shaft 23 instantaneously has a no-load state, and then a load due to power generation is applied again. In the graph of FIG. 1B, the load before and after the no-load state is at the same level, but strictly speaking, the load applied to the generator shaft 23 is the no load on the generator shaft 23 in the twisted state. Therefore, when a reverse force is applied to the generator shaft 23 again from the no-load state, the load increases in a counter manner. As a result, the generator shaft 23 is easily damaged.

そこで、本発明の捩り振動制振装置10は、この無負荷状態となった後に発電機軸23に逆回転方向の力が作用した際の回転力を減衰して捩り振動を制振するものである。   Therefore, the torsional vibration damping device 10 of the present invention attenuates the rotational force when a force in the reverse rotation direction is applied to the generator shaft 23 after this no-load state is reached, and thereby suppresses the torsional vibration. .

(第1の実施の形態)
図2に示すように、第1の実施の形態に係る捩り振動制振装置(以下、「捩り振動制振装置10A」という)は、発電機軸23の中途部に配置され、発電機21が配置された側(図示左側)の回転軸である発電機軸23に固定された円板状のディスク11と、ディスク11の全体を密閉状に覆いかつ内部に流体Rが封入されたケーシング12と、ディスク11の端面に設けられた可動体13と、を備えている。
(First embodiment)
As shown in FIG. 2, the torsional vibration damping device according to the first embodiment (hereinafter referred to as “torsional vibration damping device 10 </ b> A”) is arranged in the middle of the generator shaft 23, and the generator 21 is arranged. A disk-shaped disk 11 fixed to a generator shaft 23 that is a rotating shaft on the side (left side in the figure), a casing 12 that covers the entire disk 11 in a hermetically sealed manner and encloses a fluid R therein, and a disk 11 is provided with a movable body 13 provided on the end face of 11.

ディスク11は、腐食し難くかつ剛性の高い金属等から形成されており、その中心部に発電機軸23が挿通固定されている。また、ディスク11の端面には、図3に示すように、複数の凹部14が周方向に所定間隔で形成されている。   The disk 11 is made of a metal that is not easily corroded and has high rigidity, and a generator shaft 23 is inserted and fixed at the center thereof. Further, as shown in FIG. 3, a plurality of recesses 14 are formed on the end surface of the disk 11 at predetermined intervals in the circumferential direction.

ケーシング12は、腐食し難くかつ剛性の高い金属等から形成されており、その中心部を発電機軸23が貫通しており、この貫通部分をシール等で密閉することで内部の密閉性が確保されている。尚、ケーシング12の内部に封入された流体Rとしては、ディクス11及びケーシング12の腐食を防止し、且つ、粘性の高い油(例えば、所謂、機械油)が用いられている。   The casing 12 is made of a metal that is not easily corroded and has high rigidity, and the generator shaft 23 passes through the center of the casing 12. By sealing this through portion with a seal or the like, the internal sealing performance is secured. ing. In addition, as the fluid R enclosed in the casing 12, oil with high viscosity (for example, so-called machine oil) that prevents corrosion of the disk 11 and the casing 12 is used.

可動体13は、図3及び図4に示すように、断面四角形の柱状の部材であって、その長さは凹部の径方向幅より若干短く形成されている。この可動体13は、第1受圧面13aと、第2受圧面13bと、取付面13cとによって周囲を包囲されている。ここで、第1受圧面13aと第2受圧面13bとは互いに鋭角をなしている。また、第2受圧面13bと取付面13cとは互いに鈍角をなしている。また、第1受圧面13aと取付面13cとは互いに鋭角をなしている。   As shown in FIGS. 3 and 4, the movable body 13 is a columnar member having a square cross section, and the length thereof is slightly shorter than the radial width of the recess. The movable body 13 is surrounded by a first pressure receiving surface 13a, a second pressure receiving surface 13b, and a mounting surface 13c. Here, the first pressure receiving surface 13a and the second pressure receiving surface 13b form an acute angle with each other. Further, the second pressure receiving surface 13b and the mounting surface 13c form an obtuse angle. The first pressure receiving surface 13a and the mounting surface 13c form an acute angle with each other.

また、第2受圧面13bは、図4に示すように、取付面13cと互いに鈍角をなす1次面13dと、第1受圧面13aと互いに鋭角をなす2次面13eと、を有している。そして、この1次面13dと2次面13eとが互いに鈍角をなしている。   Further, as shown in FIG. 4, the second pressure receiving surface 13b has a primary surface 13d that forms an obtuse angle with the mounting surface 13c, and a secondary surface 13e that forms an acute angle with the first pressure receiving surface 13a. Yes. The primary surface 13d and the secondary surface 13e form an obtuse angle.

