JP2012121974A - Luminous fluorescent substance and method of manufacturing the same - Google Patents
Luminous fluorescent substance and method of manufacturing the same Download PDFInfo
- Publication number
- JP2012121974A JP2012121974A JP2010272902A JP2010272902A JP2012121974A JP 2012121974 A JP2012121974 A JP 2012121974A JP 2010272902 A JP2010272902 A JP 2010272902A JP 2010272902 A JP2010272902 A JP 2010272902A JP 2012121974 A JP2012121974 A JP 2012121974A
- Authority
- JP
- Japan
- Prior art keywords
- phosphorescent phosphor
- sample
- raw material
- component
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000126 substance Substances 0.000 title abstract description 4
- 239000013078 crystal Substances 0.000 claims abstract description 58
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 27
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 26
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 23
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 80
- 239000002994 raw material Substances 0.000 claims description 60
- 238000010438 heat treatment Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 16
- 229910052779 Neodymium Inorganic materials 0.000 claims description 14
- 229910003668 SrAl Inorganic materials 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 23
- 239000000843 powder Substances 0.000 description 16
- 238000000295 emission spectrum Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 238000001308 synthesis method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000011812 mixed powder Substances 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- -1 oxyhydroxide Chemical compound 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 150000004820 halides Chemical class 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
本発明は、蓄光性蛍光体及びその製造方法に関する。より詳しくは、蛍光色及び蓄光色の少なくとも一方が、目視で白色が認識される蓄光性蛍光体に関するものである。 The present invention relates to a phosphorescent phosphor and a method for producing the same. More specifically, the present invention relates to a phosphorescent phosphor in which at least one of a fluorescent color and a phosphorescent color is visually recognized as white.
蛍光体の1種である蓄光性蛍光体は、蛍光発光するのみならず、外部から光を吸収して、そのエネルギーを蓄えることにより暗所において発光する、いわゆる残光機能を有する。このような蓄光性蛍光体は、固体素子であるため、動作寿命が長く、耐振動性にも優れるという利点があるため、発光素子として電力消費量が少ない各種インジケータや液晶バックライト等、種々の光源に広く利用されてきている。 A phosphorescent phosphor, which is a kind of phosphor, has a so-called afterglow function that emits light in the dark by absorbing light from the outside and storing the energy, as well as emitting fluorescence. Since such a phosphorescent phosphor is a solid-state element, it has the advantages of a long operating life and excellent vibration resistance. Therefore, various light-emitting elements such as various indicators and liquid crystal backlights that consume less power are used. It has been widely used as a light source.
蓄光性蛍光体としてCsB:Bi(青色発光)ZuCdS:Cu(黄色発光)等の硫化物蛍光体が従来知られているが、発光強度や残光時間が不十分であることに加え、化学的に不安定であったり、有害元素を含んでいるなど実用的面での問題があった。 As phosphorescent phosphors, sulfide phosphors such as CsB: Bi (blue light emission), ZuCdS: Cu (yellow light emission) and the like are conventionally known, but in addition to insufficient light emission intensity and afterglow time, However, there are practical problems such as being unstable and containing harmful elements.
これに対し、例えば、アルカリ土類元素とアルミニウムとからなる複合酸化物に、賦活剤として、ユーロピウム(Eu)およびジスプロシウム(Dy)を加えた発光時間の長い酸化物型の蓄光性蛍光体が開発されている。このような蓄光性蛍光体としては、ユーロピウム(Eu)やジスプロシウム(Dy)等の希土類元素を含有したCaAlO4(青色発光)や、SrAlO4(黄色発光)等が知られている(例えば、特許文献1参照)。 On the other hand, for example, an oxide-type phosphorescent phosphor with a long emission time has been developed by adding europium (Eu) and dysprosium (Dy) as an activator to a composite oxide composed of an alkaline earth element and aluminum. Has been. As such phosphorescent phosphors, CaAlO 4 (blue light emission) containing rare earth elements such as europium (Eu) and dysprosium (Dy), SrAlO 4 (yellow light emission), and the like are known (for example, patents). Reference 1).
ところで、白色光源として蛍光灯や白熱灯が広く用いられてきたが、電力消費量や動作寿命等の観点から、用途によっては蓄光性蛍光体の使用が期待されている。しかしながら、従来の蓄光性蛍光体では、単一の母材結晶で白色発光をするものは存在しない。 By the way, fluorescent lamps and incandescent lamps have been widely used as white light sources, but from the viewpoint of power consumption, operating life, etc., use of phosphorescent phosphors is expected depending on applications. However, there is no conventional phosphorescent phosphor that emits white light with a single base crystal.
そのため、補色関係にある複数の蓄光性蛍光体を組み合わせて拡散混色によって白色光を得ているが、発光ムラが起こりやすく均質な白色光が得られなかったり、蓄光性蛍光体の組み合わせによっては相互に反応して輝度が低下するなどの問題があった。 For this reason, white light is obtained by diffusing color mixing by combining multiple phosphorescent phosphors that have complementary colors, but light emission unevenness is likely to occur and uniform white light cannot be obtained, or depending on the combination of phosphorescent phosphors There was a problem that the brightness decreased in response to
このように、白色発光する蓄光性蛍光体に関しては、いまだ課題が多いのが実情である。かかる状況下、本発明の目的は、蛍光色及び蓄光色の少なくとも一方が白色光を発光し、かつ、発光ムラの少ない蓄光性蛍光体を提供することである。 As described above, there are still many problems with phosphorescent phosphors that emit white light. Under such circumstances, an object of the present invention is to provide a phosphorescent phosphor that emits white light with at least one of a fluorescent color and a phosphorescent color and has little emission unevenness.
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、Ca原料化合物、Sr原料化合物、Al原料化合物、Eu原料化合物を含む混合物を、還元性雰囲気下で所定の温度及び時間で加熱保持することにより、上記目的に合致する蓄光性蛍光体を得られることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have heated a mixture containing a Ca raw material compound, a Sr raw material compound, an Al raw material compound, and an Eu raw material compound at a predetermined temperature and time in a reducing atmosphere. It has been found that a phosphorescent phosphor meeting the above-mentioned purpose can be obtained by holding, and the present invention has been achieved.
すなわち、本発明は、以下の発明に係るものである。
<1> 下記成分を含有してなる蓄光性蛍光体。
(A)Ca及びAlを含有する複合酸化物からなる結晶母材に、発光中心として少なくともEuを含有する結晶体
(B)Sr及びAlを含有する複合酸化物からなる結晶母材に、発光中心として少なくともEuを含有する結晶体
(C)Ca及びAl並びにEu及び/又はNdを含有する複合酸化物であり、成分(A)の結晶母材と異なる結晶形を有する結晶体
<2> 成分(A)における結晶母材がCaAl2O4、成分(B)における結晶母材がSrAl2O4、成分(C)が、Ca(Eu,Nd)AlO4である前記<1>記載の蓄光性蛍光体。
<3> 蓄光性蛍光体全量におけるCa、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:0.9〜1.1であり、かつ、Ca:Sr=0.45:0.55〜0:65:0.35の関係を満たす前記<1>又は<2>記載の蓄光性蛍光体。
<4> 蓄光性蛍光体全量において、Euの含有量が、0.1〜10モル%である前記<1>から<3>のいずれかに記載の蓄光性蛍光体。
<5> 成分(A)及び成分(B)における賦活成分として、さらにNdを含有する前記<1>から<4>のいずれかに記載の蓄光性蛍光体。
<6> さらにAg+を含有する前記<5>記載の蓄光性蛍光体。
<7> Ag+の含有量が、蓄光性蛍光体の全量に対し、1〜10モル%である前記<6>記載の蓄光性蛍光体。
<8> 粉末状のCa原料化合物、Sr原料化合物、Al原料化合物、Eu原料化合物を、蓄光性蛍光体全量におけるCa、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:0.9〜1.1であり、かつ、Ca:Sr=0.45:0.55〜0:65:0.35の関係を満たし、Euの含有量が、蓄光性蛍光体全量に対して、0.1〜10モル%であるように混合し、得られた混合物を還元性雰囲気下で1000〜1400℃、15時間以下の条件で加熱保持する蓄光性蛍光体の製造方法。
<9> 加熱保持条件が、1〜5時間である前記<8>記載の蓄光性蛍光体の製造方法。
<10> さらに、Nd原料化合物を、Ndの含有量が、蓄光性蛍光体全量に対して、1〜10モル%であるように混合する前記<8>又は<9>記載の蓄光性蛍光体の製造方法。
<11> さらに、Ag原料化合物を、Agの含有量が、蓄光性蛍光体全量に対して、0.1〜10モル%であるように混合する前記<8>から<10>のいずれかに記載の蓄光性蛍光体の製造方法。
That is, the present invention relates to the following inventions.
