JP2012119169A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2012119169A
JP2012119169A JP2010268027A JP2010268027A JP2012119169A JP 2012119169 A JP2012119169 A JP 2012119169A JP 2010268027 A JP2010268027 A JP 2010268027A JP 2010268027 A JP2010268027 A JP 2010268027A JP 2012119169 A JP2012119169 A JP 2012119169A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
membrane
protective film
swelling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010268027A
Other languages
Japanese (ja)
Inventor
Wataru Otsu
亘 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010268027A priority Critical patent/JP2012119169A/en
Publication of JP2012119169A publication Critical patent/JP2012119169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the durability of an electrolyte membrane having high proton conductivity.SOLUTION: In a cell 15, a membrane electrode assembly (MEA) comprising an anode 21 and a cathode 22 on both sides of an electrolyte membrane 20, is held between gas diffusion layers 23 and 24 and gas separators 25 and 26. Via the separators, an in-cell fuel gas passage 47 and an in-cell oxidant gas passage 48 with a groove width L face the electrolyte membrane 20. The electrolyte membrane 20 has properties satisfying that a swelling pressure in the membrane caused by swelling, is lower than a buckling load of the electrolyte membrane caused by membrane deformation due to swelling and causing the electrolyte membrane 20 to buckle into the gas passages with the groove width L.

Description

本発明は、電解質膜の両膜面にアノードとカソードの両電極を接合した膜電極接合体をガス拡散層および流路部材で挟持した燃料電池に関する。   The present invention relates to a fuel cell in which a membrane electrode assembly in which both anode and cathode electrodes are joined to both membrane surfaces of an electrolyte membrane is sandwiched between a gas diffusion layer and a flow path member.

燃料電池は、燃料とその酸化剤、例えば、水素と酸素の電気化学反応によって発電する。こうした燃料電池では、プロトン伝導性を有する電解質膜(例えば、固体高分子膜)の両膜面にアノードとカソードの両電極を形成し、この両電極に、ガス拡散層を経て燃料ガスと酸化ガス、例えば水素ガスと空気を供給する。   A fuel cell generates electricity by an electrochemical reaction between fuel and its oxidant, for example, hydrogen and oxygen. In such a fuel cell, both anode and cathode electrodes are formed on both membrane surfaces of a proton-conducting electrolyte membrane (for example, a solid polymer membrane), and a fuel gas and an oxidizing gas are passed through the gas diffusion layer on both electrodes. For example, hydrogen gas and air are supplied.

燃料電池の発電は、電解質膜を介した電気化学反応の進行状況によって左右され、電解質膜のプロトン伝導性は、膜が適宜な湿潤状態にあるときに好適となる。このため、電解質膜の乾燥をできるだけ防ぐよう乾燥時には加湿したガス供給を行う等の対処が通常なされているが、こうした状況下にあっても、電解質膜は乾燥と湿潤を繰り返す。電解質膜の乾燥と湿潤は、膜の収縮と膨張を招くことから、電解質膜にシワや折れ等が起きやすくなる。こうしたシワや折れ等は、電解質膜の破損によるクロスリークの原因となり得る。よって、電解質膜の耐久性の向上を図るため、種々の提案がなされている(例えば、下記特許文献1)。   The power generation of the fuel cell depends on the progress of the electrochemical reaction through the electrolyte membrane, and the proton conductivity of the electrolyte membrane is suitable when the membrane is in an appropriate wet state. For this reason, measures such as supplying a humidified gas at the time of drying are usually taken so as to prevent the electrolyte membrane from being dried as much as possible. However, even under such circumstances, the electrolyte membrane repeats drying and wetting. Drying and wetting of the electrolyte membrane causes contraction and expansion of the membrane, so that the electrolyte membrane is likely to be wrinkled or broken. Such wrinkles and breaks can cause cross leaks due to breakage of the electrolyte membrane. Therefore, various proposals have been made to improve the durability of the electrolyte membrane (for example, Patent Document 1 below).

特開2007−165077号公報JP 2007-165077 A

上記の特許文献で提案された技術では、膜の乾湿の推移の際に生じる電解質膜の面方向の寸法変化を乾燥状態における電解質膜の面方向の最大弾性変形量より小さくすることで、シワや折れの形成を抑制してクロスリークに対する耐久性を高めている。ところで、電解質膜の乾湿の繰り返しについての対処が可能とはいえ、燃料電池の使用環境や運転状態は多岐に亘るため、例えば、燃料電池運転が低加湿の電解質膜にてなされることも少なくない。電解質膜が低加湿であるとプロトン伝導性が低下するので、その対処としては、電解質膜のイオン交換容量を大きくして低加湿時のプロトン伝導性を高めることが有効である。しかしながら、イオン交換容量を大きくすると、電解質膜の膨潤率が概ね大きくなって膨潤に伴う膜の変形も大きくなることから、膜の乾湿の繰り返し以外の要因で電解質膜にシワや折れ等が起きやすくなることが危惧される。   In the technique proposed in the above-mentioned patent document, the dimensional change in the surface direction of the electrolyte membrane that occurs during the transition of the wet and dry state of the membrane is made smaller than the maximum elastic deformation amount in the surface direction of the electrolyte membrane in the dry state. The durability against cross leaks is enhanced by suppressing the formation of folds. By the way, although it is possible to cope with repeated drying and wetting of the electrolyte membrane, there are various usage environments and operating conditions of the fuel cell. For example, the fuel cell operation is often performed with a low-humidified electrolyte membrane. . When the electrolyte membrane is low humidified, the proton conductivity is lowered. As a countermeasure, it is effective to increase the ion exchange capacity of the electrolyte membrane and increase the proton conductivity at the time of low humidification. However, when the ion exchange capacity is increased, the swelling rate of the electrolyte membrane is generally increased, and the deformation of the membrane accompanying the swelling also increases. Therefore, the electrolyte membrane is likely to be wrinkled or broken due to factors other than repeated drying and wetting of the membrane. It is feared to become.

本発明は、上述した従来の課題の少なくとも一部を解決するためになされたものであり、プロトン伝導性を高めた上で電解質膜の耐久性の向上を図ることを目的とする。   The present invention has been made to solve at least a part of the above-described conventional problems, and an object of the present invention is to improve the durability of an electrolyte membrane while improving proton conductivity.

本発明は、上述の課題の少なくとも一部を解決することを目的としてなされたものであり、以下の構成を採用した。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the following configuration is adopted.

[適用1:燃料電池]
電解質膜の両膜面にアノードとカソードの両電極を接合した膜電極接合体をガス拡散層で挟持した上で、前記ガス拡散層に対してのガスの給排に関与するガス流路を有するガス流路部材で前記膜電極接合体と前記ガス拡散層とを挟持した燃料電池であって、
前記電解質膜は、膨潤に伴って膜内に発生する膨潤圧と、膨潤に伴う前記電解質膜の変形により該変形した電解質膜が前記ガス流路に入り込むよう座屈する際に前記電解質膜に掛かる座屈荷重との関係において、前記膨潤圧が前記座屈荷重より小さい性状を有する
ことを要旨とする。
[Application 1: Fuel cell]
A membrane electrode assembly in which both anode and cathode electrodes are joined to both membrane surfaces of an electrolyte membrane is sandwiched between gas diffusion layers, and a gas flow path is provided for gas supply / discharge to the gas diffusion layer. A fuel cell in which the membrane electrode assembly and the gas diffusion layer are sandwiched by a gas flow path member,
The electrolyte membrane has a swelling pressure generated in the membrane as it swells, and a seat on the electrolyte membrane when the deformed electrolyte membrane buckles due to deformation of the electrolyte membrane due to swelling. The gist is that the swelling pressure has a property smaller than the buckling load in relation to the bending load.

上記構成を備える燃料電池において、電解質膜では膨潤に伴ってその膜内において膨潤圧が発生すると共に、膨潤に伴った変形を起こす。電解質膜は、その両膜面に両電極を接合した膜電極接合体として、ガス拡散層およびガス流路部材で挟持されて拘束されるものの、ガス流路部材のガス流路と向き合う箇所ではその拘束が緩む。よって、膨潤に伴う変形により、電解質膜がガス流路に入り込むよう座屈する余地があり、その座屈箇所には膨潤圧が作用する。   In the fuel cell having the above-described configuration, in the electrolyte membrane, a swelling pressure is generated in the membrane as it swells, and deformation occurs in association with the swelling. Although the electrolyte membrane is sandwiched and restrained by the gas diffusion layer and the gas flow path member as a membrane electrode assembly in which both electrodes are joined to both membrane surfaces, the electrolyte membrane is located at a location facing the gas flow path of the gas flow path member. The restraint is loosened. Therefore, there is room for buckling so that the electrolyte membrane enters the gas flow path due to deformation accompanying swelling, and the swelling pressure acts on the buckled portion.

上記構成を備える燃料電池では、電解質膜の膨潤圧と座屈荷重との関係において、膨潤圧が座屈荷重より小さい性状を有するので、膨潤圧は座屈荷重を超えないことになる。この結果、上記構成の燃料電池によれば、ガス流路と向き合った座屈箇所において、電解質膜には座屈荷重を超える膨潤圧が作用しないので、電解質膜のシワや折れに起因する損傷を抑制でき、耐久性の向上を図ることができる。しかも、膨潤圧は、電解質膜のイオン交換容量(IEC)の増大により大きくなる関係にあることから、座屈荷重を超えない膨潤圧となる範囲でイオン交換容量を高めて、プロトン伝導性の向上をも図ることができる。この際のイオン交換容量は、電解質膜の加湿状態を問わず低加湿の際であっても高めることが可能であるので、上記構成の燃料電池によれば、低加湿状況下での発電能力の維持もしくは向上も図ることができる。   In the fuel cell having the above-described configuration, the swelling pressure does not exceed the buckling load because the swelling pressure is smaller than the buckling load in the relationship between the swelling pressure of the electrolyte membrane and the buckling load. As a result, according to the fuel cell having the above-described configuration, the swelling pressure exceeding the buckling load does not act on the electrolyte membrane at the buckled portion facing the gas flow path, so that damage caused by wrinkles or breakage of the electrolyte membrane is not caused. It can be suppressed and durability can be improved. In addition, since the swelling pressure has a relationship that increases as the ion exchange capacity (IEC) of the electrolyte membrane increases, the ion exchange capacity is increased within a range that does not exceed the buckling load, and proton conductivity is improved. Can also be achieved. The ion exchange capacity at this time can be increased even in the case of low humidification regardless of the humidified state of the electrolyte membrane. Therefore, according to the fuel cell having the above-described configuration, the power generation capacity under low humidification conditions is improved. It can also be maintained or improved.

上記した燃料電池は、次のような態様とすることができる。例えば、電解質膜周縁において前記電解質膜を被覆する保護フィルムと、該保護フィルムを介在させて前記膜電極接合体の周縁をシールするシール部材とを備えた上で、該シール部材を前記ガス拡散層と共に前記ガス流路部材で挟持する。こうして周縁でのシールを図った上で、前記電解質膜については、これを、膨潤を起こす湿潤状況での膜の弾性率が前記保護フィルムの弾性率より大きく、且つ、膨潤に伴う前記膨潤圧が前記保護フィルムの座屈荷重より小さい性状を有するものとすることができる。こうすれば、次の利点がある。   The fuel cell described above can be configured as follows. For example, a protective film that covers the electrolyte membrane at the periphery of the electrolyte membrane and a seal member that seals the periphery of the membrane electrode assembly with the protective film interposed between the protective film and the gas diffusion layer At the same time, it is sandwiched between the gas flow path members. In this way, after sealing at the periphery, the electrolyte membrane has an elastic modulus of the membrane in a wet condition causing swelling, and the swelling pressure accompanying the swelling is higher than the elastic modulus of the protective film. It may have a property smaller than the buckling load of the protective film. This has the following advantages.

まず、保護フィルムで膜電極接合体の周縁をシールする際に起き得る状況について、先に説明する。保護フィルムによる被覆箇所(以下、フィルム被覆箇所)において、電解質膜は、保護フィルムによる拘束を受け、フィルム被覆箇所から電極側に離れるとその拘束が緩む。よって、電極側のフィルム被覆箇所近傍では、電解質膜は、膨潤に伴う変形の影響を受けやすい。そして、電解質膜のイオン交換容量を大きくすると、既述したように膨潤に伴う膜の変形も大きくなることから、電極側のフィルム被覆箇所近傍で、電解質膜にシワや折れ等が起きやすくなることが危惧される。上記の態様の燃料電池では、こうした観点に立って、電解質膜を、膨潤を起こす湿潤状況での膜の弾性率が前記保護フィルムの弾性率より大きく、且つ、膨潤に伴う前記膨潤圧が前記保護フィルムの座屈荷重より小さい性状を有するものとした。   First, the situation that may occur when the periphery of the membrane electrode assembly is sealed with the protective film will be described first. In the coating | coated location (henceforth a film coating location) with a protective film, an electrolyte membrane receives restrictions by a protective film, and if the separation | spacing leaves | separates from a film coating location to the electrode side, the restrictions will loosen. Therefore, in the vicinity of the film-covered portion on the electrode side, the electrolyte membrane is susceptible to deformation due to swelling. If the ion exchange capacity of the electrolyte membrane is increased, the membrane deformation due to swelling also increases as described above, so that the electrolyte membrane is likely to be wrinkled or broken in the vicinity of the film coating portion on the electrode side. Is concerned. In the fuel cell of the above aspect, from such a viewpoint, the electrolyte membrane has a modulus of elasticity in a wet state causing swelling, which is larger than the modulus of elasticity of the protective film, and the swelling pressure associated with swelling is The film had properties smaller than the buckling load of the film.

この態様の燃料電池では、電解質膜とこれを挟持する保護フィルムについて、膨潤を起こす湿潤状況での電解質膜の弾性率の方が保護フィルムの弾性率より大きくした。よって、電解質膜は、保護フィルムによるフィルム被覆箇所では拘束を受け、フィルム被覆箇所から電極側に離れるとその拘束が緩むものの、フィルム被覆箇所近傍での膨潤に伴う電解質膜の変形は、保護フィルムが膜変形に伴って変形可能なことから、保護フィルムにより強く規制されないように起きる。しかも、上記の態様の燃料電池では、膨潤に伴って電解質膜膜内に発生する膨潤圧が保護フィルムの座屈荷重より小さいので、電解質膜の膨潤圧は保護フィルムの座屈荷重を超えないことになる。これらの結果、上記態様の燃料電池によれば、保護フィルムによるフィルム被覆箇所において、保護フィルムにはその座屈荷重を超える膨潤圧が作用しないので、当該保護フィルムとこれに挟持された電解質膜にあっては、シワや折れに起因する損傷を抑制でき、耐久性の向上を図ることができる。   In the fuel cell of this aspect, for the electrolyte membrane and the protective film sandwiching the electrolyte membrane, the elastic modulus of the electrolyte membrane in a wet state causing swelling is greater than that of the protective film. Therefore, the electrolyte membrane is constrained at the film coating location by the protective film, and when the electrode coating is separated from the film coating location, the constraint is loosened, but the deformation of the electrolyte membrane due to swelling near the film coating location is Since the film can be deformed along with the film deformation, the film is not strongly regulated by the protective film. Moreover, in the fuel cell of the above aspect, since the swelling pressure generated in the electrolyte membrane with the swelling is smaller than the buckling load of the protective film, the swelling pressure of the electrolyte membrane should not exceed the buckling load of the protective film. become. As a result, according to the fuel cell of the above aspect, since the swelling pressure exceeding the buckling load does not act on the protective film at the film covering portion by the protective film, the protective film and the electrolyte membrane sandwiched between the protective film and the electrolyte film In this case, damage due to wrinkles and breakage can be suppressed, and durability can be improved.

これに加え、電解質膜の膨潤圧は、電解質膜のイオン交換容量(IEC)の増大により大きくなる関係にあることから、保護フィルムの座屈荷重を超えない膨潤圧となる範囲でイオン交換容量を高めて、プロトン伝導性の向上をも図ることができる。この際のイオン交換容量は、電解質膜の加湿状態を問わず低加湿の際であっても高めることが可能であるので、上記態様の燃料電池によれば、低加湿状況下での発電能力の維持もしくは向上も図ることができる。そして、この態様は、電解質膜の膨潤圧をその電解質膜自体の座屈荷重より小さい性状を有する上記構成の適用1の燃料電池の一態様であることから、上記構成の適用1の燃料電池の上記効果をより高めることができることが可能となる。   In addition to this, since the swelling pressure of the electrolyte membrane has a relationship that increases as the ion exchange capacity (IEC) of the electrolyte membrane increases, the ion exchange capacity is set within a range that does not exceed the buckling load of the protective film. The proton conductivity can be improved by increasing the proton conductivity. Since the ion exchange capacity at this time can be increased even in the case of low humidification regardless of the humidified state of the electrolyte membrane, according to the fuel cell of the above aspect, the power generation capacity under low humidification conditions is improved. It can also be maintained or improved. And this aspect is one aspect of the fuel cell of application 1 of the above configuration having the property that the swelling pressure of the electrolyte membrane is smaller than the buckling load of the electrolyte membrane itself. The above effect can be further enhanced.

本実施例の燃料電池10を構成する単セル15を断面視して概略的に示す説明図である。It is explanatory drawing which shows roughly the cross section of the single cell 15 which comprises the fuel cell 10 of a present Example. 膨潤率Vmを変数xとした場合の関数y(={−ln(Em/IEC・ρ)})を表したグラフである。It is a graph showing the function y (= {-ln (Em / IEC * ρ)}) when the swelling rate V m is a variable x. 単セル15が有するMEAを平面視して電極領域と周縁領域の区別を示す説明図である。It is explanatory drawing which shows distinction of an electrode area | region and a peripheral area | region by planarly viewing MEA which the single cell 15 has. 変形例の前提となる電解質膜20の周縁における各部材の構成を断面視して概略的に示す説明図である。It is explanatory drawing which shows schematically the structure of each member in the periphery of the electrolyte membrane 20 used as the premise of a modified example by cross-sectional view.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本実施例の燃料電池10を構成する単セル15を断面視して概略的に示す説明図である。本実施例の燃料電池10は、図1に示す構成の単セル15を複数積層したスタック構造の固体高分子型燃料電池である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a single cell 15 constituting the fuel cell 10 of the present embodiment in a cross-sectional view. The fuel cell 10 of this embodiment is a polymer electrolyte fuel cell having a stack structure in which a plurality of single cells 15 having the configuration shown in FIG. 1 are stacked.

単セル15は、電解質膜20の両側にアノード21とカソード22の両電極を備える。このアノード21とカソード22は、電解質膜20の両膜面に形成され電解質膜20と共に膜電極接合体(Membrane Electrode Assembly/MEA)を形成する。この他、単セル15は、電極形成済みの電解質膜20を両側から挟持するアノード側ガス拡散層23とカソード側ガス拡散層24とガスセパレーター25,26を備え、両ガス拡散層は、対応する電極に接合されている。   The single cell 15 includes both electrodes of an anode 21 and a cathode 22 on both sides of the electrolyte membrane 20. The anode 21 and the cathode 22 are formed on both membrane surfaces of the electrolyte membrane 20 and form a membrane electrode assembly (MEA) together with the electrolyte membrane 20. In addition, the single cell 15 includes an anode-side gas diffusion layer 23, a cathode-side gas diffusion layer 24, and gas separators 25 and 26 that sandwich the electrode-formed electrolyte membrane 20 from both sides, and both gas diffusion layers correspond to each other. It is joined to the electrode.

電解質膜20は、固体高分子材料(電解質樹脂)により形成されたプロトン伝導性のイオン交換膜であり、そのイオン交換容量(IEC)に基づいたプロトン伝導性を発揮する。本実施例では、この電解質膜20を、フッ素系高分子電解質樹脂により形成されたプロトン伝導性のイオン交換膜(以下、便宜上、フッ素系イオン交換膜と称する)、或いは、炭化水素系高分子電解質樹脂により形成されたプロトン伝導性のイオン交換膜(以下、便宜上、炭化水素系イオン交換膜と称する)のいずれかとした。この場合、フッ素系イオン交換膜は、パーフルオロカーボンスルホン酸樹脂膜に代表される主鎖および側鎖の水素が全てフッ素で置換されたフッ素系高分子電解質樹脂により形成されたイオン交換膜である。炭化水素系イオン交換膜は、スルホン酸基、カルボン酸基、ボロン酸基、ホスホン酸基、水酸基等のイオン交換基を有した上で、炭素と水素からなる高分子の主鎖を有する炭化水素系高分子電解質樹脂により形成されたイオン交換膜であり、部分的にフッ素置換されているものや、フッ素以外の異種原子を含んでいるものが含まれる。   The electrolyte membrane 20 is a proton conductive ion exchange membrane formed of a solid polymer material (electrolyte resin), and exhibits proton conductivity based on its ion exchange capacity (IEC). In this embodiment, the electrolyte membrane 20 is a proton-conductive ion exchange membrane (hereinafter referred to as a fluorine ion exchange membrane for convenience) formed of a fluorine polymer electrolyte resin, or a hydrocarbon polymer electrolyte. One of proton-conductive ion exchange membranes (hereinafter, referred to as a hydrocarbon ion exchange membrane for convenience) formed of a resin. In this case, the fluorine-based ion exchange membrane is an ion-exchange membrane formed of a fluorine-based polymer electrolyte resin in which the main chain and side chain hydrogen represented by the perfluorocarbon sulfonic acid resin membrane are all substituted with fluorine. Hydrocarbon ion-exchange membrane is a hydrocarbon having a polymer main chain composed of carbon and hydrogen after having an ion exchange group such as a sulfonic acid group, a carboxylic acid group, a boronic acid group, a phosphonic acid group, and a hydroxyl group. Ion exchange membranes formed of a polymer electrolyte resin, including those partially substituted with fluorine and those containing hetero atoms other than fluorine.

アノード21およびカソード22は、触媒(例えば白金、あるいは白金合金)を備えており、これらの触媒を、導電性を有する担体(例えば、カーボン粒子)上に担持させることによって形成されている。アノード側ガス拡散層23とカソード側ガス拡散層24は、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロスによって形成される。   The anode 21 and the cathode 22 include a catalyst (for example, platinum or a platinum alloy), and are formed by supporting these catalysts on a conductive carrier (for example, carbon particles). The anode side gas diffusion layer 23 and the cathode side gas diffusion layer 24 are formed of a conductive member having gas permeability, for example, carbon paper or carbon cloth.

ガスセパレーター25は、アノード側ガス拡散層23の側に、水素を含有する燃料ガスを流すセル内燃料ガス流路47を備える。ガスセパレーター26は、カソード側ガス拡散層24の側に、酸素を含有する酸化ガス(本実施例では、空気)を流すセル内酸化ガス流路48を備える。これら両セパレーターにおける上記の両ガス流路は、図1に示すように溝幅Lで電極面において形成され、それぞれの上記ガス拡散層に対してのガスの給排に関与する。なお、図には記載していないが、隣り合う単セル15間には、例えば、冷媒が流れるセル間冷媒流路を形成することができる。これらガスセパレーター25,26は、ガス不透過な導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンや、焼成カーボン、あるいはステンレス鋼などの金属材料により形成されている。   The gas separator 25 is provided with an in-cell fuel gas flow channel 47 for flowing a fuel gas containing hydrogen on the anode side gas diffusion layer 23 side. The gas separator 26 is provided with an in-cell oxidizing gas flow path 48 through which an oxidizing gas containing oxygen (air in this embodiment) flows, on the cathode side gas diffusion layer 24 side. Both the gas flow paths in these separators are formed on the electrode surface with a groove width L as shown in FIG. 1, and are involved in the supply and discharge of gas to and from the respective gas diffusion layers. Although not shown in the figure, an inter-cell refrigerant flow path through which a refrigerant flows can be formed between adjacent single cells 15, for example. These gas separators 25 and 26 are made of a gas-impermeable conductive member, for example, a dense carbon made by compressing carbon and impermeable to gas, baked carbon, or a metal material such as stainless steel.

図1では図示していないが、ガスセパレーター25,26の外周近傍の所定の位置には、複数の孔部が形成されている。これらの複数の孔部は、ガスセパレーター25,26が他の部材と共に積層されて燃料電池10が組み立てられたときに互いに重なって、燃料電池10内を積層方向に貫通する流路を形成する。すなわち、上記したセル内燃料ガス流路47やセル内酸化ガス流路48、あるいはセル間冷媒流路に対して、燃料ガスや酸化ガス、あるいは冷媒を給排するためのマニホールドを形成する。   Although not shown in FIG. 1, a plurality of holes are formed at predetermined positions near the outer peripheries of the gas separators 25 and 26. The plurality of holes overlap each other when the gas separators 25 and 26 are laminated together with other members and the fuel cell 10 is assembled, thereby forming a flow path that penetrates the fuel cell 10 in the lamination direction. That is, a manifold for supplying and discharging fuel gas, oxidizing gas, or refrigerant is formed with respect to the in-cell fuel gas channel 47, the in-cell oxidizing gas channel 48, or the inter-cell refrigerant channel.

本実施例の燃料電池10は、ガスセパレーター25のセル内燃料ガス流路47からの水素ガスを、アノード側ガス拡散層23で拡散ししつつアノード21に供給する。空気については、ガスセパレーター26のセル内酸化ガス流路48からの空気を、カソード側ガス拡散層24で拡散ししつつカソード22に供給する。   The fuel cell 10 of this embodiment supplies the hydrogen gas from the in-cell fuel gas flow channel 47 of the gas separator 25 to the anode 21 while diffusing in the anode side gas diffusion layer 23. As for air, the air from the in-cell oxidizing gas flow channel 48 of the gas separator 26 is supplied to the cathode 22 while being diffused by the cathode side gas diffusion layer 24.

次に、本実施例の燃料電池10において用いた電解質膜20と、ガス給排に関与するセル内燃料ガス流路47およびセル内酸化ガス流路48との関係について説明する。本実施例では、膨潤に伴って電解質膜20の膜内に発生する膨潤圧と、膨潤に伴って変形した電解質膜20が溝幅Lのセル内燃料ガス流路47或いはセル内酸化ガス流路48に入り込んで座屈する際に電解質膜20に掛かる座屈荷重とについて、次の数式1の関係を満たすようにした。   Next, the relationship between the electrolyte membrane 20 used in the fuel cell 10 of this embodiment and the in-cell fuel gas channel 47 and the in-cell oxidizing gas channel 48 involved in gas supply / discharge will be described. In this embodiment, the swelling pressure generated in the membrane of the electrolyte membrane 20 with the swelling and the electrolyte membrane 20 deformed with the swelling are the in-cell fuel gas channel 47 or the in-cell oxidizing gas channel having the groove width L. The buckling load that is applied to the electrolyte membrane 20 when buckling by entering 48 is satisfied.

Figure 2012119169
Figure 2012119169

この数式1において、左辺は電解質膜20についての上記の膨潤圧を示し、この膨潤圧は、膨潤を起こす湿潤状況での電解質膜20の弾性率Em [MPa]と、膨潤を起こす湿潤状況での電解質膜20の膨潤率Vm[%]と、電解質膜20の膜厚dm[m]から算出される。右辺は、電解質膜20についての上記した座屈荷重を示し、この座屈荷重は、電解質膜20の弾性率Em [MPa]と膜厚dm[m]、およびセル内燃料ガス流路47とセル内酸化ガス流路48の溝幅L [m]から算出される。 In the formula 1, the left side shows the swelling pressure for the electrolyte membrane 20, and the swelling pressure is an elastic modulus E m [MPa] of the electrolyte membrane 20 in a wet state causing swelling and a wet situation causing swelling. It is calculated from the swelling rate V m [%] of the electrolyte membrane 20 and the film thickness d m [m] of the electrolyte membrane 20. Right side shows the above-mentioned buckling load for the electrolyte membrane 20, the buckling load, the elastic modulus E m of the electrolyte membrane 20 [MPa] and the thickness d m [m], and cell fuel gas flow path 47 And the groove width L [m] of the oxidizing gas channel 48 in the cell.

この数式1を整理すると、左辺を膨潤率Vmとする数式2となる。 Rearranging this formula 1, the formula 2 to the left and swelling ratio V m.

Figure 2012119169
Figure 2012119169

この数式2における左辺の膨潤率Vmは、電解質膜20のイオン交換容量IEC[meq/g]と、電解質膜20の弾性率Em [MPa]、および電解質膜20の膜乾燥密度ρ[g/cm3]との関係において、経験的に次の数式3で表すことができる。 The swelling rate V m on the left side in Equation 2 is the ion exchange capacity IEC [meq / g] of the electrolyte membrane 20, the elastic modulus E m [MPa] of the electrolyte membrane 20, and the membrane dry density ρ [g] of the electrolyte membrane 20. / Cm 3 ], it can be represented by the following Equation 3 empirically.

Figure 2012119169
Figure 2012119169

この数式3において、文字AおよびBは、実験的に或いは経験的に定まる定数である。この数式3は、{−ln(Em/IEC・ρ)}をyとすると、膨潤率Vmを変数xとする1次関数となる。図2は膨潤率Vmを変数xとした場合の関数y(={−ln(Em/IEC・ρ)})を表したグラフである。この図2は、数式3の関係は電解質膜20がフッ素系イオン交換膜であっても炭化水素系イオン交換膜であっても成立することを示している。また、数式3は、電解質膜20のイオン交換容量IECが大きくなると、電解質膜20の膨潤率Vmも大きくなることを示しているので、イオン交換容量IECと膨潤率Vmの両者の上記関係は、電解質膜20がフッ素系イオン交換膜であっても炭化水素系イオン交換膜であっても成り立つことになる。 In Equation 3, characters A and B are constants determined experimentally or empirically. Formula 3 is a linear function with the swelling rate V m as a variable x, where y is {−ln (E m / IEC · ρ)}. FIG. 2 is a graph showing a function y (= {− ln (E m / IEC · ρ)}) when the swelling rate V m is a variable x. FIG. 2 shows that the relationship of Equation 3 holds whether the electrolyte membrane 20 is a fluorine ion exchange membrane or a hydrocarbon ion exchange membrane. Further, Equation 3 indicates that when the ion exchange capacity IEC of the electrolyte membrane 20 increases, the swelling rate V m of the electrolyte membrane 20 also increases. Therefore, the above relationship between both the ion exchange capacity IEC and the swelling rate V m. This holds true whether the electrolyte membrane 20 is a fluorine ion exchange membrane or a hydrocarbon ion exchange membrane.

そして、数式3の膨潤率Vmを数式2に代入すると、以下の数式4が得られる。 Substituting the swelling ratio V m of Equation 3 into Equation 2, the following Equation 4 is obtained.

Figure 2012119169
Figure 2012119169

本実施例の燃料電池10では、この数式4を満たすよう、セル内燃料ガス流路47とセル内酸化ガス流路48の溝幅Lと、電解質膜20のイオン交換容量IECおよび弾性率Emを定めた。この場合、数式4は、既述した数式1の変形で得られたものであることから、数式1と等価である。よって、この数式4を満たすよう、セル内燃料ガス流路47とセル内酸化ガス流路48の溝幅Lと、電解質膜20のイオン交換容量IECおよび弾性率Emを定めることで数式1が成立し、電解質膜20は、数式1の左辺である膨潤圧が右辺の座屈荷重より小さい性状を有するものとなる。 In the fuel cell 10 of the present embodiment, the groove width L of the in-cell fuel gas flow channel 47 and the in-cell oxidizing gas flow channel 48, the ion exchange capacity IEC and the elastic modulus E m of the electrolyte membrane 20 are satisfied so as to satisfy Formula 4. Determined. In this case, Equation 4 is equivalent to Equation 1 because it is obtained by the modification of Equation 1 described above. Therefore, to satisfy this formula 4, the groove width L of the cell fuel gas flow path 47 and the cell oxidizing gas channel 48, a formula 1 by determining the ion-exchange capacity IEC and modulus E m of the electrolyte membrane 20 As a result, the electrolyte membrane 20 has a property that the swelling pressure, which is the left side of Equation 1, is smaller than the buckling load on the right side.

上記したように数式4を満たすよう、セル内燃料ガス流路47とセル内酸化ガス流路48の溝幅Lと、電解質膜20のイオン交換容量IECと、弾性率Emおよび膜厚dmを定めるに当たっては、まず、溝幅Lを実用的な溝幅とする。その上で、電解質膜20のイオン交換容量IECおよび弾性率Emについては、例えば、フッ素系イオン交換膜を電解質膜20とする場合には、数式4を満たすよう定めたイオン交換容量IECおよび弾性率Emが得られるように、フッ素系樹脂を用いた製造過程において、イオン交換基(極性基)であるスルホン酸基を有するスルホン系樹脂の配合調整を経たイオン交換当量の調整や分子量の調整、或いは、樹脂重合に関与する架橋剤の配合調整等を行う。 As satisfying Equation 4 as described above, the groove width L of the cell fuel gas flow path 47 and the cell oxidizing gas channel 48, and the ion exchange capacity IEC of the electrolyte membrane 20, the elastic modulus E m and the thickness d m First, the groove width L is set to a practical groove width. On top of that, for the ion-exchange capacity IEC and modulus E m of the electrolyte membrane 20, for example, in the case of a fluorine-based ion-exchange membrane as the electrolyte membrane 20 is an ion-exchange capacity IEC and elasticity determined as satisfying Equation 4 Adjusting the ion exchange equivalent and adjusting the molecular weight by adjusting the blending of the sulfone resin having a sulfonic acid group that is an ion exchange group (polar group) in the production process using the fluororesin so that the rate E m can be obtained. Alternatively, blending adjustment of a crosslinking agent involved in resin polymerization is performed.

次に、上記した数式1に表した膨潤圧と座屈荷重との関係を満たした電解質膜20、即ち数式1と等価な数式4を満たした電解質膜20を有する実施例品の燃料電池10の性能評価について説明する。評価対象の比較例品は、膨潤圧と座屈荷重との関係が数式1に反する燃料電池であり、単セル15の電極面積、電解質膜のサイズ等の他、セル内燃料ガス流路47、セル内酸化ガス流路48の溝幅Lについては、実施例品と同一である。そして、実施例品と比較例品について、各比較例および実施例の燃料電池の単セル15を、乾湿サイクル試験に処して性能評価を行った。   Next, the fuel cell 10 of the example product having the electrolyte membrane 20 that satisfies the relationship between the swelling pressure and the buckling load expressed in the above-described Equation 1, that is, the electrolyte membrane 20 that satisfies Equation 4 equivalent to Equation 1 is shown. The performance evaluation will be described. The comparative example product to be evaluated is a fuel cell in which the relationship between the swelling pressure and the buckling load is contrary to Equation 1. In addition to the electrode area of the single cell 15, the size of the electrolyte membrane, etc., the in-cell fuel gas channel 47, The groove width L of the in-cell oxidizing gas channel 48 is the same as that of the example product. And about the Example goods and the comparative example goods, the single cell 15 of the fuel cell of each comparative example and the Example was subjected to the dry and wet cycle test, and performance evaluation was performed.

この乾湿サイクル試験では、セル温度を80℃とした上で、8分間の相対湿度100%でのガス供給・発電と、2分間の乾燥状態でのガス供給・発電とを1サイクルとして、このサイクルを繰り返すこととした。この乾湿サイクル試験について、本実施例の燃料電池10と比較例燃料電池の性能評価の対比結果を下記の表にて示す。この表に示すように、電解質膜20の種別、つまりフッ素系イオン交換膜(F系電解質膜)と炭化水素系イオン交換膜(HC系電解質膜)ごとに、比較例品と実施例品を準備し、対比した。表において、右辺値が同じであるのは、溝幅Lが比較例品と実施例品とで同じためである(数式4参照)。   In this dry / wet cycle test, the cell temperature was set to 80 ° C., and the gas supply / power generation at a relative humidity of 100% for 8 minutes and the gas supply / power generation in a dry state for 2 minutes were defined as one cycle. It was decided to repeat. Regarding this dry and wet cycle test, the comparison results of the performance evaluation of the fuel cell 10 of this example and the comparative example fuel cell are shown in the following table. As shown in this table, a comparative example product and an example product are prepared for each type of electrolyte membrane 20, that is, for each of a fluorine-based ion exchange membrane (F-based electrolyte membrane) and a hydrocarbon-based ion exchange membrane (HC-based electrolyte membrane). And contrasted. In the table, the right-side value is the same because the groove width L is the same for the comparative example product and the example product (see Formula 4).

Figure 2012119169
Figure 2012119169

実施例品は、フッ素系イオン交換膜および炭化水素系イオン交換膜の電解質膜20において、共に数式4(数式1)を満たし、比較例品はいずれもこれを満たさない。そして、1200サイクルの乾湿サイクル試験の実施後に単セルを分解して電解質膜20における膜シワの有無を調べたところ、具体的には電解質膜20とその両側のアノード21とカソード22の両電極を含むMEA(図1参照)における膜シワの有無を調べたところ、数式4(数式1)を満たす実施例品は、いずれも膜シワが観察されなかったのに対し、数式4(数式1)を満たさない比較例品は、いずれも膜シワが観察された。この場合、MEAは、図1に示すように、アノード側ガス拡散層23とカソード側ガス拡散層24を介在させてガスセパレーター25とガスセパレーター26で挟持され、両ガスセパレーターは溝幅Lのセル内燃料ガス流路47或いはセル内酸化ガス流路48を有する。よって、MEAおよびその電解質膜20は、流路間のリブにおいてはその動きが拘束され、上記の両ガス流路と向かい合う範囲ではその拘束が緩む。こうしたことから、比較例品で観察された膜シワの痕跡箇所は、ガス流路と向かい合う範囲とほぼ一致している。   The example product satisfies Formula 4 (Formula 1) in the electrolyte membrane 20 of the fluorine ion exchange membrane and the hydrocarbon ion exchange membrane, and the comparative product does not satisfy this. After the 1200 cycles of the wet and dry cycle test, the single cell was disassembled and examined for the presence or absence of membrane wrinkles in the electrolyte membrane 20. Specifically, the electrolyte membrane 20 and both electrodes of the anode 21 and the cathode 22 on both sides thereof were connected. When the presence or absence of film wrinkles in the MEA including (see FIG. 1) was examined, none of the examples satisfying Equation 4 (Equation 1) was observed with respect to Equation 4 (Equation 1). Films wrinkles were observed in all of the comparative products that were not satisfied. In this case, the MEA is sandwiched between the gas separator 25 and the gas separator 26 with the anode side gas diffusion layer 23 and the cathode side gas diffusion layer 24 interposed therebetween, as shown in FIG. An internal fuel gas channel 47 or an in-cell oxidizing gas channel 48 is provided. Therefore, the movement of the MEA and the electrolyte membrane 20 is restricted in the rib between the flow paths, and the restriction is loosened in the range facing both the gas flow paths. For these reasons, the trace portion of the film wrinkle observed in the comparative example product almost coincides with the range facing the gas flow path.

MEA(電解質膜20)に生じた膜シワは、電解質膜20およびこれを含むMEAの破損によるクロスリークの原因となり得ることから、上記の各実施例品は、高い耐久性を有するものと言える。つまり、電解質膜20の膨潤圧が電解質膜20の座屈荷重より小さい関係を示す数式1と等価な数式4を満たすよう、電解質膜20の性状を規定すること(具体的には、ガス流路の溝幅Lと電解質膜20のイオン交換容量IECおよび弾性率Emを規定すること)で、電解質膜20をその膨潤圧が座屈荷重より小さい性状を有するようにすることには大きな意義があり、このように規定することで、電解質膜20の耐久性を高めることができることが確認できた。 Membrane wrinkles generated in the MEA (electrolyte membrane 20) can cause cross leakage due to breakage of the electrolyte membrane 20 and the MEA including the membrane. Therefore, it can be said that each of the above-described examples has high durability. In other words, the properties of the electrolyte membrane 20 are defined so that the swelling pressure of the electrolyte membrane 20 satisfies Equation 4 equivalent to Equation 1 indicating a relationship smaller than the buckling load of the electrolyte membrane 20 (specifically, the gas flow path). by defining the ion-exchange capacity IEC and modulus E m of groove width L and the electrolyte membrane 20) of great significance is that the electrolyte membrane 20 that swelling pressure is to have a buckling load smaller properties Yes, it was confirmed that the durability of the electrolyte membrane 20 can be improved by defining in this way.

比較例品と実施例品での電解質膜20の耐久性の相違は、次のように説明できる。まず、既述したように、数式4を満たすよう、単セル15におけるガス流路の溝幅Lと電解質膜20のイオン交換容量IECおよび弾性率Emを規定することで、膨潤に伴って電解質膜20の膜内に発生する膨潤圧(数式1左辺)が、膨潤に伴って変形した電解質膜20が溝幅Lのセル内燃料ガス流路47或いはセル内酸化ガス流路48に入り込んで座屈する際に電解質膜20に掛かる座屈荷重(数式1右辺)を超えないようにできる。このため、本実施例の実施例品の燃料電池10では、膨潤に伴う変形により、電解質膜20がセル内燃料ガス流路47およびセル内酸化ガス流路48に入り込んで座屈しても、その座屈箇所に作用する膨潤圧が座屈荷重を超えないので、実施例品では、乾湿サイクル試験の各サイクルにおいて収縮と膨張が元に戻るよう繰り返すことになり、乾湿サイクル試験後において膜シワが残らない、と推考できる。この結果、本実施例の燃料電池10によれば、電解質膜20のシワや折れに起因する損傷を抑制でき、耐久性の向上を図ることができる。 The difference in the durability of the electrolyte membrane 20 between the comparative example product and the example product can be explained as follows. First, as described above, to satisfy the formula 4, by defining the ion-exchange capacity IEC and modulus E m of groove width L and the electrolyte membrane 20 of the gas flow path in the unit cell 15, the electrolyte along with the swelling The electrolyte membrane 20 whose swelling pressure (the left side of Formula 1) generated in the membrane 20 is deformed with the swelling enters the in-cell fuel gas channel 47 or the in-cell oxidizing gas channel 48 having the groove width L and is seated. When buckling, the buckling load (right side of Formula 1) applied to the electrolyte membrane 20 can be prevented from exceeding. For this reason, in the fuel cell 10 of the example product of this embodiment, even if the electrolyte membrane 20 enters the in-cell fuel gas channel 47 and the in-cell oxidizing gas channel 48 due to deformation due to swelling, Since the swelling pressure acting on the buckling point does not exceed the buckling load, in the example product, the shrinkage and expansion are repeated in each cycle of the wet and dry cycle test, and the film wrinkle is not removed after the dry and wet cycle test. It can be inferred that it will not remain. As a result, according to the fuel cell 10 of the present embodiment, it is possible to suppress damage caused by wrinkles or breakage of the electrolyte membrane 20 and improve durability.

これに加え、電解質膜20の膨潤圧は、当該膜の膨潤率Vmに弾性率Emと膜厚dmを乗じて得られ、この膨潤率Vm、即ち膨潤圧は、数式3から、電解質膜20のイオン交換容量IECの増大により大きくなる。このため、座屈荷重を超えない膨潤圧となる範囲でイオン交換容量IECを高めることで、プロトン伝導性の向上をも図ることができる。この際のイオン交換容量IECの増大化は、電解質膜20の加湿状態を問わず低加湿の際であっても可能であるので、本実施例の燃料電池10によれば、低加湿状況下での燃料電池10の発電能力の維持もしくは向上も図ることができる。また、数式4を満たした上で、その右辺の値が左辺の値に近似するほど、耐久性向上と発電性能向上の両立が可能となる。 Additionally, the swelling pressure of the electrolyte membrane 20 is obtained by multiplying the elastic modulus E m and the thickness d m in swelling ratio V m of the film, the swelling ratio V m, i.e. swelling pressure from equation 3, The ion exchange capacity IEC of the electrolyte membrane 20 increases due to an increase. For this reason, the proton conductivity can be improved by increasing the ion exchange capacity IEC within a range where the swelling pressure does not exceed the buckling load. Since the ion exchange capacity IEC at this time can be increased regardless of the humidification state of the electrolyte membrane 20, the fuel cell 10 of the present embodiment can be used under a low humidification condition. The power generation capacity of the fuel cell 10 can be maintained or improved. Moreover, as the value of the right side approximates the value of the left side after satisfying Expression 4, it is possible to improve both durability and power generation performance.

次に、変形例について説明する。この変形例では、電解質膜20の周縁についてもその耐久性の向上を図るようにした。図3は単セル15が有するMEAを平面視して電極領域と周縁領域の区別を示す説明図、図4は変形例の前提となる電解質膜20の周縁における各部材の構成を断面視して概略的に示す説明図である。   Next, a modified example will be described. In this modification, the durability of the periphery of the electrolyte membrane 20 is also improved. FIG. 3 is an explanatory diagram showing the distinction between the electrode region and the peripheral region in plan view of the MEA of the single cell 15, and FIG. 4 is a cross-sectional view of the configuration of each member at the peripheral edge of the electrolyte membrane 20 which is a premise of the modification. It is explanatory drawing shown roughly.

図3に示すように、MEAは、平面視で矩形形状をなし、その矩形形状に倣った中央領域をアノード21およびカソード22が占める電極面領域100とし、当該領域をその外側で取り囲む枠状の領域を周縁領域110とする。図3は、MEAの一方の側、例えばアノード21の側の平面視を示すが、他方の側であるカソード22の側でも同様である。図4に示すように、この電極面領域100と周縁領域110の連続した範囲、即ち図3における縦方向周縁、或いは横方向周縁を断面視すると、単セル15においてMEAを構成する電解質膜20は、電極面領域100に該当する範囲を電極面領域部20sとし、周縁領域110に該当する範囲を周縁領域部20eとして、この周縁領域部20eを電極面領域部20sから周縁側に延ばしている。MEAは、電解質膜20の電極面領域部20sの両膜面にアノード21とカソード22とを接合形成して備え、周縁領域110に当たる周縁領域部20eをその表裏で保護フィルム30で被覆する。本実施例では、ガスのシールをアノード側とカソード側でも確保するため表裏で保護フィルム30で被覆したが、保護フィルム30をアノードとカソードの一方とするようにすることもできる。   As shown in FIG. 3, the MEA has a rectangular shape in a plan view, and a central region following the rectangular shape is an electrode surface region 100 occupied by the anode 21 and the cathode 22, and a frame shape surrounding the region on the outside. Let the region be the peripheral region 110. FIG. 3 shows a plan view of one side of the MEA, for example, the anode 21 side, but the same applies to the cathode 22 side which is the other side. As shown in FIG. 4, when the electrode surface region 100 and the peripheral region 110 are continuous, that is, when the vertical peripheral edge or the horizontal peripheral edge in FIG. 3 is viewed in cross section, the electrolyte membrane 20 constituting the MEA in the single cell 15 is A range corresponding to the electrode surface region 100 is defined as an electrode surface region 20s, and a range corresponding to the peripheral region 110 is defined as a peripheral region 20e. The peripheral region 20e extends from the electrode surface region 20s to the peripheral side. The MEA is provided with the anode 21 and the cathode 22 joined to both film surfaces of the electrode surface region 20s of the electrolyte membrane 20, and the peripheral region 20e corresponding to the peripheral region 110 is covered with the protective film 30 on the front and back. In this embodiment, the protective film 30 is covered on both sides to secure gas sealing on the anode side and the cathode side, but the protective film 30 may be one of the anode and the cathode.

保護フィルム30は、MEA、詳しくは電解質膜20における周縁領域110の周縁領域部20eの保護の要をなす。図4では、保護フィルム30はアノード21とカソード22の両電極についてもその周縁を被覆しているが、両電極周縁を含まないように電解質膜20を被覆するようにすることもできる。この保護フィルム30は、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)のような樹脂製のフィルムから形成され、周縁領域部20eの表面に周縁領域110に亘って接合している。この場合、保護フィルム30の物性としての弾性率と座屈荷重は、後述するように電解質膜20の物性と関係付けて規定される。   The protective film 30 serves as a key to protect the peripheral area 20e of the peripheral area 110 in the MEA, specifically, the electrolyte membrane 20. In FIG. 4, the protective film 30 covers the peripheral edges of both the anode 21 and the cathode 22, but the electrolyte membrane 20 may be covered so as not to include the peripheral edges of both electrodes. The protective film 30 is formed of a resin film such as polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and is formed on the peripheral region 110 on the surface of the peripheral region 20e. It is joined over. In this case, the elastic modulus and buckling load as physical properties of the protective film 30 are defined in relation to the physical properties of the electrolyte membrane 20 as will be described later.

単セル15は、上記したように保護フィルム30を接合済みのMEAにアノード側ガス拡散層23とカソード側ガス拡散層24とを重ね、シール機能を有する樹脂製のシール材32にて、周縁領域部20eとその表裏の保護フィルム30および上記の両ガス拡散層の周縁端部を含んでシールする。その上で、単セル15は、ガスセパレーター25とガスセパレーター26とで、MEAを両ガス拡散層およびシール材32と共に挟持する。これにより、図1にて説明したように、ガスセパレーター25のセル内燃料ガス流路47(図1参照)から流入した水素ガスは、アノード側ガス拡散層23を経てアノード21に供給され、ガスセパレーター26のセル内酸化ガス流路48(図1参照)から流入した空気は、カソード側ガス拡散層24を経てカソード22に供給され、電解質膜20にて電気化学反応が進行する。そして、上記したガス供給は、シール材32にてMEA周縁でシールされた状態で継続されることになる。   As described above, the single cell 15 is formed by overlapping the anode side gas diffusion layer 23 and the cathode side gas diffusion layer 24 on the MEA to which the protective film 30 has been bonded, and by using the resin sealing material 32 having a sealing function, the peripheral region It seals including the peripheral edge part of the part 20e, the protective film 30 of the front and back, and both said gas diffusion layers. In addition, the single cell 15 sandwiches the MEA together with both the gas diffusion layers and the sealing material 32 with the gas separator 25 and the gas separator 26. As a result, as described in FIG. 1, the hydrogen gas that has flowed from the in-cell fuel gas flow path 47 (see FIG. 1) of the gas separator 25 is supplied to the anode 21 through the anode-side gas diffusion layer 23, and the gas Air that has flowed in from the in-cell oxidizing gas flow path 48 (see FIG. 1) of the separator 26 is supplied to the cathode 22 via the cathode-side gas diffusion layer 24, and an electrochemical reaction proceeds in the electrolyte membrane 20. The gas supply described above is continued in a state of being sealed at the periphery of the MEA by the sealing material 32.

次に、図4のように保護フィルム30にて電解質膜20の周縁を被覆した上でシール材32にて周縁のシールを図る上での電解質膜20と保護フィルム30との関係について説明する。この場合、保護フィルム30で被覆された電解質膜20の周縁領域110は、セル内燃料ガス流路47やセル内酸化ガス流路48によるガス給排がなされない非発電領域であるので、電解質膜20と保護フィルム30との以下に記す関係は、既述した数式1の電解質膜20の膨潤圧と座屈荷重との関係とは個別に規定することが可能であり、この関係に付加することができる。   Next, the relationship between the electrolyte membrane 20 and the protective film 30 when the peripheral edge of the electrolyte membrane 20 is covered with the protective film 30 as shown in FIG. In this case, the peripheral region 110 of the electrolyte membrane 20 covered with the protective film 30 is a non-power generation region in which gas is not supplied or discharged by the in-cell fuel gas channel 47 or the in-cell oxidizing gas channel 48. The relationship described below between the protective film 30 and the protective film 30 can be individually defined as the relationship between the swelling pressure and the buckling load of the electrolyte membrane 20 of Formula 1 described above. Can do.

図4に示すシール構造を採る上で、変形例の前提となる電解質膜20弾性率と保護フィルム30の弾性率とについては、次の数式5の関係を満たすよう、電解質膜20の膨潤圧と保護フィルム30の座屈荷重とについては、次の数式6の関係を満たすようにした。   When the sealing structure shown in FIG. 4 is adopted, the swelling pressure of the electrolyte membrane 20 and the electrolyte membrane 20 elastic modulus and the elastic modulus of the protective film 30 which are the premise of the modified example are set so as to satisfy the relationship of the following formula 5. About the buckling load of the protective film 30, it was made to satisfy | fill the relationship of following Numerical formula 6.

Figure 2012119169
Figure 2012119169

上記の数式5は、その左辺にて膨潤を起こす湿潤状況での電解質膜20の弾性率Em [MPa]を示し、この電解質膜20の弾性率Emは、右辺の保護フィルム30の弾性率Ef [MPa]より大きくなる。数式6において、左辺は電解質膜20についての上記の膨潤圧を示し、この膨潤圧は、電解質膜20の弾性率Em [MPa]と、膨潤を起こす湿潤状況での電解質膜20の膨潤率Vm[%]と、電解質膜20の膜厚dm[m]から算出される。右辺は、保護フィルム30が折り曲げられたときの座屈荷重を示し、この座屈荷重は、保護フィルム30の弾性率Ef [MPa]とフィルム膜厚df[m]、および図4に示す保護フィルム30による電解質膜20の挟持幅Lf[m]から算出される。上記した数式6右辺の保護フィルム30が折り曲げられたときの座屈荷重は、付きの数式7〜8から算出される。 Equation 5 above shows the elastic modulus E m of the electrolyte membrane 20 [MPa] in the wet conditions that cause swelling at the left-hand, the elastic modulus E m of the electrolyte membrane 20, the elastic modulus of the right side of the protective film 30 It becomes larger than E f [MPa]. In Equation 6, the left side indicates the swelling pressure for the electrolyte membrane 20, and the swelling pressure indicates the elastic modulus E m [MPa] of the electrolyte membrane 20 and the swelling rate V of the electrolyte membrane 20 in a wet condition causing swelling. It is calculated from m [%] and the film thickness d m [m] of the electrolyte membrane 20. The right side shows the buckling load when the protective film 30 is bent, and this buckling load is shown in FIG. 4 with the elastic modulus E f [MPa] and the film thickness d f [m] of the protective film 30. It is calculated from the sandwiching width L f [m] of the electrolyte membrane 20 by the protective film 30. The buckling load when the protective film 30 on the right side of Equation 6 is bent is calculated from the attached Equations 7-8.

Figure 2012119169
Figure 2012119169

数式7はオイラーの座屈荷重の式であり、フィルムの座屈荷重Pfは、フィルム長Lとフィルム弾性率E、および数式8に示すフィルム(断面積:フィルム幅bxフィルム厚d)の断面2次モーメントIで求まる。この場合、保護フィルム30による挟持幅Lfは、数式7におけるLとなり、フィルム膜厚dfは、数式8におけるdとなる。 Formula 7 is a formula of Euler's buckling load, and the film buckling load P f is the film length L, the film elastic modulus E, and the cross section of the film shown in Formula 8 (cross-sectional area: film width bx film thickness d). It is obtained by the secondary moment I. In this case, the protective film 30 nipped width L f by the next L in Equation 7, the film thickness d f, the d in Equation 8.

上記した実施例の燃料電池10に図3〜図4に示す保護フィルム30による保護を適用するに当たり、その前提において、上記の数式5を満たすよう、電解質膜20弾性率Emと保護フィルム30の弾性率Emを定めると共に、上記の数式6を満たすよう、電解質膜20についての上記の膨潤圧と保護フィルム30の座屈荷重を定めた。そして、数式5〜数式6を満たすよう電解質膜20弾性率Emと保護フィルム30の弾性率Em、および電解質膜20についての膨潤圧と保護フィルム30の座屈荷重を定めることで、電解質膜20は、その弾性率Emが保護フィルム30の弾性率弾性率Emより大きく、且つ、電解質膜20についての膨潤圧が保護フィルム30の座屈荷重より小さい性状を有するものとなる。 In applying the protection by the protective film 30 shown in FIGS. 3 to 4 to the fuel cell 10 of the above-described embodiment, on the premise, the electrolyte membrane 20 elastic modulus Em and the protective film 30 are set so as to satisfy the above-described numerical formula 5. The elastic modulus Em was determined, and the swelling pressure of the electrolyte membrane 20 and the buckling load of the protective film 30 were determined so as to satisfy Equation 6 above. Then, by determining the electrolyte membrane 20 modulus of elasticity E m and the protective film 30 E m, and the buckling load of the swelling pressure and the protective film 30 for the electrolyte membrane 20 so as to satisfy the equation 5 Equation 6, the electrolyte membrane 20, the elastic modulus E m is greater than the elastic modulus elastic modulus E m of the protective film 30, and, becomes the swelling pressure of the electrolyte membrane 20 has a buckling load is less than the properties of the protective film 30.

この場合、電解質膜20の膨潤率Vmは、先の数式3で示したように、電解質膜20のイオン交換容量IEC[meq/g]と、電解質膜20の弾性率Em [MPa]、および電解質膜20の膜乾燥密度ρ[g/cm3]とで求まることから、数式3を数式6に代入することができる。こうすれば、数式6の左辺は、電解質膜20のイオン交換容量IECと弾性率Emと膜乾燥密度ρおよび膜厚dmで求められる。よって、数式6を満たすように、電解質膜20についてのイオン交換容量IECと弾性率Emと膜乾燥密度ρおよび膜厚dmと、右辺の保護フィルム30の弾性率Efとフィルム膜厚dfと挟持幅Lfとを定めればよい。これらの内、膜厚dmとフィルム膜厚dfおよび挟持幅Lfは、単セル15として実情にあったものに予め規定できることから、実質的には、数式6を満たすように、電解質膜20のイオン交換容量IECと弾性率Emおよび膜乾燥密度ρと、保護フィルム30の弾性率Efを定めればよい。電解質膜20のイオン交換容量IECおよび弾性率Emについては、既述したような製造過程でのスルホン系樹脂の配合調整等を行えばよく、保護フィルム30の弾性率Efについては、既述した数式を満たす範囲の弾性率をもつ樹脂材料を選定すればよい。 In this case, the swelling rate V m of the electrolyte membrane 20 is expressed by the ion exchange capacity IEC [meq / g] of the electrolyte membrane 20 and the elastic modulus E m [MPa] of the electrolyte membrane 20 as shown in Equation 3 above. And Equation 3 can be substituted into Equation 6 because the membrane dry density ρ [g / cm 3 ] of the electrolyte membrane 20 is obtained. This way, the left-hand side of equation 6 is obtained by the ion-exchange capacity IEC and the elastic modulus E m and the membrane dry density ρ and thickness d m of the electrolyte membrane 20. Therefore, to satisfy Equation 6, and the ion exchange capacity IEC and the elastic modulus E m and the membrane dry density ρ and thickness d m of the electrolyte membrane 20, the elastic modulus of the right side of the protective film 30 E f and the film thickness d it may be determined and f and the clamping width L f. Of these, the film thickness d m and the film thickness d f and clamping width L f, since it can be pre-defined as to the circumstances as a single cell 15, as in effect, satisfying Equation 6, the electrolyte membrane The ion exchange capacity IEC, the elastic modulus Em and the membrane dry density ρ of 20, and the elastic modulus E f of the protective film 30 may be determined. The ion-exchange capacity IEC and modulus E m of the electrolyte membrane 20 may be performed blending adjustment of sulfonic resin in the manufacturing process such as described above, the elastic modulus E f of the protective film 30, above It is only necessary to select a resin material having an elastic modulus in a range that satisfies the above mathematical formula.

次に、上記した数式5〜数式6に表した電解質膜20弾性率Emと保護フィルム30の弾性率Efの関係(弾性率関係)、および電解質膜20の膨潤圧と保護フィルム30の座屈荷重との関係(膨潤圧関係)を満たした電解質膜20を有する実施例品の燃料電池10の性能評価について説明する。評価対象の比較例品は、上記の弾性率関係と膨潤圧関係とが共に数式5〜数式6に反する燃料電池であり、単セル15の電極面積、電解質膜のサイズ等の他、保護フィルム30による電解質膜20の挟持幅Lfについては、実施例品と同一である。そして、実施例品と比較例品について、各比較例および実施例の燃料電池の単セル15を、上記した乾湿サイクル試験に処して性能評価を行った。仮に、電解質膜20に保護フィルム30によるフィルム被覆箇所近傍にて損傷が起きれば、その損傷箇所からのガスリークが起き得る。よって、本実施例の燃料電池10と比較例燃料電池とについて、乾湿サイクル試験のサイクル回数とガスリーク量との関係を調べ、その性能評価の対比結果を下記の表にて示す。なお、表における電解質膜種は、実施例品と比較例品で同種であることを示し、例えば、フッ素系イオン交換膜の電解質膜20であることを表す。保護F種(保護フィルム種)は、実施例品と比較例品で異なる保護フィルムを用いたことを示している。また、表におけるリークまでの乾湿サイクル数は、保護フィルム30によるフィルム被覆箇所近傍でリークが起きるまでのサイクル数を意味する。 Next, the relationship (elastic modulus relationship) between the elastic modulus E m of the electrolyte membrane 20 and the elastic modulus E f of the protective film 30 expressed by the above-described mathematical formulas 5 to 6, and the swelling pressure of the electrolytic membrane 20 and the seat of the protective film 30 The performance evaluation of the fuel cell 10 of the example product having the electrolyte membrane 20 that satisfies the relationship with the bending load (swelling pressure relationship) will be described. The comparative example product to be evaluated is a fuel cell in which both the elastic modulus relationship and the swelling pressure relationship are contrary to Equations 5 to 6, and the protective film 30 in addition to the electrode area of the single cell 15, the size of the electrolyte membrane, and the like. The sandwiching width L f of the electrolyte membrane 20 is the same as that of the example product. And about the Example goods and the comparative example goods, the single cell 15 of the fuel cell of each comparative example and an Example was subjected to the above-mentioned dry and wet cycle test, and performance evaluation was performed. If the electrolyte membrane 20 is damaged in the vicinity of the location where the protective film 30 is covered, gas leakage from the damaged location may occur. Therefore, for the fuel cell 10 of this example and the comparative example fuel cell, the relationship between the number of cycles of the wet and dry cycle test and the amount of gas leak was examined, and the comparison results of the performance evaluation are shown in the following table. In addition, the electrolyte membrane type | mold in a table | surface shows that it is the same kind with an Example product and a comparative example product, for example, represents that it is the electrolyte membrane 20 of a fluorine-type ion exchange membrane. Protective F type (protective film type) indicates that different protective films were used for the example product and the comparative product. Further, the number of wet and dry cycles until the leak in the table means the number of cycles until the leak occurs in the vicinity of the film covered portion by the protective film 30.

Figure 2012119169
Figure 2012119169

実施例品は、電解質膜20弾性率Emと保護フィルム30の弾性率Efの関係において数式5を満たし、電解質膜20の膨潤圧と保護フィルム30の座屈荷重との関係において数式6を満たす。比較例品は、電解質膜20の膨潤圧と保護フィルム30の座屈荷重との関係において数式6を満たすものの、電解質膜20弾性率Emと保護フィルム30の弾性率Efの関係において数式5を満たさない。そして、本実施例の燃料電池10である実施例品は、1245回の乾湿サイクルを経て始めてリークが見られたのに対し、比較例品では、941回の乾湿サイクルでリークが観察された。電解質膜20をその周縁で保護フィルム30にて被覆するに当たり、数式5〜数式6を満たすよう電解質膜20は、その弾性率Emが保護フィルム30の弾性率弾性率Emより大きく、且つ、電解質膜20についての膨潤圧が保護フィルム30の座屈荷重より小さい性状を有するようにすることには大きな意義があり、このように規定することで、保護フィルム30によるフィルム被覆箇所近傍での電解質膜20の耐久性を高めることができることが確認できた。 The example product satisfies Equation 5 in the relationship between the elastic modulus E m of the electrolyte membrane 20 and the elastic modulus E f of the protective film 30, and Equation 6 in the relationship between the swelling pressure of the electrolyte membrane 20 and the buckling load of the protective film 30. Fulfill. Comparative sample, although satisfying Equation 6 in relation to the buckling load of the swelling pressure and the protective film 30 of the electrolyte membrane 20, Equation 5 in relation to the electrolyte membrane 20 modulus E m and the protective film 30 of the elastic modulus E f Does not meet. In the example product which is the fuel cell 10 of the present example, leaks were observed only after 1245 dry / wet cycles, whereas in the comparative product, leaks were observed in 941 dry / wet cycles. The electrolyte membrane 20 Upon covering at its periphery by the protective film 30, the electrolyte membrane 20 so as to satisfy the equation 5 Equation 6, the elastic modulus E m is greater than the elastic modulus elastic modulus E m of the protective film 30, and, It is significant to make the swelling pressure of the electrolyte membrane 20 smaller than the buckling load of the protective film 30, and by defining in this way, the electrolyte in the vicinity of the film-covered portion by the protective film 30. It was confirmed that the durability of the film 20 can be increased.

比較例品と実施例品での保護フィルム30によるフィルム被覆箇所近傍での電解質膜20の耐久性の相違は、次のように説明できる。まず、既述したように、数式5を満たすよう、電解質膜20は、その弾性率Emの方が保護フィルム30の弾性率Efより大きくした。よって、電解質膜20は、保護フィルム30によるフィルム被覆箇所では拘束を受け、フィルム被覆箇所から電極側に離れるとその拘束が緩むものの、フィルム被覆箇所近傍での膨潤に伴う電解質膜20の変形は、保護フィルム30が膜変形に伴って変形可能なことから、保護フィルム30により強く規制されないように起きる。 The difference in the durability of the electrolyte membrane 20 in the vicinity of the film covering portion by the protective film 30 between the comparative example product and the example product can be explained as follows. First, as described above, to satisfy Equation 5, the electrolyte membrane 20, the direction of elastic modulus E m is greater than the elastic modulus E f of the protective film 30. Therefore, the electrolyte membrane 20 is constrained at the film-covered portion by the protective film 30, and the constraint is loosened when the electrode is separated from the film-covered portion, but the deformation of the electrolyte membrane 20 due to swelling near the film-covered portion is Since the protective film 30 can be deformed along with film deformation, the protective film 30 is not strongly regulated by the protective film 30.

これに加え、数式6を満たすよう、膨潤に伴って電解質膜20の膜内に発生する膨潤圧が保護フィルム30の座屈荷重より小さいので、電解質膜20の膨潤圧は保護フィルム30の座屈荷重を超えないことになる。これらの結果、数式5〜数式6を満たすようにすれば、保護フィルム30によるフィルム被覆箇所において、保護フィルム30にはその座屈荷重を超える膨潤圧が作用しないので、実施例品における保護フィルム30とこれに挟持された電解質膜20にあっては、そのフィルム保護箇所とその近傍において、乾湿サイクル試験の各サイクルにおいて収縮と膨張が元に戻るよう繰り返すに過ぎず、シワや折れに起因する損傷を抑制でき、耐久性の向上を図ることができる。しかも、電解質膜20の膨潤圧は、既述したように電解質膜20のイオン交換容量IECの増大により大きくなるので、保護フィルム30の座屈荷重を超えない膨潤圧となる範囲でイオン交換容量IECを高めて、プロトン伝導性の向上をも図ることができる。この際のイオン交換容量IECの増大化は、電解質膜20の加湿状態を問わず低加湿の際であっても可能であるので、数式5〜数式6を満たすようにして保護フィルム30にて電解質膜20の周縁を被覆するようにすれば、低加湿状況下での発電能力の維持もしくは向上も図ることができる。   In addition, since the swelling pressure generated in the membrane of the electrolyte membrane 20 with the swelling is smaller than the buckling load of the protective film 30 so as to satisfy Formula 6, the swelling pressure of the electrolyte membrane 20 is the buckling of the protective film 30. The load will not be exceeded. As a result, if the mathematical formulas 5 to 6 are satisfied, the protective film 30 does not receive a swelling pressure exceeding the buckling load at the film-covered portion of the protective film 30. In the electrolyte membrane 20 sandwiched between them, the film protection portion and the vicinity thereof are merely repeated so that the contraction and expansion are restored in each cycle of the wet and dry cycle test, and damage caused by wrinkles and breakage is caused. Can be suppressed, and durability can be improved. In addition, since the swelling pressure of the electrolyte membrane 20 increases as the ion exchange capacity IEC of the electrolyte membrane 20 increases as described above, the ion exchange capacity IEC within a range that does not exceed the buckling load of the protective film 30. And proton conductivity can be improved. In this case, the ion exchange capacity IEC can be increased even when the humidification state of the electrolyte membrane 20 is low, so that the protective film 30 satisfies the expressions 5 to 6. If the periphery of the membrane 20 is covered, the power generation capacity can be maintained or improved under low humidification conditions.

そして、数式5〜数式6を満たすようにする上では、先に説明した実施例において数式1またはこれと等価な数式4を満たすための変数となるガス流路の溝幅Lを考慮する必要がなく、実施例においても、数式1を満たすようにする上では、数式5〜数式6を満たすための変数となる保護フィルム30による電解質膜20の挟持幅Lfを考慮する必要はない。しかしながら、電解質膜20と保護フィルム30とについて規定する数式5〜数式6は、既述した数式1の電解質膜20の膨潤圧と座屈荷重との関係に付加することができる。よって、図1に示した実施例の単セル15において、その有する電解質膜20の周縁を保護フィルム30にて被覆するようにした上で、既述したように数式5〜数式6を満たすようにすれば、更なる耐久性の向上を達成できると予想される。 And in satisfy | filling Formula 5-Formula 6, it is necessary to consider the groove width L of the gas flow path used as the variable for satisfy | filling Formula 1 or Formula 4 equivalent to this in the Example demonstrated previously. Also in the embodiment, in order to satisfy Equation 1, it is not necessary to consider the sandwiching width L f of the electrolyte membrane 20 by the protective film 30 that is a variable for satisfying Equation 5 to Equation 6. However, Formula 5 to Formula 6 that define the electrolyte membrane 20 and the protective film 30 can be added to the relationship between the swelling pressure and the buckling load of the electrolyte membrane 20 of Formula 1 described above. Therefore, in the unit cell 15 of the embodiment shown in FIG. 1, the periphery of the electrolyte membrane 20 is covered with the protective film 30, so that the formulas 5 to 6 are satisfied as described above. Then, it is expected that further improvement in durability can be achieved.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、図1では、セル内燃料ガス流路47とセル内酸化ガス流路48とを紙面の手前側から奥側に向かう或いはその逆の流路として記したが、セル内燃料ガス流路47とセル内酸化ガス流路48とを、ガスがMEAを挟んで直交するように流れるようにすることもできる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in FIG. 1, the in-cell fuel gas channel 47 and the in-cell oxidizing gas channel 48 are shown as channels from the front side to the back side of the page or vice versa. And the in-cell oxidizing gas flow channel 48 may be configured to flow so that the gas is perpendicular to the MEA.

10…燃料電池
15…単セル
20…電解質膜
20e…周縁領域部
20s…電極面領域部
21…アノード
22…カソード
23…アノード側ガス拡散層
24…カソード側ガス拡散層
25…ガスセパレーター
26…ガスセパレーター
30…保護フィルム
32…シール材
47…セル内燃料ガス流路
48…セル内酸化ガス流路
100…電極面領域
110…周縁領域
L…溝幅
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 15 ... Single cell 20 ... Electrolyte membrane 20e ... Peripheral area | region part 20s ... Electrode surface area | region 21 ... Anode 22 ... Cathode 23 ... Anode side gas diffusion layer 24 ... Cathode side gas diffusion layer 25 ... Gas separator 26 ... Gas Separator 30 ... Protective film 32 ... Sealing material 47 ... In-cell fuel gas channel 48 ... In-cell oxidizing gas channel 100 ... Electrode surface region 110 ... Peripheral region L ... Groove width

Claims (2)

電解質膜の両膜面にアノードとカソードの両電極を接合した膜電極接合体をガス拡散層で挟持した上で、前記ガス拡散層に対してのガスの給排に関与するガス流路を有するガス流路部材で前記膜電極接合体と前記ガス拡散層とを挟持した燃料電池であって、
前記電解質膜は、膨潤に伴って膜内に発生する膨潤圧と、膨潤に伴う前記電解質膜の変形により該変形した電解質膜が前記ガス流路に入り込むよう座屈する際に前記電解質膜に掛かる座屈荷重との関係において、前記膨潤圧が前記座屈荷重より小さい性状を有する
燃料電池。
A membrane electrode assembly in which both anode and cathode electrodes are joined to both membrane surfaces of an electrolyte membrane is sandwiched between gas diffusion layers, and a gas flow path is provided for gas supply / discharge to the gas diffusion layer. A fuel cell in which the membrane electrode assembly and the gas diffusion layer are sandwiched by a gas flow path member,
The electrolyte membrane has a swelling pressure generated in the membrane as it swells, and a seat on the electrolyte membrane when the deformed electrolyte membrane buckles due to deformation of the electrolyte membrane due to swelling. A fuel cell in which the swelling pressure is smaller than the buckling load in relation to the bending load.
請求項1に記載の燃料電池であって、
更に、電解質膜周縁において前記電解質膜を被覆する保護フィルムと、該保護フィルムを介在させて前記膜電極接合体の周縁をシールするシール部材とを備え、該シール部材を前記ガス拡散層と共に前記ガス流路部材で挟持し、
前記電解質膜は、膨潤を起こす湿潤状況での膜の弾性率が前記保護フィルムの弾性率より大きく、且つ、膨潤に伴う前記膨潤圧が前記保護フィルムの座屈荷重より小さい性状を有する
燃料電池。
The fuel cell according to claim 1,
And a protective film that covers the electrolyte membrane at the periphery of the electrolyte membrane, and a seal member that seals the periphery of the membrane electrode assembly with the protective film interposed therebetween, and the seal member together with the gas diffusion layer and the gas Sandwiched between channel members,
The electrolyte membrane has a property that the elastic modulus of the membrane in a wet state causing swelling is larger than the elastic modulus of the protective film, and the swelling pressure accompanying the swelling is smaller than the buckling load of the protective film.
JP2010268027A 2010-12-01 2010-12-01 Fuel cell system Pending JP2012119169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268027A JP2012119169A (en) 2010-12-01 2010-12-01 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268027A JP2012119169A (en) 2010-12-01 2010-12-01 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2012119169A true JP2012119169A (en) 2012-06-21

Family

ID=46501777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268027A Pending JP2012119169A (en) 2010-12-01 2010-12-01 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2012119169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038705A (en) * 2012-08-10 2014-02-27 Toyota Motor Corp Fuel cell stack, fuel cell system, and fuel cell stack manufacturing method
DE102017127492A1 (en) 2016-12-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha SEPARATION DEVICE FOR FUEL CELL AND FUEL CELL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038705A (en) * 2012-08-10 2014-02-27 Toyota Motor Corp Fuel cell stack, fuel cell system, and fuel cell stack manufacturing method
DE102017127492A1 (en) 2016-12-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha SEPARATION DEVICE FOR FUEL CELL AND FUEL CELL
US11450862B2 (en) 2016-12-09 2022-09-20 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and fuel cell
DE102017127492B4 (en) 2016-12-09 2023-07-20 Toyota Jidosha Kabushiki Kaisha SEPARATION DEVICE FOR FUEL CELL AND FUEL CELL

Similar Documents

Publication Publication Date Title
US9553324B2 (en) Fuel cell resin frame equipped membrane electrode assembly
US9531016B2 (en) Fuel cell including separator comprising bypass limiting section
JP4938912B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
US9034536B2 (en) Fuel cell having voltage monitor terminal with exposed portion
WO2006070892A1 (en) Fuel cell and fuel cell stack provided with this
JP5321086B2 (en) Fuel cell
JP6280531B2 (en) Fuel cell
US9105898B2 (en) Fuel cell
JP5918037B2 (en) Fuel cell
US9203102B2 (en) Fuel cell
WO2016157714A1 (en) Fuel cell and method for manufacturing fuel cell
JP2012119169A (en) Fuel cell system
JP7002049B2 (en) Fuel cell
JP5756388B2 (en) Fuel cell
JP2015079639A (en) Electrolyte membrane/electrode structure
JP5604404B2 (en) Fuel cell
KR101106924B1 (en) Stack for fuel cell
US20140322627A1 (en) Fuel cell
JP5439212B2 (en) Fuel cell
JP2009129650A (en) Fuel cell
KR20160042771A (en) Membrane electrode assembly and fuel cell battery
JP2013089443A (en) Fuel cell system and operation method thereof
JP2015156334A (en) High-polymer electrolyte type fuel cell
US20230387440A1 (en) Membrane-electrode unit for an electrochemical cell, and process for manufacturing a membrane-electrode unit
JP2012064377A (en) Membrane electrode assembly for fuel cell stack, and fuel cell stack containing the same