このように構成される可動体13は、回動軸15によって回動可能に支持されている。具体的には、図3に示すように、凹部14の内部にはディスク11の径方向に延びるように回転軸15が設けられ、その両端部が凹部14の内壁面にそれぞれ固定されている。そして、図4に示すように、可動体13は、その取付面13cを凹部14側に向けた状態で、第1受圧面13aと取付面13cとによって形成される角部に回転軸15が挿通されている。これにより、可動体13は、この回転軸15を支点として、凹部14内に没入しまたは凹部14外に突出するように回動可能となっている。   The movable body 13 configured as described above is rotatably supported by the rotation shaft 15. Specifically, as shown in FIG. 3, a rotation shaft 15 is provided inside the recess 14 so as to extend in the radial direction of the disk 11, and both end portions thereof are fixed to the inner wall surface of the recess 14. As shown in FIG. 4, the movable body 13 has the rotating shaft 15 inserted through the corner formed by the first pressure receiving surface 13 a and the mounting surface 13 c with the mounting surface 13 c facing the concave portion 14. Has been. As a result, the movable body 13 is rotatable about the rotating shaft 15 so as to be immersed in the recess 14 or projecting out of the recess 14.

また、可動体13は、図4に示すように、付勢部材16によって凹部14外へ向かって付勢されている。具体的には、コイルバネである付勢部材16の一端が凹部14の底部に固定されるとともに、他端が可動体13の取付面13cにおける第2受圧面13b側の位置に固定されている。これにより、図4(B)に示すように、外力が作用しない状態において、可動体13は付勢部材16から受ける付勢力によって回転軸15を支点として回動することにより、凹部14外に突出した状態となっている。   Further, as shown in FIG. 4, the movable body 13 is urged toward the outside of the recess 14 by the urging member 16. Specifically, one end of the biasing member 16 that is a coil spring is fixed to the bottom of the recess 14, and the other end is fixed to a position on the second pressure receiving surface 13 b side of the mounting surface 13 c of the movable body 13. As a result, as shown in FIG. 4B, in a state where no external force is applied, the movable body 13 protrudes out of the recess 14 by rotating around the rotating shaft 15 by the urging force received from the urging member 16. It has become a state.

そしてこの時、第1受圧面13aは、取付面13c側から第2受圧面13b側に向かってディスク11の端面から徐々に離間するように傾斜した状態となっている。またこの時、第2受圧面13bの1次面13dは、取付面13c側から第1受圧面13a側に向かってディスク11の端面に徐々に近接するように傾斜した状態となっている。またこの時、第2受圧面13bの2次面13eは、1次面13d側から第1受圧面13a側に向かってディスクの端面に徐々に近接するようにして、1次面13dより緩やかに傾斜した状態となっている。   At this time, the first pressure receiving surface 13a is inclined so as to be gradually separated from the end surface of the disk 11 from the mounting surface 13c side toward the second pressure receiving surface 13b side. At this time, the primary surface 13d of the second pressure receiving surface 13b is inclined so as to gradually approach the end surface of the disk 11 from the mounting surface 13c side toward the first pressure receiving surface 13a side. Further, at this time, the secondary surface 13e of the second pressure receiving surface 13b is gradually closer to the end surface of the disk from the primary surface 13d side toward the first pressure receiving surface 13a side, and more gently than the primary surface 13d. It is in an inclined state.

上記の構成において、ディスク11が図4(A)に示す正回転方向Sに回転すると、即ち、発電機軸23が正回転すると、第1受圧面13aが流体Rから圧力を受ける。これにより、可動体13は回転軸15を支点として図4(A)で反時計回りに回動し、第1受圧面13aとディスク11の端面とが略面一となるように、凹部14内に没入する。従って、ディスク11は低負荷状態で正回転方向に回転する。   In the above configuration, when the disk 11 rotates in the normal rotation direction S shown in FIG. 4A, that is, when the generator shaft 23 rotates in the normal direction, the first pressure receiving surface 13a receives pressure from the fluid R. As a result, the movable body 13 rotates counterclockwise in FIG. 4A with the rotating shaft 15 as a fulcrum, and the first pressure receiving surface 13a and the end surface of the disk 11 are substantially flush with each other in the recess 14. Immerse yourself in. Accordingly, the disk 11 rotates in the forward rotation direction in a low load state.

