JP2012122364A - Method of managing auxiliary power ratio of conventional thermal power plant - Google Patents

Method of managing auxiliary power ratio of conventional thermal power plant Download PDF

Info

Publication number
JP2012122364A
JP2012122364A JP2010272274A JP2010272274A JP2012122364A JP 2012122364 A JP2012122364 A JP 2012122364A JP 2010272274 A JP2010272274 A JP 2010272274A JP 2010272274 A JP2010272274 A JP 2010272274A JP 2012122364 A JP2012122364 A JP 2012122364A
Authority
JP
Japan
Prior art keywords
boiler
house
turbine
power
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010272274A
Other languages
Japanese (ja)
Other versions
JP5556638B2 (en
Inventor
Shinichiro Sakai
真一郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010272274A priority Critical patent/JP5556638B2/en
Publication of JP2012122364A publication Critical patent/JP2012122364A/en
Application granted granted Critical
Publication of JP5556638B2 publication Critical patent/JP5556638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of managing an auxiliary power ratio of a conventional thermal power plant capable of properly evaluating the auxiliary power ratio and capable of early finding abnormality of an auxiliary machine.SOLUTION: A boiler-side in-plant power amount reference expression is prepared in advance, for obtaining a reference boiler-side in-plant power amount based on, as a parameter, a process amount having relation with a boiler-side in-plant power amount out of the in-plant power amount of a conventional thermal power plant. A turbine-side in-plant power amount reference expression is prepared in advance, for obtaining a reference turbine-side in-plant power amount based on, as a parameter, a process amount having relation with turbine-side in-plant power amount out of the in-plant power amount. The reference auxiliary power ratio is obtained by dividing the reference in-plant power amount being the sum of the reference boiler-side in-plant power amount obtained on the basis of the boiler-side in-plant power amount reference expression and the reference turbine-side in-plant power amount obtained on the basis of the turbine-side in-plant power amount reference expression by the power generation amount. The difference between the auxiliary power ratio obtained by dividing the in-plant power amount by the power generation amount and the reference auxiliary power ratio is obtained as an auxiliary power ratio difference, and the auxiliary power ratio difference is evaluated to manage the auxiliary power ratio.

Description

本発明は、コンベンショナル火力発電所の所内電力量を発電電力量で除算して求められた所内率を管理するコンベンショナル火力発電所の所内率管理方法に関する。   The present invention relates to an in-house rate management method for a conventional thermal power plant that manages the in-house rate obtained by dividing the in-house power amount of a conventional thermal power plant by the generated power amount.

一般に、コンベンショナル火力発電所は、ボイラで発生した蒸気をタービンに導き、タービンに連結された発電機を駆動して発電を行うが、ボイラ系統やタービン系統には各種の補機が設けられており、電力にて駆動される補機が多く存在する。例えば、コンベンショナル火力発電所のボイラ系統には、ボイラに空気を送る押込通風機FDF、ボイラの排ガスを排煙処理装置に送る誘引通風機IDF、排ガスを昇圧する昇圧通風機BUF等の補機があり、また、タービン系統には、海水を復水器に循環させる循環水ポンプCWP、復水器からの水を給水ポンプに供給する復水ポンプCP、復水を昇圧する復水ブースタポンプCBPなどの補機があり、これらの補機は電力で駆動される。   In general, a conventional thermal power plant conducts power generation by directing steam generated in a boiler to a turbine and driving a generator connected to the turbine. Various types of auxiliary equipment are provided in the boiler system and the turbine system. There are many auxiliaries driven by electric power. For example, the boiler system of a conventional thermal power plant includes auxiliary machines such as a forced draft fan FDF that sends air to the boiler, an induction fan IDF that sends the exhaust gas from the boiler to a flue gas treatment device, and a booster vent BUF that boosts the exhaust gas. In addition, the turbine system includes a circulating water pump CWP that circulates seawater to the condenser, a condensate pump CP that supplies water from the condenser to the feed water pump, a condensate booster pump CBP that boosts the condensate, etc. There are auxiliary machines, and these auxiliary machines are driven by electric power.

このような補機に供給する電力は所内動力に要する電力量であり、コンベンショナル火力発電所としては所内動力を低減することが望ましい(例えば、特許文献1、特許文献2参照)。そこで、この所内電力量を発電機の発電電力量で除算して所内率を求め、所内率を管理するようにしている。   The electric power supplied to such an auxiliary machine is the amount of electric power required for the in-house power, and it is desirable for the conventional thermal power plant to reduce the in-house power (for example, see Patent Document 1 and Patent Document 2). Therefore, the on-site rate is managed by dividing the on-site power amount by the generated power amount of the generator to obtain the on-site rate.

特開2000−248907号公報JP 2000-248907 A 特開2005−155372号公報JP 2005-155372 A

しかし、現在まで、コンベンショナル火力発電所の所内率に関する管理方法は明確になっておらず、所内率の評価ができない状況であった。図19は、ある石炭火力発電所の1号機の所内率の推移グラフである。共通分(運用炭設備用)を含んだ所内電力量で計算した所内率A1では、変動が非常に大きく管理できる状況ではない。また、共通分を含まない所内電力量で計算した所内率A2でも、まだ管理できるような状況ではない。   However, until now, the management method related to the on-site rate of conventional thermal power plants has not been clarified, and the on-site rate cannot be evaluated. FIG. 19 is a transition graph of the in-site ratio of Unit 1 of a coal-fired power plant. In the in-house rate A1 calculated by the in-site electric energy including the common portion (for operational coal facilities), the fluctuation is not in a very manageable situation. Further, even with the in-house rate A2 calculated with the in-house electric energy not including the common portion, the situation is not yet manageable.

すなわち、約4ヶ月間の所内電力量を計測し所内率A1、A2を求めたが、変動が大きく、ボイラ系統やタービン系統の補機が正常に動作しているときの動力であるのかどうかの判断がし難い。このように、所内率の評価ができない状況であり、ボイラ系統やタービン系統の補機動力の管理ができない。   In other words, the in-house electric energy for about 4 months was measured and the in-house ratios A1 and A2 were obtained. However, the fluctuation is large and whether the power is when the boiler system and turbine system auxiliary equipment are operating normally. Difficult to judge. Thus, it is in the situation where an in-house ratio cannot be evaluated, and management of auxiliary machinery power of a boiler system and a turbine system cannot be performed.

本発明の目的は、所内率の評価を適切に行え、補機の異常も早期に発見できるコンベンショナル火力発電所の所内率管理方法を提供することである。   An object of the present invention is to provide a method for managing the indoor area ratio of a conventional thermal power plant that can appropriately evaluate the indoor area ratio and detect abnormalities in auxiliary equipment at an early stage.

請求項1の発明に係るコンベンショナル火力発電所の所内率管理方法は、ボイラで発生した蒸気をタービンに導き前記タービンに連結された発電機を駆動して発電を行うコンベンショナル火力発電所の所内電力量を発電電力量で除算して求められた所内率を管理するコンベンショナル火力発電所の所内率管理方法において、前記所内電力量のうちの前記ボイラ側所内電力量に関連性のあるプロセス量をパラメータとする基準ボイラ側所内電力量を求めるためのボイラ側所内電力量基準式を予め作成し、前記所内電力量のうちの前記タービン側所内電力量に関連性のあるプロセス量をパラメータとする基準タービン側所内電力量を求めるためのタービン側所内電力量基準式を予め作成し、前記ボイラ側所内電力量に関連性のあるプロセス量に基づいて前記ボイラ側所内電力量基準式により求めた基準ボイラ側所内電力量と前記タービン側所内電力量に関連性のあるプロセス量に基づいて前記タービン側所内電力量基準式により求めた基準タービン側所内電力量との合計である基準所内電力量を前記発電電力量で除算して基準所内率を求め、前記所内電力量を前記発電電力量で除算して求めた所内率と前記基準所内率との偏差を所内率偏差として求め、前記所内率偏差を評価し所内率を管理することを特徴とする。   An in-house rate management method for a conventional thermal power plant according to claim 1 is the in-house power amount of a conventional thermal power plant that generates electricity by driving steam generated in a boiler to a turbine and driving a generator connected to the turbine. In the in-house rate management method of the conventional thermal power plant that manages the in-house rate obtained by dividing the generated power by the generated power amount, the process amount related to the boiler-side in-house power amount of the in-house power amount is used as a parameter. The boiler side in-house electric energy reference formula for obtaining the reference boiler side in-house electric energy is prepared in advance, and the reference turbine side using the process amount related to the turbine-side in-house electric energy of the in-house electric energy as a parameter A turbine side in-house electric energy reference formula for determining the in-house electric energy is created in advance, and the process is related to the boiler-side in-house electric energy. And the reference side in the turbine side determined by the turbine side in-house power amount reference formula based on the reference boiler side in-site power amount determined by the boiler side in-site power amount reference formula and the process amount related to the turbine side in-site power amount. The standard in-house power amount, which is the sum of the power amount, is divided by the generated power amount to obtain a reference in-house rate, and the in-house rate obtained by dividing the in-house power amount by the generated power amount and the reference in-house rate A deviation is obtained as an internal ratio deviation, the internal ratio deviation is evaluated, and the internal ratio is managed.

請求項2の発明に係るコンベンショナル火力発電所の所内率管理方法は、請求項1の発明において、前記ボイラ側所内電力量基準式で求めた基準ボイラ側所内電力量を前記発電電力量で除算して基準ボイラ側所内率を求め、前記ボイラ側所内電力量を前記発電電力量で除算してボイラ側所内率を求め、前記基準ボイラ側所内率と前記ボイラ側所内率との偏差をボイラ側所内率偏差として求め、前記タービン側所内電力量基準式で求めた基準タービン側所内電力量を前記発電電力量で除算して基準タービン側所内率を求め、前記ボイラ側所内電力量を前記発電電力量で除算してボイラ側所内率を求め、前記基準タービン側所内率と前記タービン側所内率との偏差をタービン側所内率偏差として求め、前記所内率偏差に加えて前記ボイラ側所内率偏差及び前記タービン側所内率偏差を評価し、前記所内率に加えてボイラ側所内率及びタービン側所内率を管理することを特徴とする。   According to a second aspect of the present invention, there is provided a conventional thermal power plant in-house rate management method according to the first aspect of the invention, wherein the reference boiler-side in-house electric energy obtained by the boiler-side in-house electric energy standard equation is divided by the generated electric energy. The boiler-side ratio is determined by dividing the boiler-side power amount by the generated power amount to obtain the boiler-side ratio, and the deviation between the reference-boiler-side ratio and the boiler-side ratio is calculated in the boiler-side ratio. It is obtained as a rate deviation, and the reference turbine side in-house power amount obtained by the turbine side in-house power amount reference equation is divided by the generated power amount to obtain a reference turbine side in-house rate, and the boiler side in-house power amount is calculated as the generated power amount. The boiler side internal rate is obtained by dividing by the following formula, and the deviation between the reference turbine side internal rate and the turbine side internal rate is obtained as a turbine side internal rate deviation, and in addition to the internal rate deviation, the boiler side internal rate Evaluates the difference and the turbine-side house rate deviation, characterized in that it manages the boiler side plant rate and the turbine-side house rate in addition to the plant factor.

請求項3の発明に係るコンベンショナル火力発電所の所内率管理方法は、請求項1または請求項2において、前記所内電力量は電力量計で計測し、前記ボイラ側所内電力量はボイラ側の各々の補機の軸動力を算出しこれら軸動力を合計して求め、前記タービン側所内電力量は前記所内電力量から前記ボイラ側所内電力量を減算して求めることを特徴とする。   The on-site rate management method for a conventional thermal power plant according to claim 3 is the method according to claim 1 or 2, wherein the in-site electric energy is measured by an watt-hour meter, and the boiler-side in-house electric energy is measured at each boiler side. The shaft power of the auxiliary machine is calculated and the shaft power is summed up, and the turbine side in-house power amount is obtained by subtracting the boiler side in-house power amount from the in-house power amount.

請求項4の発明に係るコンベンショナル火力発電所の所内率管理方法は、請求項1乃至請求項3のいずれか1項の発明において、前記ボイラ側所内電力量に関連性のあるプロセス量及び前記タービン側所内電力量に関連性のあるプロセス量は、コンベンショナル火力発電所から排出される排ガス流量であることを特徴とする。   According to a fourth aspect of the present invention, there is provided an in-house rate management method for a conventional thermal power plant according to any one of the first to third aspects, wherein the process amount and the turbine are related to the boiler-side in-house electric energy. The process quantity related to the electric power in the side station is characterized by the exhaust gas flow rate discharged from the conventional thermal power plant.

請求項5の発明に係るコンベンショナル火力発電所の所内率管理方法は、請求項1または請求項2の発明において、前記所内電力量は電力量計で計測し、前記ボイラ側所内電力量は各々のボイラ側補機の電流に基づいて各々のボイラ側補機の使用電力量を算出しこれらボイラ側補機の使用電力量を合計して求め、前記タービン側所内電力量は各々のタービン側補機の電流に基づいて各々のタービン側補機の使用電力量を算出しこれらタービン側補機の使用電力量を合計して求め、前記所内電力量から前記ボイラ側所内電力量及び前記タービン側所内電力量を減算してその他所内電力量を求めること特徴とする。   According to a fifth aspect of the present invention, there is provided a conventional thermal power plant site ratio management method according to the first or second aspect of the invention, wherein the in-house power amount is measured by a watt-hour meter, and the boiler-side in-house power amount is Based on the current of the boiler side auxiliaries, the amount of electric power used by each boiler side auxiliaries is calculated, and the amount of electric power consumed by these boiler side auxiliaries is summed up. The power consumption of each turbine side auxiliary machine is calculated based on the current of the turbine side, and the power consumption of these turbine side auxiliary machines is summed up to obtain the boiler side local power quantity and the turbine side local power quantity from the local power quantity. It is characterized by subtracting the amount and obtaining other in-house electric energy.

請求項1の発明によれば、所内電力量をボイラ側所内電力量とタービン側所内電力量に分けて求め、それぞれに合った関連性のあるプロセス量をパラメータとするボイラ側所内電力量基準式タービン側所内電力量基準式を予め作成しておき、これら基準式で求めた基準所内率と実際の所内率との偏差を所内率偏差として求めて、この所内率偏差を評価するので適切に所内率を管理できる。   According to the first aspect of the present invention, the in-site electric energy is divided into the boiler-side in-house electric energy and the turbine-side in-house electric energy, and the boiler-side in-room electric energy reference formula using the relevant process amount as a parameter. Since the turbine side in-house electric energy standard formula is prepared in advance, the deviation between the standard in-house rate calculated by these standard formulas and the actual in-house rate is obtained as the in-house rate deviation, and this in-place rate deviation is evaluated. You can manage the rate.

請求項2の発明によれば、所内率偏差に加えてボイラ側所内率偏差及びタービン側所内率偏差を評価するので、所内率に加えてボイラ側所内率及びタービン側所内率も管理できる。   According to the invention of claim 2, since the boiler side internal rate deviation and the turbine side internal rate deviation are evaluated in addition to the internal rate deviation, the boiler side internal rate and the turbine side internal rate can be managed in addition to the internal rate.

請求項3の発明によれば、ボイラ側所内電力量はボイラ側の各々の補機の軸動力を算出し、これら軸動力を合計して求め、タービン側所内電力量は所内電力量からボイラ側所内電力量を減算して求めるので、補機毎に新たに電力量計を設けることなく、ボイラ側所内電力量及びタービン側所内電力量を求めることができる。   According to the invention of claim 3, the boiler side in-site electric energy is obtained by calculating the shaft power of each auxiliary machine on the boiler side, and summing up these shaft powers. Since the in-house electric energy is subtracted and obtained, the boiler-side in-house electric energy and the turbine-side in-house electric energy can be obtained without providing a new watt-hour meter for each auxiliary machine.

請求項4の発明によれば、ボイラ側所内電力量やタービン側所内電力量と相関性が強い排ガス流量を、ボイラ側所内電力量及びタービン側所内電力量に関連性のあるプロセス量としたので、排ガス流量により容易に基準ボイラ側所内電力量や基準タービン側所内電力量を得ることができる。   According to the fourth aspect of the present invention, the exhaust gas flow rate having a strong correlation with the boiler-side in-house electric energy and the turbine-side in-house electric energy is set as the process amount related to the boiler-side in-house electric energy and the turbine-side in-house electric energy. In addition, the reference boiler side in-house electric energy and the reference turbine side in-house electric energy can be easily obtained by the exhaust gas flow rate.

請求項5の発明によれば、ボイラ側所内電力量及びタービン側所内電力量は各々の補機の電流に基づいて使用電力量を算出し、これらを合計して求めるので、補機の軸動力を算出するためのプロセス量が得られない場合でも、ボイラ側所内電力量やタービン側所内電力量を求めることができる。   According to the fifth aspect of the present invention, the boiler-side power amount and the turbine-side power amount are calculated based on the currents of the respective auxiliary machines, and are obtained and summed up. Even when the process amount for calculating the power cannot be obtained, the boiler-side local power amount and the turbine-side local power amount can be obtained.

本発明の実施形態に係るコンベンショナル火力発電所の所内率管理方法の一例を示すフローチャート。The flowchart which shows an example of the indoor ratio management method of the conventional thermal power plant which concerns on embodiment of this invention. ボイラ系統のボイラ側所内電力量Pbと排ガス量Q1との所定期間のデータの一例を示すグラフ。The graph which shows an example of the data of the predetermined period of the electric energy Pb in the boiler side of a boiler system | strain, and the waste gas quantity Q1. 縦軸をボイラ側所内電力量Pbとし横軸を排ガス流量Q1とした座標系にボイラ側所内電力量Pbをプロットしボイラ側所内電力量基準式Ybを求めたグラフ。The graph which calculated | required the boiler side in-house electric energy Pb on the coordinate system which made the vertical axis | shaft the boiler side in-house electric energy Pb, and the horizontal axis | shaft the exhaust gas flow rate Q1, and calculated | required the boiler side in-house electric energy standard formula Yb. 縦軸をタービン側所内電力量Ptとし横軸を排ガス流量Q1とした座標系にタービン側所内電力量Ptをプロットしタービン側所内電力量基準式Ytを求めたグラフ。A graph in which the turbine side in-site power amount Pt is plotted in a coordinate system in which the vertical axis represents the turbine side in-site power amount Pt and the horizontal axis represents the exhaust gas flow rate Q1 to obtain the turbine side in-house power amount reference formula Yt. 縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフ。A graph in which the vertical axis indicates the internal ratio A and the internal ratio deviation ΔA, and the horizontal axis indicates the operation time. 本発明の実施形態に係るコンベンショナル火力発電所の所内率管理方法の他の一例を示すフローチャート。The flowchart which shows another example of the indoor ratio management method of the conventional thermal power plant which concerns on embodiment of this invention. 縦軸にボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフ。A graph when the vertical axis represents the boiler side internal rate deviation ΔAb and the turbine side internal rate deviation ΔAt, and the horizontal axis represents the operation time. 縦軸をボイラ側所内電力量Pbとし横軸を合計空気流量Q2とした座標系にボイラ側所内電力量Pbをプロットしボイラ側所内電力量基準式Ybを求めたグラフ。The graph which calculated | required the boiler side in-site electric energy Pb on the coordinate system which made the vertical axis | shaft the boiler side in-house electric energy Pb, and the horizontal axis the total air flow rate Q2, and calculated | required the boiler side in-house electric energy standard formula Yb. 縦軸をタービン側所内電力量Ptとし横軸を海水温度T1とした座標系にタービン側所内電力量Ptをプロットしタービン側所内電力量基準式Ytを求めたグラフ。A graph in which the turbine side in-site power amount Pt is plotted in a coordinate system in which the vertical axis represents the turbine side in-site power amount Pt and the horizontal axis represents the seawater temperature T1, and the turbine side in-house power amount reference expression Yt is obtained. 縦軸をその他所内電力量Pzとし横軸を大気温度T2とした座標系にその他所内電力量Pzをプロットしその他所内電力量基準式Yzを求めたグラフ。The graph which plotted other in-house electric energy Pz on the coordinate system which made the vertical axis the other in-room electric energy Pz, and the horizontal axis | shaft the atmospheric temperature T2, and calculated | required the other in-house electric energy standard formula Yz. 電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフ。A graph when the in-house power amount P is calculated based on the current, and the in-axis rate A and in-site rate deviation ΔA are taken on the vertical axis and the operation time is taken on the horizontal axis. 電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びボイラ所内率偏差ΔAbを取り横軸に運転時間を取った場合のグラフ。The graph when the in-house electric energy P is calculated based on the current, and the operation rate is taken on the horizontal axis with the internal rate A and the boiler internal rate deviation ΔAb on the vertical axis. 電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びタービン所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフ。The graph when the in-house electric energy P is calculated based on the current, and the operation rate is taken on the horizontal axis with the internal rate A and the turbine internal rate deviation ΔAt on the vertical axis. 電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びその他所内率偏差ΔAzを取り横軸に運転時間を取った場合のグラフ。A graph when the in-house power amount P is calculated based on the current, and the in-axis rate A and other in-site rate deviation ΔAz are taken on the vertical axis and the operation time is taken on the horizontal axis. 縦軸をボイラ側所内電力量Pbとし横軸をFDF合計吸込流量とした座標系にボイラ側所内電力量Pbをプロットしたグラフ。The graph which plotted the boiler side site electric energy Pb on the coordinate system which made the vertical axis | shaft the electric energy Pb in the boiler side, and made the horizontal axis the FDF total suction flow rate. 縦軸をタービン側所内電力量Ptとし横軸を復水器真空度とした座標系にタービン側所内電力量Ptをプロットしたグラフ。The graph which plotted the turbine side site electric energy Pt on the coordinate system which made the vertical axis the turbine side site electric energy Pt, and the horizontal axis made the condenser vacuum degree. 少ない運転データを基に所内電力量Pを算出した場合であって縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフ。A graph when the in-house power amount P is calculated based on a small amount of operation data, and the in-axis rate A and in-site rate deviation ΔA are taken on the vertical axis and the operation time is taken on the horizontal axis. 少ない運転データを基に所内電力量Pを算出した場合であって縦軸にボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフ。A graph when the in-house electric energy P is calculated on the basis of a small amount of operation data, where the vertical axis indicates the boiler side internal rate deviation ΔAb and the turbine side internal rate deviation ΔAt, and the horizontal axis indicates the operation time. ある石炭火力発電所の1号機の所内率の推移グラフ。Transition graph of the in-house ratio of Unit 1 of a coal-fired power plant.

以下、本発明の実施の形態を説明する。本発明の実施形態の基本概念を説明する。図19の所内率では変動が大きいので、所内電力量をボイラ側所内電力量とタービン側所内電力量に分けて求め、所内電力量の変動がタービン系統あるいはボイラ系統のどちらの補機動力によるものかを長いスパンでデータを取り確認した。そうすると、タービン系統の補機動力は年間を通じて変動がほとんど無く、ボイラ側の補機(通風機)が動力変動を起こしていることが判明した。   Embodiments of the present invention will be described below. The basic concept of the embodiment of the present invention will be described. Since the fluctuation in the in-house ratio in FIG. 19 is large, the in-house electric energy is obtained by dividing it into the boiler-side in-house electric energy and the turbine-side in-house electric energy, and the fluctuation in the in-house electric energy depends on the auxiliary power of either the turbine system or the boiler system. The data was confirmed by taking a long span. As a result, it was found that the auxiliary power of the turbine system hardly fluctuated throughout the year, and the auxiliary equipment (ventilator) on the boiler side caused the power fluctuation.

次に、ボイラ系統の所内電力量は何が原因で変動しているのかを様々なデータにて比較したところ、コンベンショナル火力発電所から排出される排ガス量と関連性があることが判明した。図2はボイラ系統のボイラ側所内電力量Pbと排ガス量Q1との約1年3ヶ月間のデータのグラフである。図2に示すように、ボイラ側所内電力量Pbと排ガス量Q1とはほぼ同じような特性となっており、ボイラ側所内電力量Pbが増加すると排ガス量Q1もほぼ同じ特性で増加し、ボイラ側所内電力量Pbが減少すると排ガス量Q1もほぼ同じ特性で減少している。   Next, it was found that there is a relation with the amount of exhaust gas discharged from a conventional thermal power plant, when various data were used to compare what caused the amount of power in the boiler system. FIG. 2 is a graph of data for about one year and three months of the amount of electric power Pb in the boiler side of the boiler system and the amount of exhaust gas Q1. As shown in FIG. 2, the boiler side local power amount Pb and the exhaust gas amount Q1 have substantially the same characteristics. When the boiler side local power amount Pb increases, the exhaust gas amount Q1 also increases with the same characteristics, and the boiler When the in-site power amount Pb decreases, the exhaust gas amount Q1 also decreases with substantially the same characteristics.

そこで、ボイラ系統の各通風機(補機)の軸動力の基準を作成し、その軸動力基準を使って、さらにボイラ系統及びタービン系統の補機軸動力基準の基準式を算出し、基準式から求まる基準所内率と実際の所内率との偏差を求め、その所内率偏差を評価することで所内率を管理することとした。   Therefore, a standard for the shaft power of each ventilator (auxiliary machine) in the boiler system is created, and using the shaft power standard, a standard expression for the auxiliary machine shaft power standard for the boiler system and the turbine system is calculated. We decided to manage the in-house ratio by calculating the deviation between the standard in-house ratio and the actual in-house ratio, and evaluating the in-site ratio deviation.

図1は本発明の実施形態に係るコンベンショナル火力発電所の所内率管理方法の一例を示すフローチャートである。まず、所内電力量Pのうちのボイラ側所内電力量Pbに関連性のあるプロセス量をパラメータとする基準ボイラ側所内電力量Pbrを求めるためのボイラ側所内電力量基準式を予め作成する(S1)。   FIG. 1 is a flowchart showing an example of an indoor rate management method for a conventional thermal power plant according to an embodiment of the present invention. First, a boiler-side in-house power amount reference formula for obtaining a reference boiler-side in-house power amount Pbr using a process amount related to the boiler-side in-house power amount Pb in the in-house power amount P as a parameter is created in advance (S1). ).

ボイラ側所内電力量Pbは、例えば、ボイラ側の各々の補機の軸動力Lsを算出し、これら軸動力を合計して求められる。補機の軸動力Lsは、理論空気動力をLad、効率をηとすると、(1)式で求められる。   The boiler-side in-site electric energy Pb is obtained, for example, by calculating the shaft power Ls of each auxiliary machine on the boiler side and adding up these shaft powers. The shaft power Ls of the auxiliary machine can be obtained by equation (1) where Lad is the theoretical air power and η is the efficiency.

Ls=(Lad/η)・100 …(1)
また、理論空気動力Ladは、流量をQs、比熱比をk、入口圧力をP1、出口圧力をP2とすると、(2)式で求められる。
Ls = (Lad / η) · 100 (1)
Further, the theoretical aerodynamic power Lad is obtained by the equation (2) where Qs is the flow rate, k is the specific heat ratio, P1 is the inlet pressure, and P2 is the outlet pressure.

Lad=(Qs/60)・{k/(k+1)}・P1・(1/10)・{(P2/P1)(k+1)/k)} …(2)
ボイラ各補機、例えば、押込通風機FDF、一次通風機PAF、誘引通風機IDF、昇圧通風機BUF等について、流量Qs、入口圧力P1、出口圧力P2をある一定期間(6ヶ月〜1年間)に亘って採取するとともに、そのときの排ガス流量Q1も採取する。そして、採取した流量Qs、入口圧力P1、出口圧力P2に基づいて、(2)式により理論空気動力Ladを算出し、(1)式により補機の軸動力Lsを算出する。
Lad = (Qs / 60) · {k / (k + 1)} · P1 · (1/10) · {(P2 / P1) (k + 1) / k) } (2)
For each auxiliary machine of the boiler, for example, forced draft fan FDF, primary ventilator PAF, induction ventilator IDF, booster ventilator BUF, etc., the flow rate Qs, inlet pressure P1, outlet pressure P2 are set for a certain period (6 months to 1 year). The exhaust gas flow rate Q1 at that time is also collected. Then, based on the collected flow rate Qs, inlet pressure P1, and outlet pressure P2, the theoretical aerodynamic power Lad is calculated by equation (2), and the shaft power Ls of the auxiliary machine is calculated by equation (1).

次に、各々の補機の軸動力Lsを合計してボイラ側所内電力量Pbを求め、図3に示すように、縦軸をボイラ側所内電力量Pbとし、横軸を排ガス流量Q1とした座標系にボイラ側所内電力量Pbをプロットしたグラフを作成する。そして、このグラフから排ガス流量Q1をパラメータとしたボイラ側所内電力量Pbのボイラ側所内電力量基準式Ybを求める。   Next, the shaft power Ls of each auxiliary machine is summed to obtain the boiler side in-site electric energy Pb. As shown in FIG. 3, the vertical axis is the boiler side in-house electric energy Pb, and the horizontal axis is the exhaust gas flow rate Q1. A graph is generated by plotting the boiler side power amount Pb in the coordinate system. From this graph, the boiler-side local power amount reference formula Yb of the boiler-side local power amount Pb using the exhaust gas flow rate Q1 as a parameter is obtained.

このように、ボイラ側所内電力量Pbに関連性のあるプロセス量(排ガス流量Q1)をパラメータとするボイラ側所内電力量Pbのボイラ側所内電力量基準式Ybを予め求めておく。ボイラ側所内電力量基準式Ybは、計測した排ガス流量Q1から基準ボイラ側所内電力量Pbrを求める際に用いられる。   In this way, the boiler-side in-house power amount reference formula Yb of the boiler-side in-house power amount Pb using the process amount (exhaust gas flow rate Q1) related to the boiler-side in-house power amount Pb as a parameter is obtained in advance. The boiler side in-site electric energy reference formula Yb is used when obtaining the reference boiler-side in-house electric energy Pbr from the measured exhaust gas flow rate Q1.

同様に、所内電力量Pのうちのタービン側所内電力量Ptに関連性のあるプロセス量をパラメータとする基準タービン側所内電力量Ptrを求めるためのタービン側所内電力量基準式を予め作成する(S2)。タービン側所内電力量Ptは所内電力量Pからボイラ側所内電力量Pbを減算して求める。なお、所内電力量Pは所内母線の電力を電力量計で計測することにより求める。   Similarly, a turbine-side in-house power amount reference expression for obtaining a reference turbine-side in-house power amount Ptr using a process amount related to the turbine-side in-house power amount Pt of the in-site power amount P as a parameter is created in advance ( S2). The turbine-side in-house electric energy Pt is obtained by subtracting the boiler-side in-house electric energy Pb from the in-house electric energy P. The in-house power amount P is obtained by measuring the power of the in-house bus with a watt hour meter.

図4に示すように、縦軸をタービン側所内電力量Ptとし、横軸を排ガス流量Q1とした座標系にタービン側所内電力量Ptをプロットしたグラフを作成する。そして、このグラフから排ガス流量Q1をパラメータとしたタービン側所内電力量Ptのタービン側所内電力量基準式Ytを求める。   As shown in FIG. 4, a graph is created by plotting the turbine-side in-house power Pt in a coordinate system with the vertical axis representing the turbine-side in-house power Pt and the horizontal axis representing the exhaust gas flow rate Q1. Then, from this graph, a turbine-side local power amount reference expression Yt for the turbine-side local power amount Pt with the exhaust gas flow rate Q1 as a parameter is obtained.

このように、タービン側所内電力量Ptに関連性のあるプロセス量(排ガス流量Q1)をパラメータとするタービン側所内電力量Ptのタービン側所内電力量基準式Ytを予め求めておく。タービン側所内電力量基準式Ybは、計測した排ガス流量Q1から基準タービン側所内電力量Ptrを求める際に用いられる。   In this way, the turbine-side local power amount reference formula Yt for the turbine-side local power amount Pt having the process amount (exhaust gas flow rate Q1) related to the turbine-side local power amount Pt as a parameter is obtained in advance. The turbine-side local power amount reference formula Yb is used when obtaining the reference turbine-side local power amount Ptr from the measured exhaust gas flow rate Q1.

次に、実際の所内率を評価するに当たって、まず、計測された排ガス流量Q1から基準所内率Arを求める(S3)。基準所内率Arは、下記の(3)式に示すように、基準所内電力量Prを発電機の発電電力量Wで除算して求められる。   Next, in evaluating the actual in-house rate, first, the reference in-site rate Ar is obtained from the measured exhaust gas flow rate Q1 (S3). As shown in the following equation (3), the reference in-house rate Ar is obtained by dividing the reference in-house electric energy Pr by the generated electric power W of the generator.

Ar=Pr/W …(3)
基準所内電力量Prは、(4)式に示すように、基準ボイラ側所内電力量Pbrと基準タービン側所内電力量Ptrとの合計である。
Ar = Pr / W (3)
The reference site power amount Pr is the sum of the reference boiler side site power amount Pbr and the reference turbine side site power amount Ptr, as shown in the equation (4).

Pr=Pbr+Ptr …(4)
基準ボイラ側所内電力量Pbrは、計測された排ガス流量Q1(ボイラ側所内電力量に関連性のあるプロセス量)から、図3に示すボイラ側所内電力量基準式Ybにより求められる。同様に、基準タービン側所内電力量Ptrは、計測された排ガス流量Q1(タービン側所内電力量に関連性のあるプロセス量)から、図4に示すタービン側所内電力量基準式Ytにより求められる。
Pr = Pbr + Ptr (4)
The reference boiler side in-site electric energy Pbr is obtained from the measured exhaust gas flow rate Q1 (process amount related to the boiler side in-house electric energy) by the boiler side in-house electric energy reference formula Yb shown in FIG. Similarly, the reference turbine side in-house electric energy Ptr is obtained from the measured exhaust gas flow rate Q1 (process amount related to the turbine side in-house electric energy) by the turbine side in-house electric energy reference expression Yt shown in FIG.

次に、実際の所内率Aを求める(S4)。所内率Aは下記の(5)式に示すように、所内電力量Pを発電機の発電電力量Wで除算して求められる。   Next, an actual internal ratio A is obtained (S4). The in-house rate A is obtained by dividing the in-house power amount P by the generated power amount W of the generator, as shown in the following equation (5).

A=P/W …(5)
そして、(4)式及び(5)式から、(6)式に示すように、基準所内率Arと所内率Aとの偏差を所内率偏差ΔAとして求める(S5)。
A = P / W (5)
Then, from the equations (4) and (5), as shown in the equation (6), a deviation between the reference factor Ar and the factor A is obtained as the factor ΔA (S5).

ΔA=A−Ar
=P/W−Pr/W …(6)
図5は縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフである。この図5に示す所内率偏差ΔAのグラフから所内率偏差ΔAを評価し所内率を管理する(S6)。すなわち、図5に示すように、所内率Aは運転状況により変化するが、所内率偏差ΔAはボイラ系統やタービン系統には各種の補機が正常であるときは、ほとんど変化しない。従って、所内率偏差ΔAが予め定めた閾値以上に変化すると、ボイラ系統やタービン系統の補機動力に異常が発生している可能性を評価できる。
ΔA = A-Ar
= P / W-Pr / W (6)
FIG. 5 is a graph in which the vertical axis indicates the internal ratio A and the internal ratio deviation ΔA, and the horizontal axis indicates the operation time. The internal rate deviation ΔA is evaluated from the internal rate deviation ΔA graph shown in FIG. 5 to manage the internal rate (S6). That is, as shown in FIG. 5, the site ratio A varies depending on the operating conditions, but the site ratio deviation ΔA hardly changes when various auxiliary machines are normal in the boiler system and the turbine system. Therefore, when the internal ratio deviation ΔA changes to a predetermined threshold value or more, it is possible to evaluate the possibility that an abnormality has occurred in the auxiliary power of the boiler system or the turbine system.

図6は本発明の実施形態に係るコンベンショナル火力発電所の所内率管理方法の他の一例を示すフローチャートである。この他の一例は、図1に示した一例に対し、所内率偏差ΔAに加えて、ボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtも評価するようにしたものである。   FIG. 6 is a flowchart showing another example of the indoor ratio management method for the conventional thermal power plant according to the embodiment of the present invention. In another example, in addition to the internal ratio deviation ΔA, the boiler internal ratio deviation ΔAb and the turbine-side internal ratio deviation ΔAt are also evaluated with respect to the example shown in FIG.

図6において、図1のステップS6に代えて、ステップS11〜S17を設けている。ステップS1〜S5は、図1と同一であるので説明は省略する。ステップS5で所内率偏差ΔAを求めると、次に、基準ボイラ側所内率Abrを求める(S11)。基準ボイラ側所内率Abrは、(7)式に示すように、ボイラ側所内電力量基準式Ybで求めた基準ボイラ側所内電力量Pbrを発電電力量Wで除算して求められる。   In FIG. 6, steps S11 to S17 are provided instead of step S6 of FIG. Steps S1 to S5 are the same as those in FIG. If the internal ratio deviation ΔA is obtained in step S5, next, the reference boiler side internal ratio Abr is obtained (S11). The reference boiler side internal rate Abr is obtained by dividing the reference boiler side internal power amount Pbr obtained by the boiler side internal power amount reference expression Yb by the generated power amount W as shown in the equation (7).

Abr=Pbr/W …(7)
次に、実際のボイラ側所内率Abを求める(S12)。ボイラ側所内率Abは(8)式に示すように、ボイラ側所内電力量Pbを発電電力量Wで除算して求められる。なお、ボイラ側所内電力量Pbは、各々のボイラ系統補機の軸動力Lsを(1)式を用いて算出し、合計してボイラ側所内電力量Pbを求める。
Abr = Pbr / W (7)
Next, the actual boiler side ratio Ab is obtained (S12). The boiler side internal rate Ab is obtained by dividing the boiler side internal power amount Pb by the generated power amount W as shown in the equation (8). In addition, the boiler side in-site electric energy Pb calculates the shaft power Ls of each boiler system auxiliary | assistant using Formula (1), and calculates | requires, and calculates | requires the boiler side in-house electric energy Pb.

Ab=Pb/W …(8)
そして、(7)式及び(8)式から、(9)式に示すように、基準ボイラ側所内率Abrとボイラ側所内率Abとの偏差をボイラ側所内率偏差ΔAbとして求める(S13)。
Ab = Pb / W (8)
Then, from the equations (7) and (8), as shown in the equation (9), the deviation between the reference boiler side internal rate Abr and the boiler side internal rate Ab is obtained as the boiler side internal rate deviation ΔAb (S13).

ΔAb=Ab−Abr
=Pb/W−Pbr/W …(9)
タービン系統についても同様に、まず、基準タービン側所内率Atrを求める(S14)。基準タービン側所内率Atrは、(10)式に示すように、タービン側所内電力量基準式Ytで求めた基準タービン側所内電力量Ptrを発電電力量Wで除算して求められる。
ΔAb = Ab−Abr
= Pb / W-Pbr / W (9)
Similarly, for the turbine system, first, a reference turbine side internal ratio Atr is obtained (S14). The reference turbine side site ratio Atr is obtained by dividing the reference turbine side site power amount Ptr obtained by the turbine side site power amount reference equation Yt by the generated power amount W as shown in the equation (10).

Atr=Ptr/W …(10)
次に、実際のタービン側所内率Atを求める(S15)。タービン側所内率Atは(11)式に示すように、タービン側所内電力量Ptを発電電力量Wで除算して求められる。なお、タービン側所内電力量Ptは、所内電力Pからボイラ側所内電力量Pbを減算して求められる。
Atr = Ptr / W (10)
Next, an actual turbine side internal ratio At is obtained (S15). The turbine side internal rate At is obtained by dividing the turbine side internal power amount Pt by the generated power amount W as shown in the equation (11). The turbine-side in-house electric energy Pt is obtained by subtracting the boiler-side in-house electric energy Pb from the in-house electric power P.

At=Pt/W …(12)
そして、(11)式及び(12)式から、(13)式に示すように、基準タービン側所内率Atrとタービン側所内率Atとの偏差をタービン側所内率偏差ΔAtとして求める(S16)。
At = Pt / W (12)
Then, from the equations (11) and (12), as shown in the equation (13), the deviation between the reference turbine side internal rate Atr and the turbine side internal rate At is obtained as the turbine side internal rate deviation ΔAt (S16).

ΔAt=At−Atr
=Pt/W−Ptr/W …(13)
図7は、縦軸にボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフである。この図7に示すボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtのグラフから、ボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを評価し、ボイラ側所内率Ab及びタービン側所内率Atを管理する(S17)。ステップS17では、ステップS5で得られた所内率偏差ΔAも評価し、全体の所内率Aも管理する。
ΔAt = At−Atr
= Pt / W-Ptr / W (13)
FIG. 7 is a graph when the vertical axis represents the boiler side internal rate deviation ΔAb and the turbine side internal rate deviation ΔAt, and the horizontal axis represents the operation time. From the graph of the boiler side internal rate deviation ΔAb and the turbine side internal rate deviation ΔAt shown in FIG. 7, the boiler side internal rate deviation ΔAb and the turbine side internal rate deviation ΔAt are evaluated. Are managed (S17). In step S17, the internal ratio deviation ΔA obtained in step S5 is also evaluated, and the overall internal ratio A is also managed.

ボイラ側所内率偏差ΔAbはボイラ系統の各種の補機が正常であるときは、ほとんど変化しない。同様に、タービン側所内率偏差ΔAtはタービン系統の各種の補機が正常であるときは、ほとんど変化しない。従って、ボイラ側所内率Abが予め定めた閾値以上に変化すると、ボイラ系統の補機動力に異常が発生している可能性があると評価でき、タービン側所内率Atが予め定めた閾値以上に変化すると、タービン系統の補機動力に異常が発生している可能性があると評価できる。   The boiler side ratio deviation ΔAb hardly changes when various auxiliary machines in the boiler system are normal. Similarly, the turbine side internal ratio deviation ΔAt hardly changes when various auxiliary machines in the turbine system are normal. Therefore, if the boiler side internal ratio Ab changes to a predetermined threshold value or more, it can be evaluated that there is a possibility that an abnormality has occurred in the auxiliary power of the boiler system, and the turbine side internal ratio At exceeds the predetermined threshold value. If it changes, it can be evaluated that there may be an abnormality in the auxiliary power of the turbine system.

以上の説明では、ボイラ側所内電力量Pbは、ボイラ側の各々の補機の軸動力Lsを算出しこれら軸動力を合計して求め、タービン側所内電力量Ptは所内電力量Pからボイラ側所内電力量Pbを減算して求めたが、ボイラ側補機及びタービン側補機の電流に基づいて、ボイラ側所内電力量Pb及びタービン側所内電力量Ptを求めるようにしてもよい。   In the above description, the boiler side in-house electric energy Pb is obtained by calculating the shaft power Ls of each auxiliary machine on the boiler side and adding up these shaft powers, and the turbine side in-house electric energy Pt is obtained from the in-house electric power P from the boiler side. Although the in-house power amount Pb is subtracted, the boiler-side in-house power amount Pb and the turbine-side in-house power amount Pt may be obtained based on the currents of the boiler side auxiliary machine and the turbine side auxiliary machine.

この場合、ボイラ側所内電力量Pb及びタービン側所内電力量Ptを電流値から個別に計算するので、所内電力量Pからボイラ側所内電力量Pb及びタービン側所内電力量Ptを減算してその他所内電力量Pzとする。   In this case, since the boiler side in-house power amount Pb and the turbine side in-house power amount Pt are calculated separately from the current values, the boiler side in-house power amount Pb and the turbine side in-house power amount Pt are subtracted from the in-house power amount P. The amount of power is Pz.

まず、前述の場合と同様に、基準ボイラ側所内電力量Pbrを求めるためのボイラ側所内電力量基準式Ybを予め作成する。その際、ボイラ側所内電力量Pbに関連性のあるプロセス量として、各々のボイラ側補機である押込通風機FDF、一次通風機PAF、誘引通風機IDF、昇圧通風機BUF等の合計空気流量Q2を採用する。   First, similarly to the above-described case, a boiler-side local power amount reference formula Yb for obtaining the reference boiler-side local power amount Pbr is created in advance. At that time, as the process amount related to the boiler side power amount Pb, the total air flow rate of each of the boiler side auxiliary devices, such as the forced draft fan FDF, primary ventilator PAF, induction ventilator IDF, booster ventilator BUF, etc. Adopt Q2.

ボイラ側所内電力量基準式Ybを作成するために、押込通風機FDF、一次通風機PAF、誘引通風機IDF、昇圧通風機BUF等の電流Ibをある一定期間(6ヶ月〜1年間)に亘って採取するとともに、そのときの合計空気流量Q2も採取する。そして、各々のボイラ側補機の電流Ibからボイラ側所内電力量Pbを求め、図8に示すように、縦軸をボイラ側所内電力量Pbとし横軸を合計空気流量Q2とした座標系にボイラ側所内電力量Pbをプロットしたグラフを作成する。このグラフから合計空気流量Q2をパラメータとしたボイラ側所内電力量Pbのボイラ側所内電力量基準式Ybを求める。   In order to create the boiler side in-place electric energy reference formula Yb, the current Ib of the forced draft fan FDF, primary ventilator PAF, induction ventilator IDF, booster ventilator BUF, etc. over a certain period (6 months to 1 year) And the total air flow rate Q2 at that time is also collected. Then, the boiler side local power amount Pb is obtained from the current Ib of each boiler side auxiliary machine, and as shown in FIG. 8, the vertical axis is the boiler side local power amount Pb and the horizontal axis is the total air flow rate Q2. A graph in which the boiler side power consumption Pb is plotted is created. From this graph, the boiler side in-house electric energy reference expression Yb of the boiler side in-house electric energy Pb with the total air flow rate Q2 as a parameter is obtained.

次に、基準タービン側所内電力量Ptrを求めるためのタービン側所内電力量基準式Ytを予め作成する。この場合も、ボイラ側所内電力量基準式Ybを求める場合と同様にしてタービン側所内電力量基準式Ytを求めることになる。   Next, a turbine-side local power amount reference formula Yt for obtaining the reference turbine-side local power amount Ptr is created in advance. In this case as well, the turbine side in-house electric energy reference expression Yt is obtained in the same manner as the boiler-side in-house electric energy reference expression Yb.

各々のタービン側補機は、海水を復水器に循環させる循環水ポンプCWP、復水ポンプCP、復水ブースタポンプCBP、ボイラ給水ブースタポンプBFP−BP等であり、その際、タービン側所内電力量Ptに関連性のあるプロセス量として海水温度T1を採用する。   Each turbine side auxiliary machine is a circulating water pump CWP, a condensate pump CP, a condensate booster pump CBP, a boiler feed water booster pump BFP-BP, etc. that circulate seawater to a condenser. The seawater temperature T1 is adopted as a process quantity related to the quantity Pt.

タービン側所内電力量基準式Ytを作成するために、循環水ポンプCWP、復水ポンプCP、復水ブースタポンプCBP、ボイラ給水ブースタポンプBFP−BP等の電流Itをある一定期間(6ヶ月〜1年間)に亘って採取するとともに、そのときの海水温度T1も採取する。   In order to create the turbine side in-site electric energy reference formula Yt, the current It of the circulating water pump CWP, the condensate pump CP, the condensate booster pump CBP, the boiler feed booster pump BFP-BP, and the like is set for a certain period (6 months to 1 The seawater temperature T1 at that time is also collected.

そして、各々のタービン側補機の電流Itからタービン側所内電力量Ptを求め、図9に示すように、縦軸をタービン側所内電力量Ptとし横軸を海水温度T1とした座標系にタービン側所内電力量Ptをプロットしたグラフを作成する。このグラフから海水温度T1をパラメータとしたタービン側所内電力量Ptのタービン側所内電力量基準式Ytを求める。   Then, the turbine-side local power amount Pt is obtained from the current It of each turbine-side auxiliary machine, and as shown in FIG. 9, the vertical axis is the turbine-side local power amount Pt and the horizontal axis is the seawater temperature T1. A graph in which the in-site electric energy Pt is plotted is created. From this graph, the turbine-side in-house electric energy reference expression Yt of the turbine-side in-house electric energy Pt with the seawater temperature T1 as a parameter is obtained.

次に、基準その他所内電力量Pzrを求めるためのその他所内電力量基準式Yzを予め作成する。この場合も、ボイラ側所内電力量基準式Ybを求める場合と同様にしてその他所内電力量基準式Yzを求めることになる。その他所内電力量Pzに関連性のあるプロセス量として、大気温度T2を採用する。   Next, the other in-house electric energy reference expression Yz for obtaining the reference other in-house electric energy Pzr is created in advance. In this case as well, other in-house electric energy reference formulas Yz are obtained in the same manner as the boiler-side in-house electric energy reference expression Yb. The atmospheric temperature T2 is adopted as a process amount related to the other in-house electric energy Pz.

その他所内電力量基準式Yzを作成するために、その他所内電力量Pzをある一定期間(6ヶ月〜1年間)に亘って採取するとともに、そのときの大気温度T2も採取する。その他所内電力量Pzは、所内電力量Pからボイラ側所内電力量Pb及びタービン側所内電力量Ptを減算して求める。図10に示すように、縦軸をその他所内電力量Pzとし横軸を大気温度T2とした座標系にその他所内電力量Pzをプロットしたグラフを作成する。このグラフから大気温度T2をパラメータとしたその他所内電力量Pzのその他所内電力量基準式Yzを求める。   In order to create the other in-house electric energy reference expression Yz, the other in-house electric energy Pz is collected over a certain period (6 months to 1 year), and the atmospheric temperature T2 at that time is also collected. The other in-house electric energy Pz is obtained by subtracting the boiler-side in-house electric energy Pb and the turbine-side in-house electric energy Pt from the in-house electric energy P. As shown in FIG. 10, a graph is created in which the other in-house electric energy Pz is plotted in a coordinate system in which the vertical axis represents the other in-house electric energy Pz and the horizontal axis represents the atmospheric temperature T2. From this graph, the other in-house electric energy reference formula Yz of the other in-house electric energy Pz using the atmospheric temperature T2 as a parameter is obtained.

このように、ボイラ側所内電力量基準式Yb、タービン側所内電力量基準式Yt、その他所内電力量基準式Yzを作成し、ボイラ側所内電力量基準式Yb、タービン側所内電力量基準式Yt、その他所内電力量基準式Yzを基に、基準ボイラ側所内電力量Pbr、基準タービン側所内電力量Ptr、基準その他所内電力量Pzrを求める。基準ボイラ側所内電力量Pbr、基準タービン側所内電力量Ptr、基準その他所内電力量Pzrの合計が基準所内電力量となる。   In this way, the boiler-side in-house electric energy reference formula Yb, the turbine-side in-house electric energy reference expression Yt, and the other in-house electric energy reference expression Yz are created, and the boiler-side in-house electric energy reference expression Yb, the turbine-side in-house electric energy reference expression Yt Then, based on the other in-house electric energy reference formula Yz, the reference boiler-side in-house electric energy Pbr, the reference turbine-side in-house electric energy Ptr, and the reference other in-house electric energy Pzr are obtained. The sum of the reference boiler side in-house power amount Pbr, the reference turbine side in-house power amount Ptr, and the reference other in-house power amount Pzr is the reference in-house power amount.

一方、各々のボイラ側補機の電流Ib、タービン側補機の電流Itに基づいて、実際のボイラ側所内電力量Pb、タービン側所内電力量Pt、基準その他所内電力量Pzを算出する。そして、これらから、発電所全体の所内率A、発電所全体の所内率偏差ΔA、ボイラ側所内率偏差ΔAb、タービン側所内率偏差ΔAt、その他所内率偏差ΔAzを求める。   On the other hand, based on the current Ib of each boiler side auxiliary machine and the current It of the turbine side auxiliary machine, the actual boiler side in-house electric energy Pb, turbine side in-house electric energy Pt, and reference other in-house electric energy Pz are calculated. From these, the overall ratio A of the power plant, the internal rate deviation ΔA of the entire power plant, the boiler side local rate deviation ΔAb, the turbine side local rate deviation ΔAt, and the other internal rate deviation ΔAz are obtained.

図11は、電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフである。図5に示した場合と同様に、図11に示す所内率偏差ΔAのグラフから所内率偏差ΔAを評価し所内率を管理する。所内率偏差ΔAが予め定めた閾値以上に変化すると、ボイラ系統やタービン系統の補機動力、あるいはその他の所内動力にいずれかに異常が発生している可能性を評価できる。   FIG. 11 is a graph in the case where the in-house electric energy P is calculated based on the current, where the vertical axis indicates the internal rate A and the internal rate deviation ΔA, and the horizontal axis indicates the operation time. Similarly to the case shown in FIG. 5, the internal rate deviation ΔA is evaluated from the internal rate deviation ΔA graph shown in FIG. 11 to manage the internal rate. If the in-house rate deviation ΔA changes to a predetermined threshold value or more, it is possible to evaluate the possibility that an abnormality has occurred in either the auxiliary power of the boiler system or the turbine system, or other in-house power.

図12は、電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びボイラ所内率偏差ΔAbを取り横軸に運転時間を取った場合のグラフである。このボイラ側所内率偏差ΔAbのグラフから、ボイラ側所内率偏差ΔAbを評価し所内率Aを管理する。また、所内率Aに代えてボイラ側所内率Abとし、ボイラ側所内率Abとボイラ所内率偏差ΔAbとのグラフとし、ボイラ側所内率Abを管理することもできる。   FIG. 12 is a graph in the case where the in-house electric energy P is calculated based on the current, where the vertical axis indicates the internal rate A and the boiler internal rate deviation ΔAb, and the horizontal axis indicates the operation time. From the graph of the boiler side internal rate deviation ΔAb, the boiler side internal rate deviation ΔAb is evaluated and the internal rate A is managed. In addition, the boiler side internal rate Ab may be used as a graph of the boiler side internal rate Ab and the boiler internal rate deviation ΔAb instead of the site rate A, and the boiler side internal rate Ab may be managed.

図13は、電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びタービン所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフである。このタービン側所内率偏差ΔAtのグラフから、タービン側所内率偏差ΔAtを評価し所内率Aを管理する。また、所内率Aに代えてタービン側所内率Atとし、タービン側所内率Atとタービン所内率偏差ΔAtとのグラフとし、タービン側所内率Atを管理することもできる。   FIG. 13 is a graph in the case where the in-house power amount P is calculated based on the current, and the in-axis ratio A and the turbine in-house ratio deviation ΔAt are taken on the vertical axis and the operation time is taken on the horizontal axis. From the graph of the turbine side internal rate deviation ΔAt, the turbine side internal rate deviation ΔAt is evaluated and the internal rate A is managed. Further, the turbine-side internal ratio At can be managed as a graph of the turbine-side internal ratio At and the turbine-side internal ratio At Δ, instead of the internal ratio A, and the turbine-side internal ratio At can be managed.

図14は、電流を基に所内電力量Pを算出した場合であって縦軸に所内率A及びその他所内率偏差ΔAzを取り横軸に運転時間を取った場合のグラフである。このその他所内率偏差ΔAzのグラフから、その他所内率偏差ΔAzを評価し所内率Aを管理する。また、所内率Aに代えてその他所内率Azとし、その他所内率Azとその他所内率偏差ΔAzとのグラフとし、その他所内率Azを管理することもできる。   FIG. 14 is a graph in the case where the in-house power amount P is calculated based on the current, where the vertical axis indicates the internal rate A and the other internal rate deviation ΔAz, and the horizontal axis indicates the operation time. From the graph of the other internal rate deviation ΔAz, the other internal rate deviation ΔAz is evaluated and the internal rate A is managed. Further, the other internal ratio Az may be used instead of the internal ratio A, and the other internal ratio Az may be managed as a graph of the other internal ratio Az and the other internal ratio deviation ΔAz.

以上の説明では、ボイラ系統の各々のボイラ側補機の運転データ及びタービン系統の各々のタービン側機器の運転データの検出が容易に行える場合について説明したが、コンベンショナル火力発電所によっては、各種補機の運転データの検出が少ない場合がある。そこで、運転データの検出点が少ないコンベンショナル火力発電所(ガス火力)での所内率偏差ΔAの簡易計算について説明する。   In the above description, the operation data of each boiler side auxiliary machine of the boiler system and the operation data of each turbine side equipment of the turbine system can be easily detected, but depending on the conventional thermal power plant, various auxiliary power plants There may be less detection of machine operation data. Therefore, a simple calculation of the internal ratio deviation ΔA in a conventional thermal power plant (gas thermal power) with a small number of operation data detection points will be described.

いま、ボイラ側補機である押込通風機FDFの吸込流量・FDF電流、燃焼ガスを火炉の下から再度吹き込ませるガス・リサーキュレーション・ファンGRFのGRF電流ぐらいしか運転データが無い場合を考える。この場合、ボイラ側所内電力量Pbは、押込通風機FDFの電力量とガス・リサーキュレーション・ファンGRFの電力量との合計とし、所内電力量Pからこのボイラ側所内電力量Pbを減算した電力量をタービン側所内電力量Ptとする。また、ボイラ側所内電力量Pbに関連性のあるプロセス量として、押込通風機FDFの合計吸込流量とし、タービン側所内電力量Ptに関連性のあるプロセス量として、復水器真空度とする。   Consider a case in which there is only operation data about the suction flow rate / FDF current of the forced air blower FDF, which is the boiler side auxiliary machine, and the GRF current of the gas / recirculation / fan GRF for blowing the combustion gas again from the bottom of the furnace. In this case, the boiler-side power amount Pb is the sum of the power amount of the forced draft fan FDF and the power amount of the gas recirculation fan GRF, and the boiler-side power amount Pb is subtracted from the power amount P. The amount of electric power is set as the turbine side local electric energy Pt. In addition, the total suction flow rate of the forced draft fan FDF is used as the process amount related to the boiler-side power amount Pb, and the condenser vacuum is used as the process amount related to the turbine-side power amount Pt.

押込通風機FDF及びガス・リサーキュレーション・ファンGRFに関する基準データをある一定期間(6ヶ月〜1年間)に亘って採取するとともに、FDF合計吸込流量及び復水器真空度も採取する。押込通風機FDFの基準データは、例えば、吸込流量(空気流量)、入口圧力、出口圧力などであり、ガス・リサーキュレーション・ファンGRFの基準データは、駆動用の電流値である。   Reference data on the forced draft fan FDF and gas recirculation fan GRF is collected over a certain period (6 months to 1 year), and the FDF total suction flow rate and condenser vacuum degree are also collected. The reference data of the forced draft fan FDF is, for example, a suction flow rate (air flow rate), an inlet pressure, an outlet pressure, and the like, and the reference data of the gas recirculation fan GRF is a current value for driving.

押込通風機FDFについては、採取した基本データを用いて(1)式及び(2)式から軸動力を求め、ガス・リサーキュレーション・ファンGRFについては、基本データである電流値にて「実測電力量」を計算して、ボイラ側所内電力量Pbを求める。   For the forced draft fan FDF, the shaft power is obtained from the formulas (1) and (2) using the collected basic data. For the gas recirculation fan GRF, the current value that is the basic data is measured. The “electric energy” is calculated, and the boiler-side local electric energy Pb is obtained.

そして、図15に示すように、縦軸をボイラ側所内電力量Pbとし横軸をFDF合計吸込流量とした座標系にボイラ側所内電力量Pbをプロットしたグラフを作成する。このグラフからFDF合計吸込流量をパラメータとしたボイラ側所内電力量Pbのボイラ側所内電力量基準式Ybを求める。   Then, as shown in FIG. 15, a graph is created in which the boiler side in-site electric energy Pb is plotted in a coordinate system in which the vertical axis is the boiler side in-house electric energy Pb and the horizontal axis is the FDF total suction flow rate. From this graph, the boiler side in-site electric energy reference formula Yb of the boiler side in-house electric energy Pb with the FDF total suction flow rate as a parameter is obtained.

次に、所内電力量Pからボイラ側所内電力量Pbを減算した電力量をタービン側所内電力量Ptとし、図16に示すように、縦軸をタービン側所内電力量Ptとし横軸を復水器真空度とした座標系にタービン側所内電力量Ptをプロットしたグラフを作成する。このグラフから復水器真空度をパラメータとしたタービン側所内電力量Ptのタービン側所内電力量基準式Ytを求める。   Next, the electric energy obtained by subtracting the boiler-side in-house electric energy Pb from the in-house electric energy P is set as the turbine-side in-house electric energy Pt, and as shown in FIG. 16, the vertical axis is the turbine-side in-house electric energy Pt and the horizontal axis is the condensate. A graph is created by plotting the turbine side in-site electric energy Pt in the coordinate system with the degree of vacuum of the vessel. From this graph, the turbine-side in-site electric energy reference expression Yt of the turbine-side in-house electric energy Pt with the condenser vacuum degree as a parameter is obtained.

このように、ボイラ側所内電力量基準式Yb及びタービン側所内電力量基準式Ytを作成し、ボイラ側所内電力量基準式Yb及びタービン側所内電力量基準式Ytを基に、基準ボイラ側所内電力量Pbr及び基準タービン側所内電力量Ptrを求める。基準ボイラ側所内電力量Pbrと基準タービン側所内電力量Ptrとの合計が基準所内電力量となる。一方、実際のボイラ側所内電力量Pb及びタービン側所内電力量Ptを算出し、これらから、発電所全体の所内率A、発電所全体の所内率偏差ΔA、ボイラ側所内率偏差ΔAb、タービン側所内率偏差ΔAtを求める。   In this way, the boiler-side in-house electric energy reference formula Yb and the turbine-side in-house electric energy reference expression Yt are created, and the boiler-side in-house electric energy reference expression Yt and the turbine-side in-house electric energy reference expression Yt are used, The electric energy Pbr and the reference turbine side local electric energy Ptr are obtained. The sum of the reference boiler side in-house electric energy Pbr and the reference turbine side in-house electric energy Ptr is the reference in-house electric energy. On the other hand, the actual boiler-side power amount Pb and the turbine-side power amount Pt are calculated, and from these, the power plant-wide power factor A, the power plant-wide power factor deviation ΔA, the boiler-side power factor deviation ΔAb, the turbine side The internal ratio deviation ΔAt is obtained.

図17は、少ない運転データを基に所内電力量Pを算出した場合であって縦軸に所内率A及び所内率偏差ΔAを取り横軸に運転時間を取った場合のグラフである。図5に示した場合と同様に、図17に示す所内率偏差ΔAのグラフから所内率偏差ΔAを評価し所内率を管理する。所内率偏差ΔAが予め定めた閾値以上に変化すると、ボイラ系統やタービン系統の補機動力、あるいはその他の所内動力にいずれかに異常が発生している可能性を評価できる。   FIG. 17 is a graph in the case where the in-house electric energy P is calculated based on a small amount of operation data, where the vertical axis indicates the internal rate A and the internal rate deviation ΔA, and the horizontal axis indicates the operation time. Similarly to the case shown in FIG. 5, the internal rate deviation ΔA is evaluated from the internal rate deviation ΔA graph shown in FIG. 17 to manage the internal rate. If the in-house rate deviation ΔA changes to a predetermined threshold value or more, it is possible to evaluate the possibility that an abnormality has occurred in either the auxiliary power of the boiler system or the turbine system, or other in-house power.

図18は、少ない運転データを基に所内電力量Pを算出した場合であって縦軸にボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを取り横軸に運転時間を取った場合のグラフである。この図18に示すボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtのグラフから、ボイラ側所内率偏差ΔAb及びタービン側所内率偏差ΔAtを評価し、ボイラ側所内率Ab及びタービン側所内率Atを管理する。   FIG. 18 is a graph in the case where the in-house electric energy P is calculated based on a small amount of operation data, where the vertical axis indicates the boiler-side internal rate deviation ΔAb and the turbine-side internal rate deviation ΔAt, and the horizontal axis indicates the operation time. It is. From the graph of the boiler side internal ratio deviation ΔAb and the turbine side internal ratio deviation ΔAt shown in FIG. 18, the boiler side internal ratio deviation ΔAb and the turbine side internal ratio deviation ΔAt are evaluated, and the boiler side internal ratio deviation Ab and the turbine side internal ratio deviation At are evaluated. Manage.

本発明の実施の形態によれば、所内電力量Pをボイラ側所内電力量Pbとタービン側所内電力量Pt、必要に応じてその他所内電力量Pzに分けて求め、それぞれにあったパラメータにより基準式を作成し、基準式で求まる基準所内率と実際の所内率との偏差を所内率偏差として求めて、この所内率偏差を評価するので適切に所内率を管理できる。   According to the embodiment of the present invention, the in-house electric energy P is divided into the boiler-side in-house electric energy Pb and the turbine-side in-house electric energy Pt, and, if necessary, other in-house electric energy Pz. A formula is created, and the deviation between the standard in-place ratio obtained from the reference expression and the actual in-place ratio is obtained as the in-place ratio deviation, and this in-place ratio deviation is evaluated, so the in-place ratio can be managed appropriately.

Claims (5)

ボイラで発生した蒸気をタービンに導き前記タービンに連結された発電機を駆動して発電を行うコンベンショナル火力発電所の所内電力量を発電電力量で除算して求められた所内率を管理するコンベンショナル火力発電所の所内率管理方法において、前記所内電力量のうちの前記ボイラ側所内電力量に関連性のあるプロセス量をパラメータとする基準ボイラ側所内電力量を求めるためのボイラ側所内電力量基準式を予め作成し、前記所内電力量のうちの前記タービン側所内電力量に関連性のあるプロセス量をパラメータとする基準タービン側所内電力量を求めるためのタービン側所内電力量基準式を予め作成し、前記ボイラ側所内電力量に関連性のあるプロセス量に基づいて前記ボイラ側所内電力量基準式により求めた基準ボイラ側所内電力量と前記タービン側所内電力量に関連性のあるプロセス量に基づいて前記タービン側所内電力量基準式により求めた基準タービン側所内電力量との合計である基準所内電力量を前記発電電力で除算して基準所内率を求め、前記所内電力量を前記発電電力量で除算して求めた所内率と前記基準所内率との偏差を所内率偏差として求め、前記所内率偏差を評価し所内率を管理することを特徴とするコンベンショナル火力発電所の所内率管理方法。   Conventional thermal power that manages the in-house rate obtained by dividing the on-site power amount of the conventional thermal power plant that generates electricity by driving steam generated in the boiler to the turbine and driving the generator connected to the turbine. In the on-site rate management method of the power plant, the boiler-side in-house electric energy reference formula for obtaining the reference boiler-side in-house electric energy using the process amount relevant to the boiler-side in-house electric energy among the in-house electric energy as a parameter Is created in advance, and a turbine-side in-house power amount reference formula for obtaining a reference turbine-side in-house electric energy with a process amount related to the turbine-side in-house electric energy as a parameter is created in advance. , The standard boiler side power obtained from the boiler side power standard based on the process amount related to the boiler side power Is calculated by dividing the reference internal power amount by the generated power, which is the sum of the reference turbine side internal power amount calculated by the turbine side internal power amount reference formula based on the process amount related to the turbine side internal power amount. The standard in-house rate is obtained, and the deviation between the in-house rate obtained by dividing the in-house power amount by the generated power amount and the reference in-house rate is obtained as an in-house rate deviation, and the in-site rate deviation is evaluated and the in-house rate is managed. A ratio management method for a conventional thermal power plant. 前記ボイラ側所内電力量基準式で求めた基準ボイラ側所内電力量を前記発電電力量で除算して基準ボイラ側所内率を求め、前記ボイラ側所内電力量を前記発電電力量で除算してボイラ側所内率を求め、前記基準ボイラ側所内率と前記ボイラ側所内率との偏差をボイラ側所内率偏差として求め、前記タービン側所内電力量基準式で求めた基準タービン側所内電力量を前記発電電力量で除算して基準タービン側所内率を求め、前記ボイラ側所内電力量を前記発電電力量で除算してボイラ側所内率を求め、前記基準タービン側所内率と前記タービン側所内率との偏差をタービン側所内率偏差として求め、前記所内率偏差に加えて前記ボイラ側所内率偏差及び前記タービン側所内率偏差を評価し、前記所内率に加えてボイラ側所内率及びタービン側所内率を管理することを特徴とする請求項1に記載のコンベンショナル火力発電所の所内率管理方法。   Dividing the reference boiler side in-house power amount obtained by the boiler side in-house power amount reference formula by the generated power amount to obtain a reference boiler side in-house rate, and dividing the boiler side in-house power amount by the generated power amount A side internal rate is obtained, a deviation between the reference boiler side internal rate and the boiler side internal rate is obtained as a boiler side internal rate deviation, and the reference turbine side internal power amount obtained by the turbine side internal power amount standard formula is calculated as the power generation Divide by the amount of power to obtain the reference turbine side in-house rate, divide the boiler side in-site power amount by the generated power amount to obtain the boiler side in-site rate, and calculate the reference turbine side in-site rate and the turbine side in-site rate. The deviation is determined as a turbine side internal rate deviation, and the boiler side internal rate deviation and the turbine side internal rate deviation are evaluated in addition to the internal rate deviation, and the boiler side internal rate and turbine side location are added to the internal rate. House rate management method of conventional thermal power plant according to claim 1, characterized in that managing the rate. 前記所内電力量は電力量計で計測し、前記ボイラ側所内電力量はボイラ側の各々の補機の軸動力を算出しこれら軸動力を合計して求め、前記タービン側所内電力量は前記所内電力量から前記ボイラ側所内電力量を減算して求めること特徴とする請求項1または請求項2に記載のコンベンショナル火力発電所の所内率管理方法。   The on-site electric energy is measured with a watt-hour meter, the boiler-side in-house electric energy is obtained by calculating the shaft power of each auxiliary machine on the boiler side and totaling these shaft powers, and the turbine-side in-house electric energy is 3. The indoor rate management method for a conventional thermal power plant according to claim 1 or 2, wherein the boiler side local power amount is subtracted from the power amount. 前記ボイラ側所内電力量に関連性のあるプロセス量及び前記タービン側所内電力量に関連性のあるプロセス量は、コンベンショナル火力発電所から排出される排ガス流量であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のコンベンショナル火力発電所の所内率管理方法。   The process amount related to the boiler-side power amount and the process amount related to the turbine-side power amount are exhaust gas flow rates discharged from a conventional thermal power plant. The in-site rate management method for a conventional thermal power plant according to any one of claims 3 to 4. 前記所内電力量は電力量計で計測し、前記ボイラ側所内電力量は各々のボイラ側補機の電流に基づいて各々のボイラ側補機の使用電力量を算出しこれらボイラ側補機の使用電力量を合計して求め、前記タービン側所内電力量は各々のタービン側補機の電流に基づいて各々のタービン側補機の使用電力量を算出しこれらタービン側補機の使用電力量を合計して求め、前記所内電力量から前記ボイラ側所内電力量及び前記タービン側所内電力量を減算してその他所内電力量を求めること特徴とする請求項1または請求項2に記載のコンベンショナル火力発電所の所内率管理方法。   The on-site power is measured with a watt-hour meter, and the boiler-side on-site power is calculated based on the current of each boiler-side auxiliary machine to calculate the amount of power used by each boiler-side auxiliary machine. The amount of electric power in the turbine side is calculated by calculating the amount of electric power used by each turbine side auxiliary machine based on the current of each turbine side auxiliary machine. The conventional thermal power plant according to claim 1 or 2, wherein the other on-site power amount is obtained by subtracting the boiler-side on-site power amount and the turbine-side on-site power amount from the on-site power amount. How to manage the rate of
JP2010272274A 2010-12-07 2010-12-07 In-house rate management method for conventional thermal power plants Active JP5556638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272274A JP5556638B2 (en) 2010-12-07 2010-12-07 In-house rate management method for conventional thermal power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272274A JP5556638B2 (en) 2010-12-07 2010-12-07 In-house rate management method for conventional thermal power plants

Publications (2)

Publication Number Publication Date
JP2012122364A true JP2012122364A (en) 2012-06-28
JP5556638B2 JP5556638B2 (en) 2014-07-23

Family

ID=46504073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272274A Active JP5556638B2 (en) 2010-12-07 2010-12-07 In-house rate management method for conventional thermal power plants

Country Status (1)

Country Link
JP (1) JP5556638B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536002U (en) * 1991-10-21 1993-05-18 住友金属工業株式会社 Blast furnace blower
JP2000248907A (en) * 1999-02-26 2000-09-12 Hitachi Ltd House cooling water system of power plant and its operation method
JP2002122005A (en) * 2000-10-13 2002-04-26 Tokyo Electric Power Co Inc:The Thermal efficiency diagnostic method and device for thermal power plant
JP2005048637A (en) * 2003-07-31 2005-02-24 Tokyo Electric Power Co Inc:The Turbine reference output calculating device and its method, and computer program
JP2005155372A (en) * 2003-11-21 2005-06-16 Toshiba Corp Thermal power plant and method for operating the same
JP2008259366A (en) * 2007-04-06 2008-10-23 Toshiba Corp Plant controller and plant control method
WO2009041346A1 (en) * 2007-09-27 2009-04-02 Kabushiki Kaisha Toshiba Power generation plant and its control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536002U (en) * 1991-10-21 1993-05-18 住友金属工業株式会社 Blast furnace blower
JP2000248907A (en) * 1999-02-26 2000-09-12 Hitachi Ltd House cooling water system of power plant and its operation method
JP2002122005A (en) * 2000-10-13 2002-04-26 Tokyo Electric Power Co Inc:The Thermal efficiency diagnostic method and device for thermal power plant
JP2005048637A (en) * 2003-07-31 2005-02-24 Tokyo Electric Power Co Inc:The Turbine reference output calculating device and its method, and computer program
JP2005155372A (en) * 2003-11-21 2005-06-16 Toshiba Corp Thermal power plant and method for operating the same
JP2008259366A (en) * 2007-04-06 2008-10-23 Toshiba Corp Plant controller and plant control method
WO2009041346A1 (en) * 2007-09-27 2009-04-02 Kabushiki Kaisha Toshiba Power generation plant and its control method
JP2009079580A (en) * 2007-09-27 2009-04-16 Toshiba Corp Power generation plant and its control method
US20100275610A1 (en) * 2007-09-27 2010-11-04 Kabushiki Kaisha Toshiba Power generation plant and control method thereof

Also Published As

Publication number Publication date
JP5556638B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US10094297B2 (en) Power generation system and power generation method
Naicker et al. Performance analysis of a large geothermal heating and cooling system
RU2012108075A (en) MODULAR MULTI-ENERGY THERMODYNAMIC DEVICE
CN110094802A (en) A kind of heat pump and heat storage electric boiler united heat load distribution method and device
CN104251143A (en) Start control unit for steam turbine plant
JP2010249502A (en) System and method including combined cycle plant
JP2012042129A (en) Air conditioning system overall efficiency calculating device and method
JP4929226B2 (en) Gas turbine control device and method for single-shaft combined cycle plant
Viholainen Energy-efficient control strategies for variable speed driven parallel pumping systems based on pump operation point monitoring with frequency converters
JPH0814103A (en) Cogeneration system
JP5556638B2 (en) In-house rate management method for conventional thermal power plants
CN112964492B (en) Heat supply coal consumption online measuring method suitable for high-backpressure step heat supply unit
AU2006286683B2 (en) Method and device for increasing the operational flexibility of a current-generating system, in particular a gas turbine or steam turbine
JP5216432B2 (en) Cogeneration system operation plan creation device, operation plan creation method, and program thereof
CN113642829A (en) Comprehensive energy system optimization scheduling method considering combined heat and power generation multi-heating mode
CN104484772A (en) Power plan feasibility check method and system
Shempelev et al. Make-up water heating capability, conditions, and efficiency in built in bundles when cooling water is concurrently piped through the main condenser bundles
Bakman High-Efficiency Predictive Control of Centrifugal Multi-Pump Stations with Variable-Speed Drives
Do Performance and controls of gas turbine-driven combined cooling heating and power systems for economic dispatch
Stathopoulos et al. Operational strategies of wet-cycle micro gas turbines and their economic evaluation
EP2644850B1 (en) A system for analyzing operation of power plant units and a method for analyzing operation of power plant units
JP2009206011A (en) Fuel cell power generation system
JP2005223964A (en) Operation control system for cogeneration system
Kaczmarczyk et al. Experimental research on the domestic ORC micro power plant with a commercial biomass boiler
JP5506558B2 (en) Cogeneration system operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350