<1> A phosphorescent phosphor containing the following components.
(A) A crystal base material made of a composite oxide containing Ca and Al, a crystal containing at least Eu as a light emission center (B) a crystal base material made of a composite oxide containing Sr and Al, and a light emission center Crystalline (C) containing at least Eu and a composite oxide containing Ca and Al and Eu and / or Nd, and having a crystal form different from the crystal matrix of component (A) <2> Component ( The phosphorescence according to <1>, wherein the crystal base material in A) is CaAl 2 O 4 , the crystal base material in component (B) is SrAl 2 O 4 , and the component (C) is Ca (Eu, Nd) AlO 4 . Phosphor.
<3> The content ratio (molar ratio) of Ca, Sr, and Al in the total amount of phosphorescent phosphor is Al: (Ca + Sr) = 1: 0.9 to 1.1, and Ca: Sr = 0.45. : The phosphorescent phosphor according to <1> or <2>, which satisfies a relationship of 0.55 to 0: 65: 0.35.
<4> The phosphorescent phosphor according to any one of <1> to <3>, wherein the Eu content is 0.1 to 10 mol% in the total amount of the phosphorescent phosphor.
<5> The phosphorescent phosphor according to any one of <1> to <4>, further containing Nd as an activating component in the component (A) and the component (B).
<6> The phosphorescent phosphor according to the above <5>, further containing Ag + .
<7> The phosphorescent phosphor according to <6>, wherein the content of Ag + is 1 to 10 mol% with respect to the total amount of the phosphorescent phosphor.
<8> The content ratio (molar ratio) of Ca, Sr, and Al in the total amount of phosphorescent phosphor of powdered Ca raw material compound, Sr raw material compound, Al raw material compound, Eu raw material compound is Al: (Ca + Sr) = 1 : 0.9 to 1.1, and satisfies the relationship of Ca: Sr = 0.45: 0.55 to 0: 65: 0.35, and the Eu content is based on the total amount of the phosphorescent phosphor. The phosphorescent phosphor is mixed so as to be 0.1 to 10 mol%, and the resulting mixture is heated and held under a reducing atmosphere at 1000 to 1400 ° C. for 15 hours or less.
<9> The method for producing a phosphorescent phosphor according to <8>, wherein the heating and holding condition is 1 to 5 hours.
<10> Further, the phosphorescent phosphor according to <8> or <9>, wherein the Nd raw material compound is mixed so that the content of Nd is 1 to 10 mol% with respect to the total phosphorescent phosphor. Manufacturing method.
<11> Furthermore, the Ag raw material compound is mixed so that the Ag content is 0.1 to 10 mol% with respect to the total amount of the phosphorescent phosphor. The manufacturing method of the luminous fluorescent substance of description.
本発明によれば、蛍光色及び蓄光色の少なくとも一方が白色光を発光し、かつ、発光ムラの少ない蓄光性蛍光体が提供される。 According to the present invention, there is provided a phosphorescent phosphor in which at least one of a fluorescent color and a phosphorescent color emits white light and has little light emission unevenness.
本発明は、下記成分を含有してなる蓄光性蛍光体に関するものである。
(A)Ca及びAlを含有する複合酸化物からなる結晶母材に、発光中心成分として少なくともEuを含有する結晶体
(B)Sr及びAlを含有する複合酸化物からなる結晶母材に、発光中心成分として少なくともEuを含有する結晶体
(C)Ca及びAl並びにEu及び/又はNdを含有する複合酸化物であり、成分(A)の結晶母材と異なる結晶形を有する結晶体
The present invention relates to a phosphorescent phosphor containing the following components.
(A) A crystal base material made of a composite oxide containing Ca and Al, a crystal containing at least Eu as a light emission center component (B) a crystal base material made of a composite oxide containing Sr and Al, and emitting light Crystalline (C) containing at least Eu as a central component and a composite oxide containing Ca and Al and Eu and / or Nd, and having a different crystal form from the crystalline matrix of component (A)
本発明の蓄光性蛍光体は、単独では青色発光する成分(A)、黄色発光する成分(B)以外に成分(C)を含有することに特徴がある。なお、成分(C)を含まない場合には、蓄光性蛍光体は、蛍光色及び蓄光色の何れも白色光を発光しないか、あるいは発光ムラが顕著になる。ここで、「発光ムラ」とは、蓄光性蛍光体の各部分で輝度が異なったり、他の色が混ざっていることが目視にて認識できることを意味する。
成分(C)を含有することによって、発光ムラの少ない白色光を発光する蓄光性蛍光体となる理由については現状のところ明らかではないが、成分(C)が、成分(A)と成分(B)のEu等の発光中心成分や、必要に応じて添加された他の賦活成分を貯留排出するバッファー的な役割をし、蓄光性蛍光体の発光中心成分等の分布が均等になっていることに寄与している可能性がある。
以下、各成分について説明する。
The phosphorescent phosphor of the present invention is characterized in that it contains the component (C) in addition to the component (A) that emits blue light alone and the component (B) that emits yellow light. When the component (C) is not included, the phosphorescent phosphor does not emit white light in either the fluorescent color or the phosphorescent color, or the light emission unevenness becomes remarkable. Here, “light emission unevenness” means that it is possible to visually recognize that each portion of the phosphorescent phosphor has different luminance or that other colors are mixed.
The reason why it becomes a phosphorescent phosphor that emits white light with little emission unevenness by containing the component (C) is not clear at present, but the component (C) is composed of the component (A) and the component (B ) And other light-emitting central components such as Eu, and other activator components added as necessary are buffered, and the distribution of the light-emitting center components of the phosphorescent phosphor is uniform. May have contributed to
Hereinafter, each component will be described.
成分(A)の結晶母材である、Ca及びAlを含有する複合酸化物としては、発光中心成分としてEuを含有することにより、青色発光を発光するものであればいずれでもよいが、化学的安定性が高く、発光輝度が高い成分(A)の結晶母材が、CaAl2O4であることが望ましい。 The composite oxide containing Ca and Al, which is the crystal matrix of the component (A), may be any one as long as it emits blue light by containing Eu as the light emission center component. It is desirable that the crystal base material of the component (A) having high stability and high emission luminance is CaAl 2 O 4 .
成分(B)の結晶母材である、Sr及びAlを含有する複合酸化物としては、発光中心成分としてEuを含有することにより、黄色発光を発光するものであればいずれでもよいが、化学的安定性が高く、発光輝度が高い成分(B)の結晶母材が、SrAl2O4であることが望ましい。 The composite oxide containing Sr and Al, which is the crystal matrix of the component (B), may be any one as long as it emits yellow light by containing Eu as the emission center component. It is desirable that the crystal base material of the component (B) having high stability and high emission luminance is SrAl 2 O 4 .
なお、成分(A)及び成分(B)の結晶母材中のEuの含有量は、少なすぎると、発光が不十分となる場合があり、多すぎると結晶母材が不安定となるため、それぞれの結晶母材に対して、好ましくは、0.1〜10モル%であり、より好ましくは、1〜5モル%である。 Note that if the content of Eu in the crystal matrix of the component (A) and the component (B) is too small, light emission may be insufficient, and if too large, the crystal matrix becomes unstable. Preferably it is 0.1-10 mol% with respect to each crystal | crystallization base material, More preferably, it is 1-5 mol%.
成分(A)及び成分(B)の結晶母材中には、主な発光中心成分であるEu以外にも、賦活成分として他の希土類元素を含んでいてもよい。他の希土類元素を加えることで、蓄光性蛍光体の発光する蛍光や蓄光の色相や輝度を調整することができる。
他の希土類元素としては、具体的には、Ce、Pr、Nd、Sm、Tb、Dy、Tm等が挙げられる。
この中でも、Ndを含有することが好ましい。賦活成分として、Ndを含有することにより蓄光性蛍光体の発光、特に蓄光における輝度を高めることができるという利点がある。
なお、成分(A)及び成分(B)の結晶母材中の賦活成分の含有量は、少なすぎると、その効果が認められない場合があり、多すぎると発光ムラや輝度低下の原因となるため、結晶母材に対して、0.01〜5モル%であることが好ましい。
The crystal base materials of the component (A) and the component (B) may contain other rare earth elements as an activation component in addition to Eu as the main luminescent center component. By adding other rare earth elements, it is possible to adjust the fluorescence emitted from the phosphorescent phosphor and the hue and luminance of the phosphorescent light.
Specific examples of other rare earth elements include Ce, Pr, Nd, Sm, Tb, Dy, and Tm.
Among these, it is preferable to contain Nd. By containing Nd as the activation component, there is an advantage that the luminance of the phosphorescent phosphor, particularly the luminance in the phosphorescence can be increased.
In addition, when there is too little content of the activation component in the crystal | crystallization base material of a component (A) and a component (B), the effect may not be recognized, and when too large, it becomes a cause of light emission nonuniformity and a brightness fall. Therefore, it is preferable that it is 0.01-5 mol% with respect to a crystal | crystallization base material.
成分(C)は、Ca及びAl並びにEu及び/又はNdを含有する複合酸化物であり、成分(A)の結晶母材と異なる結晶形を有する結晶体である。
成分(C)は、通常、後述するようにCa原料化合物、Sr原料化合物、Al原料化合物、Eu原料化合物を含有する混合物を、還元性雰囲気下で所定の温度及び時間で加熱保持することにより、混相生成物として、成分(A)及び成分(B)と共に製造することができる。
Component (C) is a complex oxide containing Ca and Al and Eu and / or Nd, and is a crystal having a different crystal form from the crystal matrix of component (A).
Component (C) is usually heated and held at a predetermined temperature and time in a reducing atmosphere for a mixture containing a Ca raw material compound, a Sr raw material compound, an Al raw material compound, and an Eu raw material compound, as described later. As a mixed phase product, it can be produced together with component (A) and component (B).
より発色ムラの少ないという点で、本発明の蓄光性蛍光体は、成分(A)における結晶母材がCaAl2O4、成分(B)における結晶母材がSrAl2O4、成分(C)が、Ca(Eu,Nd)AlO4であることが好ましい。なお、Ca(Eu,Nd)AlO4は、CaAlO4において、Eu及びNdがCaのサイトを置換した化合物である。
また、成分(A)、(B)及び(C)がこのような組み合わせであると、原料化合物としてそれぞれの酸化物から容易に形成できるという利点もある。
In the phosphorescent phosphor of the present invention, the crystal base material in the component (A) is CaAl 2 O 4 , the crystal base material in the component (B) is SrAl 2 O 4 , and the component (C) is less colored unevenness. Is preferably Ca (Eu, Nd) AlO 4 . Ca (Eu, Nd) AlO 4 is a compound in which Ca and Eu are substituted for Ca sites in CaAlO 4 .
Further, when the components (A), (B) and (C) are in such a combination, there is an advantage that they can be easily formed from the respective oxides as raw material compounds.
本発明の蓄光性蛍光体は、蛍光スペクトルから明らかなように、波長450nm近傍、550〜570nm近傍において蛍光発光を示し、その混色として、目視にて青白−白−黄白に認識される蛍光発光を示す。
本発明の蓄光性発光体は、蛍光及び蓄光のいずれかあるいは両方が白色に発光するが、暗所での用途を考慮すると、特に少なくとも蓄光が白色発光することが好ましい。蛍光色及び蓄光色は、目視あるいは色度計を用いて評価することができる。
As is clear from the fluorescence spectrum, the phosphorescent phosphor of the present invention exhibits fluorescence emission in the vicinity of a wavelength of 450 nm and in the vicinity of 550 to 570 nm, and as a mixed color thereof, the fluorescence emission recognized visually as blue-white-white-yellow-white is obtained. Show.
In the phosphorescent luminescent material of the present invention, either or both of fluorescence and phosphorescence emit white light. However, considering the use in a dark place, it is particularly preferable that at least the phosphorescent light emits white light. The fluorescent color and the phosphorescent color can be evaluated visually or using a chromaticity meter.
また、蓄光性蛍光体全量におけるCa、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:0.9〜1.1であり、かつ、Ca:Sr=0.45:0.55〜0:65:0.35の関係を満たすことが好ましい。この範囲を外れると、例え白色光が得られても輝度が不十分であったり、発色ムラが生じるおそれがある。
特に結晶母材の量論からは、Ca、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:1(即ち、Al原子含有量と、Ca原子含有量及びSr原子含有量の合計とが同量)を満たすことが好ましい。
Further, the content ratio (molar ratio) of Ca, Sr and Al in the total amount of the phosphorescent phosphor is Al: (Ca + Sr) = 1: 0.9 to 1.1, and Ca: Sr = 0.45: It is preferable to satisfy the relationship of 0.55 to 0: 65: 0.35. If it is out of this range, even if white light is obtained, the luminance may be insufficient, or color unevenness may occur.
In particular, from the stoichiometry of the crystal base material, the content ratio (molar ratio) of Ca, Sr and Al is Al: (Ca + Sr) = 1: 1 (that is, Al atom content, Ca atom content and Sr atom content) It is preferable to satisfy the same amount).
さらに、本発明の蓄光性蛍光体は、Ag+を含有することが好ましい。1価の陽イオンであるAg+を含有することにより、電荷補償効果によって、成分(A),(B)の結晶母材へ対するEuや他の希土類の固溶が促進される結果、蛍光や蓄光の輝度を高かまる場合がある。 Furthermore, the phosphorescent phosphor of the present invention preferably contains Ag + . By containing Ag + which is a monovalent cation, solid solution of Eu and other rare earths to the crystal base material of the components (A) and (B) is promoted by the charge compensation effect. In some cases, the brightness of phosphorescence is increased.
現状では理由は完全には明らかではないが、Ag+を含有することにより、本発明の蓄光性蛍光体の蓄光時間(残光時間)が増長する傾向にある。他の1価の陽イオンでは、Ag+に匹敵する効果は得られない。
Ag+の含有量は、蓄光性蛍光体の全量に対し、好ましくは、1〜10モル%、より好ましくは、3〜8モル%である。Ag+の含有量が1モル%未満ではAg+添加の効果が不十分な場合があり、10モル%を超えると輝度が低下するおそれがある。
Although the reason is not completely clear at present, the phosphorescence time (afterglow time) of the phosphorescent phosphor of the present invention tends to increase by containing Ag + . Other monovalent cations do not provide an effect comparable to Ag + .
The content of Ag + is preferably 1 to 10 mol%, more preferably 3 to 8 mol%, based on the total amount of the phosphorescent phosphor. In less than 1 mole% content of Ag + may effect the Ag + addition is insufficient, there is a possibility that brightness decreases when more than 10 mol%.
上記本発明の蓄光性蛍光体の製造方法は特に限定されないが、通常、(a)Ca原料化合物、(b)Sr原料化合物、(c)Al原料化合物、(d)Eu原料化合物、及び必要に応じて(e)他の希土類原料化合物や(f)Ag化合物を混合して得られる混合物を還元性雰囲気下にて、所定の温度で加熱保持することによって製造することができる。 The production method of the phosphorescent phosphor of the present invention is not particularly limited, but usually (a) Ca raw material compound, (b) Sr raw material compound, (c) Al raw material compound, (d) Eu raw material compound, and as required Accordingly, it can be produced by heating and holding a mixture obtained by mixing (e) another rare earth material compound and (f) Ag compound at a predetermined temperature in a reducing atmosphere.
次に、上記本発明の蓄光性蛍光体の好ましい製造方法(以下、「本発明の製造方法」と称す。)について説明する。
本発明の製造方法は、粉末状のCa原料化合物、Sr原料化合物、Al原料化合物、Eu原料化合物を、蓄光性蛍光体全量におけるCa、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:0.9〜1.1であり、かつ、Ca:Sr=0.45:0.55〜0:65:0.35の関係を満たし、Euの含有量が、蓄光性蛍光体全量に対して、0.1〜10モル%であるように混合し、得られた混合物を還元性雰囲気下で1000〜1400℃、15時間以下の条件で加熱保持することを特徴とする。
上記条件を採用することにより、上記本発明の蓄光性蛍光体を再現性良く得ることができる。
Next, a preferred method for producing the phosphorescent phosphor of the present invention (hereinafter referred to as “the production method of the present invention”) will be described.
In the production method of the present invention, the powdered Ca raw material compound, Sr raw material compound, Al raw material compound, Eu raw material compound, the content ratio (molar ratio) of Ca, Sr and Al in the total amount of phosphorescent phosphor is Al :( Ca + Sr) = 1: 0.9 to 1.1 and satisfies the relationship of Ca: Sr = 0.45: 0.55 to 0: 65: 0.35, and the Eu content is phosphorescent fluorescence. It mixes so that it may be 0.1-10 mol% with respect to body whole quantity, and the obtained mixture is heat-held on 1000-1400 degreeC and conditions for 15 hours or less under reducing atmosphere.
By adopting the above conditions, the phosphorescent phosphor of the present invention can be obtained with good reproducibility.
ここで、(a)Ca原料化合物としては、Caの酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩等を挙げることができる。この中でも、入手が容易で反応性の高い炭酸塩(CaCO3)が好適である。 Here, (a) Examples of the Ca raw material compound include Ca oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt, oxalate and the like. Can do. Among these, carbonate (CaCO 3 ) which is easily available and highly reactive is preferable.
また、(b)Sr原料化合物としては、Srの酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩等を挙げることができる。この中でも、入手が容易で反応性の高い、炭酸塩(SrCO3)が好適である。 (B) Sr raw material compounds include Sr oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt, oxalate and the like. it can. Among these, carbonate (SrCO 3 ), which is easily available and highly reactive, is preferable.
また、(c)Al原料化合物としては、Alの酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩等を挙げることができる。この中でも、通常、入手が容易で反応性の高い酸化物(Al2O3)が好適である。 (C) Al raw material compounds include Al oxides, hydroxides, oxyhydroxides, carbonates, sulfates, nitrates, acetates, halides, ammonium salts, oxalates, and the like. it can. Among these, an oxide (Al 2 O 3 ) that is easily available and highly reactive is usually preferable.
また、(d)Eu原料化合物としては、Euの酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩、フッ化物、塩化物等を挙げることができる。この中でも、通常、入手が容易な高い酸化物(Eu2O3)が使用される。 (D) Eu raw material compounds include Eu oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt, oxalate, fluoride, chloride And the like. Among these, a high oxide (Eu 2 O 3 ) that is easily available is usually used.
なお、本発明の製造方法において、上記原料化合物以外の原料を含んでいてもよい。
例えば、発光スペクトルの色度調整や賦活成分としての(e)他の希土類原料化合物や、電荷補償効果を示す(f)銀イオン(Ag+)の原料化合物などが挙げられる。
In addition, in the manufacturing method of this invention, raw materials other than the said raw material compound may be included.
Examples include (e) other rare earth raw material compounds as chromaticity adjustment and activation components of the emission spectrum, and (f) silver ion (Ag + ) raw material compounds exhibiting a charge compensation effect.
(e)他の希土類原料化合物としては、Ce、Pr、Nd、Sm、Tb、Dy、Tm等の希土類元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩、フッ化物、塩化物等を挙げることができ、通常、入手が容易な酸化物が使用される。 (E) Other rare earth raw material compounds include oxides, hydroxides, oxyhydroxides, carbonates, sulfates, nitrates, acetic acids of rare earth elements such as Ce, Pr, Nd, Sm, Tb, Dy, and Tm. Examples thereof include salts, halides, ammonium salts, oxalates, fluorides, chlorides and the like, and oxides that are easily available are usually used.
なお、蓄光特性を向上させる観点からは、特にNd、Dy化合物を含ませることが好ましい。 In addition, from the viewpoint of improving the luminous characteristics, it is particularly preferable to include Nd and Dy compounds.
(f)銀イオン(Ag+)の原料化合物としては、それぞれの酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩等を挙げることができる。
1価の陽イオンの中でも、Ag+は蓄光時間を増長させることができることから、好ましく用いられる。銀イオン(Ag+)の原料化合物として、入手が容易で反応性の高い酸化物(Ag2O)が好適である。
(F) As a raw material compound of silver ion (Ag + ), each oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt, oxalate, etc. Can be mentioned.
Among monovalent cations, Ag + is preferably used because it can increase the phosphorescence time. As a raw material compound of silver ion (Ag + ), an easily available and highly reactive oxide (Ag 2 O) is preferable.
また、蓄光性蛍光体全量におけるCa、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:0.9〜1.1であり、かつ、Ca:Sr=0.45:0.55〜0:65:0.35の関係を満たす必要があり、特に結晶母材の量論からは、Ca、Sr及びAlの含有比(モル比)が、Al:(Ca+Sr)=1:1(即ち、原料中のAl量と、Ca量及びSr量の合計とが同量)を満たすことが好ましい。 Further, the content ratio (molar ratio) of Ca, Sr and Al in the total amount of the phosphorescent phosphor is Al: (Ca + Sr) = 1: 0.9 to 1.1, and Ca: Sr = 0.45: It is necessary to satisfy the relationship of 0.55 to 0: 65: 0.35. In particular, from the stoichiometry of the crystal base material, the content ratio (molar ratio) of Ca, Sr and Al is Al: (Ca + Sr) = 1. 1 (that is, the amount of Al in the raw material and the total amount of Ca and Sr are preferably the same).
原料の混合は、乾式混合、湿式混合いずれで行ってもよい。
乾式混合としては、従来公知の方法を任意に選択すればよく、例えばボールミル等で混合する方法が挙げられる。
湿式混合としては、従来公知の方法を任意に選択すればよく、原料化合物粉末にエタノール等の適当な媒体を添加したのちにボールミル等で混合した後、乾燥すればよい。
The raw materials may be mixed by either dry mixing or wet mixing.
As the dry mixing, a conventionally known method may be arbitrarily selected, and for example, a method of mixing with a ball mill or the like may be mentioned.
As the wet mixing, a conventionally known method may be arbitrarily selected, and an appropriate medium such as ethanol may be added to the raw material compound powder, followed by mixing with a ball mill or the like and then drying.
上記原料化合物を混合して得られた混合物は、還元性雰囲気下で1000〜1400℃で加熱保持される。この加熱保持工程によって、上述の各原料化合物が反応し、上記本発明の蓄光性蛍光体で説明した、成分(A)〜(C)の化合物が混相状態で生成する。
なお、加熱する前に、必要に応じて、上記如く得られた原料混合物を粉砕、分級、乾燥を行ってもよい。
The mixture obtained by mixing the raw material compounds is heated and held at 1000 to 1400 ° C. in a reducing atmosphere. By this heating and holding step, the above-described raw material compounds react, and the compounds of components (A) to (C) described in the phosphorescent phosphor of the present invention are generated in a mixed phase.
Before heating, the raw material mixture obtained as described above may be pulverized, classified and dried as necessary.
加熱保持するときの雰囲気としては、還元性雰囲気が好ましい。すなわち、水素雰囲気、水素を含有する不活性ガス雰囲気あるいは一酸化炭素を含有する二酸化炭素雰囲気等の還元雰囲気であることが好ましい。なお、特に安全性の観点から、水素ガスを含有する不活性ガス雰囲気であることが好ましい。 A reducing atmosphere is preferable as the atmosphere for heating and holding. That is, a reducing atmosphere such as a hydrogen atmosphere, an inert gas atmosphere containing hydrogen, or a carbon dioxide atmosphere containing carbon monoxide is preferable. In particular, from the viewpoint of safety, an inert gas atmosphere containing hydrogen gas is preferable.
加熱保持時間は、15時間以下であり、1〜5時間であることが好ましい。加熱保持時間が、1時間未満の場合には、原料化合物の反応が不十分となり目的となる成分(A)〜(C)が得られない場合がある。5時間を超えると過反応によって、特に成分(C)の量が低減しすぎる場合があり、15時間を超えると本発明の蓄光性蛍光体が形成できないおそれがある。 The heating and holding time is 15 hours or less, and preferably 1 to 5 hours. When the heating and holding time is less than 1 hour, the reaction of the raw material compound becomes insufficient, and the target components (A) to (C) may not be obtained. If it exceeds 5 hours, the amount of the component (C) may be excessively reduced due to overreaction, and if it exceeds 15 hours, the phosphorescent phosphor of the present invention may not be formed.
なお、上記加熱保持工程に先立って、仮焼するようにしてもよい。
例えば、原料化合物の混合物を800〜1100℃程度で仮焼することにより、原料化合物が含む炭素不純物を除去したり、原料化合物に炭酸塩を用いる場合等には、原料化合物を十分に分解させて、上記加熱保持工程に供することができる。
仮焼の時の雰囲気は、特に限定はなく、空気等の酸化雰囲気、窒素、アルゴン等の不活性ガス、水素ガスを含有する不活性ガス雰囲気などいずれでもよい。
Prior to the heating and holding step, calcination may be performed.
For example, by calcining a mixture of raw material compounds at about 800 to 1100 ° C. to remove carbon impurities contained in the raw material compound or when using carbonate as the raw material compound, the raw material compound is sufficiently decomposed. , And can be subjected to the heating and holding step.
The atmosphere at the time of calcination is not particularly limited, and may be any of an oxidizing atmosphere such as air, an inert gas such as nitrogen and argon, and an inert gas atmosphere containing hydrogen gas.
また、仮焼後の原料化合物の混合物を取り出し、さらに全体が均一となるように、粉砕混合した後に、上記加熱保持工程に供するようにしてもよい。 Alternatively, the mixture of raw material compounds after calcination may be taken out and further pulverized and mixed so as to be uniform, and then subjected to the heating and holding step.
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is changed.
「評価方法」
実施例における評価方法は以下の通りである。
(i)X線回折(XRD)測定
試料の結晶相を同定するために、以下の装置及び条件にてXRD測定を行った。
測定装置:RINT,XRD−610D(株式会社リガク製)
線源:CuKα
管電圧:40kV
管電流:30mA
"Evaluation methods"
The evaluation methods in the examples are as follows.
(I) X-ray diffraction (XRD) measurement In order to identify the crystal phase of a sample, the XRD measurement was performed with the following apparatus and conditions.
Measuring device: RINT, XRD-610D (manufactured by Rigaku Corporation)
Radiation source: CuKα
Tube voltage: 40 kV
Tube current: 30 mA
(ii)輝度測定
(a)蛍光測定
暗室にて、試料と輝度計(コニカミノルタ社製、品番:LS−100)の距離を約3cmに合わせたのちに、試料にブラックライト(10W)を照射して輝度(L値)[単位:cdm−2]を記録した。
(b)蓄光測定
暗室にて、試料と輝度計(コニカミノルタ社製、品番:LS−100)の距離を約3cmに合わせたのちに、ブラックライト(10W)を照射した。
蓄光の経時変化は、ブラックライト(10W)を5分間照射して輝度が一定になったことを確認した後に、ブラックライトを遮断して、輝度(L値)が0cdm−2になるまでの経時変化を評価した。
(Ii) Luminance measurement (a) Fluorescence measurement In the dark room, after the distance between the sample and the luminance meter (Konica Minolta, product number: LS-100) is adjusted to about 3 cm, the sample is irradiated with black light (10 W). Then, luminance (L value) [unit: cdm −2 ] was recorded.
(B) Luminous measurement In a dark room, the distance between the sample and the luminance meter (manufactured by Konica Minolta, product number: LS-100) was adjusted to about 3 cm, and then irradiated with black light (10 W).
The time-dependent change in the phosphorescence is that the black light (10 W) is irradiated for 5 minutes and it is confirmed that the brightness has become constant, then the black light is shut off and the brightness (L value) becomes 0 cdm −2. Changes were evaluated.
(iii)発光スペクトル測定
試料が発光する蛍光または蓄光の発光スペクトルを評価するために、発光スペクトル測定を以下の条件で行った。
測定装置:USB4000(オプトシリウス株式会社)
波長測定範囲:400〜650nm
(Iii) Measurement of emission spectrum In order to evaluate the emission spectrum of fluorescence or phosphorescence emitted from the sample, emission spectrum measurement was performed under the following conditions.
Measuring device: USB4000 (Optosirius Corporation)
Wavelength measurement range: 400 to 650 nm
1.蓄光性蛍光体の合成
試料1
Ca:Sr=1:0(モル比)である蓄光性蛍光体(試料1)は以下の手順で合成した。
まず、CaCO3(48モル%)、Al2O3(48モル%)、Eu2O3(2モル%)、Nd2O3(2モル%)の粉末をそれぞれ秤量し、適量のエタノールを加え、ボールミルを均一になるまで0.5時間、混合した。次いで、混合した粉体を、10%H2,90%N2からなる還元雰囲気下、1300℃、4時間加熱保持した後に、得られた焼結体を粉砕することにより試料1を得た。仕込み組成を表1に示す。
1. Synthesis of phosphorescent phosphor Sample 1
A phosphorescent phosphor (sample 1) with Ca: Sr = 1: 0 (molar ratio) was synthesized by the following procedure.
First, CaCO 3 (48 mol%), Al 2 O 3 (48 mol%), Eu 2 O 3 (2 mol%), and Nd 2 O 3 (2 mol%) powders were weighed, and an appropriate amount of ethanol was added. In addition, the ball mill was mixed for 0.5 hours until uniform. Next, the mixed powder was heated and held at 1300 ° C. for 4 hours in a reducing atmosphere composed of 10% H 2 and 90% N 2 , and then the obtained sintered body was pulverized to obtain Sample 1. The charge composition is shown in Table 1.
試料2
Ca:Sr=0.75:0.25(モル比)である蓄光性蛍光体(試料2)は以下の手順で合成した。
まず、CaCO3(36モル%)、SrCO3(12モル%)、Al2O3(48モル%)、Eu2O3(2モル%)、Nd2O3(2モル%)の粉末をそれぞれ秤量し、適量のエタノールを加え、ボールミルを均一になるまで混合した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料2を得た。仕込み組成を表1に示す。
Sample 2
A phosphorescent phosphor (sample 2) with Ca: Sr = 0.75: 0.25 (molar ratio) was synthesized by the following procedure.
First, powders of CaCO 3 (36 mol%), SrCO 3 (12 mol%), Al 2 O 3 (48 mol%), Eu 2 O 3 (2 mol%), Nd 2 O 3 (2 mol%) are used. Each was weighed, an appropriate amount of ethanol was added, and the ball mill was mixed until uniform. Next, the mixed powder was heated and held under the same conditions as Sample 1, and Sample 2 was obtained. The charge composition is shown in Table 1.
試料3
Ca:Sr=0.6:0.4(モル比)である蓄光性蛍光体(試料3)は以下の手順で合成した。
まず、CaCO3(28.8モル%)、SrCO3(19.2モル%)、Al2O3(48モル%)、Eu2O3(2モル%)、Nd2O3(2モル%)の粉末をそれぞれ秤量し、適量のエタノールを加え、ボールミルを均一になるまで混合した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料3を得た。仕込み組成を表1に示す。
Sample 3
A phosphorescent phosphor (sample 3) with Ca: Sr = 0.6: 0.4 (molar ratio) was synthesized by the following procedure.
First, CaCO 3 (28.8 mol%), SrCO 3 (19.2 mol%), Al 2 O 3 (48 mol%), Eu 2 O 3 (2 mol%), Nd 2 O 3 (2 mol%) ) Were weighed, an appropriate amount of ethanol was added, and the ball mill was mixed until uniform. Next, the mixed powder was heated and held under the same conditions as Sample 1, and Sample 3 was obtained. The charge composition is shown in Table 1.
試料4
Ca:Sr=0.5:0.5(モル比)である蓄光性蛍光体(試料4)は以下の手順で合成した。
まず、CaCO3(24モル%)、SrCO3(24モル%)、Al2O3(48モル%)、Eu2O3(2モル%)、Nd2O3(2モル%)の粉末をそれぞれ秤量し、適量のエタノールを加え、ボールミルを均一になるまで混合した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料4を得た。仕込み組成を表1に示す。
Sample 4
A phosphorescent phosphor (sample 4) with Ca: Sr = 0.5: 0.5 (molar ratio) was synthesized by the following procedure.
First, powders of CaCO 3 (24 mol%), SrCO 3 (24 mol%), Al 2 O 3 (48 mol%), Eu 2 O 3 (2 mol%), and Nd 2 O 3 (2 mol%) are used. Each was weighed, an appropriate amount of ethanol was added, and the ball mill was mixed until uniform. Next, the mixed powder was heated and held under the same conditions as Sample 1, and Sample 4 was obtained. The charge composition is shown in Table 1.
試料5
Ca:Sr=0.25:0.75(モル比)である蓄光性蛍光体(試料5)は以下の手順で合成した。
まず、CaCO3(12モル%)、SrCO3(36モル%)、Al2O3(48モル%)、Eu2O3(2モル%)、Nd2O3(2モル%)の粉末をそれぞれ秤量し、適量のエタノールを加え、ボールミルを均一になるまで混合した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料5の蓄光性蛍光体を得た。仕込み組成を表1に示す。
Sample 5
A phosphorescent phosphor (sample 5) with Ca: Sr = 0.25: 0.75 (molar ratio) was synthesized by the following procedure.
First, powders of CaCO 3 (12 mol%), SrCO 3 (36 mol%), Al 2 O 3 (48 mol%), Eu 2 O 3 (2 mol%), and Nd 2 O 3 (2 mol%) are used. Each was weighed, an appropriate amount of ethanol was added, and the ball mill was mixed until uniform. Next, the mixed powder was heated and held and pulverized under the same conditions as in Sample 1 to obtain a phosphorescent phosphor of Sample 5. The charge composition is shown in Table 1.
試料6
上記試料3の合成方法において、試料3の原料粉末合計を97モル%とし、Ag2O粉末をAg原子換算で3モル%(母体結晶1モルに対し)として、各原料粉末した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料6の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 6
In the synthesis method of Sample 3, the raw material powders of Sample 3 were 97 mol%, and the Ag 2 O powder was 3 mol% in terms of Ag atoms (with respect to 1 mol of the base crystal), whereby each raw material powder was powdered. Next, the mixed powder was heated, held, and pulverized under the same conditions as in Sample 1 to obtain a phosphorescent phosphor of Sample 6. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
試料7
上記試料3の合成方法において、試料3の原料粉末合計を97モル%とし、Ag2O粉末をAg原子換算で5モル%(母体結晶1モルに対し)として、各原料粉末した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料7の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 7
In the synthesis method of Sample 3, each raw material powder was made with the total raw material powder of Sample 3 being 97 mol% and the Ag 2 O powder being 5 mol% in terms of Ag atoms (based on 1 mol of the base crystal). Next, the mixed powder was heated and held under the same conditions as in Sample 1 to obtain a phosphorescent phosphor of Sample 7. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
試料8
上記試料3の合成方法において、試料3の原料粉末合計を97モル%とし、Ag2O粉末をAg原子換算で8モル%(母体結晶1モルに対し)として、各原料粉末した。次いで、混合した粉体を、試料1と同じ条件で加熱保持、粉砕を行うことにより、試料8の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 8
In the synthesis method of Sample 3, the raw material powders of Sample 3 were 97 mol%, and the Ag 2 O powder was 8 mol% in terms of Ag atoms (based on 1 mol of the base crystal), thereby starting each raw material powder. Next, the mixed powder was heated, held, and pulverized under the same conditions as Sample 1 to obtain a phosphorescent phosphor of Sample 8. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
試料9
上記試料8の合成方法において、加熱保持時間を5時間とした以外は、試料8の合成方法と同様にして、試料9の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 9
In the synthesis method of Sample 8, the phosphorescent phosphor of Sample 9 was obtained in the same manner as the synthesis method of Sample 8, except that the heating and holding time was 5 hours. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
試料10
上記試料8の合成方法において、加熱保持時間を8時間とした以外は、試料8の合成方法と同様にして、試料10の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 10
In the synthesis method of Sample 8, the phosphorescent phosphor of Sample 10 was obtained in the same manner as the synthesis method of Sample 8, except that the heating and holding time was 8 hours. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
試料11
上記試料8の合成方法において、加熱保持時間を12時間とした以外は、試料8の合成方法と同様にして、試料11の蓄光性蛍光体を得た。表2にCa:Sr原子比、Ag添加量、加熱保持条件を示す。
Sample 11
In the synthesis method of Sample 8, the phosphorescent phosphor of Sample 11 was obtained in the same manner as the synthesis method of Sample 8, except that the heating and holding time was 12 hours. Table 2 shows the Ca: Sr atomic ratio, the Ag addition amount, and the heating and holding conditions.
2.評価
(1)Ca、Sr仕込み比と発光の関係の評価
図1に試料1〜5のXRD測定の結果を示す。また、図2,3に試料1〜5の発光スペクトルを示す。また、表3に目視での蛍光及び蓄光の色評価の結果を示す。
2. Evaluation (1) Evaluation of relationship between Ca, Sr preparation ratio and light emission FIG. 1 shows the results of XRD measurement of Samples 1-5. 2 and 3 show the emission spectra of Samples 1-5. Table 3 shows the result of visual color evaluation of fluorescence and phosphorescence.
原料粉末にSrCO3を含まない試料1では、XRDにおいてCaAl2O4の結晶相及び副生成物である(Eu,Nd)Al3O7のシグナルが確認された。また、試料1では、蛍光スペクトルとして、450nm付近(青色領域)にシグナルが確認された。このシグナルは、CaAl2O4:Euに由来する。また、目視よる評価にて、試料1の蛍光は青色であり、発光スペクトルの結果と整合していた。
原料粉末にSrCO3を含む試料2〜5におけるXRDの結果を対比すると、図1に示すように試料3,4では、CaAl2O4、SrAl2O4、Ca(Eu,Nd)AlO4の3種類の結晶相のシグナルが確認されたが、試料2では、CaAl2O4とCa(Eu,Nd)AlO4の2相のみであり、試料5では、SrAl2O4とCa(Eu,Nd)AlO4の2相のみであった。
In sample 1 in which the raw material powder does not contain SrCO 3 , a signal of (Eu, Nd) Al 3 O 7 which is a crystal phase of CaAl 2 O 4 and a by-product was confirmed in XRD. In sample 1, a signal was confirmed in the vicinity of 450 nm (blue region) as the fluorescence spectrum. This signal is derived from CaAl 2 O 4 : Eu. Moreover, in the evaluation by visual observation, the fluorescence of Sample 1 was blue, which was consistent with the emission spectrum result.
Comparing the results of XRD in samples 2 to 5 containing SrCO 3 in the raw material powder, as shown in FIG. 1, in samples 3 and 4, CaAl 2 O 4 , SrAl 2 O 4 , Ca (Eu, Nd) AlO 4 Signals of three types of crystal phases were confirmed. In sample 2, there are only two phases of CaAl 2 O 4 and Ca (Eu, Nd) AlO 4 , and in sample 5, SrAl 2 O 4 and Ca (Eu, There were only two phases of Nd) AlO 4 .
また、試料2〜5における発光特性の結果を対比すると、図3に示すように、試料3,4では、蛍光スペクトルとして、CaAl2O4:Euに由来する450nm付近(青色領域)のシグナルと、SrAl2O4:Euに由来する550〜570nm付近(黄緑色領域)のシグナルとが確認された。目視による観察では、試料3は蓄光において白色発光、試料4では蛍光において白色発光が確認された。
SrAl2O4結晶相を含まない試料2では、試料1と同様に450nm付近(青色領域)のシグナルのみが観察され、蛍光、蓄光ともに白色発光しなかった。一方、CaAl2O4結晶相を含まない試料5では550〜570nm付近(黄緑色領域)のシグナルのみが観察され、蛍光、蓄光ともに白色発光しなかった。
In addition, when comparing the results of the emission characteristics of Samples 2 to 5, as shown in FIG. 3, in Samples 3 and 4, as a fluorescence spectrum, a signal around 450 nm (blue region) derived from CaAl 2 O 4 : Eu , SrAl 2 O 4 : Eu, a signal around 550 to 570 nm (yellowish green region) was confirmed. In visual observation, sample 3 was confirmed to emit white light during phosphorescence, and sample 4 was confirmed to emit white light during fluorescence.
In sample 2, which did not contain the SrAl 2 O 4 crystal phase, only a signal around 450 nm (blue region) was observed as in sample 1, and neither fluorescence nor phosphorescence emitted white light. On the other hand, in sample 5 containing no CaAl 2 O 4 crystal phase, only a signal in the vicinity of 550 to 570 nm (yellow-green region) was observed, and neither fluorescence nor phosphorescence emitted white light.
以上の結果より、得られた試料が、白色蛍光あるいは白色蓄光を示すためには、XRDにおいてCaAl2O4、SrAl2O4、Ca(Eu,Nd)AlO4の3種類の結晶を含むことが必要であることが示唆された。 Based on the above results, the obtained sample contains three types of crystals of CaAl 2 O 4 , SrAl 2 O 4 , and Ca (Eu, Nd) AlO 4 in order to exhibit white fluorescence or white phosphorescence. It was suggested that is necessary.
2.Agの添加による蛍光及び蓄光特性の変化
Ca:Sr原子比を0.6:0.4に固定し、Agの添加による蛍光及び蓄光特性の変化を評価した。
2. Changes in fluorescence and phosphorescence characteristics due to addition of Ag The Ca: Sr atomic ratio was fixed at 0.6: 0.4, and changes in fluorescence and phosphorescence characteristics due to addition of Ag were evaluated.
試料3,6〜8のXRD測定の結果を図4に示す。
Ag添加の試料6〜8のXRDにおいて確認されるシグナルは、Ag未添加の試料3と同じであった。このことから、添加されたAgは、CaAl2O4、SrAl2O4、Ca(Eu,Nd)AlO4の結晶に固溶していることが示唆された。
The result of the XRD measurement of samples 3 and 6 to 8 is shown in FIG.
The signal confirmed in XRD of samples 6 to 8 with Ag added was the same as that of sample 3 to which no Ag was added. From this, it was suggested that the added Ag was dissolved in the crystals of CaAl 2 O 4 , SrAl 2 O 4 , and Ca (Eu, Nd) AlO 4 .
図5に試料3,6〜8の発光スペクトルを示す。
Ag未添加の試料3と同様に試料6〜8にも450nm付近(青色領域)の最大ピークと550〜570nm付近(黄緑色領域)にピークが確認された。発光強度は、Ag未添加の試料3が最も高かった。
FIG. 5 shows emission spectra of Samples 3 and 6-8.
Similar to Sample 3 to which Ag was not added, Samples 6 to 8 were confirmed to have a maximum peak near 450 nm (blue region) and a peak near 550 to 570 nm (yellowish green region). The emission intensity was highest in Sample 3 to which no Ag was added.
また、図6〜9に試料3,6〜8の蛍光及び蓄光の色度測定の結果を示す。これらの色度測定の結果は、XYZ(Yxy表示系)によるものであり、CIE標準表色系として各表色系の基礎となっているものである。図中において、xyは色度であり、無彩色(白)は色度図の中心にあり、彩度は周辺になるほど高くなる。
また、表4に目視及び色度測定での蛍光及び蓄光の色評価の結果を示し、表5に試料3,6,8の蛍光輝度を示す。なお、表5において、蛍光輝度は、ブラックライト照射3秒後の輝度である。
また、表6に試料3,試料6及び試料8の蓄光の経時変化を示す。蓄光輝度はブラックライトを遮断した直後を0秒として測定した。
Moreover, the result of the chromaticity measurement of the fluorescence of the sample 3 and 6-8 and a phosphorescence is shown to FIGS. The results of these chromaticity measurements are based on XYZ (Yxy display system) and are the basis of each color system as the CIE standard color system. In the figure, xy is the chromaticity, the achromatic color (white) is at the center of the chromaticity diagram, and the saturation increases as it goes to the periphery.
Table 4 shows the results of color evaluation of fluorescence and phosphorescence by visual observation and chromaticity measurement, and Table 5 shows the fluorescence luminance of samples 3, 6 and 8. In Table 5, the fluorescence luminance is the luminance after 3 seconds of black light irradiation.
Table 6 shows the time-dependent changes in the light accumulation of Sample 3, Sample 6 and Sample 8. The luminous intensity was measured as 0 seconds immediately after the black light was cut off.
まず、蛍光色及び強度を対比すると、図6〜9に示されるように、色度測定による、試料3,6〜8の蛍光の色度は、青白の領域であり、蛍光輝度が最大となったのはAg未添加3の試料であった。この結果は発光スペクトル測定結果と一致する。
一方で、Agを添加することによって蓄光輝度が増加していることが分かる。なお、ブラックライトを遮断した直後(0秒)は、蛍光も同時に測定しているため、見かけ上輝度が大きいものと考えられる。
Agの添加による蓄光強度が増大する原因については詳細不明であるが、Agが固溶することにより、CaAl2O4結晶、SrAl2O4結晶へのNd3+の固溶量が多くなることが推測される。Agが添加された試料6,試料8の残光時間は、Ag未添加の試料3より明らかに長いことから、Agを添加することにより、蓄光性蛍光体の蓄光特性が向上することが明らかになった。特に8モル%Ag添加の試料8では、残光時間が30秒以上であった。
First, when the fluorescent color and the intensity are compared, as shown in FIGS. 6 to 9, the chromaticity of the fluorescence of the samples 3 and 6 to 8 by the chromaticity measurement is a blue-white region, and the fluorescence luminance becomes maximum. This was a sample with no Ag added. This result agrees with the emission spectrum measurement result.
On the other hand, it can be seen that the luminous intensity is increased by adding Ag. Immediately after the black light is interrupted (0 second), the fluorescence is also measured at the same time, so it is considered that the luminance is apparently high.
Although the cause of the increase in the luminous intensity due to the addition of Ag is unknown, the amount of Nd 3+ in the CaAl 2 O 4 crystal and SrAl 2 O 4 crystal may increase due to the solid solution of Ag. Guessed. Since the afterglow times of the samples 6 and 8 to which Ag is added are clearly longer than those of the sample 3 to which no Ag is added, it is clear that the phosphorescence characteristics of the phosphorescent phosphor are improved by adding Ag. became. In particular, Sample 8 to which 8 mol% Ag was added had an afterglow time of 30 seconds or longer.
3.蛍光及び蓄光特性の加熱保持時間依存性の評価
Ca:Sr原子比を0.6:0.4、Agの添加量を8モル%に固定して、蛍光及び蓄光特性の加熱保持時間依存性を評価した。
3. Evaluation of dependency of fluorescence and phosphorescence characteristics on heating and holding time The Ca: Sr atomic ratio is fixed at 0.6: 0.4 and the addition amount of Ag is fixed at 8 mol%. evaluated.