一方、ディスク11が図4(B)に示す逆回転方向Gに回転すると、第2受圧面13bが流体Rから圧力を受ける。これにより、可動体13は回転軸15を支点として図4(B)で時計回りに回動し、第2受圧面13bの略全体で流体Rからの圧力を受けるように、凹部14外へ突出する。
この際、可動体13の第2受圧面13bが流体Rから受ける力は、付勢部材16から受ける付勢力の方向への分力成分を有している。従って、可動体13の凹部14外への突出が促進される。
更に、第2受圧面13bには2次面13eが設けられており、この2次面13eが流体Rから受ける力は、1次面13dが流体Rから受ける力と比較して、付勢部材16から受ける付勢力方向への分力成分が大きくなる。これにより、可動体13の凹部14外への突出が一層促進される。
On the other hand, when the disk 11 rotates in the reverse rotation direction G shown in FIG. 4B, the second pressure receiving surface 13b receives pressure from the fluid R. As a result, the movable body 13 pivots clockwise in FIG. 4B with the rotating shaft 15 as a fulcrum, and protrudes out of the recess 14 so as to receive the pressure from the fluid R over substantially the entire second pressure receiving surface 13b. To do.
At this time, the force received from the fluid R by the second pressure receiving surface 13 b of the movable body 13 has a component component in the direction of the urging force received from the urging member 16. Therefore, the protrusion of the movable body 13 to the outside of the concave portion 14 is promoted.
Further, the second pressure receiving surface 13b is provided with a secondary surface 13e, and the force received by the secondary surface 13e from the fluid R is larger than the force received by the primary surface 13d from the fluid R. The component component in the direction of the urging force received from 16 increases. Thereby, the protrusion of the movable body 13 to the outside of the concave portion 14 is further promoted.

このように、本発明では、ディスク11の回転方向によって流体からの圧力を受けた可動体13が凹部14内に没入した状態から凹部14外に突出した状態へと切り替わるので、特別な電気的制御無しに流体負荷状態を切り替えることができる。
また、ディスク11の正回転時には第1受圧面13aが受ける流体からの圧力によって付勢部材16の付勢に抗して可動体13が凹部14内に埋没することから、流体負荷が少ない状態でディスク11を回転させることができる。一方、ディスク11の逆回転時には第2受圧面13bが受ける流体からの圧力に加えて付勢部材16の付勢によって、可動体13が凹部14内から瞬時に突出して流体負荷が大きい状態でディスク11を回転させることができ、捩り振動を有効的に制振することができる。
As described above, in the present invention, the movable body 13 that receives the pressure from the fluid is switched from the state of being immersed in the concave portion 14 to the state of protruding out of the concave portion 14 depending on the rotation direction of the disk 11. Without changing the fluid load state.
Further, since the movable body 13 is buried in the recess 14 against the urging of the urging member 16 by the pressure from the fluid received by the first pressure receiving surface 13a during the normal rotation of the disk 11, the fluid load is low. The disk 11 can be rotated. On the other hand, when the disk 11 is rotated in the reverse direction, the movable body 13 instantaneously protrudes from the recess 14 due to the urging of the urging member 16 in addition to the pressure from the fluid received by the second pressure receiving surface 13b, and the disk is in a state where the fluid load is large. 11 can be rotated, and torsional vibration can be effectively suppressed.

次に、本発明の捩り振動制振装置による他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。   Next, another embodiment of the torsional vibration damping device of the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for members and parts that are the same as or similar to those in the first embodiment. A description will be omitted, and a configuration different from that of the first embodiment will be described.

(第2の実施の形態)
図5に示すように、第2の実施の形態による捩り振動制振装置(捩り振動制振装置10B)は、第1の実施の形態で示した軸15を廃止し、可動体13を凹部14からディスク11の端面に略直交する方向へ突没させる構成となっている。
(Second Embodiment)
As shown in FIG. 5, in the torsional vibration damping device (torsional vibration damping device 10B) according to the second embodiment, the shaft 15 shown in the first embodiment is abolished, and the movable body 13 is moved into the recess 14. To project in a direction substantially perpendicular to the end surface of the disk 11.

具体的には、凹部14の側壁には底面から開放端側に向って直線状に延びる複数のガイド溝14aが形成されており、可動体13には、このガイド溝14aと係合する係合突起13cが形成されている。
これにより、ディスク11が正回転方向Sに回転すると、即ち、発電機軸23が正回転すると、図5(A)に示すように、第1受圧面13aが流体からの圧力を受け、可動体13が凹部14に没入する。従って、ディスク11は低負荷状態で正回転方向に回転する。
Specifically, a plurality of guide grooves 14 a extending linearly from the bottom surface toward the open end side are formed on the side wall of the recess 14, and the movable body 13 is engaged with the guide grooves 14 a. A protrusion 13c is formed.
As a result, when the disk 11 rotates in the forward rotation direction S, that is, when the generator shaft 23 rotates forward, the first pressure receiving surface 13a receives pressure from the fluid as shown in FIG. Is immersed in the recess 14. Accordingly, the disk 11 rotates in the forward rotation direction in a low load state.

一方、ディスク11が逆回転方向Gに回転すると、図5(B)に示すように、第2受圧面13bが流体からの圧力を受け、第2受圧面13bの略全体で流体負荷を受けるように、可動体13が凹部14外に突出する。この際、第1受圧面13aでの流体負荷が軽減されて付勢部材16の付勢が勝ることから、可動体13が凹部14から突出する状態変化が促進される。従って、ディスク11は高負荷状態で逆回転方向に回転する。   On the other hand, when the disk 11 rotates in the reverse rotation direction G, as shown in FIG. 5 (B), the second pressure receiving surface 13b receives pressure from the fluid so that substantially the entire second pressure receiving surface 13b receives a fluid load. Furthermore, the movable body 13 protrudes out of the recess 14. At this time, since the fluid load on the first pressure receiving surface 13a is reduced and the urging force of the urging member 16 is superior, the state change in which the movable body 13 protrudes from the recess 14 is promoted. Therefore, the disk 11 rotates in the reverse rotation direction under a high load state.

尚、ガイド溝14aの長さや形状並びに付勢部材15の付勢位置(及び付勢力)を調整することにより、可動体13の頂点側の変位量と第2受圧面13b側の変位量とを調整することができ、この第2の実施の形態においても、第1の実施の形態の図4(A)で示したように、第1受圧面13aがディスク11の端面と略面一な状態とすることが可能となる。   By adjusting the length and shape of the guide groove 14a and the urging position (and urging force) of the urging member 15, the displacement amount on the apex side of the movable body 13 and the displacement amount on the second pressure receiving surface 13b side are obtained. In this second embodiment as well, as shown in FIG. 4A of the first embodiment, the first pressure receiving surface 13a is substantially flush with the end surface of the disk 11. It becomes possible.

(第3の実施の形態)
図6に示すように、第3の実施の形態による捩り振動制振装置(捩り振動制振装置10C)は、上記第1,第2の実施の形態で示した凹部14を廃止したものである。
(Third embodiment)
As shown in FIG. 6, the torsional vibration damping device (torsional vibration damping device 10 </ b> C) according to the third embodiment is obtained by eliminating the recess 14 shown in the first and second embodiments. .

具体的には、ディスク31は単なる平板状の円板である。また、ディスク31の端面には、一対の脚部32を介して平板状の可動体33が回動可能に設けられている。   Specifically, the disk 31 is a simple flat disk. A flat plate-like movable body 33 is rotatably provided on the end surface of the disk 31 via a pair of leg portions 32.

可動体33は、ディスク11の正回転方向Sと順方向となる一端側で軸34を介して脚部32に回動可能に支持されている。
これにより、可動体33は、本実施の形態では、図6(A)に示すように、ディスク31が正方向に回転しているときに流体Rからの負荷を受け難くいディスク31の一面と略平行な第1の状態と、図6(B)に示すように、ディスク31が逆方向に回転しているときに流体Rからの負荷によって第1の状態のときよりも流体Rからの負荷を受け易い起立した第2の状態と、に自動的に切り替わる構成が採用されている。
尚、可動体33の第2の状態は、ディスク31の正回転方向と順方向側の端部をディスク31の一面に当接させることで一面とでなす起立角度を設定することが可能となる。
The movable body 33 is rotatably supported by the leg portion 32 via a shaft 34 on one end side that is in the forward direction with the forward rotation direction S of the disk 11.
As a result, in this embodiment, the movable body 33, as shown in FIG. 6 (A), has one surface of the disk 31 that is difficult to receive a load from the fluid R when the disk 31 rotates in the forward direction. As shown in FIG. 6B, the substantially parallel first state and the load from the fluid R when the disk 31 rotates in the opposite direction are more affected by the load from the fluid R than in the first state. The structure which switches to the 2nd state which stood up easily which is easy to receive is employ | adopted.
In the second state of the movable body 33, it is possible to set an upright angle formed by one surface by bringing the end of the disk 31 in the forward rotation direction and the forward direction into contact with one surface of the disk 31. .

このような構成によれば、ディスク31の正逆回転時における可動体33の流体負荷の状態変化を、より簡素で安価な構成で実現することが可能となる。   According to such a configuration, it is possible to realize a change in the state of the fluid load of the movable body 33 when the disk 31 rotates forward and backward with a simpler and less expensive configuration.

以上、本発明による捩り振動制振装置10の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施の形態では、一つのタービン21を配置したタービン発電機プラント24を開示したが、大型の発電システムでは、多くの場合、2つ以上の蒸気タービンを直列又は並列に配置して発電機を駆動させ、電力を生成することが多いことから、複数の蒸気タービン(高圧・低圧等)を連結して、発電機を駆動させるタイプへの適用も可能である。
また、タービン発電機プラント24以外の捩り振動が発生する回転軸全般に適用することができることは勿論である。
The embodiment of the torsional vibration damping device 10 according to the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
For example, in the above embodiment, the turbine generator plant 24 in which one turbine 21 is arranged is disclosed. However, in a large power generation system, in many cases, two or more steam turbines are arranged in series or in parallel to generate power. Since the machine is often driven to generate electric power, it can be applied to a type in which a plurality of steam turbines (high pressure, low pressure, etc.) are connected to drive a generator.
Of course, the present invention can be applied to all rotating shafts that generate torsional vibration other than the turbine generator plant 24.

10 捩り振動制振装置
11 ディスク
12 ケーシング
13 可動体
13a 第1受圧面
13b 第2受圧面
13c 取付面
13d 1次面
13e 2次面
14 凹部
15 回転軸
16 付勢部材
23 発電機軸(回転軸)
DESCRIPTION OF SYMBOLS 10 Torsional vibration damping device 11 Disk 12 Casing 13 Movable body 13a 1st pressure receiving surface 13b 2nd pressure receiving surface 13c Mounting surface 13d Primary surface 13e Secondary surface 14 Recessed part 15 Rotating shaft 16 Energizing member 23 Generator shaft (Rotating shaft)

Claims (4)

回転軸の捩り振動を減衰させる減衰させる捩り振動制振装置であって、
回転軸に固定されたディスクと、
該ディスク全体を覆い、内部に流体が封入されたケーシングと、
前記ディスクの端面に形成された凹部に突没可能に収納された可動体と、
該可動体を前記凹部外に向けて付勢する付勢部材とを備え、
前記可動体は、前記回転軸が一方側に回転した際に前記付勢部材の付勢力に抗して前記凹部内に没入するように前記流体から圧力を受ける第1受圧面を有するとともに、前記回転軸が他方側に回転した際に前記流体から前記回転軸の接線方向に圧力を受ける第2受圧面を有することを特徴とする捩り振動制振装置。
A torsional vibration damping device that attenuates torsional vibration of a rotating shaft,
A disk fixed to the rotating shaft;
A casing covering the entire disk and enclosing a fluid therein;
A movable body slidably housed in a recess formed on the end surface of the disk;
A biasing member that biases the movable body toward the outside of the recess,
The movable body has a first pressure receiving surface that receives pressure from the fluid so as to be immersed in the recess against the urging force of the urging member when the rotating shaft rotates to one side, A torsional vibration damping device having a second pressure receiving surface that receives pressure from the fluid in a tangential direction of the rotating shaft when the rotating shaft rotates to the other side.
前記第1受圧面は、前記可動体が前記凹部から突出した状態で、前記回転軸が一方側に回転した時の流体の流れ方向に沿って前記ディスクの端面から徐々に離間する傾斜面を有していることを特徴とする請求項1に記載の捩り振動制振装置。   The first pressure receiving surface has an inclined surface that gradually separates from the end surface of the disk along the fluid flow direction when the rotating shaft rotates to one side with the movable body protruding from the recess. The torsional vibration damping device according to claim 1, wherein: 前記第2受圧面は、前記可動体が前記凹部から突出した状態で、前記ディスクの端面に直交しまたは前記回転軸が他方側に回転した時の流体の流れ方向に沿って前記ディスクの端面に徐々に近接する1次面を有することを特徴とする請求項1に記載の捩り振動制振装置。   The second pressure-receiving surface is perpendicular to the end surface of the disc or the end surface of the disc along the fluid flow direction when the rotating shaft rotates to the other side with the movable body protruding from the recess. The torsional vibration damping device according to claim 1, further comprising a primary surface that gradually approaches. 前記第2受圧面は、前記1次面における前記可動体の突出側に、前記回転軸が他方側に回転した時の流体の流れ方向に沿って前記1次面より緩やかに傾斜する2次面を有することを特徴とする請求項3に記載の捩り振動制振装置。   The second pressure receiving surface is a secondary surface that is gently inclined from the primary surface along the fluid flow direction when the rotating shaft rotates to the other side on the projecting side of the movable body on the primary surface. The torsional vibration damping device according to claim 3.
JP2010273725A 2010-12-08 2010-12-08 Torsional vibration damping device Expired - Fee Related JP5683244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273725A JP5683244B2 (en) 2010-12-08 2010-12-08 Torsional vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273725A JP5683244B2 (en) 2010-12-08 2010-12-08 Torsional vibration damping device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014170966A Division JP5766857B2 (en) 2014-08-25 2014-08-25 Torsional vibration damping device
JP2014170967A Division JP5766858B2 (en) 2014-08-25 2014-08-25 Torsional vibration damping device

Publications (2)

Publication Number Publication Date
JP2012122545A true JP2012122545A (en) 2012-06-28
JP5683244B2 JP5683244B2 (en) 2015-03-11

Family

ID=46504198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273725A Expired - Fee Related JP5683244B2 (en) 2010-12-08 2010-12-08 Torsional vibration damping device

Country Status (1)

Country Link
JP (1) JP5683244B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482570A (en) * 1977-12-14 1979-06-30 Atsugi Motor Parts Co Ltd Rotary damper
JPH06123332A (en) * 1992-08-26 1994-05-06 Nhk Spring Co Ltd Slow-acting device
JP2000018330A (en) * 1998-06-26 2000-01-18 Mitsubishi Heavy Ind Ltd Vibration inhibiting damper of rotating shaft
JP2006002841A (en) * 2004-06-17 2006-01-05 Isuzu Motors Ltd Vibration damping mechanism of rotary shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482570A (en) * 1977-12-14 1979-06-30 Atsugi Motor Parts Co Ltd Rotary damper
JPH06123332A (en) * 1992-08-26 1994-05-06 Nhk Spring Co Ltd Slow-acting device
JP2000018330A (en) * 1998-06-26 2000-01-18 Mitsubishi Heavy Ind Ltd Vibration inhibiting damper of rotating shaft
JP2006002841A (en) * 2004-06-17 2006-01-05 Isuzu Motors Ltd Vibration damping mechanism of rotary shaft

Also Published As

Publication number Publication date
JP5683244B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2012053280A1 (en) Lockup mechanism for hydraulic power transmission device
JP6644447B2 (en) Flat type wave gear device
JP5244784B2 (en) gear
KR20130065144A (en) Electric oil pump for hybrid vehicle
JP2008038933A (en) Rotary damper device
JP2005054845A (en) Damper mechanism for lock-up device
JP5683244B2 (en) Torsional vibration damping device
JP5766857B2 (en) Torsional vibration damping device
JP5766858B2 (en) Torsional vibration damping device
JP2007064345A (en) Damper spring
JP5791773B1 (en) Fluid power transmission device
JP2017160884A (en) Wave power generation device
JP2007315416A (en) Viscous rubber damper
JP2012057701A (en) Dynamic damper
CN101949386B (en) Stability control device for centrifugal compressor
DK2711580T3 (en) Torque limiter, wind turbine and wind turbine generator
JP2007046695A (en) Rotation mechanism device, vibration damping device
JP2015163766A (en) Blade and rotary machine
US7102261B2 (en) Coupling device between a rotor of permanent-magnet synchronous motor and a working part
JP7218221B2 (en) Torque fluctuation suppressor and torque converter
RU2683334C1 (en) Movable turbomachine element containing means for modification of resonance frequency thereof
JP7482138B2 (en) Damped bearing component, bearing including said component, and rotating machine including said bearing
JP2008185083A (en) Rotation transmitting device and pump
JP5708528B2 (en) Torsional vibration damping device
JP2016200237A (en) Dynamic vibration reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R151 Written notification of patent or utility model registration

Ref document number: 5683244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees