JP2012121985A - Coating resin composition excellent in scratch resistance - Google Patents

Coating resin composition excellent in scratch resistance Download PDF

Info

Publication number
JP2012121985A
JP2012121985A JP2010273480A JP2010273480A JP2012121985A JP 2012121985 A JP2012121985 A JP 2012121985A JP 2010273480 A JP2010273480 A JP 2010273480A JP 2010273480 A JP2010273480 A JP 2010273480A JP 2012121985 A JP2012121985 A JP 2012121985A
Authority
JP
Japan
Prior art keywords
range
coating film
meth
polyisocyanate compound
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010273480A
Other languages
Japanese (ja)
Inventor
Hajime Suganuma
肇 菅沼
Emi Kishida
恵美 岸田
Masazumi Miokawa
正澄 澪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2010273480A priority Critical patent/JP2012121985A/en
Publication of JP2012121985A publication Critical patent/JP2012121985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating resin composition having both flexibility and toughness, excellent in substrate adhesiveness, capable of preventing scratch of a coating film by performing self repair even if a coating film surface is scratched, namely, excellent in scratch resistance.SOLUTION: This coating resin composition contains a polyisocyanate compound (A) whose isocyanate group equivalent is in the range of 290-500 g/eq, and an acrylic polyol (B) whose average Tg is -9 to 40°C, whose average functional group number of hydroxy groups per molecule is 4-20, and whose number-average molecular weight (Mn) is in the range of 1,000-3,000 so that the ratio of both materials [the mole number of isocyanate groups in the polyisocyanate compound]/[the mole number of hydroxy groups in the acrylic polyol (B)] falls in the range of 0.75-1.5.

Description

本発明は、硬化塗膜が柔軟性と靭性とを兼備することで耐傷性及び基材密着性に優れるコーティング樹脂組成物に関する。   The present invention relates to a coating resin composition that has excellent scratch resistance and substrate adhesion because a cured coating film has both flexibility and toughness.

携帯電話筐体、パソコン筐体、オーディオ機器等のプラスチック製品、タッチパネル、液晶画面等の電子材料部品、冷蔵庫、電子レンジ、洗濯機等の家電製品、家具等の木工製品、ゴルフクラブ、テニスラケット等のスポーツ用品、床、シンク、ドアノブ等の建築内装、自動車の内外装等々、表面の耐傷性が求められる製品は数多い。   Mobile phone housing, PC housing, plastic products such as audio equipment, electronic material parts such as touch panels and LCD screens, home appliances such as refrigerators, microwave ovens and washing machines, woodworking products such as furniture, golf clubs, tennis rackets, etc. There are many products that require surface scratch resistance, such as sports equipment, architectural interiors such as floors, sinks and doorknobs, and interior and exterior of automobiles.

これらの製品の表面に耐傷性を付与する方法として、UV硬化型塗料、EB硬化型塗料等からなる高硬度な塗膜を表面に形成し耐傷性を持たせる技術が知られている。しかしながら、この方法では、高硬度にするための硬質モノマーの使用や、架橋密度を高めることによる硬化収縮時の歪みの増大により、素材への密着性が低下する、塗膜に剥げやクラックが発生し易いという問題があった。また、これらの高硬度塗膜をプラスチックフィルム又はシート等の表面に形成した場合には、塗膜が硬く脆すぎるため、2次加工が非常に困難であった。   As a method for imparting scratch resistance to the surface of these products, a technique for imparting scratch resistance by forming a high-hardness coating film made of a UV curable paint, an EB curable paint, or the like on the surface is known. However, in this method, the use of hard monomers to increase the hardness and the increase in strain at the time of curing shrinkage by increasing the crosslink density reduces the adhesion to the material, causing peeling and cracking in the coating film There was a problem that it was easy to do. Moreover, when these high-hardness coating films were formed on the surface of a plastic film or sheet, secondary processing was very difficult because the coating films were too hard and brittle.

これに対し、二液硬化型ポリウレタン系塗料を用いて自己修復性能を有する塗膜とし、耐傷性を付与する方法が知られている。具体的には、1分子あたり平均2.5〜3.5個の水酸基を有し、かつ数平均分子量が500〜1500であるポリエステルポリオールと、ポリイソシアネート及び錫系ウレタン化触媒を必須成分とする塗料組成物を用い、塗膜の耐傷性を向上させた技術が知られている(特許文献1参照)。しかしながら、このような塗料用組成物から得られる塗膜は柔軟性には優れるものの、比較的低分子量で1分子当たりの平均官能基数の少ないポリエステルポリオールを用いている為、架橋密度が低く十分な靭性を示すものとはならず、耐傷性は十分なものではなかった。   On the other hand, a method of imparting scratch resistance by using a two-component curable polyurethane-based paint to form a coating film having self-healing performance is known. Specifically, polyester polyol having an average of 2.5 to 3.5 hydroxyl groups per molecule and a number average molecular weight of 500 to 1500, a polyisocyanate and a tin-based urethanization catalyst are essential components. A technique for improving the scratch resistance of a coating film using a coating composition is known (see Patent Document 1). However, although a coating film obtained from such a coating composition is excellent in flexibility, a polyester polyol having a relatively low molecular weight and a small number of average functional groups per molecule is used, so that the crosslinking density is sufficiently low. It did not show toughness, and scratch resistance was not sufficient.

特開昭63−86762号公報JP-A 63-86762

従って、本発明が解決しようとする課題は、柔軟性と靭性とを兼備し、塗膜表面に傷がついても自己修復することで塗膜の傷付きが防止される、所謂耐傷性に優れるコーティング樹脂組成物を提供することにある。   Therefore, the problem to be solved by the present invention is a coating excellent in so-called scratch resistance, which has both flexibility and toughness, and prevents the coating film from being damaged by self-healing even if the coating film surface is damaged. The object is to provide a resin composition.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、脂肪族ジイソシアネートモノマーとポリオールとを反応させて得られるアダクト型ポリイソシアネート化合物、及び脂肪族ジイソシアネートモノマーをヌレート化させて得られるヌレート型ポリイソシアネート化合物からなる群から選択されるポリイソシアネート化合物であって、イソシアネート基当量が290〜500g/eqの範囲であるポリイソシアネート化合物と、平均Tgが−9〜40℃の範囲であり、1分子あたりの水酸基の平均官能基数が4〜20の範囲であり、かつ、数平均分子量(Mn)が3000〜10000の範囲であるアクリル系ポリオールとを必須成分として含有する樹脂組成物を用いることにより、柔軟性と靭性とを兼備し、耐傷性及び基材密着性に優れる塗膜が形成され、上述の課題を解決し得ることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained an adduct-type polyisocyanate compound obtained by reacting an aliphatic diisocyanate monomer and a polyol, and a nurate obtained by nurating an aliphatic diisocyanate monomer. A polyisocyanate compound selected from the group consisting of type polyisocyanate compounds, wherein the isocyanate group equivalent is in the range of 290 to 500 g / eq, and the average Tg is in the range of -9 to 40 ° C. By using a resin composition containing, as an essential component, an acrylic polyol having an average functional group number of hydroxyl groups per molecule in the range of 4 to 20 and a number average molecular weight (Mn) in the range of 3000 to 10,000. Combines flexibility and toughness for scratch resistance and substrate adhesion The coating is formed, it found that it is possible to solve the above problem, thereby completing the present invention.

即ち本発明は、脂肪族ジイソシアネートモノマーとポリオールとを反応させて得られるアダクト型ポリイソシアネート化合物(a1)、及び脂肪族ジイソシアネートモノマーをヌレート化させて得られるヌレート型ポリイソシアネート化合物(a2)からなる群から選択されるポリイソシアネート化合物であって、イソシアネート基当量が290〜500g/eqの範囲であるポリイソシアネート化合物(A)と、平均Tgが−9〜40℃であり、1分子あたりの水酸基の平均官能基数が4〜20であり、かつ、数平均分子量(Mn)が3000〜10000の範囲であるアクリル系ポリオール(B)とを、両者の比率[ポリイソシアネート化合物中のイソシアネート基のモル数]/[アクリル系ポリオール(B)中の水酸基のモル数]が0.75〜1.5の範囲となるような割合で含有することを特徴とするコーティング樹脂組成物に関する。   That is, the present invention is a group consisting of an adduct type polyisocyanate compound (a1) obtained by reacting an aliphatic diisocyanate monomer and a polyol, and a nurate type polyisocyanate compound (a2) obtained by nurating an aliphatic diisocyanate monomer. The polyisocyanate compound (A) having an isocyanate group equivalent in the range of 290 to 500 g / eq, an average Tg of −9 to 40 ° C., and the average number of hydroxyl groups per molecule An acrylic polyol (B) having a functional group number of 4 to 20 and a number average molecular weight (Mn) in the range of 3000 to 10,000 is a ratio of the two [number of moles of isocyanate groups in the polyisocyanate compound] / [Mole number of hydroxyl group in acrylic polyol (B)] is 0 Relates to a coating resin composition characterized by containing in a ratio such that the range of 75 to 1.5.

本発明は更に前記コーティング樹脂組成物を硬化させて得られる塗膜に関する。   The present invention further relates to a coating film obtained by curing the coating resin composition.

本発明によれば、従来のコーティング樹脂組成物と比較して、柔軟性と靭性とを兼備し、基材密着性に優れると共に、塗膜表面に傷がついても自己修復することで塗膜の傷付きが防止される、所謂耐傷性に優れるコーティング樹脂組成物とその硬化塗膜とを提供することができる。   According to the present invention, as compared with the conventional coating resin composition, it has both flexibility and toughness, excellent substrate adhesion, and self-healing even if the coating surface is scratched. It is possible to provide a coating resin composition excellent in so-called scratch resistance, which is prevented from being scratched, and a cured coating film thereof.

本発明で用いるポリイソシアネート化合物(A)は、そのイソシアネート基当量が290〜500g/eqの範囲にあることを特徴としている。イソシアネート基当量が290g/eq未満の場合には、硬く脆い塗膜となり外力が吸収できず耐傷性が低下する。イソシアネート基当量が500g/eqを超える場合には、硬化塗膜が柔らかくなりすぎ塗膜の十分な靭性が得られない。これらの中でも、塗膜の耐傷性がより一層向上する点で、イソシアネート基当量が300〜450g/eqの範囲であることがより好ましい。   The polyisocyanate compound (A) used in the present invention is characterized in that its isocyanate group equivalent is in the range of 290 to 500 g / eq. When the isocyanate group equivalent is less than 290 g / eq, the coating film becomes hard and brittle, and the external force cannot be absorbed and the scratch resistance is lowered. When the isocyanate group equivalent exceeds 500 g / eq, the cured coating film becomes too soft and sufficient toughness of the coating film cannot be obtained. Among these, it is more preferable that the isocyanate group equivalent is in the range of 300 to 450 g / eq in terms of further improving the scratch resistance of the coating film.

前記ポリイソシアネート化合物(A)の1分子あたりのイソシアネート基の平均官能基数は、塗膜の架橋密度が好適な状態となり、靭性と柔軟性とのバランスに優れる点で、1.5〜5の範囲であることが好ましく、2〜4の範囲であることがより好ましい。   The average number of functional groups of isocyanate groups per molecule of the polyisocyanate compound (A) is in the range of 1.5 to 5 in that the crosslink density of the coating film is in a suitable state and the balance between toughness and flexibility is excellent. It is preferable that it is in the range of 2-4.

また、前記ポリイソシアネート化合物(A)の数平均分子量(Mn)は、塗膜の靭性と柔軟性とのバランスが良好となる点で500〜2000の範囲が好ましく、600〜1500の範囲であることがより好ましい。   In addition, the number average molecular weight (Mn) of the polyisocyanate compound (A) is preferably in the range of 500 to 2000 and in the range of 600 to 1500 in terms of a good balance between toughness and flexibility of the coating film. Is more preferable.

尚、本発明において、前記ポリイソシアネート化合物(A)の数平均分子量(Mn)は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。   In the present invention, the number average molecular weight (Mn) of the polyisocyanate compound (A) is a value measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 ; 東ソー株式会社製 HLC−8220
カラム ; 東ソー株式会社製ガードカラムHXL−H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 SC−8010
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Guard column H XL- H manufactured by Tosoh Corporation
+ Tosoh Corporation TSKgel G5000H XL
+ Tosoh Corporation TSKgel G4000H XL
+ Tosoh Corporation TSKgel G3000H XL
+ Tosoh Corporation TSKgel G2000H XL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard; polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)

前記ポリイソシアネート化合物(A)は、脂肪族ジイソシアネートモノマーとポリオールとを反応させて得られるアダクト型ポリイソシアネート化合物(a1)、及び脂肪族ジイソシアネートモノマーをヌレート化させて得られるヌレート型ポリイソシアネート化合物(a2)からなる群から選択されるポリイソシアネート化合物である。ポリイソシアネート化合物(A)の原料として脂肪族のジイソシアネートを用いることで、塗膜が硬脆くなく、柔軟性に優れる塗膜が得られる。   The polyisocyanate compound (A) includes an adduct-type polyisocyanate compound (a1) obtained by reacting an aliphatic diisocyanate monomer and a polyol, and a nurate-type polyisocyanate compound (a2) obtained by nurating an aliphatic diisocyanate monomer. And a polyisocyanate compound selected from the group consisting of: By using aliphatic diisocyanate as a raw material for the polyisocyanate compound (A), a coating film that is not hard and brittle and has excellent flexibility can be obtained.

アダクト型ポリイソシアネート化合物(a1)、及びヌレート型ポリイソシアネート化合物(a2)の製造で用いる前記ジイソシアネートモノマーは、例えば、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種以上を併用しても良い。   Examples of the diisocyanate monomer used in the production of the adduct type polyisocyanate compound (a1) and the nurate type polyisocyanate compound (a2) include butane-1,4-diisocyanate, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene. Examples include diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and xylylene diisocyanate. These may be used alone or in combination of two or more.

上記脂肪族ジイソシアネートモノマーの中でも、柔軟性と靭性とのバランスがより優れる塗膜となる点で、ブタン−1,4ジイソシアネート、ヘキサメチレンジイソシアネート等の直鎖型脂肪族ジイソシアネートモノマーが好ましく、ヘキサメチレンジイソシアネートが特に好ましい。   Among the above aliphatic diisocyanate monomers, linear aliphatic diisocyanate monomers such as butane-1,4 diisocyanate and hexamethylene diisocyanate are preferable, and hexamethylene diisocyanate is preferable in that the coating film has a better balance between flexibility and toughness. Is particularly preferred.

前記アダクト型ポリイソシアネート化合物(a1)は、脂肪族ジイソシアネートモノマーとポリオールとを反応させて得られる。該反応は20〜120℃の温度範囲内で、無溶剤条件下、又はトルエンやキシレン等、イソシアネート基や水酸基に対して非反応性の各種有機溶剤中で行うことができる。また、必要に応じて種々のウレタン化触媒を用いることができる。   The adduct type polyisocyanate compound (a1) can be obtained by reacting an aliphatic diisocyanate monomer with a polyol. The reaction can be carried out within a temperature range of 20 to 120 ° C. under solvent-free conditions or in various organic solvents that are non-reactive with isocyanate groups and hydroxyl groups, such as toluene and xylene. Moreover, various urethanization catalysts can be used as needed.

前記アダクト型ポリイソシアネート(a1)の製造で用いるポリオールは、分子中に2つ以上の水酸基を有する化合物である。具体的には、例えば、エチレングリコール、プロピレングリコール、1,2,2−トリメチル−1,3−プロパンジオール、2,2−ジメチル−3−イソプロピル−1,3−プロパンジオール、2,2−ジメチル−3−ベンジル−1,3−プロパンジオール、2,2− ジメチル− 3−イソブチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,2,3,3−テトラメチル−1,4−ブタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2,2,4−トリメチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、2,4,4−トリメチル−1,6−ヘキサンジオール、ネオペンチルグリコール等の脂肪族ジオール;   The polyol used in the production of the adduct polyisocyanate (a1) is a compound having two or more hydroxyl groups in the molecule. Specifically, for example, ethylene glycol, propylene glycol, 1,2,2-trimethyl-1,3-propanediol, 2,2-dimethyl-3-isopropyl-1,3-propanediol, 2,2-dimethyl -3-benzyl-1,3-propanediol, 2,2-dimethyl-3-isobutyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,2,3,3 -Tetramethyl-1,4-butanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,2,4-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2, Aliphatic diols such as 4,4-trimethyl-1,6-hexanediol and neopentyl glycol;

ジエチレングリコール、ジプロピレングリコール等のエーテル結合を含むジオール;   Diols containing ether bonds such as diethylene glycol and dipropylene glycol;

1,4−シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;   Alicyclic diols such as 1,4-cyclohexanedimethanol and hydrogenated bisphenol A;

ヒドロキシピバリルヒドロキシピバレート等のエステル基を有するジオール;   A diol having an ester group such as hydroxypivalylhydroxypivalate;

ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール、ポリオキシプロピレンポリオキシテトラメチレングリコール、ポリオキシエチレンポリオキシプロピレンポリオキシテトラメチレングリコール等のポリエーテルグリコール;   Polyether glycols such as polyoxyethylene glycol, polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, polyoxypropylene polyoxytetramethylene glycol, polyoxyethylene polyoxypropylene polyoxytetramethylene glycol;

前記各種ジオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルジオール;   Modified polymers obtained by ring-opening polymerization of the various diols with various cyclic ether bond-containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Ether diols;

前記各種ジオールと、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、オルソフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,4−シクロヘキサンジカルボン酸等のジカルボン酸や亜麻仁油、大豆油、キリ油、トール油、ヤシ油、サフラワー油、ヒマシ油等の油脂との共縮合によって得られるポリエステルジオール;   The various diols, succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, orthophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, Polyester diols obtained by cocondensation with oils such as dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, linseed oil, soybean oil, tung oil, tall oil, coconut oil, safflower oil, castor oil;

前記各種ジオールと、ε−カプロラクトン、δ−バレロラクトン、3−メチル−δ−バレロラクトン等の種々のラクトンとの重縮合反応によって得られるラクトン系ポリエステルジオール;   Lactone polyester diols obtained by polycondensation reaction of the various diols with various lactones such as ε-caprolactone, δ-valerolactone, and 3-methyl-δ-valerolactone;

前記各種ジオールと、前記ジカルボン酸と、前記ラクトンとの重縮合反応によって得られるラクトン変性ポリエステルジオール;   A lactone-modified polyester diol obtained by a polycondensation reaction between the various diols, the dicarboxylic acid, and the lactone;

前記ラクトン系ポリエステルジオール、ラクトン変性ポリエステルジオール等のポリエステルジオールの合成時に、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、モノアルコールやジオールのグリシジルエーテル、あるいは、モノカルボン酸やジカルボン酸のグリシジルエステル等、種々のエポキシ化合物を併用して得られるエポキシ変性ポリエステルジオール;   When synthesizing polyester diols such as the lactone polyester diol and lactone modified polyester diol, bisphenol A type epoxy compound, hydrogenated bisphenol A type epoxy compound, glycidyl ether of monoalcohol or diol, or glycidyl of monocarboxylic acid or dicarboxylic acid Epoxy-modified polyester diols obtained by using various epoxy compounds such as esters in combination;

ポリエステルポリアミドジオール、ポリカーボネートジオール、ポリブタジエンジオール、ポリペンタジエンジオール、分子構造内にフッ素原子やシリコン部位を有するジオール;   Polyester polyamide diol, polycarbonate diol, polybutadiene diol, polypentadiene diol, diol having a fluorine atom or a silicon moiety in the molecular structure;

グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール;   Aliphatic polyols such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol;

前記各種ジオールを含むポリオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール;   Obtained by ring-opening polymerization of polyols containing various diols with various cyclic ether bond-containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Modified polyether polyols;

前記各種ジオールを含むポリオールと、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、オルソフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,4−シクロヘキサンジカルボン酸等のジカルボン酸、1,2,5−ヘキサントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサトリカルボン酸、2,5,7−ナフタレントリカルボン酸等の多価カルボン酸、及び亜麻仁油、大豆油、キリ油、トール油、ヤシ油、サフラワー油、ヒマシ油等の油脂との共縮合によって得られるポリエステルポリオール;   Polyols containing various diols, succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, orthophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, Dicarboxylic acids such as glutaconic acid and 1,4-cyclohexanedicarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4 -Copolymerization with polyhydric carboxylic acids such as cyclohexatricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, and oils such as linseed oil, soybean oil, drill oil, tall oil, coconut oil, safflower oil, castor oil Polyester polyols obtained by condensation;

前記各種ジオールを含むポリオールと、ε−カプロラクトン、δ−バレロラクトン、3−メチル−δ−バレロラクトン等の種々のラクトンとの重縮合反応によって得られるラクトン系ポリエステルジポリオール;   A lactone polyester dipolyol obtained by a polycondensation reaction between the polyol containing the various diols and various lactones such as ε-caprolactone, δ-valerolactone, and 3-methyl-δ-valerolactone;

前記各種ジオールを含むポリオールと、前記ジカルボン酸と、前記ラクトンとの重縮合反応によって得られるラクトン変性ポリエステルポリオール;   A lactone-modified polyester polyol obtained by a polycondensation reaction between the polyol containing the various diols, the dicarboxylic acid, and the lactone;

前記ラクトン系ポリエステルポリオール、ラクトン変性ポリエステルポリオール等のポリエステルジオールの合成時に、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、モノアルコールやジオールのグリシジルエーテル、あるいは、モノカルボン酸やジカルボン酸のグリシジルエステル等、種々のエポキシ化合物を併用して得られるエポキシ変性ポリエステルポリオール;   When synthesizing polyester diols such as lactone polyester polyols and lactone modified polyester polyols, bisphenol A type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, glycidyl ethers of monoalcohols and diols, or glycidyls of monocarboxylic acids and dicarboxylic acids Epoxy-modified polyester polyols obtained by using various epoxy compounds such as esters;

ポリエステルポリアミドポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリペンタジエンポリオール、分子構造内にフッ素原子やシリコン部位を有するポリオール等が挙げられる。これらポリオールはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。   Examples thereof include polyester polyamide polyol, polycarbonate polyol, polybutadiene polyol, polypentadiene polyol, and polyol having a fluorine atom or a silicon site in the molecular structure. These polyols may be used alone or in combination of two or more.

上記ポリオールの中でも、得られるアダクト型ポリイソシアネート化合物(a1)のイソシアネート当量を290〜500g/eqに調整することが容易である点で、ジオールを含むポリオールと多価カルボン酸との共重合によって得られるポリエステルポリオールが好ましい。中でも、該ポリオールは1,3−ブタンジオール、トリメチロールプロパン、及び2,2,4−トリメチル−1,3−ペンタンジオール等の脂肪族ポリオールが好ましく、該多価カルボン酸はコハク酸、アジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸が好ましい。   Among the above polyols, the adduct type polyisocyanate compound (a1) obtained is obtained by copolymerization of a polyol containing a diol and a polyvalent carboxylic acid in that it is easy to adjust the isocyanate equivalent of 290 to 500 g / eq. Polyester polyols are preferred. Among them, the polyol is preferably an aliphatic polyol such as 1,3-butanediol, trimethylolpropane, and 2,2,4-trimethyl-1,3-pentanediol, and the polyvalent carboxylic acid is succinic acid or adipic acid. Aliphatic dicarboxylic acids such as azelaic acid and sebacic acid are preferred.

前記アダクト型ポリイソシアネート(a1)の製造で用いるウレタン化触媒は、ナフテン酸コバルト、ナフテン酸亜鉛、塩化第一錫、塩化第二錫、テトラ−n−ブチル錫、トリ−n−ブチル錫アセテート、n−ブチル錫トリクロライド、トリメチル錫ハイドロオキサイド、ジメチル錫ジクロライド、ジブチル錫アセテート、ジブチル錫ジラウレート、オクテン酸錫等が挙げられる。これらの触媒を使用する場合には、原料の総質量に対し10〜500ppmとなる範囲で使用するのが好ましい。   The urethanization catalyst used in the production of the adduct type polyisocyanate (a1) is cobalt naphthenate, zinc naphthenate, stannous chloride, stannic chloride, tetra-n-butyltin, tri-n-butyltin acetate, Examples thereof include n-butyltin trichloride, trimethyltin hydroxide, dimethyltin dichloride, dibutyltin acetate, dibutyltin dilaurate, and tin octenoate. When using these catalysts, it is preferable to use in the range used as 10-500 ppm with respect to the total mass of a raw material.

次に、前記ヌレート型ポリイソシアネート化合物(a2)は脂肪族ジイソシアネートモノマーをヌレート化させて得られるものである。ここで、ヌレート化の方法としては、具体的には、次の2つの方法が挙げられる。
方法1−1:脂肪族ジイソシアネートモノマーをヌレート化反応させてイソシアヌレート環構造を有するポリイソシアネート化合物を得る方法。
方法1−2:脂肪族ジイソシアネートモノマーとポリオールとをウレタン化反応させて得たポリイソシアネート化合物をヌレート化反応させてイソシアヌレート環構造を有するポリイソシアネート化合物を得る方法。
Next, the nurate type polyisocyanate compound (a2) is obtained by nurating an aliphatic diisocyanate monomer. Here, specifically, the following two methods are mentioned as the method of nurateization.
Method 1-1: A method of obtaining a polyisocyanate compound having an isocyanurate ring structure by nucleating an aliphatic diisocyanate monomer.
Method 1-2: A method of obtaining a polyisocyanate compound having an isocyanurate ring structure by subjecting a polyisocyanate compound obtained by urethanation of an aliphatic diisocyanate monomer and a polyol to a uretation reaction.

前記方法1−1又は1−2のイソシアヌレート化反応は、20〜120℃の温度範囲内で行うことができる。該反応は、無溶剤下において実施されるが、トルエンやキシレン等、イソシアネート基や水酸基に対して非反応性の各種有機溶剤を使用しても良い。また、必要に応じて各種ヌレート化触媒を用いても良い。   The isocyanuration reaction of the method 1-1 or 1-2 can be performed within a temperature range of 20 to 120 ° C. The reaction is carried out in the absence of a solvent, but various organic solvents that are non-reactive with isocyanate groups and hydroxyl groups, such as toluene and xylene, may be used. Moreover, you may use various nurating catalysts as needed.

前記方法1−2でポリイソシアネートを得る際に用いるポリオールは、前記各種のポリオールが挙げられる。これらの中でも、得られるヌレート型ポリイソシアネート化合物(a2)のイソシアネート基当量を290〜500g/eqの範囲に調整することが容易となる点で、ジオール化合物が好ましく、中でも脂肪族ジオールが好ましい。   The polyol used when obtaining polyisocyanate by the said method 1-2 includes the said various polyols. Among these, a diol compound is preferable because an isocyanate group equivalent of the obtained nurate type polyisocyanate compound (a2) can be easily adjusted to a range of 290 to 500 g / eq, and an aliphatic diol is particularly preferable.

前記方法1−1及び1−2では、ヌレート化する際に必要に応じてモノアルコール及びジオールを添加し、イソシアネート基を部分的にウレタン化反応させても良い。ここで用いるモノアルコール及びジオールは、ヘキサノール、2−エチルヘキサノール、オクタノール、n−デカノール、n−ウンデカノール、n−ドデカノール、n−トリデカノール、n−テトラデカノール、n−ペンタデカノール、n−ヘプタデカノール、n−オクタデカノール、n−ノナデカノール、エイコサノール、5−エチル−2−ノナノール、トリメチルノニルアルコール、2−ヘキシルデカノール、3,9−ジエチル−6−トリデカノール、2−イソヘプチルイソウンデカノール、2−オクチルドデカノール、2−デシルテトラデカノール等のモノアルコール;上記各種ジオールが挙げられる。これらのモノアルコール及びジオールはそれぞれ単独で用いても良いし、2種以上を併用しても良い。   In the above methods 1-1 and 1-2, a monoalcohol and a diol may be added as necessary when nurating to partially urethanate the isocyanate group. Monoalcohol and diol used here are hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-heptadecanol. Nol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoundecanol, 2 -Monoalcohols such as octyldodecanol and 2-decyltetradecanol; and the above various diols. These monoalcohols and diols may be used alone or in combination of two or more.

これらの中でも、得られるヌレート型ポリイソシアネート化合物(a2)のイソシアネート基当量を上記した好ましい値に調整することが容易となる点で、ジオール化合物が好ましく、中でも脂肪族ジオールが好ましく、特に1,3−ブタンジオール、及び2,2,4−トリメチル−1,5−ペンタンジオール等炭素原子数が2〜10の範囲である脂肪族ジオールと、炭素原子数が20〜40の範囲である脂肪族ジオールとを併用することが好ましい。   Among these, a diol compound is preferable in that it is easy to adjust the isocyanate group equivalent of the obtained nurate-type polyisocyanate compound (a2) to the above-described preferable value. Among them, an aliphatic diol is preferable, and 1,3 is particularly preferable. An aliphatic diol having 2 to 10 carbon atoms, such as butanediol and 2,2,4-trimethyl-1,5-pentanediol, and an aliphatic diol having 20 to 40 carbon atoms It is preferable to use together.

前記方法1−1又は1−1で用いられるヌレート化触媒は、4級アンモニウム化合物等が挙げられ、具体的には、2−ヒドロキシエチル・トリメチルアンモニウム・2,2−ジメチルプロピオネート、2−ヒドロキシエチル・トリn−ブチルアンモニウム・2,2−ジメチルブタノエート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2,2−ジメチルプロピオネート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2,2−ジメチルブタノエート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2,2−ジメチルペンタノエート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2−エチル−2−メチルプロピオネート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2−エチル−2−メチルブタノエート、2−ヒドロキシプロピル・トリn−ブチルアンモニウム・2−エチル−2−メチルペンタノエート、2−ヒドロキシプロピル・トリn−オクチルアンモニウム・2,2−ジメチルプロピオネート等が挙げられる。これらの触媒を使用する場合には、原料の総質量に対し10〜500ppmとなる範囲で使用するのが好ましい。   Examples of the uretating catalyst used in the above method 1-1 or 1-1 include quaternary ammonium compounds, specifically 2-hydroxyethyl, trimethylammonium, 2,2-dimethylpropionate, 2- Hydroxyethyl, tri-n-butylammonium, 2,2-dimethylbutanoate, 2-hydroxypropyl, tri-n-butylammonium, 2,2-dimethylpropionate, 2-hydroxypropyl, tri-n-butylammonium, 2 , 2-dimethylbutanoate, 2-hydroxypropyl tri-n-butylammonium 2,2-dimethylpentanoate, 2-hydroxypropyl tri-n-butylammonium 2-ethyl-2-methylpropionate, 2-hydroxypropyl tri-n-butylammonium 2-ethyl-2 Examples include methylbutanoate, 2-hydroxypropyl, tri-n-butylammonium, 2-ethyl-2-methylpentanoate, 2-hydroxypropyl, tri-n-octylammonium, and 2,2-dimethylpropionate. . When using these catalysts, it is preferable to use in the range used as 10-500 ppm with respect to the total mass of a raw material.

前記ポリイソシアネート化合物(A)は、柔軟性と靭性とのバランスがより優れる塗膜となる点でヌレート型ポリイソシアネート化合物(a2)がより好ましく、特に1,3−ブタンジオール等炭素原子数が2〜10の範囲である脂肪族ジオールと、炭素原子数が20〜40の範囲である脂肪族ジオールとの存在下、1,6−ジイソシアナトへキサンをヌレート化させて得られるヌレート型ポリイソシアネート化合物(a2)が好ましい。   The polyisocyanate compound (A) is more preferably a nurate type polyisocyanate compound (a2) in terms of providing a coating film with a better balance between flexibility and toughness, and in particular, the number of carbon atoms such as 1,3-butanediol is 2. A nurate polyisocyanate compound obtained by nurating 1,6-diisocyanatohexane in the presence of an aliphatic diol having a carbon number of 10 to 10 and an aliphatic diol having 20 to 40 carbon atoms ( a2) is preferred.

本発明で用いる前記アクリル系ポリオール(B)は、平均Tgが−9℃〜40℃の範囲のものである。平均Tgが−9℃未満の場合には、得られる塗膜が柔らかすぎるため耐傷性が低下する。また、平均Tgが−40℃を超える場合には、得られる塗膜が硬すぎるため外力が吸収できず、耐傷性が低下する。中でも、靭性と柔軟性とのバランスに優れる塗膜が得られる点で、−9℃〜35℃の範囲がより好ましく、−9℃〜25℃の範囲が更に好ましい。   The acrylic polyol (B) used in the present invention has an average Tg in the range of -9 ° C to 40 ° C. When average Tg is less than -9 degreeC, since the coating film obtained is too soft, scratch resistance falls. Moreover, when average Tg exceeds -40 degreeC, since the coating film obtained is too hard, external force cannot be absorbed and scratch resistance falls. Especially, the range of -9 degreeC-35 degreeC is more preferable at the point from which the coating film excellent in the balance of toughness and a softness | flexibility is obtained, and the range of -9 degreeC-25 degreeC is still more preferable.

前記アクリル系ポリオール(B)の1分子あたりの水酸基の平均官能基数は4〜20の範囲である。水酸基の平均官能基数が4未満の場合には、硬化塗膜の架橋密度が低くなるため、十分な靭性を発現することができない。また、水酸基の平均官能基数が20を超える場合には、硬化塗膜の架橋密度が高過ぎるため、硬く脆い塗膜となり外力が吸収できず、耐傷性が低下する。なかでも、塗膜が耐傷性に優れる点で、4〜15の範囲がより好ましく、4〜10の範囲が更に好ましい。   The average functional group number of hydroxyl groups per molecule of the acrylic polyol (B) is in the range of 4-20. When the average number of functional groups of the hydroxyl group is less than 4, the crosslinked density of the cured coating film becomes low, so that sufficient toughness cannot be expressed. Moreover, when the average functional group number of a hydroxyl group exceeds 20, since the crosslinked density of a cured coating film is too high, it becomes a hard and brittle coating film and cannot absorb external force, and scratch resistance falls. Especially, the range of 4-15 is more preferable at the point which a coating film is excellent in scratch resistance, and the range of 4-10 is still more preferable.

前記アクリル系ポリオール(B)の数平均分子量(Mn)は、3000〜10000の範囲である。数平均分子量(Mn)が3000未満の場合は、塗膜が硬く脆いものとなり、十分な靭性が発現しない。また、数平均分子量(Mn)が10000を超える場合は、塗膜が柔らかすぎて十分な耐傷性を発現しない。これらの中でも、塗膜の柔軟性と靭性とのバランスがよく、耐傷性に優れる点で、4000〜7000の範囲が好ましい。     The number average molecular weight (Mn) of the acrylic polyol (B) is in the range of 3000 to 10,000. When the number average molecular weight (Mn) is less than 3000, the coating film is hard and brittle, and sufficient toughness is not exhibited. Moreover, when a number average molecular weight (Mn) exceeds 10,000, a coating film is too soft and sufficient scratch resistance is not expressed. Among these, the range of 4000-7000 is preferable at the point with the good balance of the softness | flexibility and toughness of a coating film, and being excellent in scratch resistance.

尚、本発明において、前記アクリル系ポリオール(B)の数平均分子量(Mn)は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。   In the present invention, the number average molecular weight (Mn) of the acrylic polyol (B) is a value measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 ; 東ソー株式会社製 HLC−8220
カラム ; 東ソー株式会社製ガードカラムHXL−H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 SC−8010
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Guard column H XL- H manufactured by Tosoh Corporation
+ Tosoh Corporation TSKgel G5000H XL
+ Tosoh Corporation TSKgel G4000H XL
+ Tosoh Corporation TSKgel G3000H XL
+ Tosoh Corporation TSKgel G2000H XL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard; polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)

前記アクリル系ポリオール(B)の平均水酸基価の好ましい値は30〜100の範囲であり、より好ましくは40〜90の範囲である。平均水酸基価が上記範囲内であることで、硬化塗膜の架橋密度が好適な値となり、塗膜の靭性と耐傷性とが兼備される。   The average value of the average hydroxyl value of the acrylic polyol (B) is in the range of 30 to 100, more preferably in the range of 40 to 90. When the average hydroxyl value is within the above range, the crosslinked density of the cured coating film becomes a suitable value, and the toughness and scratch resistance of the coating film are combined.

前記アクリル系ポリオール(B)は、例えば、水酸基及びアクリロイル基を有する化合物(b1)の単独重合体、水酸基及びアクリロイル基を有する化合物(b1)とその他のアクリロイル基を有する化合物(b2)との共重合体、水酸基及びアクリロイル基を有する化合物(b1)とその他のビニル基含有化合物(b3)との共重合体、及び水酸基及びアクリロイル基を有する化合物(b1)とアクリロイル基を有する化合物(b2)とその他のビニル基含有化合物(b3)との共重合体等が挙げられる。   The acrylic polyol (B) includes, for example, a homopolymer of a compound (b1) having a hydroxyl group and an acryloyl group, a compound (b1) having a hydroxyl group and an acryloyl group, and a compound (b2) having another acryloyl group. A polymer, a copolymer of a compound (b1) having a hydroxyl group and an acryloyl group and another vinyl group-containing compound (b3), a compound (b1) having a hydroxyl group and an acryloyl group, and a compound (b2) having an acryloyl group; Examples include copolymers with other vinyl group-containing compounds (b3).

前記アクリル系ポリオール(B)の原料として用いる水酸基及び(メタ)アクリロイル基を有する化合物(b1)は、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート等、各種のヒドロキシアルキル(メタ)アクリレート;   Examples of the compound (b1) having a hydroxyl group and a (meth) acryloyl group used as a raw material for the acrylic polyol (B) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl. Various hydroxyalkyl (meth) acrylates such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate and the like;

(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート等のカルボン酸基とアクリロイル基を有する化合物と上記各種ジオールとを反応させて得られる化合物;   Compounds obtained by reacting a carboxylic acid group such as (meth) acrylic acid, 2-carboxyethyl (meth) acrylate and the like with an acryloyl group and the above various diols;

上記各種のヒドロキシアルキル(メタ)アクリレートとラクトン化合物との付加反応で得られる化合物等が挙げられる。これらの水酸基及び(メタ)アクリロイル基を有する化合物はそれぞれ単独で用いても良いし、二種以上を併用しても良い。これらの中でも、得られるアクリル系ポリオール(B)の各種性状値を上記した好ましい値に設計することが容易である点で、各種のヒドロキシアルキル(メタ)アクリレートや、各種のヒドロキシアルキル(メタ)アクリレートとラクトン化合物との付加反応で得られる化合物が好ましく、更に、2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレートが好ましい。   The compound etc. which are obtained by the addition reaction of said various hydroxyalkyl (meth) acrylate and a lactone compound are mentioned. These compounds having a hydroxyl group and a (meth) acryloyl group may be used alone or in combination of two or more. Among these, various hydroxyalkyl (meth) acrylates and various hydroxyalkyl (meth) acrylates are easy in that various property values of the resulting acrylic polyol (B) can be designed to the above-described preferable values. A compound obtained by an addition reaction between a lactone compound and a lactone compound is preferable, and 2-hydroxyethyl (meth) acrylate, 4-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth) acrylate are more preferable.

前記アクリル系ポリオール(B)の原料として用いるその他の(メタ)アクリロイル基を有する化合物(b2)は、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,6−へキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多価アルコールのポリ(メタ)アクリレート;   Examples of the other (meth) acryloyl group-containing compound (b2) used as a raw material for the acrylic polyol (B) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth). Acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylol ethanetri (meta ) Poly (meth) acrylates of polyhydric alcohols such as acrylate, trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tetra (meth) acrylate;

メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート又はステアリル(メタ)アクリレート等のアルキルアルコールの(メタ)アクリル酸エステル;   Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, 2-ethylhexyl (meth) (Meth) acrylic acid esters of alkyl alcohols such as acrylate, lauryl (meth) acrylate or stearyl (meth) acrylate;

ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート等のアラルキル(メタ)アクリレート;   Aralkyl (meth) acrylates such as benzyl (meth) acrylate and phenethyl (meth) acrylate;

シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;   Cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate;

メトキシエチル(メタ)アクリレート、メトキシブチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種以上を併用しても良い。これらの中でも、得られるアクリル系ポリオール(B)の各種性状値を上記した好ましい値に設計することが容易である点で、各種のアルキルアルコールの(メタ)アクリル酸エステルが好ましく、中でもメチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレートが好ましい。   Examples include alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate and methoxybutyl (meth) acrylate. These may be used alone or in combination of two or more. Among these, (meth) acrylic acid esters of various alkyl alcohols are preferable in that it is easy to design various property values of the resulting acrylic polyol (B) to the above-described preferable values. ) Acrylate, n-butyl (meth) acrylate and i-butyl (meth) acrylate are preferred.

前記アクリル系ポリオール(B)の原料として用いるその他のビニル基含有化合物(b3は、例えば、
2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル等の水酸基含有ビニルエーテル;
Other vinyl group-containing compounds (b3 used as a raw material for the acrylic polyol (B) are, for example,
Hydroxyl group-containing vinyl ethers such as 2-hydroxyethyl vinyl ether and 4-hydroxybutyl vinyl ether;

クロトン酸、イタコン酸、マレイン酸又はフマル酸等、各種の不飽和カルボン酸と上記した各種ジオールとを反応させて得られる化合物;   Compounds obtained by reacting various unsaturated carboxylic acids such as crotonic acid, itaconic acid, maleic acid or fumaric acid with the various diols described above;

エチレン、プロピレン、イソブチレン、1−ブテン、1−ヘキセン等のα−オレフィン;   Α-olefins such as ethylene, propylene, isobutylene, 1-butene, 1-hexene;

スチレン、α−メチルスチレン、p−tert−ブチルスチレン、O−メチルスチレン、p−メチルスチレン等の芳香族ビニル化合物が挙げられる。これらはそれぞれ単独で用いても良いし、複数種を併用しても良い。これらの中でも、得られるアクリル系ポリオール(B)の各種性状値を上記した好ましい値に設計することが容易である点で、各種の芳香族ビニル化合物が好ましく、スチレンがより好ましい。   Aromatic vinyl compounds such as styrene, α-methylstyrene, p-tert-butylstyrene, O-methylstyrene, p-methylstyrene, and the like can be given. These may be used alone or in combination of two or more. Among these, various aromatic vinyl compounds are preferable and styrene is more preferable in that it is easy to design various property values of the resulting acrylic polyol (B) to the above-described preferable values.

また、前記アクリル系ポリオール(B)の原料として(メタ)アクリル酸を共重合させることで、該(メタ)アクリル酸が、アクリル系ポリオール(B)の水酸基と、ポリイソシアネート化合物(A)のイソシアネート基との反応の触媒として作用する効果を利用することもできる。   Moreover, (meth) acrylic acid is copolymerized as a raw material for the acrylic polyol (B), so that the (meth) acrylic acid is converted into a hydroxyl group of the acrylic polyol (B) and an isocyanate of the polyisocyanate compound (A). The effect of acting as a catalyst for the reaction with the group can also be utilized.

上記、水酸基及びアクリロイル基を有する化合物(b1)の重合反応や、水酸基及びアクリロイル基を有する化合物(b1)と、その他のアクリロイル基を有する化合物(b2)及び/又はビニル基含有化合物(b3)との重合反応は、例えば、任意のラジカル重合開始剤の下、酢酸ブチルやキシレン等の汎用の溶媒中、20〜200℃の温度範囲で行うことが出来る。   The above-mentioned polymerization reaction of the compound (b1) having a hydroxyl group and an acryloyl group, the compound (b1) having a hydroxyl group and an acryloyl group, the compound (b2) and / or the vinyl group-containing compound (b3) having another acryloyl group The polymerization reaction can be performed, for example, in a general-purpose solvent such as butyl acetate or xylene at a temperature range of 20 to 200 ° C. under an arbitrary radical polymerization initiator.

以上に挙げた、水酸基及びアクリロイル基を有する化合物、その他のアクリロイル基を有する化合、及びその他のビニル基含有化合物を用いて、前記平均Tgが−9〜40℃の範囲であり、1分子あたりの水酸基の平均官能基数が4〜20の範囲であり、かつ、数平均分子量(Mn)が3000〜10000の範囲であるアクリル系ポリオール(B)を合成するには、例えば、水酸基及びアクリロイル基を有する化合物を、原料化合物の総質量の5〜20質量%の範囲で用い、かつ各種のアルキルアルコールの(メタ)アクリル酸エステルを45〜70質量%の範囲で用いて反応させるなどして得られる。前記アクリル系ポリオール(B)は一種類を単独で用いてもよいし、異なる組成で製造した複数種を併用してもよい。   Using the above-described compounds having a hydroxyl group and an acryloyl group, other compounds having an acryloyl group, and other vinyl group-containing compounds, the average Tg is in the range of −9 to 40 ° C. In order to synthesize an acrylic polyol (B) having an average number of functional groups of hydroxyl groups in the range of 4 to 20 and a number average molecular weight (Mn) in the range of 3000 to 10,000, it has, for example, hydroxyl groups and acryloyl groups. It is obtained by using the compound in the range of 5 to 20% by mass of the total mass of the raw material compounds and reacting with various alkyl alcohol (meth) acrylates in the range of 45 to 70% by mass. The said acrylic polyol (B) may be used individually by 1 type, and may use multiple types manufactured by a different composition together.

本発明のコーティング樹脂組成物中のポリイソシアネート(A)とアクリル系ポリオール(B)との配合比は、[ポリイソシアネート中のイソシアネート基のモル数]/[アクリル系ポリオール(B)中の水酸基のモル数]が0.75〜1.5の範囲となるような範囲である。この範囲となる比率で配合することで、塗膜の硬化がより短時間で進行する。   The blending ratio of the polyisocyanate (A) and the acrylic polyol (B) in the coating resin composition of the present invention is [number of moles of isocyanate groups in the polyisocyanate] / [hydroxyl group in the acrylic polyol (B)]. The number of moles] is in the range of 0.75 to 1.5. By mix | blending with the ratio used as this range, hardening of a coating film advances in a shorter time.

本発明のコーティング樹脂組成物には、必要に応じて効果促進剤を添加しても良い。硬化促進剤としては有機スズ系化合物等の公知慣用のウレタン化触媒を用いることができる。   You may add an effect promoter to the coating resin composition of this invention as needed. As the curing accelerator, known and commonly used urethanization catalysts such as organotin compounds can be used.

また、本発明のコーティング樹脂組成部には、本発明の効果を損なわない範囲で滑剤、ブロッキング防止剤、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色剤等を適宜添加してもよい。   In addition, a lubricant, an antiblocking agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, a colorant, and the like are appropriately added to the coating resin composition part of the present invention as long as the effects of the present invention are not impaired. May be.

以上説明した本発明のコ−ティング樹脂組成物からなる塗膜は、柔軟性と靭性とを兼備していることから、塗膜が外力を吸収するため傷がつき難く、また、傷がついても自己修復するため、耐傷性に優れる。更に、各種素材への密着性、被塗布物の二次加工性、塗膜外観も優れている。そのため、本発明のコーティング樹脂組成物は、携帯電話筐体、パソコン筐体、オーディオ機器等のプラスチック製品、タッチパネル、液晶画面等の電子材料部品、冷蔵庫、電子レンジ、洗濯機等の家電製品、家具等の木工製品、ゴルフクラブ、テニスラケット等のスポーツ用品、床、シンク、ドアノブ等の建築内装、自動車の内外装等々、表面の耐傷性が求められるあらゆる用途に好適に用いることが出来る。また、本発明のコーティング樹脂組成物は、プラスチックフィルム/シート状に塗布し、耐傷性を有する積層フィルム/シートとして用いることも出来る。   Since the coating film comprising the coating resin composition of the present invention described above has both flexibility and toughness, the coating film absorbs external force and is hardly scratched. Excellent self-healing and scratch resistance. Furthermore, the adhesion to various materials, the secondary workability of the object to be coated, and the coating film appearance are also excellent. Therefore, the coating resin composition of the present invention is used for plastic products such as mobile phone casings, personal computer casings, audio equipment, electronic material parts such as touch panels and liquid crystal screens, household appliances such as refrigerators, microwave ovens and washing machines, and furniture. Such as woodwork products such as golf clubs, sports equipment such as tennis rackets, architectural interiors such as floors, sinks and doorknobs, interior and exterior of automobiles, etc. The coating resin composition of the present invention can also be applied as a plastic film / sheet and used as a laminated film / sheet having scratch resistance.

本発明のコーティング樹脂組成物を各種基材上に塗布した際の塗膜の厚さは、用途に応じて適宜調節が可能であるが、より高い耐傷性を発現する点で1μm〜100μmが好ましく、5μm〜50μmがより好ましい。   The thickness of the coating film when the coating resin composition of the present invention is applied on various substrates can be appropriately adjusted according to the use, but is preferably 1 μm to 100 μm in terms of expressing higher scratch resistance. 5 μm to 50 μm is more preferable.

以下に本発明を具体的な合成例、実施例を挙げてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific synthesis examples and examples.

ポリイソシアネート化合物(A)の合成
[イソシアネート基含有率の測定]
JIS K7301に従って測定した。
Synthesis of polyisocyanate compound (A) [Measurement of isocyanate group content]
It measured according to JIS K7301.

[数平均分子量Mnの測定]
ゲルパーミエーションクロマトグラフィー(GPC)を用い、以下の条件により求めた。
[Measurement of number average molecular weight Mn]
It calculated | required on condition of the following using the gel permeation chromatography (GPC).

測定装置 ; 東ソー株式会社製 HLC−8220
カラム ; 東ソー株式会社製ガードカラムHXL−H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 SC−8010
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Guard column H XL- H manufactured by Tosoh Corporation
+ Tosoh Corporation TSKgel G5000H XL
+ Tosoh Corporation TSKgel G4000H XL
+ Tosoh Corporation TSKgel G3000H XL
+ Tosoh Corporation TSKgel G2000H XL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard; polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)

[1分子あたりの平均官能基数の算出]
上記方法で測定したイソシアネート含有率と数平均分子量の値から、以下の計算式を用いて算出した。
[1分子当たりの平均官能基数]=[数平均分子量(Mn)]×[イソシアネート含有率]/4200
[Calculation of average number of functional groups per molecule]
It calculated using the following calculation formula from the value of the isocyanate content rate measured by the said method, and the number average molecular weight.
[Average number of functional groups per molecule] = [Number average molecular weight (Mn)] × [Isocyanate content] / 4200

合成例1:ポリイソシアネート(A−1)の合成
攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコに1,3-ブタンジオール460質量部、並びにアジピン酸659質量部、さらにトリメチロールプロパン(以下、TMPと略称する)43質量部を仕込み、窒素気流下で2時間かけ200℃に昇温する。さらに同温度で酸価が5以下となるまで反応を継続し、水酸基価;125、数平均分子量:1000のポリエステル樹脂(MA−1)を得た。
Synthesis Example 1: Synthesis of polyisocyanate (A-1) 460 parts by mass of 1,3-butanediol and 659 parts by mass of adipic acid in a four-necked flask equipped with a stirrer, a thermometer, a rectification column, and a nitrogen introduction tube And 43 parts by mass of trimethylolpropane (hereinafter abbreviated as TMP) are charged, and the temperature is raised to 200 ° C. over 2 hours under a nitrogen stream. Further, the reaction was continued at the same temperature until the acid value became 5 or less to obtain a polyester resin (MA-1) having a hydroxyl value of 125 and a number average molecular weight of 1000.

攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコにヘキサメチレンジイソシアネート1000質量部、ついでポリエステル樹脂(MA−1)400質量部を仕込み、窒素気流下に攪拌を開始した。次いで、120℃まで昇温し、同温度で6時間反応後、140℃に昇温し、同温度で未反応のヘキサメチレンジイソシアネートを減圧留去した。ヘキサメチレンジイソシアネートの含有量がフラスコ内の反応物の総質量に対し0.5%未満となるまで同温度での減圧蒸留を継続した後、NCO%:10.5、ガードナー粘度(25℃):Z6、数平均分子量(Mn):1500(GPC測定)、平均官能基数:3.5、イソシアネート基当量:429g/eqであるHDI系アダクト型ポリイソシアネート化合物(A−1)を得た。   A four-necked flask equipped with a stirrer, thermometer, rectification column, and nitrogen inlet tube was charged with 1000 parts by mass of hexamethylene diisocyanate and then 400 parts by mass of polyester resin (MA-1), and stirring was started under a nitrogen stream. did. Then, the temperature was raised to 120 ° C., reacted at the same temperature for 6 hours, and then raised to 140 ° C., and unreacted hexamethylene diisocyanate was distilled off under reduced pressure at the same temperature. After continuing the vacuum distillation at the same temperature until the content of hexamethylene diisocyanate is less than 0.5% with respect to the total mass of the reactants in the flask, NCO%: 10.5, Gardner viscosity (25 ° C): An HDI adduct polyisocyanate compound (A-1) having Z6, number average molecular weight (Mn): 1500 (GPC measurement), average functional group number: 3.5, and isocyanate group equivalent: 429 g / eq was obtained.

合成例2:ポリイソシアネート(A−2)の合成
攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコにヘキサメチレンジイソシアネート1000質量部を仕込み、窒素気流下に攪拌を開始した。次いで、ソバモール908(Cognis社製高純度ダイマーアルコール、C3672、Mw:536、水酸基価:190〜220mgKOH/g)116質量部、並びに1,3−ブタンジオール11質量部を投入し、75℃に昇温した。同温度で1時間反応させ、屈折率を測定した(初期屈折率)。次いでヌレート化触媒(東ソー株式会社製「TOYOCAT TRX」)0.1質量部を投入し、15分間反応させた後、再度屈折率を測定した。屈折率が初期屈折率プラス0.008となるまでヌレート化触媒を0.1質量部ずつ投入した。その後、反応停止剤としてリン酸をヌレート化触媒の総投入量の1/2となる0.4質量部投入し30分間攪拌した。内温を140℃に昇温し、同温度で未反応のヘキサメチレンジイソシアネートを減圧留去した。ヘキサメチレンジイソシアネートの含有量がフラスコ内の反応物の総質量に対し0.5質量%未満となるまで同温度での減圧蒸留を継続し、NCO%:14.0、ガードナー粘度(25℃):Z、数平均分子量(Mn):610(GPC測定)、1分子当たりの平均官能基数:2.0、イソシアネート基当量:305g/eqであるHDI系ヌレート型ポリイソシアネート化合物(A−2)を得た。
Synthesis Example 2: Synthesis of polyisocyanate (A-2) 1000 parts by mass of hexamethylene diisocyanate was charged into a four-necked flask equipped with a stirrer, a thermometer, a rectifying column, and a nitrogen introduction tube, and stirred under a nitrogen stream. Started. Next, 116 parts by mass of Sobamol 908 (Cognis high-purity dimer alcohol, C 36 H 72 O 2 , Mw: 536, hydroxyl value: 190 to 220 mg KOH / g) and 11 parts by mass of 1,3-butanediol were added. The temperature was raised to 75 ° C. The reaction was carried out at the same temperature for 1 hour, and the refractive index was measured (initial refractive index). Next, 0.1 part by mass of a nurating catalyst (“TOYOCAT TRX” manufactured by Tosoh Corporation) was added and reacted for 15 minutes, and then the refractive index was measured again. The nurating catalyst was added in an amount of 0.1 parts by mass until the refractive index became the initial refractive index plus 0.008. Thereafter, 0.4 parts by mass of phosphoric acid as a reaction terminator, which was ½ of the total amount of the nurating catalyst, was added and stirred for 30 minutes. The internal temperature was raised to 140 ° C., and unreacted hexamethylene diisocyanate was distilled off under reduced pressure at the same temperature. Vacuum distillation at the same temperature is continued until the content of hexamethylene diisocyanate is less than 0.5% by mass with respect to the total mass of the reactants in the flask. NCO%: 14.0, Gardner viscosity (25 ° C.): Z, number average molecular weight (Mn): 610 (GPC measurement), obtaining an HDI nurate polyisocyanate compound (A-2) having an average number of functional groups per molecule: 2.0 and an isocyanate group equivalent: 305 g / eq. It was.

比較合成例1:ポリイソシアネート化合物(A−3)の合成
攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコにヘキサメチレンジイソシアネート1000質量部を仕込み、窒素気流下に攪拌を開始した。次いで、トリメチルペンタンジオール20質量部、並びに1,3−ブタンジオール6質量部を投入し、65℃に昇温した。同温度で1時間反応させ、次いでヌレート化触媒(東ソー株式会社製「TOYOCAT TRX」)0.1質量部を投入し、15分間反応させた後、屈折率を測定した。屈折率が1.4665となるまでヌレート化触媒を0.1質量部ずつ投入し、屈折率が1.4665となったことを確認後、反応停止剤としてリン酸をヌレート化触媒の総投入量の1/2となる0.3質量部投入し30分間攪拌した。内温を140℃に昇温し、同温度で未反応のヘキサメチレンジイソシアネートを減圧留去した。ヘキサメチレンジイソシアネートの含有量がフラスコ内の反応物の総質量に対し0.5質量%未満となるまで同温度での減圧蒸留を継続し、NCO%:21.3、ガードナー粘度(25℃):Y−Z、数平均分子量(Mn):720(GPC測定)、1分子当たりの平均官能基数:3.7、イソシアネート基当量:200g/eqであるHDI系ヌレート型ポリイソシアネート化合物(A−3)を得た。
Comparative Synthesis Example 1: Synthesis of polyisocyanate compound (A-3) 1000 parts by mass of hexamethylene diisocyanate was charged into a four-necked flask equipped with a stirrer, a thermometer, a rectification column, and a nitrogen introduction tube, and the mixture was placed under a nitrogen stream. Agitation was started. Next, 20 parts by mass of trimethylpentanediol and 6 parts by mass of 1,3-butanediol were added, and the temperature was raised to 65 ° C. The mixture was reacted at the same temperature for 1 hour, and then 0.1 part by mass of a nurating catalyst (“TOYOCAT TRX” manufactured by Tosoh Corporation) was added and reacted for 15 minutes, and then the refractive index was measured. 0.1 parts by mass of the nurate catalyst was added until the refractive index was 1.4665, and after confirming that the refractive index was 1.4665, phosphoric acid was used as a reaction terminator and the total amount of nurate catalyst added. Of 0.3 parts by mass, which was 1/2 of the above, and stirred for 30 minutes. The internal temperature was raised to 140 ° C., and unreacted hexamethylene diisocyanate was distilled off under reduced pressure at the same temperature. Distillation under reduced pressure at the same temperature is continued until the content of hexamethylene diisocyanate is less than 0.5% by mass relative to the total mass of the reactants in the flask, NCO%: 21.3, Gardner viscosity (25 ° C.): YZ, number average molecular weight (Mn): 720 (GPC measurement), average functional group number per molecule: 3.7, isocyanate group equivalent: 200 g / eq HDI-based nurate polyisocyanate compound (A-3) Got.

比較合成例2:ポリイソシアネート化合物(A−4)の合成
攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコにヘキサメチレンジイソシアネート1000質量部を仕込み、窒素気流下に攪拌を開始した。次いで、90℃まで昇温し、トリメチロールプロパン90質量部、並びに1,3−ブタンジオール16質量部を発熱に注意しながら1時間かけて分割投入した。さらに、同温度で2時間反応後、140℃に昇温し、同温度で未反応のヘキサメチレンジイソシアネートを減圧留去した。ヘキサメチレンジイソシアネートの含有量がフラスコ内の反応物の総質量に対し0.5%未満となるまで同温度での減圧蒸留を継続した後、不揮発分の値が75質量%となるように酢酸エチルを添加し、希釈後のNCO%:12.5、ガードナー粘度(25℃):K−L、数平均分子量(Mn):930(GPC測定)、平均官能基数:3.7、イソシアネート基当量:251g/eqであるHDI系アダクト型ポリイソシアネート化合物(A−4)を得た。
Comparative Synthesis Example 2: Synthesis of polyisocyanate compound (A-4) 1000 parts by mass of hexamethylene diisocyanate was charged into a four-necked flask equipped with a stirrer, a thermometer, a rectifying column, and a nitrogen introduction tube, and the nitrogen was streamed. Agitation was started. Next, the temperature was raised to 90 ° C., and 90 parts by mass of trimethylolpropane and 16 parts by mass of 1,3-butanediol were dividedly charged over 1 hour while paying attention to heat generation. Furthermore, after reacting at the same temperature for 2 hours, the temperature was raised to 140 ° C., and unreacted hexamethylene diisocyanate was distilled off under reduced pressure at the same temperature. After continuing the vacuum distillation at the same temperature until the hexamethylene diisocyanate content is less than 0.5% with respect to the total mass of the reactants in the flask, the ethyl acetate is adjusted so that the nonvolatile content is 75% by mass. NCO% after dilution: 12.5, Gardner viscosity (25 ° C.): KL, number average molecular weight (Mn): 930 (GPC measurement), average functional group number: 3.7, isocyanate group equivalent: The HDI adduct type polyisocyanate compound (A-4) which is 251 g / eq was obtained.

アクリル系ポリオール(B)の合成
[Tg(ガラス転移温度)の測定]
ポリエステルポリオール(B)の固形分100%の試験サンプルを作成し、示差走査熱量計(メトラー社製「TOLEDO DSC822e」)を用いて測定した。
Synthesis of acrylic polyol (B) [measurement of Tg (glass transition temperature)]
A test sample having a polyester polyol (B) solid content of 100% was prepared and measured using a differential scanning calorimeter ("TOLEDO DSC822e" manufactured by METTLER).

[水酸基価の測定]
JIS K 1557に従って測定した。
[Measurement of hydroxyl value]
Measured according to JIS K 1557.

[数平均分子量(Mn)の測定]
ポリイソシアネート(A)の場合と同様にして求めた。
[Measurement of number average molecular weight (Mn)]
It calculated | required similarly to the case of polyisocyanate (A).

[1分子当たりの平均官能基数の算出]
上記方法で測定した水酸基価と数平均分子量から、次の計算式を用いて算出した。
[1分子当たりの平均官能基数]=[数平均分子量(Mn)]×[水酸基価]/56100
[Calculation of average number of functional groups per molecule]
It calculated using the following calculation formula from the hydroxyl value and number average molecular weight which were measured with the said method.
[Average number of functional groups per molecule] = [Number average molecular weight (Mn)] × [Hydroxyl value] / 56100

合成例3:アクリル系ポリオール(B−1)の合成
攪拌機、温度計、冷却管、窒素導入管を装備した、4つ口のフラスコに酢酸ブチルを196質量部、並びにキシレンを196質量部仕込み、窒素気流下に110℃に昇温した後、スチレン150質量部、メチルメタアクリレート150質量部、ブチルアクリレート236質量部、2−ヒドロキシエチルメタクリレート58質量部、メタクリル酸6質量部、t−ブチルパーオキシ−2−エチルヘキサノエート(以下、P−Oと略す)22質量部、t−ブチルパーオキシベンゾエート(以下、P−Zと略す)3質量部からなる混合液を5時間かけて滴下した。滴下後、110℃にて6時間反応させ、不揮発分が60%なるアクリル系ポリオール(B−1)の溶液を得た。
Synthesis Example 3: Synthesis of acrylic polyol (B-1) A four-necked flask equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen introduction tube was charged with 196 parts by mass of butyl acetate and 196 parts by mass of xylene. After heating to 110 ° C. under a nitrogen stream, 150 parts by mass of styrene, 150 parts by mass of methyl methacrylate, 236 parts by mass of butyl acrylate, 58 parts by mass of 2-hydroxyethyl methacrylate, 6 parts by mass of methacrylic acid, t-butylperoxy A mixed solution consisting of 22 parts by mass of 2-ethylhexanoate (hereinafter abbreviated as PO) and 3 parts by mass of t-butyl peroxybenzoate (hereinafter abbreviated as PZ) was added dropwise over 5 hours. After dripping, it was made to react at 110 degreeC for 6 hours, and the solution of the acrylic polyol (B-1) whose non volatile matter is 60% was obtained.

合成例4〜6:アクリル系ポリオール(B−2)〜(B−4)の合成
上記、合成例3の各原料に代えて、表1に示した単量体、並びに開始剤を使用する以外は、合成例3と同様にして重合を行い、第1表に示したようなアクリル系ポリオール(B−2)〜(B−4)を得た。
Synthesis Examples 4 to 6: Synthesis of Acrylic Polyols (B-2) to (B-4) In place of the raw materials of Synthesis Example 3 above, the monomers shown in Table 1 and initiators were used except that Was polymerized in the same manner as in Synthesis Example 3 to obtain acrylic polyols (B-2) to (B-4) as shown in Table 1.

比較合成例3、4:アクリル系ポリオール(B−5)、(B−6)の合成
上記、合成例3の各原料に代えて、表1に示した単量体、並びに開始剤を使用する以外は、合成例3と同様にして重合を行い、第1表に示したようなアクリル系ポリオール(B−5)及び(B−6)を得た。
Comparative Synthesis Examples 3 and 4: Synthesis of Acrylic Polyols (B-5) and (B-6) In place of the raw materials of Synthesis Example 3 above, the monomers and initiators shown in Table 1 are used. Except for the above, polymerization was carried out in the same manner as in Synthesis Example 3 to obtain acrylic polyols (B-5) and (B-6) as shown in Table 1.

比較合成例5:ポリエステルポリオール(B−7)の合成
攪拌機、温度計、精留塔、窒素導入管を装備した、4つ口のフラスコに1,6−へキサンジオール281質量部、グリセリン45質量部、ジエチレングリコール56質量部を仕込み、窒素気流下に140℃に昇温した後、系内が均一であることを確認し、アジピン酸400質量部、無水フタル酸18質量部からなる混合物を投入した。3時間を要して230℃まで昇温し、さらに同温度で酸価が5以下となるまで反応を継続する。ついで、140℃まで冷却後、キシレンとメチルイソブチルケトンとを質量比1/1で含有する混合溶剤で不揮発分が80%となるまで希釈し、ポリエステルポリオール(B−7)の溶液を得た。
Comparative Synthesis Example 5: Synthesis of polyester polyol (B-7) A four-necked flask equipped with a stirrer, a thermometer, a rectifying column, and a nitrogen inlet tube was 281 parts by mass of 1,6-hexanediol and 45 parts by mass of glycerin. Part, diethylene glycol 56 parts by mass, heated to 140 ° C. under a nitrogen stream, confirmed that the system was uniform, and charged with a mixture of 400 parts by mass of adipic acid and 18 parts by mass of phthalic anhydride. . The temperature is raised to 230 ° C. over 3 hours, and the reaction is continued at the same temperature until the acid value becomes 5 or less. Subsequently, after cooling to 140 ° C., the mixture was diluted with a mixed solvent containing xylene and methyl isobutyl ketone at a mass ratio of 1/1 until the non-volatile content became 80% to obtain a solution of polyester polyol (B-7).

試験塗膜作成方法
ポリイソシアネート(A)とアクリル系ポリオール(B)とを、両者の比率[ポリイソシアネートのイソシアネート基のモル数]/[アクリル系ポリオール(B)の水酸基のモル数]が1となるように配合した。次いで、触媒(ジブチル錫アセテートをおよそ50ppm)を上記配合物に混合し、溶剤(酢酸エチル)で粘度調整し、3milのアプリケータで各種基材上に塗装した。15分常温でセッティング後、80℃で1時間乾燥し、さらに25℃、湿度:50%で1週間養生した。
Test coating film preparation method Polyisocyanate (A) and acrylic polyol (B), the ratio [number of moles of isocyanate group of polyisocyanate] / [number of moles of hydroxyl group of acrylic polyol (B)] is 1. It mix | blended so that it might become. Next, a catalyst (approximately 50 ppm of dibutyltin acetate) was mixed into the above blend, the viscosity was adjusted with a solvent (ethyl acetate), and coated on various substrates with a 3 mil applicator. After setting at room temperature for 15 minutes, it was dried at 80 ° C. for 1 hour, and further cured at 25 ° C. and humidity: 50% for 1 week.

評価方法
[鉛筆硬度試験]
ガラス板上に塗装した硬化塗膜をJIS K 5400に従い、荷重500gの鉛筆引っ掻き試験によって評価した。1つの硬度につき5回試験を行い、5回中1回でも塗膜の破壊が生じた硬度、又は70℃の温風で加熱しても鉛筆痕が戻らない硬度の一つ下位の硬度を塗膜の硬度とした。
Evaluation method [Pencil hardness test]
The cured coating film coated on the glass plate was evaluated according to JIS K 5400 by a pencil scratch test with a load of 500 g. Test 5 times for each hardness, and apply a hardness one level lower than the hardness at which the coating film breaks even once in 5 times, or the pencil mark does not return even when heated with hot air at 70 ° C. The film hardness was used.

[鉛筆痕復元時間]
上記鉛筆硬度試験で塗膜の硬度とした硬度の鉛筆痕が復元するまでの時間を測定し、次のように評価した。
O:鉛筆痕が付かない
A:鉛筆痕が付いてから30分未満で復元する。
B:鉛筆痕が付いてから30分以上24時間以内で復元する。
C:鉛筆痕が付いてから24時間以内では完全に復元せず、70℃の温風で加熱すると復元する。
[Pencil mark restoration time]
The time until the pencil mark having the hardness which was the hardness of the coating film was restored in the pencil hardness test was measured and evaluated as follows.
O: No pencil mark A: Restores within 30 minutes after the pencil mark is made.
B: Recover within 30 minutes to 24 hours after the pencil mark.
C: It does not completely recover within 24 hours after the pencil marks, but it recovers when heated with hot air at 70 ° C.

[付着性試験]
ABS板上に作成した塗膜にカッターナイフで1mm×1mmの100個の碁盤目を作成し、ニチバン(株)製「セロテープ」を貼り付けた後、剥離を行った。このときに塗膜が剥離せずに密着している碁盤目の数を評価した。
[Adhesion test]
A 100 mm grid of 1 mm × 1 mm was created with a cutter knife on the coating film created on the ABS plate, and “cello tape” manufactured by Nichiban Co., Ltd. was applied, followed by peeling. At this time, the number of grids in which the coating film adhered without peeling was evaluated.

[光沢]
ABS板上に作成した塗膜の60度鏡面反射率[%]なる光沢値JIS K 5400に準拠し測定した。
[Glossy]
A gloss value of 60 ° specular reflectance [%] of a coating film prepared on an ABS plate was measured according to JIS K 5400.

[耐摩耗性]
スチールウール(日本スチールウール株式会社製「ボンスター#0000」)0.5gで直径2.4センチメートルの円盤状の圧子を包み、荷重500g重で10往復磨耗した。あらかじめ測定しておいた磨耗前のガラス板上の塗膜のヘーズ値と磨耗試験後の硬化塗膜のヘーズ値とを自動ヘーズコンピューター(スガ試験機株式会社製「HZ−2」)を用いて測定し、それらの差の値で耐摩耗性を評価した。差の値が小さいほど、耐磨耗性が良好であると判断した。
[Abrasion resistance]
A disc-shaped indenter having a diameter of 2.4 cm was wrapped with 0.5 g of steel wool (“Bonster # 0000” manufactured by Nippon Steel Wool Co., Ltd.), and was subjected to 10 reciprocating wear at a load of 500 g. Using an automatic haze computer ("HZ-2" manufactured by Suga Test Instruments Co., Ltd.), the haze value of the coating film on the glass plate before abrasion measured in advance and the haze value of the cured coating film after the abrasion test were measured. Measurements were made, and the wear resistance was evaluated based on the difference between them. The smaller the difference value, the better the wear resistance.

実施例1
ポリイソシアネート化合物(A−1)とアクリル系ポリオール(B−1)とを、[(A−1)中のイソシアネート基のモル数]/[(B−1)中の水酸基のモル数]=1/1となるように、ポリイソシアネート化合物(A−1)21質量部、アクリル系ポリオール(B−1)200質量部、酢酸エチル30質量部、ジブチル錫アセテート0.02質量部を攪拌混合し、乾燥膜厚が40μmとなるようにアプリケータを用いてガラス板および黒色のアクリロニトリルブタジエンスチレン共重合樹脂板(以下「ABS」板と略記する)上に塗布後、温度80℃で1時間乾燥し、さらに25℃、湿度60%RHの条件で1週間乾燥させ、硬化塗膜を作成した。得られた硬化塗膜について、鉛筆硬度、付着性、光沢、及び耐摩耗性を評価した。評価結果を表2に示した。
Example 1
The polyisocyanate compound (A-1) and the acrylic polyol (B-1) are converted into [number of moles of isocyanate group in (A-1)] / [number of moles of hydroxyl group in (B-1)] = 1. / 1, 21 parts by mass of the polyisocyanate compound (A-1), 200 parts by mass of the acrylic polyol (B-1), 30 parts by mass of ethyl acetate, and 0.02 parts by mass of dibutyltin acetate are stirred and mixed. After coating on a glass plate and a black acrylonitrile butadiene styrene copolymer resin plate (hereinafter abbreviated as “ABS” plate) using an applicator so that the dry film thickness becomes 40 μm, the coating is dried at a temperature of 80 ° C. for 1 hour, Furthermore, it was dried for 1 week under the conditions of 25 ° C. and humidity 60% RH to prepare a cured coating film. About the obtained cured coating film, pencil hardness, adhesion, gloss, and abrasion resistance were evaluated. The evaluation results are shown in Table 2.

実施例2〜4
ポリイソシアネート(A)とアクリル系ポリオール(B)との種類と配合比を表3に示したように変えた以外は実施例1と同様にしてガラス板、およびABS板に硬化塗膜を作成、評価した。評価結果を表3に示した。
Examples 2-4
A cured coating film was prepared on the glass plate and the ABS plate in the same manner as in Example 1 except that the type and blending ratio of the polyisocyanate (A) and the acrylic polyol (B) were changed as shown in Table 3. evaluated. The evaluation results are shown in Table 3.

比較例1〜5
ポリイソシアネート(A)とアクリル系ポリオール(B)との種類と配合比を表4に示したように変えた以外は実施例1と同様にして配合し、ガラス板、およびABS板に硬化塗膜を作成、評価した。評価結果を表4に示した。
Comparative Examples 1-5
Except that the types and blending ratios of polyisocyanate (A) and acrylic polyol (B) were changed as shown in Table 4, they were blended in the same manner as in Example 1, and cured coatings were formed on glass plates and ABS plates. Was created and evaluated. The evaluation results are shown in Table 4.

Figure 2012121985
Figure 2012121985

Figure 2012121985
Figure 2012121985

Figure 2012121985
Figure 2012121985

Figure 2012121985
Figure 2012121985

Claims (3)

脂肪族ジイソシアネートモノマーとポリオールとを反応させて得られるアダクト型ポリイソシアネート化合物(a1)、及び脂肪族ジイソシアネートモノマーをヌレート化させて得られるヌレート型ポリイソシアネート化合物(a2)からなる群から選択されるポリイソシアネート化合物であって、イソシアネート基当量が290〜500g/eqの範囲であるポリイソシアネート化合物(A)と、平均Tgが−9〜40℃であり、1分子あたりの水酸基の平均官能基数が4〜20であり、かつ、数平均分子量(Mn)が3000〜10000の範囲であるアクリル系ポリオール(B)とを、両者の比率[ポリイソシアネート化合物中のイソシアネート基のモル数]/[アクリル系ポリオール(B)中の水酸基のモル数]が0.75〜1.5の範囲となるような割合で含有することを特徴とするコーティング樹脂組成物。 A polyadduct selected from the group consisting of an adduct-type polyisocyanate compound (a1) obtained by reacting an aliphatic diisocyanate monomer and a polyol, and a nurate-type polyisocyanate compound (a2) obtained by nurating an aliphatic diisocyanate monomer. Polyisocyanate compound (A) having an isocyanate group equivalent in the range of 290 to 500 g / eq, an average Tg of −9 to 40 ° C., and an average number of functional groups of hydroxyl groups per molecule of 4 to 4. 20 and an acrylic polyol (B) having a number average molecular weight (Mn) in the range of 3000 to 10000, the ratio of them [number of moles of isocyanate groups in the polyisocyanate compound] / [acrylic polyol ( B) the number of moles of hydroxyl groups] in the range from 0.75 to 1.5. The coating resin composition characterized by containing in a ratio such that the range. 前記ジイソシアネートモノマーが1,6−ジイソシアナトへキサンである請求項1記載のコーティング樹脂組成物。 The coating resin composition according to claim 1, wherein the diisocyanate monomer is 1,6-diisocyanatohexane. 請求項1又は2に記載のコーティング樹脂組成物を硬化させて得られる塗膜。 A coating film obtained by curing the coating resin composition according to claim 1.
JP2010273480A 2010-12-08 2010-12-08 Coating resin composition excellent in scratch resistance Pending JP2012121985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273480A JP2012121985A (en) 2010-12-08 2010-12-08 Coating resin composition excellent in scratch resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273480A JP2012121985A (en) 2010-12-08 2010-12-08 Coating resin composition excellent in scratch resistance

Publications (1)

Publication Number Publication Date
JP2012121985A true JP2012121985A (en) 2012-06-28

Family

ID=46503775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273480A Pending JP2012121985A (en) 2010-12-08 2010-12-08 Coating resin composition excellent in scratch resistance

Country Status (1)

Country Link
JP (1) JP2012121985A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038164A (en) * 2011-09-22 2015-02-26 富士ゼロックス株式会社 Transparent protective film
US9308616B2 (en) 2013-01-21 2016-04-12 Innovative Finishes LLC Refurbished component, electronic device including the same, and method of refurbishing a component of an electronic device
WO2017056141A1 (en) * 2015-09-28 2017-04-06 帝国インキ製造株式会社 Crosslinked coating film having scratch resistance and flexibility, and resin composition
JP2018512460A (en) * 2015-01-16 2018-05-17 トーマス・アンド・ベッツ・インターナショナル・エルエルシー Electrical devices and components used in electrical systems made of self-healing materials
JP2018522076A (en) * 2015-05-21 2018-08-09 クローダ インターナショナル パブリック リミティド カンパニー Polyurethane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028130A1 (en) * 2004-09-08 2006-03-16 Kansai Paint Co., Ltd. Hydroxyl group-containing resin for coating material and coating composition
JP2008253988A (en) * 2007-03-12 2008-10-23 Kansai Paint Co Ltd Method for forming multilayer coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028130A1 (en) * 2004-09-08 2006-03-16 Kansai Paint Co., Ltd. Hydroxyl group-containing resin for coating material and coating composition
JP2008253988A (en) * 2007-03-12 2008-10-23 Kansai Paint Co Ltd Method for forming multilayer coating film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038164A (en) * 2011-09-22 2015-02-26 富士ゼロックス株式会社 Transparent protective film
JP2015038163A (en) * 2011-09-22 2015-02-26 富士ゼロックス株式会社 Transparent protective film
US9308616B2 (en) 2013-01-21 2016-04-12 Innovative Finishes LLC Refurbished component, electronic device including the same, and method of refurbishing a component of an electronic device
JP2018512460A (en) * 2015-01-16 2018-05-17 トーマス・アンド・ベッツ・インターナショナル・エルエルシー Electrical devices and components used in electrical systems made of self-healing materials
JP2020122580A (en) * 2015-01-16 2020-08-13 トーマス・アンド・ベッツ・インターナショナル・エルエルシー Electrical devices and electrical components used in electrical systems made with self-healing materials
JP2018522076A (en) * 2015-05-21 2018-08-09 クローダ インターナショナル パブリック リミティド カンパニー Polyurethane
US10882943B2 (en) 2015-05-21 2021-01-05 Croda International Plc Polyurethane
JP6993232B2 (en) 2015-05-21 2022-01-13 クローダ インターナショナル パブリック リミティド カンパニー Polyurethane
WO2017056141A1 (en) * 2015-09-28 2017-04-06 帝国インキ製造株式会社 Crosslinked coating film having scratch resistance and flexibility, and resin composition
CN108291113A (en) * 2015-09-28 2018-07-17 帝国油墨制造股份公司 Crosslinking film and resin combination with marresistance and flexibility

Similar Documents

Publication Publication Date Title
EP1606361B1 (en) Polytrimethylene ether diol containing coating compositions
EP1817386B1 (en) Coating compositions and process for the production of multilayer coatings
JP5128247B2 (en) Coating composition
JP5568225B2 (en) paint
JP2011207953A (en) Coating composition and coating film
WO2008069298A1 (en) Adhesive composition, process for production of the same, and laminate using the same
TW201542602A (en) Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
CN111819253B (en) Resin composition for film formation, laminated film, and article having laminated film attached thereto
JP5482234B2 (en) Urethane-modified acrylic resin and coating agent and adhesive using the same
JP2012121985A (en) Coating resin composition excellent in scratch resistance
JP5605195B2 (en) Coating resin composition with excellent scratch resistance
JPH11505881A (en) Coating materials based on hydroxyl-containing polyacrylate resins and their use in processes for the production of multilayer coatings
WO2008047562A1 (en) Base material for adhesive and method for producing adhesive
JP2014012859A (en) Coated member having scratch resistance
JP2009096996A (en) Main agent for adhesives and production method thereof, composition for preparing urethane resin-based adhesive, and method for production of urethane resin-based adhesives
KR20160106601A (en) Coating Composition in the Form of a Non-aqueous, Transparent Dispersion
JP2012087183A (en) Coating resin composition excellent in scratch resistance
JP2012097173A (en) Coating resin composition excellent in scratch resistance
MX2011003626A (en) Polytrimethylene ether diol based coating composition and use thereof.
JP5644592B2 (en) adhesive
JP2019178193A (en) Curable resin composition
JP5953900B2 (en) Two-component curable resin composition, coating agent and coating film
JP2003192761A (en) Acrylic modified urethane resin composition and its manufacturing method
JP2023007298A (en) Hard coat resin composition
KR100832562B1 (en) Acrylic modified polyester resin, method of preparing the same and paint composition including the acrylic modified polyester resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141030