試料8〜11のXRD測定の結果を図10に示す。
加熱保持時間5hの試料9は、加熱保持時間が4hの試料8と同じ生成相を示したが、CaAl2O4結晶のピーク強度が試料8よりも若干低くなっていた。
さらに保持時間を長くした試料10(8h加熱)や試料10(12h加熱)では、今までの結果とは大きく異なり、SrAl2O4結晶の生成割合が増加した。
また、加熱保持時間が増加するに伴い、強度比の比較より、Ca(Eu,Nd)AlO4の強度が減少することが確認された。
The result of the XRD measurement of Samples 8 to 11 is shown in FIG.
Sample 9 with a heating and holding time of 5 h showed the same product phase as Sample 8 with a heating and holding time of 4 h, but the peak intensity of the CaAl 2 O 4 crystal was slightly lower than that of Sample 8.
Furthermore, in the sample 10 (heated for 8 hours) and the sample 10 (heated for 12 hours) with a longer holding time, the generation rate of SrAl 2 O 4 crystals increased significantly, which was different from the results so far.
Moreover, it was confirmed from the comparison of strength ratios that the strength of Ca (Eu, Nd) AlO 4 decreases as the heat holding time increases.
図11に試料8〜11の発光スペクトルを示す。表7に試料8〜11の目視及び色度測定での蛍光及び蓄光の色評価の結果を示す。
また、表8に試料8〜11の蛍光輝度及び蓄光輝度を示す。なお、蛍光輝度は、ブラックライト照射3秒後の輝度であり、蓄光輝度はブラックライトを遮断して5秒後の輝度である。
FIG. 11 shows emission spectra of Samples 8-11. Table 7 shows the results of color evaluation of fluorescence and phosphorescence in visual observation and chromaticity measurement of Samples 8-11.
Table 8 shows the fluorescence luminance and luminous intensity of samples 8 to 11. The fluorescence luminance is the luminance 3 seconds after the black light irradiation, and the luminous intensity is the luminance 5 seconds after the black light is cut off.
保持時間がそれぞれ4hと5hである試料8,試料9を比較したが、蛍光色には大きな違いは見られず、どちらとも青白色の蛍光発光を示した。また、目視で確認する限り発光強度にも違いはなかったが、輝度測定では若干試料9の方が小さかった。
一方、保持時間がそれぞれ8hと12hである試料10,試料11の蛍光色は、SrAl2O4結晶由来の黄白色を示し、XRDの結果と一致した。
一方で、蓄光色は、試料8,試料9では目視、色度測定とも白色であったに対し、試料10,試料11では白色ではなかった。
Samples 8 and 9 having a holding time of 4 h and 5 h, respectively, were compared, but no significant difference was observed in the fluorescence color, and both showed blue-white fluorescence. Further, as long as it was visually confirmed, there was no difference in the emission intensity, but in the luminance measurement, the sample 9 was slightly smaller.
On the other hand, the fluorescent colors of Sample 10 and Sample 11 whose retention times were 8 h and 12 h, respectively, were yellowish white derived from SrAl 2 O 4 crystals, which was consistent with the XRD results.
On the other hand, the phosphorescent color was white in both sample 8 and sample 9 for visual observation and chromaticity measurement, but was not white in sample 10 and sample 11.
本発明の蓄光性蛍光体は、蛍光色及び蓄光色の少なくとも一方が白色光を発光し、かつ、発光ムラの少ないため、様々な発光装置や表示装置に応用することができる。 The phosphorescent phosphor of the present invention can be applied to various light emitting devices and display devices because at least one of the fluorescent color and the phosphorescent color emits white light and has little light emission unevenness.
Claims (11)
(A)Ca及びAlを含有する複合酸化物からなる結晶母材に、発光中心として少なくともEuを含有する結晶体
(B)Sr及びAlを含有する複合酸化物からなる結晶母材に、発光中心として少なくともEuを含有する結晶体
(C)Ca及びAl並びにEu及び/又はNdを含有する複合酸化物であり、成分(A)の結晶母材と異なる結晶形を有する結晶体 A phosphorescent phosphor comprising the following components.
(A) A crystal base material made of a composite oxide containing Ca and Al, a crystal containing at least Eu as a light emission center (B) a crystal base material made of a composite oxide containing Sr and Al, and a light emission center Crystalline (C) containing at least Eu and a composite oxide containing Ca and Al and Eu and / or Nd, and having a crystal form different from the crystal matrix of component (A)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272902A JP5774297B2 (en) | 2010-12-07 | 2010-12-07 | Luminescent phosphor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272902A JP5774297B2 (en) | 2010-12-07 | 2010-12-07 | Luminescent phosphor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012121974A true JP2012121974A (en) | 2012-06-28 |
JP5774297B2 JP5774297B2 (en) | 2015-09-09 |
Family
ID=46503764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010272902A Active JP5774297B2 (en) | 2010-12-07 | 2010-12-07 | Luminescent phosphor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5774297B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016216378A (en) * | 2015-05-15 | 2016-12-22 | 公立大学法人岡山県立大学 | Antiglycation agents containing urolithins |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071120A (en) * | 1991-02-22 | 1995-01-06 | William S Fortune | Freely replaceable tip assembly for soldering |
-
2010
- 2010-12-07 JP JP2010272902A patent/JP5774297B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071120A (en) * | 1991-02-22 | 1995-01-06 | William S Fortune | Freely replaceable tip assembly for soldering |
Non-Patent Citations (1)
Title |
---|
JPN6014050952; Electrochemical and Solid-State Letters Vol.12(2009), No.4, J44-J46, 2009 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016216378A (en) * | 2015-05-15 | 2016-12-22 | 公立大学法人岡山県立大学 | Antiglycation agents containing urolithins |
Also Published As
Publication number | Publication date |
---|---|
JP5774297B2 (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4975269B2 (en) | Phosphor and method for producing the same, and light emitting device using the phosphor | |
US7713441B2 (en) | Fluorescent material, fluorescent device using the same, and image display device and lighting equipment | |
JP5909230B2 (en) | Oxynitride phosphor, manufacturing method, and light emitting device | |
TWI481061B (en) | Light-emitting diode that emits white light | |
US20060049414A1 (en) | Novel oxynitride phosphors | |
KR20080009198A (en) | Phosphor phosphor sheet, and manufacturing method therefore, and light emission device using the phosphor | |
EP2100943A1 (en) | ABOS:M-based phosphors and light sources containing these phosphors | |
KR20080056170A (en) | Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance | |
TWI405838B (en) | Red light fluorescent material and manufacturing method thereof, and white light luminescent device | |
CN114836215A (en) | Modified niobate red-orange fluorescent powder and preparation method thereof | |
Zhong et al. | Li6Sr (La1− xEux) 2Sb2O12 (0< x≤ 1.0) solid-solution red phosphors for white light-emitting diodes | |
Yan et al. | Color-tunable Al 6 Si 2 O 13: Eu 2+, Mn 2+ phosphor with high color rendering index based on energy transfer for warm white LEDs | |
KR101779687B1 (en) | Fluorescent powder and light emitting apparatus comprising same | |
JP4904694B2 (en) | Oxide phosphor, and light emitting element, image display device, and illumination device using the same | |
JP2010196049A (en) | Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor | |
JP5774297B2 (en) | Luminescent phosphor and method for producing the same | |
Wang et al. | Emission tuning studies in BaMgSiO4: RE (RE= Eu2+, Sr2+) for white LEDs | |
JP5014628B2 (en) | Phosphor, method of manufacturing the same, and lamp | |
JP3559210B2 (en) | Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same | |
JP3268761B2 (en) | High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance | |
KR102631178B1 (en) | Blue light-emitting phosphor, light-emitting element, light-emitting device, and white light-emitting device | |
JP2017043686A (en) | Fluophor, light source containing fluophor and manufacturing method of fluophor | |
Chang et al. | Tailoring Luminescent Properties of SrS: Ce by Modulating Defects: Sr-Deficiency and Na+ Doping | |
JP2011202002A (en) | Phosphor | |
KR102086821B1 (en) | Zirconate phosphor for led, preparing method of the same, and luminescent property of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5774297 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |