JP2012119273A - High frequency plasma ignition device and manufacturing method thereof - Google Patents

High frequency plasma ignition device and manufacturing method thereof Download PDF

Info

Publication number
JP2012119273A
JP2012119273A JP2010270704A JP2010270704A JP2012119273A JP 2012119273 A JP2012119273 A JP 2012119273A JP 2010270704 A JP2010270704 A JP 2010270704A JP 2010270704 A JP2010270704 A JP 2010270704A JP 2012119273 A JP2012119273 A JP 2012119273A
Authority
JP
Japan
Prior art keywords
insulator
frequency
conductor
voltage electrode
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010270704A
Other languages
Japanese (ja)
Inventor
Hideyuki Kato
秀幸 加藤
Toru Yoshinaga
融 吉永
Masamichi Shibata
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010270704A priority Critical patent/JP2012119273A/en
Publication of JP2012119273A publication Critical patent/JP2012119273A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency plasma ignition device which meets a down-sizing demand in recent years, and has durability hard to cause breakage even if excessive tightening torque is loaded thereon when installed in an internal combustion engine, and to provide a manufacturing method thereof.SOLUTION: A hollow part 22 of a coaxial resonator 23 is demarcated inside an insulator 10 to insulate and hold a high pressure electrode 30, and a discharge part 323 provided at the tip of a high voltage electrode 30, and a tip part of a central conductor 21 of the coaxial resonator 23 are exposed and fixed in a combustion chamber CMB of the internal combustion engine E/G by a housing 70 arranged concentrically to the insulator 10 and covering the outer periphery thereof.

Description

本発明は、難着火性の燃焼機関に装着され該燃焼機関の点火を行う高周波プラズマ点火装置とその製造方法に関する。   The present invention relates to a high-frequency plasma ignition device that is mounted on a hardly ignitable combustion engine and ignites the combustion engine, and a method for manufacturing the same.

自動車エンジン等の内燃機関において燃焼排気中に含まれる環境負荷物質の低減や更なる燃費の向上のため、燃料の希薄化、高過給気化等が図られている。
一般に、希薄燃焼機関や、高過給気混合燃焼機関は難着火性であるため、より着火性に優れた点火装置が望まれている。
In an internal combustion engine such as an automobile engine, in order to reduce environmental load substances contained in combustion exhaust and to further improve fuel efficiency, fuel dilution, high supercharging, etc. are being attempted.
In general, a lean combustion engine and a high supercharged air-fuel mixture combustion engine are difficult to ignite, and therefore an ignition device with better ignitability is desired.

特に、燃料噴霧と空気との混合気の混合比が理論空燃比に近い可燃層を点火プラグの近傍にのみ配置して、混合気の更なる希薄化を図ろうとする、いわゆるスプレーガイド式エンジンにおいて、従来の点火プラグの比較的小さな火花放電では可燃層が必ずしもプラグの放電位置に配置できるとは限らず着火が困難となったり、比較的大きな接地電極が火炎核の近くに存在するので、消炎効果が大きく、燃焼速度が遅くなったりする虞がある。
また、燃焼排気の清浄化や、低燃費化を図るべく、内燃機関の吸排気バルブの大型化が進み、点火装置の更なる小径化が期待されている。
In particular, in a so-called spray guide type engine in which a combustible layer in which the mixture ratio of fuel spray and air is close to the stoichiometric air-fuel ratio is arranged only in the vicinity of the spark plug to further dilute the mixture. However, with a relatively small spark discharge of a conventional spark plug, the combustible layer is not always located at the discharge position of the plug, and it is difficult to ignite, or a relatively large ground electrode exists near the flame core, There is a possibility that the effect is great and the combustion speed becomes slow.
Further, in order to purify combustion exhaust gas and reduce fuel consumption, the intake and exhaust valves of the internal combustion engine have been increased in size, and further reduction in the diameter of the ignition device is expected.

このような課題に対して本発明者等は、内燃機関に装着され該内燃機関の点火を行う点火装置であって、電源と、高周波発振回路と、高電圧回路と、上記高周波発振回路から発振した高周波を伝達・増幅する共振管と、該共振管との絶縁を保持しつつ上記高電圧回路からの高電圧を伝達する高電圧配送導体とを具備し、少なくとも上記共振管の開口端を上記内燃機関の燃焼室内に露出せしめると共に、上記高周波発振回路から上記共振管を介して上記内燃機関の燃焼室内に高周波を発振した後に、又は、これと同時に上記高電圧回路から上記共振管の一部と上記高電圧配送導体との間に高電圧を印加して上記共振管の一部と上記高電圧配送導体との間で放電を行うことを特徴とする点火装置を提案した(特許文献1参照)。
本発明者等は、特許文献1に示した高周波プラズマ点火装置に更なる改良を加え、図14に示す高周波プラズマ点火装置1zにおいて、内燃機関に固定するためのネジ部712の大きさをM14迄小型化することに成功した。
In order to solve such problems, the present inventors are an ignition device that is mounted on an internal combustion engine and ignites the internal combustion engine, and oscillates from a power source, a high-frequency oscillation circuit, a high-voltage circuit, and the high-frequency oscillation circuit. A resonance tube that transmits and amplifies the high frequency, and a high-voltage delivery conductor that transmits a high voltage from the high-voltage circuit while maintaining insulation from the resonance tube, and at least the open end of the resonance tube A part of the resonant tube is exposed from the high-voltage circuit after being exposed to the combustion chamber of the internal combustion engine and oscillated high frequency from the high-frequency oscillation circuit into the combustion chamber of the internal combustion engine via the resonant tube. And an ignition device characterized in that a high voltage is applied between the high-voltage delivery conductor and a part of the resonant tube and the high-voltage delivery conductor is discharged (see Patent Document 1). ).
The present inventors made further improvements to the high-frequency plasma ignition device shown in Patent Document 1, and in the high-frequency plasma ignition device 1z shown in FIG. 14, the size of the screw portion 712 for fixing to the internal combustion engine is up to M14. Successfully miniaturized.

ところが、従来の高周波プラズマ点火装置1zでは、装置の体格を小さくすべく各部材の肉厚を実用に耐える極限まで薄くしているのに加え、高電圧が印加される中心電極30zを覆う略筒状の絶縁体10zは、高周波プラズマ点火装置1zの中心軸に対して偏心した位置に設けられているので、内燃機関E/GのシリンダヘッドSHに高周波プラズマ点火装置1zを締め付ける際に、適正トルク以上の力が負荷されると、金属製のハウジング70z、71zが撓んで、図15に示すように、ハウジング70zの絶縁体係止部705zに係止された径変部104zを支点として、絶縁体10zの中心軸に直交する方向に対して、ねじ締め方向のモーメントMと逆向きのモーメントMとが作用し、径変部104zの付け根に亀裂を生じ、絶縁体10zの小径部102zが、燃焼室CMB側に抜け落ちる虞があることが判明した。 However, in the conventional high-frequency plasma ignition device 1z, in order to reduce the size of the device, the thickness of each member is made as thin as possible to withstand practical use, and in addition, a substantially cylinder covering the center electrode 30z to which a high voltage is applied. Since the insulator 10z is provided at a position eccentric with respect to the central axis of the high-frequency plasma ignition device 1z, an appropriate torque is applied when the high-frequency plasma ignition device 1z is fastened to the cylinder head SH of the internal combustion engine E / G. When the above force is applied, the metal housings 70z and 71z bend, and as shown in FIG. 15, insulation is performed using the diameter changing portion 104z locked to the insulator locking portion 705z of the housing 70z as a fulcrum. with respect to a direction perpendicular to the central axis of the body 10z, and the moment M 2 of the moment M 1 and reverse screwing direction acts, it cracked at the base of the diameter change portion 104Z, The small diameter portion 102z of Entai 10z has been found that there is a risk that falling off the combustion chamber CMB side.

そこで、本願発明は、かかる実情に鑑み、近年の小型化要求に適合し、かつ、組み付け時に適正トルク以上の力が作用した場合であっても、破損に至らない構造の高周波プラズマ点火装置とその製造方法の提供を目的とするものである。   Therefore, in view of such circumstances, the present invention is a high-frequency plasma ignition device having a structure that conforms to recent demands for miniaturization and that does not cause damage even when a force exceeding an appropriate torque is applied during assembly. The purpose is to provide a manufacturing method.

第1の発明では、高周波を発振する高周波電源と高電圧を印加する高電圧電源とを有する点火エネルギ供給制御装置と、内側導体と、該内側導体の周囲に所定の空洞部を区画して、外側導体を同軸に配設した同軸共振体に上記高周波電源から高周波を入力して、内側導体の先端の電界強度を高くし、高電圧電極に上記高電圧電源から高電圧を印加して上記高電圧電極の先端側に位置する放電部と上記中心導体の中心導体の先端部との間で放電を行い、上記内側導体の先端の周囲の気体を高エネルギのプラズマ状態として内燃機関の点火を行う高周波プラズマ点火装置であって、
上記高圧電極を絶縁保持する絶縁体の一部に上記同軸共振体の空洞部を区画すると共に、上記絶縁体の外周を覆うハウジングによって上記高電圧電極の先端部と上記同軸共振体の先端部とを上記内燃機関の燃焼室内に露出せしめて固定する(請求項1)。
In the first invention, an ignition energy supply control device having a high frequency power source that oscillates a high frequency and a high voltage power source that applies a high voltage, an inner conductor, and a predetermined cavity around the inner conductor, A high frequency power is input from the high frequency power source to the coaxial resonator in which the outer conductor is disposed coaxially, the electric field strength at the tip of the inner conductor is increased, and a high voltage is applied to the high voltage electrode from the high voltage power source. Discharge is performed between the discharge portion located on the tip side of the voltage electrode and the tip portion of the center conductor of the center conductor, and the internal combustion engine is ignited with the gas around the tip of the inner conductor being in a high energy plasma state. A high-frequency plasma ignition device,
The cavity of the coaxial resonator is partitioned into a part of the insulator for insulatingly holding the high-voltage electrode, and the tip of the high-voltage electrode and the tip of the coaxial resonator are covered by a housing that covers the outer periphery of the insulator. Is exposed and fixed in the combustion chamber of the internal combustion engine (claim 1).

第1の発明によれば、上記ハウジングが上記絶縁体に対して同心に配設されているので、上記ハウジングを内燃機関に組み付ける際に適正トルク以上の過剰な負荷によって締め付けられても、上記絶縁体の側面にねじ締め方向又はその逆方向の力が作用する虞がなく、絶縁体の破損する虞がない。
したがって、高周波の入力と高電圧の印加によって上記同軸共振体の中心導体の先端にプラズマを発生させて点火を行う高周波プラズマ点火装置において高い信頼性の向上を図ることができる。
According to the first invention, since the housing is arranged concentrically with respect to the insulator, the insulation is not affected even when the housing is assembled to an internal combustion engine with an excessive load exceeding an appropriate torque. There is no possibility that a force in the screwing direction or the opposite direction acts on the side surface of the body, and there is no possibility that the insulator is damaged.
Therefore, high reliability can be improved in a high-frequency plasma ignition device that generates a plasma at the tip of the central conductor of the coaxial resonator by applying a high-frequency input and applying a high voltage.

第2の発明では、上記絶縁体の内側に区画した共振体空洞部の内周壁の表面の全部又は一部を覆う金属膜からなる外側導体層と、共振体空洞部の中心に載置された内側導体とによって上記同軸共振体を構成する(請求項2)。   In the second invention, the outer conductor layer made of a metal film covering the whole or part of the surface of the inner peripheral wall of the resonator cavity portion partitioned inside the insulator, and placed at the center of the resonator cavity portion The coaxial resonator is constituted by the inner conductor (claim 2).

第2の発明によれば、上記同軸共振体の上記外側導体層の膜厚を薄くしても、上記共振体空洞部を区画する絶縁体によって充分な強度が確保されるので、高周波プラズマ点火装置の小型化が極めて容易となる。   According to the second invention, even if the thickness of the outer conductor layer of the coaxial resonator is reduced, sufficient strength is ensured by the insulator that partitions the resonator cavity, so that the high-frequency plasma ignition device It is very easy to reduce the size.

第3の発明では、上記外側導体層の厚みが10μm以上、100μm以下である(請求項3)。   In the third invention, the outer conductor layer has a thickness of 10 μm or more and 100 μm or less (invention 3).

第3の発明によれば、上記外側導体層によって上記中心導体に入力された高周波が外部に漏れることなく、上記共振体空洞部内で共振し、上記中心導体の先端に電界強度の高い部分を形成してプラズマを発生して内燃機関の点火を行う高周波プラズマ点火装置の小型化が実現できる。   According to the third aspect of the invention, the outer conductor layer resonates within the resonator cavity without leaking the high frequency input to the center conductor, and forms a portion with high electric field strength at the tip of the center conductor. Thus, it is possible to reduce the size of the high-frequency plasma ignition device that generates plasma and ignites the internal combustion engine.

第4の発明では、高周波を発振する高周波電源と高電圧を印加する高電圧電源とを有する点火エネルギ供給制御装置と、内側導体と、該内側導体の周囲に所定の空洞部を区画して、外側導体を同軸に配設した同軸共振体に上記高周波電源から高周波を入力して、内側導体の先端の電界強度を高くし、高電圧電極に上記高電圧電源から高電圧を印加して上記高電圧電極の先端側に位置する放電部と上記中心導体の中心導体の先端部との間で放電を行い、上記内側導体の先端の周囲の気体を高エネルギのプラズマ状態として内燃機関の点火を行う高周波プラズマ点火装置の製造方法であって、少なくとも、絶縁性耐熱材料を用いて、加圧成型、HIP成型、SIP成型、射出成形、又は押出成形のいずれかの成型方法により内側に共振体空洞部区画孔を有する絶縁体を形成する絶縁体形成工程と、上記共振体空洞部区画孔の内周表面及び共振体係止部の表面に、耐熱性の高い導電性材料を用いて、メッキ、CVD(化学気相成長法)、PVD(物理気相法)、真空蒸着、金属箔貼付、印刷、ダイレクトボンディングのいずれかにより、外側導体層を形成する外側導体層形成工程と、金属材料を略筒状に形成したハウジングに上記絶縁体を同心に配設して、所定の封止部材を介して加締め固定する組付、加締め工程とを具備する(請求項4)。   In the fourth invention, an ignition energy supply control device having a high-frequency power source that oscillates a high frequency and a high-voltage power source that applies a high voltage, an inner conductor, and a predetermined cavity around the inner conductor, A high frequency power is input from the high frequency power source to the coaxial resonator in which the outer conductor is disposed coaxially, the electric field strength at the tip of the inner conductor is increased, and a high voltage is applied to the high voltage electrode from the high voltage power source. Discharge is performed between the discharge portion located on the tip side of the voltage electrode and the tip portion of the center conductor of the center conductor, and the internal combustion engine is ignited with the gas around the tip of the inner conductor being in a high energy plasma state. A method for manufacturing a high-frequency plasma ignition device, wherein at least an insulating heat-resistant material is used, and a cavity cavity is formed inside by any one of pressure molding, HIP molding, SIP molding, injection molding, or extrusion molding. Ward An insulator forming step for forming an insulator having holes, and an inner peripheral surface of the resonator cavity partition hole and a surface of the resonator engaging portion are plated with a highly heat-resistant conductive material, CVD ( Chemical vapor deposition method), PVD (physical vapor phase method), vacuum deposition, metal foil sticking, printing, direct bonding, outer conductor layer forming step to form the outer conductor layer, and the metal material in a substantially cylindrical shape The above-mentioned insulator is disposed concentrically on the housing formed in the above-described manner, and an assembly and caulking step for caulking and fixing via a predetermined sealing member are provided.

第4の発明によれば、組み付け時に適正トルク以上の力が作用した場合であっても、破損に至らない信頼性の高い構造の高周波プラズマ点火装置が実現できる。   According to the fourth invention, it is possible to realize a high-frequency plasma ignition device having a highly reliable structure that does not cause breakage even when a force greater than an appropriate torque is applied during assembly.

本発明の第1の実施形態における高周波プラズマ点火装置の概要を示し、(a)は縦断面図、(b)は側面図、(c)は下面図、(d)は上面図。The outline | summary of the high frequency plasma ignition apparatus in the 1st Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is a side view, (c) is a bottom view, (d) is a top view. 比較例と共に本発明の効果を示し、本図(a)は、小型化に対する効果を示し、比較例として示す図12(b)中A−Aに沿った断面図と実施例として示す図1(a)中A−Aに沿った断面図、本図(b)は、過剰なトルクで締め付けたときの割れ発生頻度を示す特性図。The effect of this invention is shown with a comparative example, this figure (a) shows the effect with respect to size reduction, FIG. 1 () shown as sectional drawing along AA in FIG.12 (b) shown as a comparative example, and FIG. a) A cross-sectional view taken along the line AA, and FIG. 5B is a characteristic diagram showing the frequency of occurrence of cracks when tightened with excessive torque. 本発明の高周波プラズマ点火装置の要部である絶縁体の概要を示し、(a)は、上面図、(b)は、本図(a)中A−Aに沿った縦断面図、(c)は、側面図、(d)は下面図。The outline | summary of the insulator which is the principal part of the high frequency plasma ignition apparatus of this invention is shown, (a) is a top view, (b) is a longitudinal cross-sectional view along AA in this figure (a), (c) ) Is a side view, and (d) is a bottom view. 本発明の高周波プラズマ点火装置の製造工程中、外側導体形成工程について示す一部切り欠き斜視図。The partially cutaway perspective view shown about an outer conductor formation process in the manufacturing process of the high frequency plasma ignition device of the present invention. 図4に続く本発明の高周波プラズマ点火装置の製造工程中、高圧電極形成工程について(a)から(b)の順を追って示す断面図。Sectional drawing which shows order of (a) to (b) about a high voltage electrode formation process in the manufacturing process of the high frequency plasma ignition apparatus of this invention following FIG. 図5に続く本発明の高周波プラズマ点火装置の製造工程中、同軸共振体形成工程について(a)から(b)の順を追って示す断面図。Sectional drawing which shows the order of a coaxial resonator formation process in order from the manufacturing process of the high frequency plasma ignition device of this invention following FIG. 5 in order of (a) to (b). 図6に続く本発明の高周波プラズマ点火装置の製造工程中、組付工程の概要を示す断面図。Sectional drawing which shows the outline | summary of an assembly | attachment process during the manufacturing process of the high frequency plasma ignition device of this invention following FIG. 図7に続く本発明の高周波プラズマ点火装置の製造工程中、加締め工程の概要を示す断面図。Sectional drawing which shows the outline | summary of a caulking process in the manufacturing process of the high frequency plasma ignition device of this invention following FIG. 図8に続く本発明の高周波プラズマ点火装置の製造工程中、完成工程の概要を示す断面図。Sectional drawing which shows the outline | summary of a completion process in the manufacturing process of the high frequency plasma ignition apparatus of this invention following FIG. 本発明の高周波プラズマ点火装置の要部である絶縁体の変形例を(a)から(f)に示す一部切り欠き斜視図。The partially notched perspective view which shows the modification of the insulator which is the principal part of the high frequency plasma ignition apparatus of this invention shown to (f) from (a). 本発明の第2の実施形態における高周波プラズマ点火装置の概要を示し、(a)は、断面図、(b)は、燃焼室側から見た要部斜視図。The outline | summary of the high frequency plasma ignition apparatus in the 2nd Embodiment of this invention is shown, (a) is sectional drawing, (b) is the principal part perspective view seen from the combustion chamber side. 本発明の第3の実施形態における高周波プラズマ点火装置の概要を示し、(a)は、本実施形態の要部である絶縁体の一部切り欠き斜視図、(b)は、全体の断面図。The outline | summary of the high frequency plasma ignition apparatus in the 3rd Embodiment of this invention is shown, (a) is a partially notched perspective view of the insulator which is the principal part of this embodiment, (b) is sectional drawing of the whole. . 本発明の第4の実施形態における高周波プラズマ点火装置の概要を示す断面図。Sectional drawing which shows the outline | summary of the high frequency plasma ignition apparatus in the 4th Embodiment of this invention. 比較例として従来の高周波プラズマ点火装置の概要を示し、(a)は、縦断面図、(b)は、側面図、(c)は、下面図、(d)は上面図。The outline of the conventional high frequency plasma ignition apparatus is shown as a comparative example, (a) is a longitudinal cross-sectional view, (b) is a side view, (c) is a bottom view, (d) is a top view. 比較例として示す従来の高周波プラズマ点火装置の問題点を示し、(a)は、内燃機関に組み付けた状態を示す縦断面図、(b)は、本図(a)中A−Aに沿った矢視断面図、(c)は、従来の絶縁体に作用する力を示す模式図。The problem of the conventional high-frequency plasma ignition device shown as a comparative example is shown, (a) is a longitudinal sectional view showing a state assembled to an internal combustion engine, and (b) is along AA in this figure (a). An arrow sectional drawing and (c) are schematic diagrams which show the force which acts on the conventional insulator.

図1を参照して本発明の第1の実施形態における高周波プラズマ点火装置1の概要について説明する。
高周波プラズマ点火装置1は、空燃比を高くした希薄燃焼機関や、過給器によって空燃比及び圧縮比を高くした高過給気混合燃焼機関等の難着火性機関においても良好な着火性を示し、高周波MWの発振により同軸共振体23の内側導体21の先端の電界強度を高めた状態で、高圧電極30に高電圧HVを印加することによって、高圧電極放電部323と内側導体21の先端部との間で放電を起こし、その周囲の気体を高エネルギのプラズマ状態として内燃機関の点火を行うものである。
With reference to FIG. 1, the outline | summary of the high frequency plasma ignition apparatus 1 in the 1st Embodiment of this invention is demonstrated.
The high-frequency plasma ignition device 1 exhibits good ignitability even in a low-ignition engine such as a lean combustion engine with a high air-fuel ratio or a high supercharged air-fuel mixture combustion engine with a high air-fuel ratio and compression ratio using a supercharger. By applying a high voltage HV to the high-voltage electrode 30 in a state where the electric field strength at the tip of the inner conductor 21 of the coaxial resonator 23 is increased by the oscillation of the high-frequency MW, the high-voltage electrode discharge part 323 and the tip part of the inner conductor 21 The internal combustion engine is ignited with the surrounding gas in a high energy plasma state.

高周波プラズマ点火装置1は、内燃機関の運転状況に応じて図略エンジン制御装置から発信される点火信号IGtにしたがって高電圧HVの印加と高周波MWの発振とを制御して供給するエネルギ供給電源90と、エネルギ供給電源90から同軸ケーブル41を介して高周波MWが入力される同軸コネクタ40と、同軸コネクタ40を固定するコネクタ固定部50と、エネルギ供給電源90から高電圧入力手段80を介して高電圧HVが印加される高圧電極30と、高圧電極30を絶縁保持すると共に、同軸共振体23を内蔵する絶縁体10と、絶縁体10と同心に配設されその外周を覆うハウジング70とによって構成されており、絶縁体10の内側に区画した共振体空洞部22の内周壁の表面の全部又は一部を覆う金属膜からなる外側導体層20と、共振体空洞部22の中心に載置された内側導体21とによって同軸共振体23を構成している。   The high-frequency plasma ignition device 1 supplies an energy supply power supply 90 that controls and supplies the application of the high voltage HV and the oscillation of the high-frequency MW according to the ignition signal IGt transmitted from the engine control device (not shown) according to the operating state of the internal combustion engine. A coaxial connector 40 to which a high frequency MW is input from the energy supply power supply 90 via the coaxial cable 41, a connector fixing portion 50 for fixing the coaxial connector 40, and a high voltage input means 80 from the energy supply power supply 90 through the high voltage input means 80. The high voltage electrode 30 to which the voltage HV is applied, the high voltage electrode 30 is insulated and held, the insulator 10 including the coaxial resonator 23, and the housing 70 that is disposed concentrically with the insulator 10 and covers the outer periphery thereof. The outer conductor made of a metal film that covers all or part of the surface of the inner peripheral wall of the resonator cavity 22 partitioned inside the insulator 10. The layer 20, constitutes a coaxial resonator 23 by an inner conductor 21 placed on the center of the resonator cavity 22.

絶縁体10は、アルミナ等の熱伝導率に優れた耐熱性の絶縁材料から成り、ハウジング70から上方に露出する絶縁体頭部100とハウジング70と同心で外径方向に拡径してハウジング70に保持された絶縁体大径部101と絶縁体大径部101よりも径小に縮径した絶縁体小径部102とを有する略段付き柱状に形成されている。
本発明の要部である絶縁体10には、内側に共振体空洞部22を区画する共振体空洞部区画孔110が穿設されており、その内周壁の表面は、外側導体層20を構成する金属膜に覆われている。
The insulator 10 is made of a heat-resistant insulating material having excellent thermal conductivity, such as alumina, and is concentric with the insulator head 100 and the housing 70 exposed upward from the housing 70 and expands in the outer diameter direction. Are formed in a substantially stepped columnar shape having an insulator large diameter portion 101 and an insulator small diameter portion 102 having a diameter smaller than that of the insulator large diameter portion 101.
The insulator 10 which is a main part of the present invention is provided with a resonator cavity section hole 110 for partitioning the resonator cavity section 22 on the inner side, and the surface of the inner peripheral wall forms the outer conductor layer 20. Covered with metal film.

中心導体21は、Ni、Ir等の耐熱性の導電性材料から成り、略円盤状に形成した中心導体接地部210とその中心から先端側に向かって長軸状に伸びる中心導体軸部212とによって構成されている。
中心導体接地部210には、基端側から先端側に向かって貫通する中心導線挿通孔211が穿設され、誘電層401を介して中心導線400が挿通されている。
共振体空洞部22の基端側には、同軸共振体係止部109が形成され中心導体接地部210が係止されている。
同軸共振体係止部109の表面には、外側導体層20に連なって係止部接地導体層201が形成され、中心導体接地部210と密着することによって、外側導体層20、形支部接地導体層201、中心導体接地部210、中心導体軸部212が電気的に接続されている。
外側導体層20と中心導体21と共振体空洞部22とによって同軸共振体23を形成している。
The center conductor 21 is made of a heat-resistant conductive material such as Ni or Ir, and has a center conductor grounding portion 210 formed in a substantially disk shape and a center conductor shaft portion 212 extending from the center toward the tip side in a long axis shape. It is constituted by.
The center conductor grounding portion 210 is provided with a center conductor insertion hole 211 penetrating from the base end side toward the tip end side, and the center conductor 400 is inserted through the dielectric layer 401.
A coaxial resonator locking portion 109 is formed on the proximal end side of the resonator cavity portion 22 and the center conductor grounding portion 210 is locked.
A locking portion grounding conductor layer 201 is formed on the surface of the coaxial resonator locking portion 109 so as to continue to the outer conductor layer 20, and is in close contact with the center conductor grounding portion 210, so that the outer conductor layer 20 and the supporting portion grounding conductor are in contact. The layer 201, the center conductor grounding portion 210, and the center conductor shaft portion 212 are electrically connected.
The outer conductor layer 20, the center conductor 21, and the resonator cavity 22 form a coaxial resonator 23.

中心導体21の所定の位置に設けた高周波導体接続部213には、高周波MWを入力する中心導線400が接続され、同軸コネクタ40及び同軸ケーブル41を介して点火エネルギ供給制御装置90に設けた高高周波電源回路に接続されている。
中心導線400は、ポリテトラフルオロエチレン、ポリエチレン等の可撓性材料からなる誘電層401に覆われている。
誘電層401の外周は、同軸共振体接地部挿通孔封止絶縁体12に穿設した高周波導体挿通孔121の内周壁に設けた外側導体金属膜122に覆われている。 外側導体金属膜122は、同軸ケーブル41の外側導体網組線412と同様、中心導線400を伝送される高周波MWの外部への漏れを防いでいる。
中心導線400は、同軸コネクタ固定部50に保持された同軸コネクタ40を介して、同軸ケーブル41接続され、外部の点火エネルギ供給制御装置90に設けられた高高周波電源回路に接続されている。
同軸ケーブル41は、市販のものを利用可能で、銅線等の導電性材料からなる中心銅線410、ポリエチレン等の可撓性絶縁材料からなる誘電層411、網組線や金属箔等からなる外側導体412、絶縁性のポリビニル等の保護材料からなる絶縁被覆層413、コネクタ栓414によって構成されている。
同軸コネクタ固定部50は、導電性材料を用いて略円盤状に形成されており、同軸コネクタ40を挿通固定するコネクタ固定ネジ部501と絶縁体頭部100を挿通するための絶縁体頭部挿通孔502が穿設されている。
同軸コネクタ固定部50は、同軸コネクタ40を固定すると共に、同軸共振体接地部挿通孔封止絶縁体12を押圧し、中心導体接地部210と接地導体層201とを密着状態に維持している。
A high-frequency conductor connecting portion 213 provided at a predetermined position of the central conductor 21 is connected to a central conductor 400 for inputting a high-frequency MW, and is connected to the ignition energy supply control device 90 via the coaxial connector 40 and the coaxial cable 41. Connected to a high-frequency power circuit.
The center conductor 400 is covered with a dielectric layer 401 made of a flexible material such as polytetrafluoroethylene or polyethylene.
The outer periphery of the dielectric layer 401 is covered with an outer conductor metal film 122 provided on the inner peripheral wall of the high-frequency conductor insertion hole 121 formed in the coaxial resonator grounding portion insertion hole sealing insulator 12. The outer conductor metal film 122 prevents leakage of the high frequency MW transmitted through the center conductor 400 to the outside, like the outer conductor network assembly line 412 of the coaxial cable 41.
The central conducting wire 400 is connected to the coaxial cable 41 via the coaxial connector 40 held by the coaxial connector fixing portion 50 and is connected to a high-frequency power supply circuit provided in the external ignition energy supply control device 90.
As the coaxial cable 41, a commercially available cable can be used. The coaxial cable 41 includes a central copper wire 410 made of a conductive material such as a copper wire, a dielectric layer 411 made of a flexible insulating material such as polyethylene, a braided wire, a metal foil, or the like. The outer conductor 412, the insulating coating layer 413 made of a protective material such as insulating polyvinyl, and the connector plug 414 are configured.
The coaxial connector fixing portion 50 is formed in a substantially disk shape using a conductive material, and an insulator head insertion for inserting the connector fixing screw portion 501 for inserting and fixing the coaxial connector 40 and the insulator head 100. A hole 502 is formed.
The coaxial connector fixing part 50 fixes the coaxial connector 40 and presses the coaxial resonator grounding part insertion hole sealing insulator 12 to maintain the center conductor grounding part 210 and the grounding conductor layer 201 in a close contact state. .

絶縁体頭部100は、絶縁体大径部102の中心軸から片側に偏心した位置に設けられている。
絶縁体頭部100の中心軸に沿って高圧電極挿通孔105、106、107が穿設されている。
高圧電極挿通孔105、106、107に高電圧HVが印加される高圧電極30が挿入固定されている。
高圧電極30は、絶縁体頭部100の基端側に露出する高圧電極端子部301と、高圧電極挿通孔106に収容保持される高圧電極ステム301と、高圧電極係止部106において高圧電極ステム301と高圧電極320とを接着固定する導電性接着層31と、高圧電極中軸挿通孔107に保持される高圧電極中軸320と、燃焼室側に露出して絶縁体10の下端面に当接する高圧電極係止部321と中心導体21に向かって屈曲する高圧電極屈曲部322と、その先端に設けた高圧電極放電部323とによって構成されている。
The insulator head 100 is provided at a position eccentric to one side from the central axis of the insulator large diameter portion 102.
High-voltage electrode insertion holes 105, 106, and 107 are formed along the central axis of the insulator head 100.
The high voltage electrode 30 to which the high voltage HV is applied is inserted and fixed in the high voltage electrode insertion holes 105, 106, and 107.
The high-voltage electrode 30 includes a high-voltage electrode terminal portion 301 exposed on the proximal end side of the insulator head 100, a high-voltage electrode stem 301 accommodated and held in the high-voltage electrode insertion hole 106, and the high-voltage electrode stem at the high-voltage electrode locking portion 106. The conductive adhesive layer 31 for bonding and fixing 301 and the high voltage electrode 320, the high voltage electrode middle shaft 320 held in the high voltage electrode middle shaft insertion hole 107, and the high pressure exposed to the combustion chamber side and in contact with the lower end surface of the insulator 10. The electrode engaging portion 321, the high-voltage electrode bent portion 322 bent toward the central conductor 21, and the high-voltage electrode discharge portion 323 provided at the tip thereof.

絶縁体大径部101は、絶縁体大径部上面部103の基端側に配設した、同軸コネクタ固定部50、封止部材601と、絶縁体径変部104の先端側に配設した封止部材602、603を介して、ハウジング70の加締め部708とハウジング係止部705とによって全周に渡って挟持されている。   The insulator large diameter portion 101 is disposed on the distal end side of the coaxial connector fixing portion 50, the sealing member 601, and the insulator diameter changing portion 104 disposed on the proximal end side of the insulator large diameter portion upper surface portion 103. It is clamped over the entire circumference by the crimping portion 708 and the housing locking portion 705 of the housing 70 via the sealing members 602 and 603.

ハウジング70は、鉄鋼材、炭素鋼、ステンレス等の金属材料からなり、略筒状に形成されている。
ハウジング70は略筒状のハウジングボス部700の先端側に位置するハウジング下部701と基端側に位置するハウジング上部703とによって構成され、ハウジング下部701の内側には絶縁体10の絶縁体小径部102を挿通するための小径部挿通孔702が穿設され、ハウジング上部703には、絶縁体大径部101を挿通するための大径部挿通孔704が穿設され、小径部導通孔702と大径部挿通孔704との間はすり鉢状に縮径し、絶縁体10の絶縁体径変部104を係止するハウジング係止部705が形成され、ハウジング70の基端側は、加締め部708が形成され封止部材600、601、602を介して絶縁体10及び50を気密に封止している。
ハウジング上部703の外周には、ハウジング六角部706が形成され、ハウジング下部701の外周には、ハウジング70を内燃機関の燃焼室に固定するためのネジ部707が形成され、ガスケット604を介して内燃機関の燃焼室に固定され、高電圧電極放電部323及び同軸共振体23を構成する中心導体21の先端及び外側導体層20の先端が燃焼室内に露出した状態に保持されている。
本実施形態においては、ハウジングネジ部707のネジ径はM12に形成されている。
The housing 70 is made of a metal material such as steel, carbon steel, and stainless steel, and is formed in a substantially cylindrical shape.
The housing 70 includes a housing lower portion 701 positioned on the distal end side of the substantially cylindrical housing boss portion 700 and a housing upper portion 703 positioned on the proximal end side, and an insulator small-diameter portion of the insulator 10 is formed inside the housing lower portion 701. A small-diameter portion insertion hole 702 for inserting 102 is formed, and a large-diameter portion insertion hole 704 for inserting the insulator large-diameter portion 101 is formed in the housing upper portion 703. The diameter of the large diameter portion insertion hole 704 is reduced to a mortar shape, and a housing locking portion 705 for locking the insulator diameter changing portion 104 of the insulator 10 is formed. The proximal end side of the housing 70 is crimped A portion 708 is formed to hermetically seal the insulators 10 and 50 through the sealing members 600, 601, and 602.
A housing hexagonal portion 706 is formed on the outer periphery of the housing upper portion 703, and a screw portion 707 for fixing the housing 70 to the combustion chamber of the internal combustion engine is formed on the outer periphery of the housing lower portion 701. The tip of the center conductor 21 and the tip of the outer conductor layer 20 that are fixed to the combustion chamber of the engine and constitute the high voltage electrode discharge part 323 and the coaxial resonator 23 are held in an exposed state in the combustion chamber.
In the present embodiment, the screw diameter of the housing screw portion 707 is formed to M12.

高電圧入力手段80は、公知のものが使用され、コネクタキャップ800内に収容された高圧入力端子810とこれに接続された高電圧供給ハーネス811とによって構成されている。コネクタキャップ800は、シリコン、エポキシ樹脂、フェノール樹脂等の耐熱性絶縁性材料からなる。高電圧供給ハーネス811には、銅線等が用いられる。高圧入力端子810は、導電性材料からなり、略筒状に形成されており、コネクタキャップ800を絶縁体頭部100に挿嵌すると、高圧入力端子810と高圧電極端子部301とが弾性的に導通状態となり、外部に設けた点火エネルギ供給制御手段90の高電圧電源回路に接続された状態となる。
なお、高電圧電源回路には、CDI型(容量放電型)やTCI(誘導放電型)のいずれでも良く、公知の高電圧電源回路を適宜用いることができる。
また、高周波電源回路には、公知のマグネトロンの他、車載バッテ等の直流電源から供給される直流電流を高周波の交流に変換して発振する高周波発振回路と、高周波発振回路から発振された高周波を増幅する高周波増幅回路とによって構成されたものを用いることができ、高周波増幅回路としては、高周波発振回路から発振される数mW程度の高周波を数W程度に増幅するプレアンプと、プレアンプによって増幅された高周波をさらに数10w〜300w程度にまで増幅するパワーアンプとによって構成することができる。
As the high voltage input means 80, a publicly known one is used, and it is constituted by a high voltage input terminal 810 accommodated in the connector cap 800 and a high voltage supply harness 811 connected thereto. The connector cap 800 is made of a heat-resistant insulating material such as silicon, epoxy resin, or phenol resin. A copper wire or the like is used for the high voltage supply harness 811. The high-voltage input terminal 810 is made of a conductive material and is formed in a substantially cylindrical shape. When the connector cap 800 is inserted into the insulator head 100, the high-voltage input terminal 810 and the high-voltage electrode terminal portion 301 are elastic. It becomes a conductive state, and is connected to a high voltage power supply circuit of the ignition energy supply control means 90 provided outside.
The high voltage power supply circuit may be either a CDI type (capacitive discharge type) or a TCI (inductive discharge type), and a known high voltage power supply circuit can be used as appropriate.
In addition to known magnetrons, the high frequency power supply circuit includes a high frequency oscillation circuit that oscillates by converting a direct current supplied from a direct current power source such as an in-vehicle battery into a high frequency alternating current, and a high frequency oscillation generated from the high frequency oscillation circuit. A high-frequency amplifier circuit configured to amplify can be used. As the high-frequency amplifier circuit, a preamplifier that amplifies a high frequency of about several mW oscillated from the high-frequency oscillation circuit to about several W and a preamplifier It can be constituted by a power amplifier that further amplifies the high frequency to about several tens w to 300 w.

パワーアンプには、Si半導体、SiC半導体、GaN半導体、ダイヤモンド半導体等のワイドバンドギャップ半導体を含む高周波パワーデバイスが用いるのが望ましい。ワイドバンドギャップ半導体を用いた高周波パワーデバイスは、高周波特性が良好で、周波数変動を押さえつつ高周波を高出力に増幅できる。また、本発明で使用される高周波は、10mm〜1000mmの波長と300MHz〜30GHzの周波数とを有するマイクロ波であり、特に2〜4GHzのISMバンド帯域を用いるのが実用的である。   As the power amplifier, it is desirable to use a high-frequency power device including a wide band gap semiconductor such as a Si semiconductor, a SiC semiconductor, a GaN semiconductor, or a diamond semiconductor. A high-frequency power device using a wide band gap semiconductor has good high-frequency characteristics, and can amplify a high frequency to a high output while suppressing frequency fluctuation. The high frequency used in the present invention is a microwave having a wavelength of 10 mm to 1000 mm and a frequency of 300 MHz to 30 GHz. In particular, it is practical to use an ISM band of 2 to 4 GHz.

点火エネルギ供給制御部90は、内燃機関の運転状況に応じて図略のエンジン制御装置から発信された点火信号IGtにしたがって、高周波MWを発振する高周波発振回路と、高電圧HVを印加する高電圧電源回路とを具備している。
高周波MWの発振により高周波導線接続部213を節として中心導体21の先端を腹とする高周波の定在波が発生し、中心導体21の先端側に電界強度の高い領域が形成され、周囲の気体が電離しやすい状態に励起され、高圧電極30に高電圧HVが印加されると、高圧電極放電部323と中心導体軸部212の先端との間で放電が起こり、容積的に大きなプラズマ火炎が発生し、内燃機関E/Gの点火が行われる。
The ignition energy supply control unit 90 includes a high-frequency oscillation circuit that oscillates a high-frequency MW in accordance with an ignition signal IGt transmitted from an engine control device (not shown) according to the operating state of the internal combustion engine, and a high voltage that applies a high voltage HV. And a power supply circuit.
The high-frequency MW oscillation generates a high-frequency standing wave with the high-frequency conductor connecting portion 213 as a node and the tip of the center conductor 21 as an antinode, and a region having a high electric field strength is formed on the tip end side of the center conductor 21. Is excited to be easily ionized and a high voltage HV is applied to the high-voltage electrode 30, a discharge occurs between the high-voltage electrode discharge part 323 and the tip of the central conductor shaft part 212, resulting in a large volumetric plasma flame. Is generated and the internal combustion engine E / G is ignited.

図2(a)に示すように、比較例として示す従来の高周波プラズマ点火装置1zでは、ネジ径をM14にするのが限界であったが、本実施例に示すように、ネジ径をM11〜M12まで小型化し、約30%のダウンサイジングを実現することができる。従来の構成では、外側導体層20zを金属によって筒状に形成していたため、それ自身の機械的強度を維持する必要があり、1mm以下の厚みとすることが困難であった。
一方、本発明によれば、外側導体層20は、絶縁体10の内部に設けた共振体空洞部22の表面に形成するため、外側導体層20自身の機械的強度は全く必要なく、高周波MWの漏れを防ぎ、同軸共振体23内で高周波MWの共振状態を形成可能とする最低限の膜厚が確保されれば良い。したがって、小型化に対して極めて有利である。
また、本図(b)に示すように、比較例では、適正トルクを超えた力で内燃機関に取り付けたとき、試料5本中4本に絶縁体10zの破損が見られたが、本実施例では、絶縁体10の破損は発生しなかった。これは、本発明の絶縁体10がハウジング70に対して同心に配設されているため、ハウジング六角部706に負荷された締め付けトルクが絶縁体10の側面方向には全く作用しないためと推察される。
As shown in FIG. 2A, in the conventional high-frequency plasma ignition device 1z shown as a comparative example, the screw diameter is limited to M14. However, as shown in the present embodiment, the screw diameter is set to M11 to M14. Downsizing to M12 can achieve downsizing of about 30%. In the conventional configuration, since the outer conductor layer 20z is formed of a metal into a cylindrical shape, it is necessary to maintain its own mechanical strength, and it is difficult to obtain a thickness of 1 mm or less.
On the other hand, according to the present invention, the outer conductor layer 20 is formed on the surface of the resonator cavity 22 provided inside the insulator 10, so that the mechanical strength of the outer conductor layer 20 itself is not required at all, and the high frequency MW It is only necessary to secure a minimum film thickness that prevents leakage of the liquid crystal and enables the resonant state of the high frequency MW to be formed in the coaxial resonator 23. Therefore, it is extremely advantageous for downsizing.
Moreover, as shown in this figure (b), in the comparative example, when it was attached to the internal combustion engine with a force exceeding the appropriate torque, damage to the insulator 10z was observed in 4 out of 5 samples. In the example, the insulator 10 was not damaged. This is presumably because the tightening torque applied to the housing hexagonal portion 706 does not act at all in the side surface direction of the insulator 10 because the insulator 10 of the present invention is disposed concentrically with the housing 70. The

図3を参照して本発明の要部である絶縁体10の構造とその形成方法について詳述する。
絶縁体10は、アルミナ等の絶縁性耐熱材料を用いて、絶縁体形成工程として、加圧成型、HIP成型、SIP成型、射出成形、又は押出成形のいずれかの成型方法により略段付き柱状に形成されている。
絶縁体10の中心軸CL10から片側に偏心した頭部中心軸CL100を中心とする位置には絶縁体上面部103から基端側に突出して略円筒状の絶縁体頭部100が形成されている。
絶縁体頭部100の外径φD100及び突出長さは、ハウジング70と高圧電極30との間にリーク放電が起こらない範囲で適宜変更可能である。
絶縁体10の中腹部には径大となる絶縁体大径部101が形成され、先端側には絶縁体大径部101と同心で径小となる絶縁体小径部102が形成され、大径部101と小径部102との間にはテーパ状に縮径する径変部104が形成されている。
絶縁体頭部100の頭部中心軸CL100に沿って高圧電極ステム挿通孔105、高圧電極係止部106、高圧電極中軸挿通孔107が穿設されている。
絶縁体頭部100の外周円に外接するように共振体中心軸CL110を中心とする位置には、同軸共振体接地部211を挿通するための同軸共振体接地部挿通孔108が穿設されている。
さらに、同軸共振体接地部挿通孔108に連通して共振体空洞部22を区画する共振体空洞部区画孔110が穿設されている。
共振体空洞部区画孔110は、同軸共振体接地部挿通孔108よりも径小となっており、その間には、同軸共振体接地部211を係止するための共振体係止部109となっている。
共振体空洞部区画孔110の長さLは、入力される高周波MWの波長λの1/4となるように形成されている。
例えば、周波数2.45GHzの高周波MWの波長λは、122.4mmであるので、共振体空洞部区画孔110の長さLを、30.6mmとする。
また、共振体空洞部区画孔110の内径φD110は、5.4mmである。
内径φD110は、アンテナとなる中心導体21の径との比が約3.6となるように設定すると、電力損失を少なくできることが判明した。
なお、本実施形態においては、φD100=4mm、φD101=12mm、φD102=10mm、φD105=2mm、φD107=0.5mm、φD108=6.0mm、φD110=5.4mmに設定されている。
With reference to FIG. 3, the structure of the insulator 10 which is the main part of the present invention and the method for forming the same will be described in detail.
The insulator 10 is made of an insulating heat-resistant material such as alumina, and is formed into a substantially stepped column shape by any one of pressure molding, HIP molding, SIP molding, injection molding, or extrusion molding as an insulator forming step. Is formed.
Substantially cylindrical insulator head 100 is formed to project proximally from the insulator upper surface portion 103 at a position around the head center axis CL 100 from the center axis CL 10 of the insulator 10 is eccentric to one side ing.
The outer diameter φD 100 and the protruding length of the insulator head 100 can be appropriately changed within a range in which leakage discharge does not occur between the housing 70 and the high-voltage electrode 30.
An insulator large diameter portion 101 having a large diameter is formed in the middle part of the insulator 10, and an insulator small diameter portion 102 having a small diameter concentrically with the insulator large diameter portion 101 is formed on the distal end side. Between the portion 101 and the small-diameter portion 102, a diameter changing portion 104 that has a tapered diameter is formed.
Voltage electrode stem insertion hole 105 along the head center axis CL 100 of the insulator head 100, the high voltage electrode engaging portion 106, the high-voltage electrode axial rod insertion hole 107 is bored.
A coaxial resonator grounding portion insertion hole 108 for inserting the coaxial resonator grounding portion 211 is formed at a position centering on the resonator central axis CL 110 so as to circumscribe the outer circumference circle of the insulator head 100. ing.
Further, a resonator cavity partitioning hole 110 that is connected to the coaxial resonator grounding part insertion hole 108 and partitions the resonator cavity 22 is formed.
The cavity hollow section hole 110 has a diameter smaller than that of the coaxial resonator grounding portion insertion hole 108, and becomes a resonator locking portion 109 for locking the coaxial resonator grounding portion 211 therebetween. ing.
The length L of the cavity hollow section hole 110 is formed to be ¼ of the wavelength λ of the input high frequency MW.
For example, since the wavelength λ of the high frequency MW having the frequency of 2.45 GHz is 122.4 mm, the length L of the resonator cavity partition hole 110 is set to 30.6 mm.
The inner diameter φD 110 of the resonator cavity section hole 110 is 5.4 mm.
It has been found that the power loss can be reduced if the inner diameter φD 110 is set such that the ratio of the inner diameter φD 110 to the diameter of the central conductor 21 serving as an antenna is about 3.6.
In this embodiment, φD 100 = 4 mm, φD 101 = 12 mm, φD 102 = 10 mm, φD 105 = 2 mm, φD 107 = 0.5 mm, φD 108 = 6.0 mm, and φD 110 = 5.4 mm. Has been.

図4から図9を参照して、本発明の高周波プラズマ点火装置の製造方法の概要について説明する。
先ず、図4に示す外側導体層形成工程では、絶縁体10に穿設した共振体空洞部区画孔110の内周表面及び共振体係止部109の表面に、ニッケル等の耐熱性の高い導電性材料を用いて、メッキ、CVD(化学気相成長法)、PVD(物理気相法)、真空蒸着、金属箔貼付、印刷、ダイレクトボンディングのいずれかの方法により外側導体層20及び接地導体層201を形成する。このとき外側導体層20と接地導体層201とは、一体的に形成され、導通状態となっている。
さらに、マスキング等により共振体空洞部区画孔110の内周表面及び共振体係止部109の表面以外の部分に導体層が形成されないようにする。
また、高周波を外部に漏れないようにするためには、各導体層20、21の膜厚は、少なくとも10μm以上、100μm以下に形成すれば良いことが判明した。
高周波は、導体の表面を電気が流れるため、表面の導電性が高いことが重要である。そこで、銀などの導電率が高い金属材料を薄くメッキする。または、コストを下げるため一部にメッキするなど方法を取っても良い。
さらに、絶縁体10との密着強度、耐久性を考慮して、ニッケル等で下地層を形成し、その上に銀、白金、金等の導電率の高い金属材料を用いて導電層を形成しても良い。
なお、本実施形態においては、メッキにより50μm程度の膜厚に形成されている。
メッキ、CVD(化学気相成長法)、PVD(物理気相法)、真空蒸着、金属箔貼付、印刷、ダイレクトボンディングのいずれの方法においても、外側導体層20を、絶縁体10の内側に形成することができるので、従来の外側導体を金属製の筒体を形成する場合に比べて遥かに薄い膜厚であっても、遥かに高い強度が得られる。
With reference to FIGS. 4 to 9, an outline of a method for manufacturing the high-frequency plasma ignition device of the present invention will be described.
First, in the outer conductor layer forming step shown in FIG. 4, a highly heat-resistant conductive material such as nickel is applied to the inner peripheral surface of the resonator cavity partition hole 110 formed in the insulator 10 and the surface of the resonator locking portion 109. The outer conductor layer 20 and the ground conductor layer are formed by any one of plating, CVD (chemical vapor deposition), PVD (physical vapor deposition), vacuum deposition, metal foil sticking, printing, and direct bonding using a conductive material. 201 is formed. At this time, the outer conductor layer 20 and the ground conductor layer 201 are integrally formed and are in a conductive state.
Further, a conductor layer is prevented from being formed on portions other than the inner peripheral surface of the resonator cavity partition hole 110 and the surface of the resonator locking portion 109 by masking or the like.
Further, it has been found that the thickness of each conductor layer 20 and 21 should be at least 10 μm and not more than 100 μm in order not to leak high frequency to the outside.
Since high-frequency electricity flows on the surface of a conductor, it is important that the surface has high conductivity. Therefore, a metal material having high conductivity such as silver is thinly plated. Alternatively, in order to reduce the cost, a method such as plating a part may be taken.
Further, in consideration of adhesion strength and durability with the insulator 10, a base layer is formed of nickel or the like, and a conductive layer is formed thereon using a metal material having high conductivity such as silver, platinum, or gold. May be.
In the present embodiment, the film is formed to a thickness of about 50 μm by plating.
The outer conductor layer 20 is formed inside the insulator 10 in any of plating, CVD (chemical vapor deposition), PVD (physical vapor deposition), vacuum deposition, metal foil sticking, printing, and direct bonding. Therefore, a much higher strength can be obtained even when the thickness of the outer conductor is much thinner than when a metal cylinder is formed.

次いで、図5に示す高圧電極形成工程では、本図(a)に示すように、高圧電極30を構成する高圧電極入力端子部301、高圧電極ステム302、導電性接着層31、高圧電極中軸部320を高圧電極ステム挿通孔105、高圧電極中軸挿通孔107に挿入し、次いで本図(b)に示すように、高圧電極ステム302と高圧電極中軸部320とを上下方向から押し込みながら導電性接着層31を加熱溶融させ、一体の高圧電極30を形成する。このとき、導電性接着層31に抵抗成分を混ぜ、雑音防止抵抗とすることもできる。
また、高圧電極中軸部320の下端には、高圧電極係止部321が形成され、さらにその先端が内側導体21に向かって屈曲する高圧電極屈曲部322が形成され、その先端には、耐熱性の高いNi等を用いた高圧電極放電部323が形成されている。
高圧電極中軸部320を絶縁体10の高圧電極中軸挿通孔107に挿通したときに、高圧電極係止部321が絶縁体10の底面に当接して所定の位置に高圧電極放電部323が載置されることになる。
Next, in the high-voltage electrode forming step shown in FIG. 5, as shown in FIG. 5A, the high-voltage electrode input terminal portion 301, the high-voltage electrode stem 302, the conductive adhesive layer 31, and the high-voltage electrode middle shaft portion constituting the high-voltage electrode 30. 320 is inserted into the high-voltage electrode stem insertion hole 105 and the high-voltage electrode middle shaft insertion hole 107, and then, as shown in this figure (b), the high-voltage electrode stem 302 and the high-voltage electrode middle shaft portion 320 are pushed in from above and below to conduct conductive bonding. The layer 31 is heated and melted to form an integrated high-voltage electrode 30. At this time, a resistance component can be mixed in the conductive adhesive layer 31 to form a noise prevention resistor.
Further, a high-voltage electrode locking portion 321 is formed at the lower end of the high-voltage electrode middle shaft portion 320, and a high-voltage electrode bent portion 322 whose tip is bent toward the inner conductor 21 is formed. A high-voltage electrode discharge part 323 using Ni or the like having a high density is formed.
When the high-voltage electrode middle shaft portion 320 is inserted into the high-voltage electrode middle shaft insertion hole 107 of the insulator 10, the high-voltage electrode locking portion 321 contacts the bottom surface of the insulator 10, and the high-voltage electrode discharge portion 323 is placed at a predetermined position. Will be.

次いで図6を参照して同軸共振体形成工程について説明する。
本図(a)に示すように、予め、筒状に形成した同軸共振体基底部挿通孔封止絶縁体12の封止絶縁体基体120に穿設した高周波導体挿通孔121の表面に外側導体層122を形成しておく。このとき、上述の外側導体層形成工程と同様の方法により外側導体層122を形成することができる。
同軸コネクタ402に接続され、誘電層401に覆われた中心導体400をコネクタ固定部50のコネクタ固定ネジ部501に挿通させ、さらに、中心導体中軸212の中心導体接地部210に設けた中心導線挿通孔211から引き出し、本図(b)に示すように、中心導体接地部210から所定の高さΔL(例えば1mm)に位置する高周波導線接続部213に接続する。
このとき、誘電層401には、ポリエチレン等の可撓性材料が用いられており、その外周には通常の同軸ケーブルのように編組線や金属箔を用いた外側導体被覆が形成されておらず、自由に変形できるので、容易に高周波導体挿通孔121に挿入することができる。
一方、高周波導体挿通孔121の内周表面には、外側導体層122が形成されているので、中心導線400と誘電層401と外側導体層122とによって同軸ケーブルが構成され、外部に高周波が漏れることはない。
さらに、誘電層401を介して中心導体接地部210との絶縁を図った中心導線400を接続したものを、絶縁体10の同軸共振体接地部挿通孔108から挿入し、中心導体接地部210を同軸共振体係止部109に当接させる。
このとき、中心導体軸部212の先端が外側導体層20の先端側にΔLだけ突出した状態となる。
同軸共振体基底部挿通孔封止絶縁体12を同軸共振体基底部挿通孔108に挿入して中心電極接地部211押圧して中心電極接地部211と接地導体層201とを密着状態にして導通を図りつつ、同軸共振体基底部挿通孔108を封止する。
以上により、絶縁体10の内部に中心導体21と共振体空洞部22と外側導体層20とによって同軸共振体23が形成される。
Next, the coaxial resonator forming step will be described with reference to FIG.
As shown in FIG. 6A, the outer conductor is formed on the surface of the high-frequency conductor insertion hole 121 formed in the sealing insulator base 120 of the coaxial resonator base portion insertion hole sealing insulator 12 formed in advance in a cylindrical shape. Layer 122 is formed. At this time, the outer conductor layer 122 can be formed by the same method as in the outer conductor layer forming step described above.
The center conductor 400 connected to the coaxial connector 402 and covered with the dielectric layer 401 is inserted into the connector fixing screw portion 501 of the connector fixing portion 50, and further, the center conductor is inserted into the center conductor grounding portion 210 of the center conductor center shaft 212. It is pulled out from the hole 211 and connected to the high-frequency conductor connecting part 213 located at a predetermined height ΔL (for example, 1 mm) from the center conductor grounding part 210 as shown in FIG.
At this time, a flexible material such as polyethylene is used for the dielectric layer 401, and the outer conductor coating using a braided wire or a metal foil is not formed on the outer periphery of the dielectric layer 401 like a normal coaxial cable. Since it can be freely deformed, it can be easily inserted into the high-frequency conductor insertion hole 121.
On the other hand, since the outer conductor layer 122 is formed on the inner peripheral surface of the high-frequency conductor insertion hole 121, the central conductor 400, the dielectric layer 401, and the outer conductor layer 122 constitute a coaxial cable, and high frequency leaks to the outside. There is nothing.
Further, a core conductor 400 that is insulated from the center conductor grounding portion 210 via the dielectric layer 401 is connected through the coaxial resonator grounding portion insertion hole 108 of the insulator 10, and the center conductor grounding portion 210 is connected. It abuts on the coaxial resonator locking part 109.
At this time, the tip of the central conductor shaft portion 212 is in a state of protruding by ΔL toward the tip of the outer conductor layer 20.
The coaxial resonator base portion insertion hole sealing insulator 12 is inserted into the coaxial resonator base portion insertion hole 108 and the center electrode ground portion 211 is pressed so that the center electrode ground portion 211 and the ground conductor layer 201 are brought into close contact with each other. The coaxial resonator base insertion hole 108 is sealed while aiming.
As described above, the coaxial resonator 23 is formed in the insulator 10 by the center conductor 21, the resonator cavity 22, and the outer conductor layer 20.

次いで、図7、図8を参照して、組付工程、加締め工程について説明する。
上述の工程を経て同軸共振体23と高圧電極30とが組み込まれた絶縁体10を図7に示すように、封止部材600、601、602を介してハウジング70内に挿入する。
封止部材600及び封止部材602には、略環状に形成された金属性のシール部材が用いられ、封止部材601には、タルク等の耐熱性セラミックス粉末を押し固めた粉末成形体が用いられている。
図8に示すように、ハウジング70の開口端を加締めることにより、ハウジング70内に収容された絶縁体10、封止部材600、601、602、同軸ケーブル接続部50を一体的に封止する。
このとき、絶縁体大径部101が、封止部材600、601、602及び同軸ケーブル接続部50の基底部502を介して絶縁体10と同心に配設されたハウジング70のハウジング加締め部708と絶縁体係止部705とによって全周に渡って均等に上下から押圧され、気密に保持された状態となる。
また、このとき、略円板状に形成された同軸コネクタ固定部50によって、同軸共振体基底部挿通孔封止絶縁体12が押圧され、中心導体接地部210と接地導体層201の形成された同軸共振体係止部109とを密着させ、外側導体層20、接地導体層201、中心導体接地部210、封止絶縁体内外側導体層122、同軸ケーブル接続部50、ハウジング70が電気的に接続された状態となる。
なお、封止絶縁体内外側導体層122と中心導体接地部210との導通を確実にするため、封止絶縁体内外側導体層122に連なって同軸共振体基底部挿通孔封止絶縁体12の底面に金属層を形成しても良い。
Next, an assembly process and a caulking process will be described with reference to FIGS.
As shown in FIG. 7, the insulator 10 in which the coaxial resonator 23 and the high-voltage electrode 30 are incorporated through the above-described steps is inserted into the housing 70 through the sealing members 600, 601, and 602.
For the sealing member 600 and the sealing member 602, a metallic sealing member formed in a substantially annular shape is used, and for the sealing member 601, a powder compact obtained by pressing and heat-resistant ceramic powder such as talc is used. It has been.
As shown in FIG. 8, by crimping the opening end of the housing 70, the insulator 10, the sealing members 600, 601 and 602, and the coaxial cable connection portion 50 accommodated in the housing 70 are integrally sealed. .
At this time, the insulator large-diameter portion 101 has a housing crimped portion 708 of the housing 70 disposed concentrically with the insulator 10 via the sealing members 600, 601, 602 and the base portion 502 of the coaxial cable connecting portion 50. And the insulator locking portion 705 are uniformly pressed from the top and bottom over the entire circumference and are kept airtight.
Further, at this time, the coaxial resonator base portion insertion hole sealing insulator 12 is pressed by the coaxial connector fixing portion 50 formed in a substantially disc shape, and the center conductor ground portion 210 and the ground conductor layer 201 are formed. The coaxial resonator engagement part 109 is brought into close contact, and the outer conductor layer 20, the ground conductor layer 201, the center conductor ground part 210, the outer conductor layer 122 in the sealed insulator, the coaxial cable connection part 50, and the housing 70 are electrically connected. It will be in the state.
The bottom surface of the coaxial resonator base portion insertion hole sealing insulator 12 is connected to the outer conductor layer 122 in the sealing insulator in order to ensure conduction between the outer conductor layer 122 in the sealing insulator and the center conductor grounding portion 210. A metal layer may be formed.

次いで、図9に示すように、高周波プラズマ点火装置1を内燃機関EGのプラグホールPH内に収容し、ガスケット603を介して、シリンダヘッドSHに螺結固定し、同軸コネクタ部40に同軸ケーブル41を接続して同軸共振体23と点火エネルギ供給制御装置90の高周波発振回路とを接続すると共に、高電圧入力部80のコネクタキャップ800を高圧電極端子部301に装着して高圧電極30と点火エネルギ供給制御装置90の高電圧電源回路と接続する。   Next, as shown in FIG. 9, the high-frequency plasma ignition device 1 is accommodated in the plug hole PH of the internal combustion engine EG, screwed and fixed to the cylinder head SH via the gasket 603, and the coaxial cable 41 is connected to the coaxial connector portion 40. Are connected to the coaxial resonator 23 and the high-frequency oscillation circuit of the ignition energy supply control device 90, and the connector cap 800 of the high voltage input unit 80 is attached to the high voltage electrode terminal unit 301 to connect the high voltage electrode 30 to the ignition energy. The high voltage power supply circuit of the supply control device 90 is connected.

中心導体21に高周波MWを入力したときに高周波MWの漏れを防ぎ共振体空洞部22内で共振状態を形成し、中心導体軸部211の先端に強電界を発生させることができれば、外側導体層20、接地導体層201は、必ずしも共振体空洞部区画部110、同軸共振体係止部109の全面に形成する必要はない。
そこで、本発明の高周波プラズマ点火装置1の幾つかの変形例として、図10(a)〜(f)に示した、それぞれの要部である絶縁体10a〜10fについて説明する。
なお、上記実施形態と同様の構成については同じ符号を付したので説明を省略する。
本図(a)、(b)に示すように、外側導体層20a、20b、接地導体層201a、201bを網目状に形成しても良い。
本図(c)に示すように、外側導体層20c、接地導体層201cに開空孔が多数存在していても良い。
本図(d)に示すように、外側導体層20d、接地導体層201dが千鳥模様となるように形成しても良い。
本図(e)に示すように、絶縁体10eの長手軸方向に直交する方向に一定幅で形成された外側導体層20eが軸方向に一定間隔で並んで横縞模様となるように形成しても良い。本図(f)に示すように、絶縁体10fの長手軸方向に平行な方向に一定幅で形成された外側導体層20eが周方向に一定間隔で並んで縦縞模様となるように形成しても良い。
なお、これらの変形例において、高周波の伝送を確実にするために、軸方向又は周方向に横断する導体層を追加する等、外側導体層20a〜fに適宜変更を加えても良い。
If the high-frequency MW is input to the center conductor 21, leakage of the high-frequency MW can be prevented, a resonance state can be formed in the resonator cavity 22, and a strong electric field can be generated at the tip of the center conductor shaft portion 211. 20, the ground conductor layer 201 is not necessarily formed on the entire surface of the resonator cavity section 110 and the coaxial resonator locking portion 109.
Therefore, as some modified examples of the high-frequency plasma ignition device 1 of the present invention, the insulators 10a to 10f, which are the main parts shown in FIGS. 10 (a) to 10 (f), will be described.
In addition, since the same code | symbol is attached | subjected about the structure similar to the said embodiment, description is abbreviate | omitted.
As shown in FIGS. 4A and 4B, the outer conductor layers 20a and 20b and the ground conductor layers 201a and 201b may be formed in a mesh shape.
As shown in FIG. 4C, a large number of open holes may exist in the outer conductor layer 20c and the ground conductor layer 201c.
As shown in FIG. 4D, the outer conductor layer 20d and the ground conductor layer 201d may be formed in a staggered pattern.
As shown in this figure (e), the outer conductor layer 20e formed with a constant width in the direction orthogonal to the longitudinal axis direction of the insulator 10e is formed so as to form a horizontal stripe pattern along the axial direction at regular intervals. Also good. As shown in this figure (f), the outer conductor layer 20e formed with a constant width in a direction parallel to the longitudinal axis direction of the insulator 10f is formed so as to form a vertical stripe pattern along the circumferential direction at regular intervals. Also good.
In these modifications, the outer conductor layers 20a to 20f may be modified as appropriate, for example, by adding a conductor layer that crosses in the axial direction or the circumferential direction in order to ensure high-frequency transmission.

図11を参照して、本発明の第2の実施形態における高周波プラズマ点火装置1gについて説明する。本実施形態においては、特に高圧電極放電部323に近い位置において外側導体層20gの一部を取り除いた外側導層体切欠部202を設けた点が上記実施例と相違する。
本実施形態においては、高圧電極放電部323に近い位置の外側導体層20が部分的に取り除かれているので、上記実施形態と同様の効果に加え、高圧電極30に高電圧HVが印加されたときに、外側導体層20gと高圧電極放電部323との間で放電することなく、確実に中心導体21の先端と高圧電極放電部323との間で放電するため安定した状態でプラズマを発生させることができる。したがって、更に信頼性の高い高周波プラズマ点火装置1gが実現できる。
なお、予め、マスキングを施して外側導体層20gを形成することによって外側導体層切欠部202を形成しても良いし、通常の外側導体層20を形成した後、高圧電極放電部323に近い位置の外側電極層の一部を除去して外側導体層切欠部202を形成しても良い。さらに、本実施形態を他の実施形態と組み合わせることも可能である。
With reference to FIG. 11, a high-frequency plasma ignition device 1g according to a second embodiment of the present invention will be described. The present embodiment is different from the above embodiment in that an outer conductive layer body cutout portion 202 is provided in which a part of the outer conductor layer 20g is removed particularly at a position close to the high-voltage electrode discharge portion 323.
In the present embodiment, since the outer conductor layer 20 at a position close to the high-voltage electrode discharge part 323 is partially removed, a high voltage HV is applied to the high-voltage electrode 30 in addition to the same effects as in the above-described embodiment. Sometimes, discharge is not reliably performed between the outer conductor layer 20g and the high-voltage electrode discharge part 323, but the discharge is reliably performed between the tip of the central conductor 21 and the high-voltage electrode discharge part 323, so that plasma is generated in a stable state. be able to. Therefore, a more reliable high-frequency plasma ignition device 1g can be realized.
Note that the outer conductor layer notch 202 may be formed by masking in advance to form the outer conductor layer 20g, or a position close to the high-voltage electrode discharge part 323 after the normal outer conductor layer 20 is formed. The outer conductor layer cutout 202 may be formed by removing a part of the outer electrode layer. Furthermore, this embodiment can be combined with other embodiments.

図12を参照して、本発明の第3の実施形態における高周波法ラズマ点火装置1hについて説明する。
上記実施形態においては、同軸共振体接地部挿通孔108から共振体空洞部区画孔110に縮径する同軸共振体係止部109に中心導体接地部210を係止させる構成について説明したが、本実施形態においては、(a)に示すように絶縁体10hとして、同軸共振体接地部挿通孔108hを本図共振体空洞部区画孔110よりも径小に形成し、さらに、同軸共振体接地部挿通孔108hよりも径小となるように縮径して中心導体接地部210hを係止させる同軸共振体係止部109hを設け、さらに、本図(b)に示すように、同軸共振体係止部109hの基端側の表面に中心導体接地部210hとの導通を図る接地部導体層201hを形成し、さらに中心導線挿通孔111の内周表面と同軸共振体係止部109hの先端側に位置し、共振体空洞部22を区画する共振体空洞底部112の表面にも接地導体層201hに連なる接地導体層203を形成する。
本実施形態によれば、同軸共振体係止部109hが内側に向かって縮径されて形成されているので、上述の効果と同様の効果に加え、絶縁体10の絶縁体大径部101h、絶縁体小径部102の外径を小さくし、さらに、ネジ部702hの小型化を図ることができる。
With reference to FIG. 12, a high-frequency method plasma ignition device 1h according to a third embodiment of the present invention will be described.
In the above embodiment, the configuration in which the center conductor grounding portion 210 is locked to the coaxial resonator locking portion 109 that is reduced in diameter from the coaxial resonator grounding portion insertion hole 108 to the resonator cavity partitioning hole 110 has been described. In the embodiment, as shown in (a), as the insulator 10h, a coaxial resonator grounding portion insertion hole 108h is formed to have a diameter smaller than that of the resonator cavity partitioning hole 110 in FIG. A coaxial resonator locking portion 109h is provided that is reduced in diameter so as to be smaller than the insertion hole 108h and locks the center conductor grounding portion 210h. Further, as shown in FIG. A ground portion conductor layer 201h is formed on the surface of the base end side of the stop portion 109h so as to be electrically connected to the center conductor ground portion 210h. Further, the inner peripheral surface of the center conductor insertion hole 111 and the distal end side of the coaxial resonator locking portion 109h Located at resonance Also forms a ground conductor layer 203 connected to the ground conductor layer 201h on the surface of the resonator cavity bottom 112 defining the cavity 22.
According to the present embodiment, since the coaxial resonator engagement portion 109h is formed to have a diameter reduced toward the inside, in addition to the same effect as the above-described effect, the insulator large diameter portion 101h of the insulator 10; The outer diameter of the insulator small diameter portion 102 can be reduced, and the screw portion 702h can be downsized.

図13を参照して、本発明の第4の実施形態における高周波プラズマ点火装置1iについて説明する。
本発明によれば、絶縁体10とハウジング70とが同心に配設されているので、本実施形態に示すように、絶縁体10h及びハウジング70iとして、ハウジング下部701iと絶縁体小径部102iとの間のガスポケットGPを拡大又は縮小してプラグの熱価を調整することも容易に可能である。
一方、従来の高周波プラズマ点火装置1zでは、絶縁体10zがハウジング70zに対して偏心した位置に配設されているため、内燃機関の燃焼室に露出している部分の熱容量に大きな偏りが生じているためプラグの熱価の調整が必ずしも容易ではなかった。したがって、本発明によれば、更に安定した点火が実現可能となる。
With reference to FIG. 13, the high-frequency plasma ignition device 1i in the 4th Embodiment of this invention is demonstrated.
According to the present invention, since the insulator 10 and the housing 70 are arranged concentrically, as shown in the present embodiment, as the insulator 10h and the housing 70i, a housing lower portion 701i and an insulator small diameter portion 102i are provided. It is also possible to easily adjust the heat value of the plug by enlarging or reducing the gas pocket GP therebetween.
On the other hand, in the conventional high-frequency plasma ignition device 1z, since the insulator 10z is disposed at a position eccentric to the housing 70z, a large deviation occurs in the heat capacity of the portion exposed to the combustion chamber of the internal combustion engine. Therefore, it is not always easy to adjust the heat value of the plug. Therefore, according to the present invention, more stable ignition can be realized.

ここで、図14、図15を参照して比較例として示す従来の高周波プラズマ点火装置1zの問題点について詳述する。なお、本発明との対比を容易にするため、同じ構成については同じ符号を付し、相違する点については対応する符号に枝番としてzを付した。
従来の高周波プラズマ点火装置1zにおいては、高圧電極30は、略筒状に形成された絶縁体10zに保持された状態で、ハウジング70zの中心軸CLから片側に偏心した絶縁体中心軸CL10の位置に載置され、絶縁体10zの中腹に設けた絶縁体径大部101zが略環状に形成した封止部材600z、601z、602zを介して絶縁体係止部705zとハウジング加締部708zとによって上下方向から挟持されている。
さらに、中心導体接地部210と中心導体軸部212とのよって構成された中心導体21は、中心導体接地部210をハウジング70とハウジング71とによって挟持され、ハウジング下半部71の内側に区画された共振体空洞部22zとハウジング71の一部を外側導体20zとして同軸共振体23zが形成されている。
ハウジング70zには、高周波導体挿通孔709zが穿設され、誘電蘇401を介して中心導体400が挿通され、中心導体中軸212の中心導体接地部210から所定高さに位置する高周波導入部213に接続されている。
従来の高周波プラズマ点火装置1zでは、外側導体20zを形成するのにハウジング下半部71の一部を利用しているため、一定値(例えば1mm)以上の厚みが必要となり、上述の如く、ネジ部712zの大きさをM14以下にすることが困難であった。
加えて、図15に示すように、高電圧が印加される中心電極30zを覆う略筒状の絶縁体10zは、高周波プラズマ点火装置1zの中心軸に対して偏心した位置に設けられているので、内燃機関E/GのシリンダヘッドSHに高周波プラズマ点火装置1zを締め付ける際に、適正トルク以上の力が負荷されると、金属製のハウジング70z、71zが撓んで、ハウジング70zの絶縁体係止部705zに係止された径変部104zを支点として、絶縁体10zの中心軸に直交する方向に対して、ねじ締め方向のモーメントMと逆向きのモーメントMとが作用し、径変部104zに亀裂を生じ、絶縁体10zの小径部102zが燃焼室CMB側に抜け落ちる虞があることが判明した。
特に、本図(c)に示すように、ハウジングネジ部712をシリンダヘッドSHに締め付けたときに受ける反力によって生じる回転モーメントMは、長軸状に伸びる絶縁体10zの下半部(小径部02z)に作用し、小さい力でも、支点となる絶縁体径変部104zとの距離が長いので絶縁体10zの下半部の側面がハウジング70zから受ける力は、大きなモーメントとなり、絶縁体10zの径変部104zに作用し、クラックを発生させることになるものと推察される。
Here, with reference to FIG. 14, FIG. 15, the problem of the conventional high frequency plasma ignition apparatus 1z shown as a comparative example is explained in full detail. In addition, in order to make contrast with this invention easy, the same code | symbol was attached | subjected about the same structure and z was attached | subjected as a branch number to the corresponding code | symbol about a different point.
In the conventional high-frequency plasma igniter 1z, high-voltage electrode 30, while being held by the insulator 10z formed in a substantially cylindrical shape, the insulator central axis CL 10 which is eccentric to one side from the center axis CL 1 of the housing 70z The insulator locking portion 705z and the housing caulking portion 708z are interposed via sealing members 600z, 601z, and 602z in which the insulator diameter large portion 101z provided in the middle of the insulator 10z is formed in a substantially annular shape. And are sandwiched from above and below.
Further, the center conductor 21 constituted by the center conductor grounding portion 210 and the center conductor shaft portion 212 is sandwiched between the housing 70 and the housing 71 and partitioned inside the housing lower half portion 71. A coaxial resonator 23z is formed by using the resonator cavity 22z and a part of the housing 71 as the outer conductor 20z.
A high-frequency conductor insertion hole 709z is formed in the housing 70z, the center conductor 400 is inserted through the dielectric layer 401, and the high-frequency introduction portion 213 located at a predetermined height from the center conductor grounding portion 210 of the center conductor central shaft 212. It is connected.
In the conventional high-frequency plasma ignition device 1z, since a part of the housing lower half 71 is used to form the outer conductor 20z, a thickness of a certain value (for example, 1 mm) or more is required. It was difficult to make the size of the portion 712z M14 or less.
In addition, as shown in FIG. 15, the substantially cylindrical insulator 10z that covers the central electrode 30z to which a high voltage is applied is provided at a position that is eccentric with respect to the central axis of the high-frequency plasma ignition device 1z. When the high-frequency plasma ignition device 1z is tightened on the cylinder head SH of the internal combustion engine E / G, if a force greater than an appropriate torque is applied, the metal housings 70z and 71z bend, and the housing 70z is locked with an insulator. the locked a diameter change section 104z in section 705z as a fulcrum, with respect to a direction perpendicular to the central axis of the insulator 10z, acts and the moment M 2 of the moment M 1 and reverse screwing direction, the diameter change It has been found that there is a possibility that a crack is generated in the portion 104z and the small diameter portion 102z of the insulator 10z falls out to the combustion chamber CMB side.
In particular, as shown in this figure (c), the rotational moment M 2 generated by the reaction force received when the housing screw part 712 is fastened to the cylinder head SH is the lower half part (small diameter) of the insulator 10z extending in a long axis shape. Since the distance to the insulator diameter changing portion 104z serving as a fulcrum is long even if a small force is applied to the portion 02z), the force received by the lower half side surface of the insulator 10z from the housing 70z becomes a large moment, and the insulator 10z It is presumed that this will act on the diameter changing portion 104z and cause cracks.

本発明は、上記実施形態に限定されるものではなく、高圧電極を絶縁保持する絶縁体の一部に同軸共振体の空洞部を区画すると共に、絶縁体の外周を覆うハウジングによって高電圧電極の先端部と同軸共振体の先端部とを内燃機関の燃焼室内に露出せしめて固定する本発明の趣旨に反しない限りにおいて適宜変更可能である。
例えば、上記実施形態においては、絶縁体10に同軸共振体接地部211を挿通するための同軸共振体接地部挿通孔108を穿設して、絶縁体10の基端側から中心導体21を挿通し、同軸共振体係止部109に中心導体接地部211を係止させる構造としたが、同軸共振体接地部挿通孔108を設けず、共振体空洞部区画孔108の上端に外径方向に僅かに拡径した略環状の溝を同軸共振体係止部109の替わりに設け、中心導体接地部211を径方向に弾性変形可能に形成して、縮径した状態で共振体空洞部区画孔108の先端側から挿入し、上述の環状溝内で弾性的に拡径させ、中心導体接地部211を係止させるようにしても良い。但し、このような構成とした場合には外部からの振動によって、係止部から中心導体接地部が外れないように留意しなければならない。
The present invention is not limited to the above embodiment, and the cavity of the coaxial resonator is defined in a part of the insulator for insulatingly holding the high-voltage electrode, and the high-voltage electrode is formed by a housing that covers the outer periphery of the insulator. As long as it does not contradict the gist of the present invention in which the tip portion and the tip portion of the coaxial resonator are exposed and fixed in the combustion chamber of the internal combustion engine, they can be changed as appropriate.
For example, in the embodiment described above, the coaxial resonator grounding portion insertion hole 108 for inserting the coaxial resonator grounding portion 211 into the insulator 10 is formed, and the center conductor 21 is inserted from the base end side of the insulator 10. Although the center conductor grounding portion 211 is locked to the coaxial resonator locking portion 109, the coaxial resonator grounding portion insertion hole 108 is not provided, and the upper end of the resonator cavity partitioning hole 108 is formed in the outer diameter direction. A substantially annular groove having a slightly enlarged diameter is provided in place of the coaxial resonator locking portion 109, and the center conductor grounding portion 211 is formed so as to be elastically deformable in the radial direction. It may be inserted from the front end side of 108 and elastically expanded in the above-mentioned annular groove to lock the center conductor grounding portion 211. However, in such a configuration, care must be taken so that the center conductor grounding portion does not come off from the locking portion due to external vibration.

1 高周波プラズマ点火装置
10 絶縁体
100 絶縁体頭部
101 絶縁体大径部
102 絶縁体小径部
103 絶縁体大径上面部
104 絶縁体径変部
105 高圧電極ステム挿通孔
106 高圧電極係止部
107 高圧電極中軸挿通孔
108 同軸共振体接地部挿通孔
109 同軸共振体係止部
110 共振体空洞部区画孔
12 同軸共振体基底部挿通孔封止絶縁体
120 封止絶縁体基体
121 高周波導体挿通孔
122 封止絶縁体内外側導体層
20 外側導体層
201 接地導体層
21 中心導体
211 中心導体接地部
212 中心導体軸部
213 高周波導線接続部
22 共振体空洞部
23 同軸共振体
30 高圧電極
301 高圧電極入力端子部
302 高圧電極ステム
31 導電性接着層(雑防抵抗層)
320 高圧電極中軸部
321 高圧電極係止部
322 高圧電極屈曲部
323 高圧電極放電部
40 同軸コネクタ
400 中心導線
401 誘電層
41 同軸ケーブル
410 中心導線
411 誘電層
412 外側胴体網組線
413 絶縁被覆
414 同軸コネクタ
50 同軸コネクタ固定部
500 コネクタ固定基体
501 コネクタ装着穴
502 絶縁体挿通孔
600、601、602 封止部材
603 ガスケット
70 ハウジング部
700 ハウジングボス部
701 ハウジング下部
702 小径部挿通孔
703 ハウジング上部
704 大径部挿通孔
705 絶縁体係止部
706 ハウジング六角部
707 ハウジングネジ部
708 ハウジング加締め部
80 高電圧入力部
800 高圧コネクタキャップ
810 高電圧入力端子
811 高電圧供給ハーネス
90 点火エネルギ供給制御部
IGt 点火信号
HV 高電圧
MW 高周波
DESCRIPTION OF SYMBOLS 1 High frequency plasma ignition apparatus 10 Insulator 100 Insulator head 101 Insulator large diameter part 102 Insulator small diameter part 103 Insulator large diameter upper surface part 104 Insulator diameter changing part 105 High voltage electrode stem insertion hole 106 High voltage electrode locking part 107 High-voltage electrode middle shaft insertion hole 108 Coaxial resonator grounding portion insertion hole 109 Coaxial resonator locking portion 110 Resonator cavity section hole 12 Coaxial resonator base portion insertion hole Sealing insulator 120 Sealing insulator base 121 High-frequency conductor insertion hole 122 Outer conductor layer 20 in the sealing insulator Outer conductor layer 201 Ground conductor layer 21 Center conductor 211 Center conductor ground section 212 Center conductor shaft section 213 High-frequency conductor connecting section 22 Resonator cavity section 23 Coaxial resonator
30 High Voltage Electrode 301 High Voltage Electrode Input Terminal Section 302 High Voltage Electrode Stem 31 Conductive Adhesive Layer (Miscellaneous Resistance Layer)
320 High-voltage electrode middle shaft portion 321 High-voltage electrode locking portion 322 High-voltage electrode bent portion 323 High-voltage electrode discharge portion 40 Coaxial connector 400 Center conductor 401 Dielectric layer 41 Coaxial cable 410 Center conductor 411 Dielectric layer 412 Outer body network assembly wire 413 Insulation coating 414 Coaxial Connector 50 Coaxial connector fixing part 500 Connector fixing base 501 Connector mounting hole 502 Insulator insertion hole 600, 601, 602 Sealing member 603 Gasket 70 Housing part 700 Housing boss part 701 Housing lower part 702 Small diameter part insertion hole 703 Housing upper part 704 Large diameter Part insertion hole 705 Insulator locking part 706 Housing hexagon part 707 Housing screw part 708 Housing caulking part 80 High voltage input part 800 High voltage connector cap 810 High voltage input terminal 811 High voltage supply harness 90 Ignition energy Gi supply control part IGt Ignition signal HV High voltage MW High frequency

特開2010−96109号公報JP 2010-96109 A

Claims (4)

高周波を発振する高周波電源と高電圧を印加する高電圧電源とを有する点火エネルギ供給制御装置と、内側導体と、該内側導体の周囲に所定の空洞部を区画して、外側導体を同軸に配設した同軸共振体に上記高周波電源から高周波を入力して、内側導体の先端の電界強度を高くし、高電圧電極に上記高電圧電源から高電圧を印加して上記高電圧電極の先端側に位置する放電部と上記中心導体の中心導体の先端部との間で放電を行い、上記内側導体の先端の周囲の気体を高エネルギのプラズマ状態として内燃機関の点火を行う高周波プラズマ点火装置であって、
上記高圧電極を絶縁保持する絶縁体の一部に上記同軸共振体の空洞部を区画すると共に、上記絶縁体の外周を覆うハウジングによって上記高電圧電極の先端部と上記同軸共振体の先端部とを上記内燃機関の燃焼室内に露出せしめて固定したことを特徴とする高周波プラズマ点火装置。
Ignition energy supply control device having a high-frequency power source that oscillates a high frequency and a high-voltage power source that applies a high voltage, an inner conductor, a predetermined cavity around the inner conductor, and an outer conductor arranged coaxially A high frequency is input from the high frequency power source to the coaxial resonator provided to increase the electric field strength at the tip of the inner conductor, and a high voltage is applied to the high voltage electrode from the high voltage power source to the tip side of the high voltage electrode. A high-frequency plasma ignition device that performs an electric discharge between a discharge portion positioned and a front end portion of the central conductor of the central conductor, and ignites an internal combustion engine with a gas around the front end of the inner conductor as a high energy plasma state. And
The cavity of the coaxial resonator is partitioned into a part of the insulator for insulatingly holding the high-voltage electrode, and the tip of the high-voltage electrode and the tip of the coaxial resonator are covered by a housing that covers the outer periphery of the insulator. A high-frequency plasma ignition device characterized by being exposed and fixed in the combustion chamber of the internal combustion engine.
上記絶縁体の内側に区画した共振体空洞部の内周壁の表面の全部又は一部を覆う金属膜からなる外側導体層と、共振体空洞部の中心に載置された内側導体とによって上記同軸共振体を構成した請求項1に記載の高周波プラズマ点火装置。   The coaxial is formed by an outer conductor layer made of a metal film covering all or part of the surface of the inner peripheral wall of the resonator cavity section partitioned inside the insulator, and an inner conductor placed at the center of the resonator cavity section. The high-frequency plasma ignition device according to claim 1, wherein the resonator is configured. 上記外側導体層の厚みが10μm以上、100μm以下である請求項1又は2に記載の高周波プラズマ点火装置。   3. The high-frequency plasma ignition device according to claim 1, wherein the outer conductor layer has a thickness of 10 μm or more and 100 μm or less. 高周波を発振する高周波電源と高電圧を印加する高電圧電源とを有する点火エネルギ供給制御装置と、内側導体と、該内側導体の周囲に所定の空洞部を区画して、外側導体を同軸に配設した同軸共振体に上記高周波電源から高周波を入力して、内側導体の先端の電界強度を高くし、高電圧電極に上記高電圧電源から高電圧を印加して上記高電圧電極の先端側に位置する放電部と上記中心導体の中心導体の先端部との間で放電を行い、上記内側導体の先端の周囲の気体を高エネルギのプラズマ状態として内燃機関の点火を行う高周波プラズマ点火装置の製造方法であって、
少なくとも、絶縁性耐熱材料を用いて、加圧成型、HIP成型、SIP成型、射出成形、又は押出成形のいずれかの成型方法により内側に共振体空洞部区画孔を有する絶縁体を形成する絶縁体形成工程と、
上記共振体空洞部区画孔の内周表面及び共振体係止部の表面に、耐熱性の高い導電性材料を用いて、メッキ、CVD(化学気相成長法)、PVD(物理気相法)、真空蒸着、金属箔貼付、印刷、ダイレクトボンディングのいずれかにより、外側導体層を形成する外側導体層形成工程と、
金属材料を略筒状に形成したハウジングに上記絶縁体を同心に配設して、所定の封止部材を介して加締め固定する組付、加締め工程とを具備することを特徴とする高周波プラズマ点火装置の製造方法。
Ignition energy supply control device having a high-frequency power source that oscillates a high frequency and a high-voltage power source that applies a high voltage, an inner conductor, a predetermined cavity around the inner conductor, and an outer conductor arranged coaxially A high frequency is input from the high frequency power source to the coaxial resonator provided to increase the electric field strength at the tip of the inner conductor, and a high voltage is applied to the high voltage electrode from the high voltage power source to the tip side of the high voltage electrode. Manufacture of a high-frequency plasma ignition device that discharges between a discharge portion positioned and a tip of the center conductor of the center conductor, and ignites an internal combustion engine with a gas around the tip of the inner conductor as a high energy plasma state A method,
Insulator that forms an insulator having a resonator cavity partition hole on the inside using at least an insulating heat-resistant material by any one of pressure molding, HIP molding, SIP molding, injection molding, or extrusion molding Forming process;
The inner peripheral surface of the cavity hollow section hole and the surface of the resonator locking portion are plated, CVD (chemical vapor deposition), PVD (physical vapor deposition) using a conductive material having high heat resistance. The outer conductor layer forming step of forming the outer conductor layer by any one of vacuum deposition, metal foil sticking, printing, direct bonding,
A high frequency device comprising: an assembly in which the insulator is concentrically disposed in a housing formed of a metal material in a substantially cylindrical shape, and caulking and fixing via a predetermined sealing member; A method for manufacturing a plasma ignition device.
JP2010270704A 2010-12-03 2010-12-03 High frequency plasma ignition device and manufacturing method thereof Pending JP2012119273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270704A JP2012119273A (en) 2010-12-03 2010-12-03 High frequency plasma ignition device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270704A JP2012119273A (en) 2010-12-03 2010-12-03 High frequency plasma ignition device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012119273A true JP2012119273A (en) 2012-06-21

Family

ID=46501861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270704A Pending JP2012119273A (en) 2010-12-03 2010-12-03 High frequency plasma ignition device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012119273A (en)

Similar Documents

Publication Publication Date Title
JP5423417B2 (en) High frequency plasma ignition device
KR101694685B1 (en) HF Ignition Device
JP6313745B2 (en) Corona igniter with improved electrical performance
JP5533623B2 (en) High frequency plasma ignition device
US9755405B2 (en) Corona suppression at the high voltage joint through introduction of a semi-conductive sleeve between the central electrode and the dissimilar insulating materials
JP5902182B2 (en) RF spark plug short circuit prevention
JP6238895B2 (en) Corona igniter with temperature control function
US5371436A (en) Combustion ignitor
JP2016522544A (en) Corona igniter with hermetic combustion seal
WO2013035880A1 (en) High-frequency radiation plug
CN103967684A (en) Corona ignition device
JP2012119273A (en) High frequency plasma ignition device and manufacturing method thereof
JP2016522386A (en) Sheath type glow plug with heating element made of inner contact type ceramic and method for manufacturing the same
JP6503397B2 (en) Spark plug
US10008831B2 (en) Corona suppression at materials interface through gluing of the components
WO2013035881A1 (en) Antenna structure, high-frequency radiation plug, and internal combustion engine
CN102884686B (en) Spark plug provided with a means for preventing short circuits
CN111656628B (en) Forming jacket for electrical stress grading in corona ignition system
CN113412564B (en) Corona ignition assembly including a high voltage connection and method of making a corona ignition assembly
JP6677867B2 (en) Socket and spark plug
JP2014175177A (en) Spark plug for internal combustion engine