JP2012118854A - Luminance gradient direction detector and luminance gradient direction detection method - Google Patents

Luminance gradient direction detector and luminance gradient direction detection method Download PDF

Info

Publication number
JP2012118854A
JP2012118854A JP2010269190A JP2010269190A JP2012118854A JP 2012118854 A JP2012118854 A JP 2012118854A JP 2010269190 A JP2010269190 A JP 2010269190A JP 2010269190 A JP2010269190 A JP 2010269190A JP 2012118854 A JP2012118854 A JP 2012118854A
Authority
JP
Japan
Prior art keywords
luminance
pixel
difference value
pixels
gradient direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010269190A
Other languages
Japanese (ja)
Other versions
JP5561133B2 (en
Inventor
Nobuyuki Fujiwara
伸行 藤原
Takamasa Fujisawa
貴雅 藤澤
Kazutaka Matsubara
一隆 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2010269190A priority Critical patent/JP5561133B2/en
Publication of JP2012118854A publication Critical patent/JP2012118854A/en
Application granted granted Critical
Publication of JP5561133B2 publication Critical patent/JP5561133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminance gradient direction detector which fast detects a luminance gradient direction without using a triangular function with much computational complexity and a luminance gradient direction detection method.SOLUTION: Eight pixels surrounding a pixel of interest are numbered in order in a clock-wise direction (B1) and eight luminance differential values in a point-symmetric direction around the pixel of interest are determined from luminance values of the eight pixels (B2). A maximum luminance differential value is determined from among the eight luminance differential values (B3) and temporary numbers are assigned to eight pixels in order in the clock-wise direction in such a manner that a pixel in a direction having the maximum luminance differential value becomes a central number (B4). Regarding the central number and temporary numbers of pixels at both sides of the central number, a weighted average value of the temporary number is determined with the maximum luminance differential value and luminance differential values of pixels at both the sides as weights (B5). Then, the central number is subtracted from the weighted average value of the temporary number and the number of the pixel in the direction having the maximum luminance differential value is added, thereby detecting a luminance gradient direction in the pixel of interest (B6).

Description

本発明は、画像処理により、画像上の各画素における輝度勾配方向を検出する輝度勾配方向検出器及び輝度勾配方向検出方法に関する。   The present invention relates to a luminance gradient direction detector and a luminance gradient direction detection method for detecting a luminance gradient direction in each pixel on an image by image processing.

画像上の各画素における輝度勾配方向を求める方法として、Sobelオペレータのような微分フィルタを用いて、縦方向・横方向の輝度勾配強度を求め、この縦横方向それぞれの輝度勾配強度を用いて、次の2種類の方法により、輝度勾配方向を表現している。   As a method of obtaining the luminance gradient direction at each pixel on the image, the luminance gradient strength in the vertical and horizontal directions is obtained using a differential filter such as the Sobel operator, and the luminance gradient strength in the vertical and horizontal directions is used to The brightness gradient direction is expressed by these two methods.

(1)タンジェント(正接)の逆関数を用いて、角度を計算し、輝度勾配方向を角度で表現する。
例えば、下記特許文献1、2においては、Sobelオペレータによって求めた縦横方向それぞれの輝度勾配強度を基に、三角関数を用いて角度を求めることで、輝度勾配方向を求める方法が用いられている。
(1) An angle is calculated using an inverse function of a tangent (tangent), and a luminance gradient direction is expressed by an angle.
For example, in Patent Documents 1 and 2 below, a method of obtaining a luminance gradient direction by obtaining an angle using a trigonometric function based on luminance gradient strengths in the vertical and horizontal directions obtained by a Sobel operator is used.

(2)縦横方向それぞれの輝度勾配強度を成分とする2次元ベクトルとして輝度勾配方向を表現する。
例えば、下記特許文献3においては、Sobelオペレータによって求めた縦横方向それぞれの輝度勾配強度を成分とする2次元ベクトルとして輝度勾配方向を表現する方法が用いられている。
(2) The luminance gradient direction is expressed as a two-dimensional vector having luminance gradient strengths in the vertical and horizontal directions as components.
For example, in Patent Document 3 below, a method is used in which the luminance gradient direction is expressed as a two-dimensional vector whose components are luminance gradient intensities in the vertical and horizontal directions obtained by the Sobel operator.

特開2007−140684号公報JP 2007-140684 A 特開2006−025394号公報JP 2006-025394 A 特開2004−164034号公報JP 2004-164034 A

画像特徴量として、画像中の輝度勾配情報を基に構成されるものが多くある。この輝度勾配情報の内、輝度勾配方向については、縦方向及び横方向の輝度勾配強度からタンジェント(正接)の逆関数により角度を計算し、輝度勾配方向を算出する手法が一般的である。しかしながら、この計算では、三角関数を用いるため計算量が多く、高速解析(リアルタイムでの解析等)には適していない。   Many image feature amounts are configured based on luminance gradient information in an image. Of the luminance gradient information, a method of calculating the luminance gradient direction by calculating an angle from the luminance gradient intensity in the vertical direction and the horizontal direction by an inverse function of a tangent (tangent) is generally used for the luminance gradient direction. However, since this calculation uses a trigonometric function, it requires a large amount of calculation and is not suitable for high-speed analysis (such as real-time analysis).

本発明は上記課題に鑑みなされたもので、計算量が多い三角関数を用いることなく、高速に輝度勾配方向を検出する輝度勾配方向検出器及び輝度勾配方向検出方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a luminance gradient direction detector and a luminance gradient direction detection method for detecting a luminance gradient direction at high speed without using a trigonometric function having a large amount of calculation. .

上記課題を解決する第1の発明に係る輝度勾配方向検出器は、
画像データ中の注目している注目画素について、当該注目画素における輝度勾配方向を演算する演算装置を備えた輝度勾配方向検出器において、
前記演算装置は、
前記注目画素を囲む8つの画素に時計回りに順に番号を割り振る画素番号設定部と、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求める輝度差分値計算部と、
8つの前記輝度差分値から最大となる最大輝度差分値を求める最大輝度差分値検出部と、
前記最大輝度差分値を有する方向の画素が最小値及び最大値を除く所定番号となるように、前記8つの画素に時計回りに順に仮番号を振り直す画素番号再設定部と、
前記所定番号と前記所定番号の両隣の画素の仮番号について、前記最大輝度差分値と前記両隣の画素の輝度差分値を重みとして、仮番号の重み付き平均値を求める重み付き平均計算部と、
前記仮番号の重み付き平均値から前記所定番号を引くと共に、前記最大輝度差分値を有する方向の画素の当初の番号を加えることにより、前記注目画素における輝度勾配方向を検出する輝度勾配方向計算部とを有することを特徴とする。
The luminance gradient direction detector according to the first invention for solving the above-mentioned problems is as follows.
For a target pixel of interest in image data, a luminance gradient direction detector including a calculation device that calculates the luminance gradient direction of the target pixel;
The arithmetic unit is:
A pixel number setting unit that sequentially assigns numbers to the eight pixels surrounding the target pixel in a clockwise direction;
A luminance difference value calculation unit for obtaining luminance difference values between pixels in eight point-symmetrical directions centered on the pixel of interest from luminance values of eight pixels surrounding the pixel of interest;
A maximum luminance difference value detection unit for obtaining a maximum luminance difference value that is maximum from the eight luminance difference values;
A pixel number resetting unit that reassigns temporary numbers to the eight pixels in order clockwise so that the pixels in the direction having the maximum luminance difference value have predetermined numbers excluding the minimum value and the maximum value;
For the temporary number of the pixel adjacent to the predetermined number and the predetermined number, the weighted average calculation unit for obtaining the weighted average value of the temporary number using the maximum luminance difference value and the luminance difference value of the adjacent pixels as weights;
A luminance gradient direction calculation unit that detects the luminance gradient direction in the target pixel by subtracting the predetermined number from the weighted average value of the temporary number and adding the initial number of the pixel in the direction having the maximum luminance difference value It is characterized by having.

上記課題を解決する第2の発明に係る輝度勾配方向検出器は、
画像データ中の注目している注目画素について、当該注目画素における輝度勾配方向を演算する演算装置を備えた輝度勾配方向検出器において、
前記演算装置は、
前記注目画素を囲む8つの画素に時計回りに順に番号を割り振る画素番号設定部と、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求める輝度差分値計算部と、
8つの前記輝度差分値から最大となる最大輝度差分値を求める最大輝度差分値検出部と、
前記最大輝度差分値を有する方向の画素の番号と当該番号の両隣の番号について、前記最大輝度差分値と前記両隣の方向の輝度差分値を重みとして、番号の重み付き平均値を求める重み付き平均計算部と、
前記番号の重み付き平均値を前記注目画素における輝度勾配方向として検出する輝度勾配方向計算部とを有することを特徴とする。
A luminance gradient direction detector according to a second invention for solving the above-mentioned problems is as follows.
For a target pixel of interest in image data, a luminance gradient direction detector including a calculation device that calculates the luminance gradient direction of the target pixel;
The arithmetic unit is:
A pixel number setting unit that sequentially assigns numbers to the eight pixels surrounding the target pixel in a clockwise direction;
A luminance difference value calculation unit for obtaining luminance difference values between pixels in eight point-symmetrical directions centered on the pixel of interest from luminance values of eight pixels surrounding the pixel of interest;
A maximum luminance difference value detection unit for obtaining a maximum luminance difference value that is maximum from the eight luminance difference values;
For the number of pixels in the direction having the maximum luminance difference value and the number adjacent to the number, the weighted average for obtaining the weighted average value of the numbers using the maximum luminance difference value and the luminance difference value in the adjacent direction as weights A calculation unit;
A luminance gradient direction calculation unit that detects a weighted average value of the numbers as a luminance gradient direction in the target pixel;

上記課題を解決する第3の発明に係る輝度勾配方向検出器は、
上記第1又は第2の発明に記載の輝度勾配方向検出器において、
前記輝度差分値計算部は、前記輝度差分値を求める際、任意の方向の画素及び当該画素の両隣の画素の輝度値の和と、当該複数の画素の点対称位置にある他の画素及び当該他の画素の両隣の画素の輝度値の和との差分を用いることを特徴とする。
A luminance gradient direction detector according to a third invention for solving the above-described problems is as follows.
In the luminance gradient direction detector according to the first or second invention,
When the luminance difference value calculation unit obtains the luminance difference value, a sum of luminance values of a pixel in an arbitrary direction and pixels adjacent to the pixel, another pixel at a point-symmetrical position of the pixels, and the pixel A difference between the sum of luminance values of pixels adjacent to the other pixels is used.

上記課題を解決する第4の発明に係る輝度勾配方向検出器は、
上記第1〜第3のいずれか1つの発明に記載の輝度勾配方向検出器において、
前記演算装置は、
更に、検出した前記輝度勾配方向を360度の角度方向へ換算して出力する角度換算部を有することを特徴とする。
A luminance gradient direction detector according to a fourth invention for solving the above-mentioned problems is as follows.
In the luminance gradient direction detector according to any one of the first to third inventions,
The arithmetic unit is:
Furthermore, an angle conversion unit that converts the detected luminance gradient direction into an angle direction of 360 degrees and outputs the converted angle is provided.

上記課題を解決する第5の発明に係る輝度勾配方向検出方法は、
画像データ中の注目している注目画素を囲む8つの画素に時計回りに順に番号を割り振り、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求め、
8つの前記輝度差分値から最大となる最大輝度差分値を求め、
前記最大輝度差分値を有する方向の画素が最小値及び最大値を除く所定番号となるように、前記8つの画素に時計回りに順に仮番号を振り直し、
前記所定番号と前記所定番号の両隣の画素の仮番号について、前記最大輝度差分値と前記両隣の画素の輝度差分値を重みとして、仮番号の重み付き平均値を求め、
前記仮番号の重み付き平均値から前記所定番号を引くと共に、前記最大輝度差分値を有する方向の画素の当初の番号を加えることにより、前記注目画素における輝度勾配方向を検出することを特徴とする。
A luminance gradient direction detection method according to a fifth invention for solving the above-mentioned problem is as follows.
Numbers are assigned sequentially to the eight pixels surrounding the target pixel of interest in the image data,
From the luminance values of the eight pixels surrounding the pixel of interest, a luminance difference value between the pixels in the eight point-symmetrical directions centered on the pixel of interest is obtained.
Find the maximum brightness difference value from the 8 brightness difference values,
Reassign temporary numbers to the eight pixels in order clockwise so that the pixels in the direction having the maximum luminance difference value have predetermined numbers excluding the minimum value and the maximum value,
For the temporary number of the pixel adjacent to the predetermined number and the predetermined number, the weighted average value of the temporary number is obtained using the maximum luminance difference value and the luminance difference value of the adjacent pixels as weights,
The luminance gradient direction in the target pixel is detected by subtracting the predetermined number from the weighted average value of the temporary number and adding the initial number of the pixel in the direction having the maximum luminance difference value. .

上記課題を解決する第6の発明に係る輝度勾配方向検出方法は、
画像データ中の注目している注目画素を囲む8つの画素に時計回りに順に番号を割り振り、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求め、
8つの前記輝度差分値から最大となる最大輝度差分値を求め、
前記最大輝度差分値を有する方向の画素の番号と当該番号の両隣の番号について、前記最大輝度差分値と前記両隣の方向の輝度差分値を重みとして、番号の重み付き平均値を求め、
前記番号の重み付き平均値を前記注目画素における輝度勾配方向として検出することを特徴とする。
A luminance gradient direction detection method according to a sixth invention for solving the above-mentioned problem is as follows.
Numbers are assigned sequentially to the eight pixels surrounding the target pixel of interest in the image data,
From the luminance values of the eight pixels surrounding the pixel of interest, a luminance difference value between the pixels in the eight point-symmetrical directions centered on the pixel of interest is obtained.
Find the maximum brightness difference value from the 8 brightness difference values,
For the number of the pixel in the direction having the maximum luminance difference value and the number adjacent to the number, the weighted average value of the number is obtained using the maximum luminance difference value and the luminance difference value in the adjacent direction as weights,
The weighted average value of the numbers is detected as a luminance gradient direction in the target pixel.

上記課題を解決する第7の発明に係る輝度勾配方向検出方法は、
上記第5又は第6の発明に記載の輝度勾配方向検出方法において、
前記輝度差分値を求める際、任意の方向の画素及び当該画素の両隣の画素の輝度値の和と、当該複数の画素の点対称位置にある他の画素及び当該他の画素の両隣の画素の輝度値の和との差分を用いることを特徴とする。
A luminance gradient direction detection method according to a seventh invention for solving the above-mentioned problem is as follows.
In the luminance gradient direction detection method according to the fifth or sixth invention,
When calculating the luminance difference value, the sum of the luminance values of a pixel in an arbitrary direction and the pixel adjacent to the pixel, and the other pixel in the point-symmetric position of the pixels and the pixel adjacent to the other pixel. A difference from the sum of luminance values is used.

上記課題を解決する第8の発明に係る輝度勾配方向検出方法は、
上記第5〜第7のいずれか1つの発明に記載の輝度勾配方向検出方法において、
更に、検出した前記輝度勾配方向を360度の角度方向へ換算して出力することを特徴とする。
A luminance gradient direction detection method according to an eighth invention for solving the above-mentioned problem is as follows.
In the luminance gradient direction detection method according to any one of the fifth to seventh inventions,
Further, the detected luminance gradient direction is converted into an angular direction of 360 degrees and output.

本発明によれば、三角関数を用いることなく、高速に輝度勾配方向を検出することができる。   According to the present invention, it is possible to detect a luminance gradient direction at high speed without using a trigonometric function.

注目画素Pを囲む8つの画素に割り振った番号を示す図である。It is a figure which shows the number allocated to eight pixels surrounding the attention pixel P. FIG. 注目画素Pを囲む8つの画素において、その輝度値と、点対称方向の輝度差分値を説明する図である。It is a figure explaining the brightness | luminance value and the brightness | luminance difference value of a point symmetry direction in eight pixels surrounding the attention pixel P. FIG. 注目画素Pを囲む8つの画素において、最大輝度差分値の方向の画素を中央番号として付け直した画素の仮番号を示す図である。It is a figure which shows the temporary number of the pixel which renumbered the pixel of the direction of the largest luminance difference value as a center number in eight pixels surrounding the attention pixel P. 各画素の注目画素Pに対する方向を説明する図である。It is a figure explaining the direction with respect to the attention pixel P of each pixel. (a)、(b)は、各々、画素の番号を横軸とした輝度値、輝度差分値の分布例を示す図である。(A), (b) is a figure which shows the example of distribution of the luminance value and luminance difference value which respectively made the pixel number the horizontal axis. 本発明に係る輝度勾配方向検出器の実施形態の一例(実施例1)を示す概略構成図である。It is a schematic block diagram which shows an example (Example 1) of embodiment of the brightness | luminance gradient direction detector which concerns on this invention. 図6に示した輝度勾配方向検出器における輝度勾配方向検出方法を説明するフローチャートである。It is a flowchart explaining the brightness | luminance gradient direction detection method in the brightness | luminance gradient direction detector shown in FIG. 図6に示した輝度勾配方向検出器における輝度勾配方向検出方法の他の一例(実施例2)を説明するフローチャートである。It is a flowchart explaining the other example (Example 2) of the luminance gradient direction detection method in the luminance gradient direction detector shown in FIG. 本発明に係る輝度勾配方向検出器の実施形態の他の一例(実施例3)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 3) of embodiment of the brightness | luminance gradient direction detector which concerns on this invention. 図9に示した輝度勾配方向検出器における輝度勾配方向検出方法を説明するフローチャートである。10 is a flowchart for explaining a luminance gradient direction detection method in the luminance gradient direction detector shown in FIG. 9. (a)、(b)は、各々、画素の番号を横軸とした輝度値、輝度差分値の分布例を示す図である。(A), (b) is a figure which shows the example of distribution of the luminance value and luminance difference value which respectively made the pixel number the horizontal axis. 本発明に係る輝度勾配方向検出器の実施形態の他の一例(実施例4)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 4) of embodiment of the brightness | luminance gradient direction detector which concerns on this invention. 図12に示した輝度勾配方向検出器における輝度勾配方向検出方法を説明するフローチャートである。It is a flowchart explaining the brightness | luminance gradient direction detection method in the brightness | luminance gradient direction detector shown in FIG.

本発明に係る輝度勾配方向検出器及び輝度勾配方向検出方法について、図1〜図13を参照して、その実施形態のいくつかを説明する。   The brightness gradient direction detector and the brightness gradient direction detection method according to the present invention will be described with reference to FIGS.

最初に、本発明の概略を説明する。輝度勾配方向は、特に、360度の角度方向で表現する必要はない。従って、本発明では、図1に示すように、任意の注目画素Pを中心とする3画素×3画素の領域において、注目画素Pを囲む8つの画素に対し、12時方向(図中の真上の方向)を0として、時計回りに順に0から7までの整数の番号を振り、これらの番号を用いた演算により、輝度勾配強度の最も高い方向を推定し、この方向を注目画素Pにおける輝度勾配方向として検出しており、0以上8未満の数値(整数とは限らない。)を用いて輝度勾配方向を表現するようにしている。なお、必要な場合には、後述の実施例3で説明するように、0以上8未満の数値で表現した輝度勾配方向を、360度の角度方向に変換可能である。   First, the outline of the present invention will be described. The luminance gradient direction does not need to be expressed in an angular direction of 360 degrees. Therefore, in the present invention, as shown in FIG. 1, in a 3 × 3 pixel region centered on an arbitrary target pixel P, the eight pixels surrounding the target pixel P are set in the 12 o'clock direction (true in the figure). (Upper direction) is set to 0, integer numbers from 0 to 7 are sequentially assigned in the clockwise direction, and the direction with the highest luminance gradient intensity is estimated by calculation using these numbers. The luminance gradient direction is detected, and the luminance gradient direction is expressed using a numerical value (not necessarily an integer) of 0 or more and less than 8. If necessary, the luminance gradient direction expressed by a numerical value of 0 or more and less than 8 can be converted into an angular direction of 360 degrees as will be described in Example 3 described later.

(実施例1)
本実施例の輝度勾配方向検出器及び輝度勾配方向検出方法について、図1〜図5と共に、図6、図7を参照して、説明を行う。
Example 1
The brightness gradient direction detector and brightness gradient direction detection method of the present embodiment will be described with reference to FIGS. 6 and 7 together with FIGS.

本実施例において、輝度勾配方向検出器11は、図6に示すように、画素番号設定部B1と、輝度差分値計算部B2と、最大輝度差分値計算部B3と、画素番号再設定部B4と、重み付き平均計算部B5と、輝度勾配計算部B6とを有する演算装置である。この輝度勾配方向検出器11では、画像を撮影するカメラ12から入力された画像データにおいて、後述する手順を用いて、輝度勾配方向を検出し、検出した輝度勾配方向をディスプレイ13に表示するようにしている。   In this embodiment, as shown in FIG. 6, the luminance gradient direction detector 11 includes a pixel number setting unit B1, a luminance difference value calculation unit B2, a maximum luminance difference value calculation unit B3, and a pixel number resetting unit B4. And a weighted average calculation unit B5 and a luminance gradient calculation unit B6. The luminance gradient direction detector 11 detects the luminance gradient direction in the image data input from the camera 12 that captures an image using the procedure described later, and displays the detected luminance gradient direction on the display 13. ing.

なお、画像データは、カメラ12からのデータに限らず、例えば、HDD(ハード・ディスク・ドライブ)等の記録媒体に記録した画像データを用いてもよい。又、検出した輝度勾配方向は、ディスプレイ13に限らず、例えば、プリンタ等に出力するようにしてもよいし、又、HDD等の記録媒体に記録し、画像データ同士の比較に用いるようにしてもよい。   Note that the image data is not limited to data from the camera 12, and image data recorded on a recording medium such as an HDD (hard disk drive) may be used. The detected luminance gradient direction is not limited to the display 13 and may be output to a printer or the like, or may be recorded on a recording medium such as an HDD and used for comparison between image data. Also good.

まず、画素番号設定部B1では、入力された画像データ中において、注目画素位置を選択し、選択した位置の注目画素Pを中心とする3画素×3画素の領域において、図1で説明したように、注目画素Pを囲む8つの画素に対し、12時方向(図中の真上の方向)を0として、時計回りに順に0から7までの整数の番号を設定する(図7のステップS1)。   First, the pixel number setting unit B1 selects a target pixel position in the input image data, and the 3 × 3 pixel region centered on the target pixel P at the selected position is as described with reference to FIG. In addition, for the eight pixels surrounding the pixel of interest P, an integer number from 0 to 7 is set in the clockwise order with the 12 o'clock direction (directly above in the figure) as 0 (step S1 in FIG. 7). ).

次に、輝度差分値計算部B2では、注目画素Pを中心とする3画素×3画素の領域において、注目画素Pを囲む8つの画素の輝度値から、注目画素Pを中心とする8つの点対称方向の画素間の輝度差分値を、輝度勾配強度として計算する(図7のステップS2a)。注目画素Pの選択は、画像データの全画素に対して行う場合には、各位置の画素を順次選択するようにすればよい。又、特定の条件を満たす画素のみを選択してもよい。   Next, in the luminance difference value calculation unit B2, in the region of 3 pixels × 3 pixels centered on the target pixel P, eight points centered on the target pixel P are determined from the brightness values of the eight pixels surrounding the target pixel P. The luminance difference value between the pixels in the symmetric direction is calculated as the luminance gradient strength (step S2a in FIG. 7). When the pixel of interest P is selected for all the pixels of the image data, the pixels at each position may be selected sequentially. Alternatively, only pixels that satisfy a specific condition may be selected.

図1で説明したように、注目画素Pを囲む8つの画素には、12時方向を0として、時計回りにi=0〜7の整数の番号が割り振られている。そして、図2に示すように、各画素の輝度値をIi、点対称方向の輝度差分値Diとすると、4つの点対称方向の輝度差分値Diは次のように計算できる。   As described with reference to FIG. 1, the eight pixels surrounding the target pixel P are assigned integer numbers of i = 0 to 7 clockwise with the 12 o'clock direction set to 0. As shown in FIG. 2, assuming that the luminance value of each pixel is Ii and the luminance difference value Di in the point symmetry direction, the four luminance difference values Di in the point symmetry direction can be calculated as follows.

D0=I0−I4
D1=I1−I5
D2=I2−I6
D3=I3−I7
D0 = I0-I4
D1 = I1-I5
D2 = I2-I6
D3 = I3-I7

一方、他の4つの点対称方向の輝度差分値Diは、先に求めた4つの点対称方向の輝度差分値Diの逆方向に輝度差分値であり、次のように計算できる。   On the other hand, the luminance difference value Di in the other four point symmetry directions is a luminance difference value in the opposite direction of the previously obtained luminance difference value Di in the four point symmetry directions, and can be calculated as follows.

D4=I4−I0=−D0
D5=I5−I1=−D1
D6=I6−I2=−D2
D7=I7−I3=−D3
D4 = I4-I0 = -D0
D5 = I5-I1 = -D1
D6 = I6-I2 = -D2
D7 = I7−I3 = −D3

以上の計算により、8つの点対称方向の輝度勾配強度データとなる8つの輝度差分値Diが計算されることになる。   As a result of the above calculation, eight luminance difference values Di serving as luminance gradient intensity data in eight point symmetry directions are calculated.

次に、最大輝度差分値計算部B3では、求めた8つの輝度差分値Diから最大輝度差分値を求める(図7のステップS3)。そして、最大輝度差分値の方向の画素の番号をmとし、その方向の輝度差分値、即ち、最大輝度差分値をDmで表す。例えば、図1、図2において、輝度差分値D1が最大輝度差分値であれば、m=1、Dm=D1である。   Next, the maximum luminance difference value calculation unit B3 calculates a maximum luminance difference value from the obtained eight luminance difference values Di (step S3 in FIG. 7). The pixel number in the direction of the maximum luminance difference value is m, and the luminance difference value in that direction, that is, the maximum luminance difference value is represented by Dm. For example, in FIGS. 1 and 2, if the luminance difference value D1 is the maximum luminance difference value, m = 1 and Dm = D1.

次に、画素番号再設定部B4では、最大輝度差分値Dmの方向の画素が、最小の番号0及び最大の番号7を除く所定の番号(以降、所定番号cと呼ぶ。)となるように、注目画素Pを囲む8つの画素に仮番号を付け直す(図7のステップS4)。   Next, in the pixel number resetting unit B4, the pixels in the direction of the maximum luminance difference value Dm have a predetermined number (hereinafter referred to as a predetermined number c) excluding the minimum number 0 and the maximum number 7. The temporary numbers are renumbered to the eight pixels surrounding the target pixel P (step S4 in FIG. 7).

例えば、図1、図2において、m=1、Dm=D1、即ち、画素1の方向の輝度差分値D1が最大輝度差分値であり、所定番号cを全番号の中央の番号である[4]とする場合、図3のように、画素1が番号の[4]となるように、各画素に時計回りに順に[0]〜[7]の仮番号を割り振っている。ここでは、当初の番号iと区別するため、付け直した仮番号には大括弧“[]”を付ける。   For example, in FIGS. 1 and 2, m = 1, Dm = D1, that is, the luminance difference value D1 in the direction of the pixel 1 is the maximum luminance difference value, and the predetermined number c is the center number of all the numbers [4 ], As shown in FIG. 3, temporary numbers [0] to [7] are assigned to each pixel in order clockwise so that the pixel 1 has the number [4]. Here, in order to distinguish from the original number i, the brackets “[]” are added to the re-assigned temporary numbers.

ここで、仮番号[0]〜[7]は、後述する重み付き平均値Paを正しく計算するための一時的なものである。仮番号[0]〜[7]を用いる理由について、図4、図5(a)、(b)と共に、図1〜図2を参照して説明する。   Here, the temporary numbers [0] to [7] are temporary for correctly calculating a weighted average value Pa described later. The reason why the temporary numbers [0] to [7] are used will be described with reference to FIGS. 1 and 2 together with FIGS. 4, 5 (a), and (b).

図1の各画素を、図4に示すように、注目画素Pの周囲360度に対応する方向と考え、各方向を示す画素の番号を横軸として、対応する輝度値I0〜I7、輝度差分値D0〜D7の分布例を示すと、例えば、図5(a)、(b)の実線で示すグラフG1や点線で示すグラフG2のような分布となる。なお、図5(b)に示す輝度差分値D0〜D7の分布は、上述した輝度差分値D0〜D7を求める式からもわかるように、正側と負側で対称のグラフとなる。   As shown in FIG. 4, each pixel in FIG. 1 is considered as a direction corresponding to 360 degrees around the target pixel P, and the corresponding luminance values I0 to I7 and the luminance difference are set with the number of the pixel indicating each direction as the horizontal axis. An example of the distribution of the values D0 to D7 is, for example, a distribution such as a graph G1 indicated by a solid line and a graph G2 indicated by a dotted line in FIGS. Note that the distribution of the luminance difference values D0 to D7 shown in FIG. 5B is a symmetric graph on the positive side and the negative side, as can be seen from the equations for obtaining the luminance difference values D0 to D7.

実線で示すグラフG1において、輝度勾配方向は画素3と画素4の間にあり、最大の輝度値はI4であり、最大の輝度差分値はD4である。この場合、輝度勾配方向を求めるためには、最大輝度差分値D4と隣接する2画素の輝度差分値D3、D5を重みとし、画素の番号3、4、5の重み付き平均値を計算すればよい。   In the graph G1 indicated by the solid line, the luminance gradient direction is between the pixel 3 and the pixel 4, the maximum luminance value is I4, and the maximum luminance difference value is D4. In this case, in order to obtain the luminance gradient direction, the weighted average values of the pixel numbers 3, 4, and 5 are calculated using the maximum luminance difference value D4 and the luminance difference values D3 and D5 of two adjacent pixels as weights. Good.

ところが、点線で示すグラフG2のように、輝度勾配方向が画素7と画素0の間にあり、最大の輝度値がI0であり、最大の輝度差分値はD0である場合、最大輝度差分値D0と隣接する2画素の輝度差分値D7、D1を重みとし、画素の番号7、0、1の重み付き平均値を計算すると、画素の番号7、0、1が不連続となっているので、重み付き平均値の計算が正しくできず、輝度勾配方向を求めることができない。   However, when the luminance gradient direction is between the pixel 7 and the pixel 0, the maximum luminance value is I0, and the maximum luminance difference value is D0 as in the graph G2 indicated by the dotted line, the maximum luminance difference value D0. When the weighted average values of pixel numbers 7, 0, 1 are calculated using the luminance difference values D7, D1 of two adjacent pixels as weights, the pixel numbers 7, 0, 1 are discontinuous. The weighted average value cannot be calculated correctly, and the luminance gradient direction cannot be obtained.

そのため、本実施例では、所定番号cを全番号の中央の番号である[4]とし、最大輝度差分値Dmの方向の画素が[4]となるように、仮番号を付け直している。その結果、重み付き平均値の計算で用いる画素の仮番号が3、4、5と連続することになるので、正しく重み付き平均値を計算することができる。このように、重み付き平均値の計算で用いる画素の仮番号が連続すればよいので、所定番号cとしては、全番号の中央の番号[4]に限る必要は無く、最小の番号[0]及び最大の番号[7]除く、[1]〜[6]の番号を使用可能である。   For this reason, in this embodiment, the predetermined number c is set to [4], which is the center number of all the numbers, and the temporary number is reassigned so that the pixel in the direction of the maximum luminance difference value Dm is [4]. As a result, the temporary numbers of the pixels used in the calculation of the weighted average value are continuous with 3, 4, and 5, so that the weighted average value can be calculated correctly. Thus, since the temporary numbers of the pixels used in the calculation of the weighted average value need only be consecutive, the predetermined number c need not be limited to the center number [4] of all the numbers, and the minimum number [0] In addition, numbers [1] to [6] can be used except for the maximum number [7].

上述した画素番号再設定の後に、重み付き平均計算部B5では、所定番号cと両隣の画素の仮番号(c−1)、(c+1)について、最大輝度差分値Dmと両隣の画素の輝度差分値D(m−1)、D(m+1)を重みとし、下記の(式1)を用いて、重み付き平均値Paを計算する(図7のステップS5)。   After the pixel number resetting described above, the weighted average calculation unit B5 determines the maximum luminance difference value Dm and the luminance difference between the adjacent pixels for the predetermined number c and the temporary numbers (c-1) and (c + 1) of the adjacent pixels. Using the values D (m−1) and D (m + 1) as weights, the weighted average value Pa is calculated using the following (Equation 1) (step S5 in FIG. 7).

Figure 2012118854
但し、D(m−1)がD(−1)となる場合、D(−1)はD7とし、D(m+1)がD(8)となる場合、D(8)はD0とする。
Figure 2012118854
However, when D (m−1) is D (−1), D (−1) is D7, and when D (m + 1) is D (8), D (8) is D0.

例えば、図1〜図3において、m=1、Dm=D1、c=[4]、即ち、画素1の方向の輝度差分値D1が最大輝度差分値Dmであり、所定番号c=[4]である場合には、上記(式1)は以下の通りとなる。
Pa=(D0×3+D1×4+D2×5)/(D0+D1+D2)
For example, in FIGS. 1 to 3, m = 1, Dm = D1, c = [4], that is, the luminance difference value D1 in the direction of the pixel 1 is the maximum luminance difference value Dm, and the predetermined number c = [4]. In this case, the above (Formula 1) is as follows.
Pa = (D0 × 3 + D1 × 4 + D2 × 5) / (D0 + D1 + D2)

このように、付け直した仮番号[0]〜[7]の8つの画素においては、Paが輝度勾配方向となる。   In this way, in the eight pixels with the reassigned temporary numbers [0] to [7], Pa is the luminance gradient direction.

最後に、輝度勾配計算部B6では、下記(式2)を用いて、当初の番号i=0〜7の8つの画素における輝度勾配方向を求める(図7のステップS6)。具体的には、上記(式1)で求めた仮番号の重み付き平均値Paから所定番号cを引くと共に、最大輝度差分値の方向の画素の番号mを加えることで、輝度勾配方向Poを求める。   Finally, the luminance gradient calculation unit B6 obtains the luminance gradient directions in the eight pixels of the initial number i = 0 to 7 using the following (Equation 2) (step S6 in FIG. 7). Specifically, the luminance gradient direction Po is obtained by subtracting the predetermined number c from the weighted average value Pa of the temporary number obtained in (Expression 1) and adding the pixel number m in the direction of the maximum luminance difference value. Ask.

Po=m+(Pa−c)…(式2)
但し、Po<0となる場合、Po=Po+8とする。
Po = m + (Pa−c) (Formula 2)
However, when Po <0, Po = Po + 8.

例えば、図1〜図3において、m=1、Dm=D1、c=[4]、即ち、画素1の方向の輝度差分値D1が最大輝度差分値であり、所定番号c=[4]である場合には、上記(式2)は以下の通りとなる。   For example, in FIGS. 1 to 3, m = 1, Dm = D1, c = [4], that is, the luminance difference value D1 in the direction of the pixel 1 is the maximum luminance difference value, and the predetermined number c = [4]. In some cases, the above (Formula 2) is as follows.

Po=1+(Pa−4)=Pa−3   Po = 1 + (Pa-4) = Pa-3

このように、本実施例では、計算量の多い三角関数を用いることなく、簡単且つ高速に輝度勾配方向を検出することができる。   As described above, in this embodiment, the luminance gradient direction can be detected easily and at high speed without using a trigonometric function having a large calculation amount.

(実施例2)
図8は、本実施例の輝度勾配方向検出方法を説明するフローチャートである。
本実施例においては、図8に示すフローチャートに基づいて、輝度勾配方向を検出しているが、本実施例の輝度勾配方向検出器は、実施例1の図6に示した輝度勾配方向検出器と同等の構成でよい。又、図8のフローチャートは、ステップS2bの手順を除き、実施例1の図7のフローチャートと同等である。従って、ここでは、前述の図1〜図7も参照すると共に、重複する記載を省略又は簡略化して説明を行う。
(Example 2)
FIG. 8 is a flowchart for explaining the luminance gradient direction detection method of the present embodiment.
In this embodiment, the luminance gradient direction is detected based on the flowchart shown in FIG. 8, but the luminance gradient direction detector of this embodiment is the luminance gradient direction detector shown in FIG. It may be the same configuration as. Further, the flowchart of FIG. 8 is the same as the flowchart of FIG. 7 of the first embodiment except for the procedure of step S2b. Accordingly, here, the description will be made with reference to FIGS. 1 to 7 as well as omitting or simplifying the overlapping description.

本実施例でも、実施例1で説明したステップS1の手順を経た後、輝度勾配方向検出器11の輝度差分値計算部B2において、8つの点対称方向の輝度勾配強度を計算している。   Also in the present embodiment, after the procedure of step S1 described in the first embodiment, the luminance difference value calculation unit B2 of the luminance gradient direction detector 11 calculates luminance gradient intensities in eight point symmetric directions.

輝度差分値計算部B2において、実施例1では、点対称位置にある2つの画素同士の輝度値Iiの輝度差分値Diを計算することで、8つの点対称方向の輝度勾配強度を求めている。これに対して、本実施例では、任意の方向の画素と当該画素の両隣の画素の輝度値の和と、これらの複数の画素の点対称位置にある他の画素と当該他の画素の両隣の画素の輝度値の和との差分を輝度差分値Diとすることで、即ち、線対称位置にある複数の画素同士の輝度差分値Diを計算することで、8つの点対称方向の輝度勾配強度を求めている(ステップS2b)。   In the luminance difference value calculation unit B2, in the first embodiment, the luminance difference values Di of the luminance values Ii between two pixels at the point-symmetrical positions are calculated to obtain the luminance gradient strengths in the eight point-symmetrical directions. . On the other hand, in this embodiment, the sum of the luminance values of the pixel in an arbitrary direction and the pixel adjacent to the pixel, and the other pixel in the point symmetry position of the plurality of pixels and the adjacent pixel of the other pixel. Brightness difference value Di, that is, by calculating the brightness difference value Di between a plurality of pixels at line symmetry positions, the brightness gradient in eight point symmetry directions The strength is obtained (step S2b).

具体的には、図1、図2で説明したように、各画素の輝度値をIi、点対称方向の輝度差分値Diとすると、4つの点対称方向の輝度差分値Diは次のように計算する。   Specifically, as described with reference to FIGS. 1 and 2, assuming that the luminance value of each pixel is Ii and the luminance difference value Di in the point symmetry direction, the luminance difference values Di in the four point symmetry directions are as follows: calculate.

D0=(I7+I0+I1)−(I3+I4+I5)
D1=(I0+I1+I2)−(I4+I5+I6)
D2=(I1+I2+I3)−(I5+I6+I7)
D3=(I2+I3+I4)−(I6+I7+I0)
D0 = (I7 + I0 + I1) − (I3 + I4 + I5)
D1 = (I0 + I1 + I2) − (I4 + I5 + I6)
D2 = (I1 + I2 + I3)-(I5 + I6 + I7)
D3 = (I2 + I3 + I4)-(I6 + I7 + I0)

一方、他の4つの点対称方向の輝度差分値Diは、先に求めた4つの点対称方向の輝度差分値Diの逆方向に輝度差分値であり、次のように計算できる。   On the other hand, the luminance difference value Di in the other four point symmetry directions is a luminance difference value in the opposite direction of the previously obtained luminance difference value Di in the four point symmetry directions, and can be calculated as follows.

D4=(I3+I4+I5)−(I7+I0+I1)=−D0
D5=(I4+I5+I6)−(I0+I1+I2)=−D1
D6=(I5+I6+I7)−(I1+I2+I3)=−D2
D7=(I6+I7+I0)−(I2+I3+I4)=−D3
D4 = (I3 + I4 + I5) − (I7 + I0 + I1) = − D0
D5 = (I4 + I5 + I6) − (I0 + I1 + I2) = − D1
D6 = (I5 + I6 + I7) − (I1 + I2 + I3) = − D2
D7 = (I6 + I7 + I0) − (I2 + I3 + I4) = − D3

以上の計算により、8つの点対称方向の輝度勾配強度となる8つの輝度差分値Diが計算されることになる。   With the above calculation, eight luminance difference values Di that are luminance gradient intensities in eight point symmetry directions are calculated.

以降の手順は、本実施例で求めた8つの輝度差分値Diを用いて、実施例1で説明したステップS3〜S6を経て、輝度勾配方向Poを求めることができる。   In the subsequent procedure, the luminance gradient direction Po can be obtained through the steps S3 to S6 described in the first embodiment using the eight luminance difference values Di obtained in the present embodiment.

本実施例では、注目画素Pにおける点対称方向の輝度勾配強度を求める際に、複数画素の輝度値を用いているので、実施例1での効果に加え、ノイズの混入した画像でも、輝度勾配方向の検出結果を安定して得ることができる。   In the present embodiment, since the luminance value of a plurality of pixels is used when obtaining the luminance gradient intensity in the point symmetry direction at the target pixel P, in addition to the effect of the first embodiment, the luminance gradient can be obtained even in an image mixed with noise. The direction detection result can be obtained stably.

(実施例3)
図9は、本実施例の輝度勾配方向検出器を示す概略構成図であり、図10は、本実施例の輝度勾配方向検出方法を説明するフローチャートである。
(Example 3)
FIG. 9 is a schematic configuration diagram illustrating the luminance gradient direction detector of the present embodiment, and FIG. 10 is a flowchart for explaining the luminance gradient direction detection method of the present embodiment.

本実施例においては、図9に示す輝度勾配方向検出器、図10に示すフローチャートに基づいて、輝度勾配方向を検出しているが、本実施例の輝度勾配方向検出器は、輝度勾配方向−角度換算部B7を除き、実施例1の図6に示した輝度勾配方向検出器と同等の構成でよい。又、図10のフローチャートは、ステップS7の手順を除き、実施例1の図7のフローチャート、実施例2の図8のフローチャートと同等である。従って、ここでも、重複する記載を省略又は簡略化して説明を行う。   In the present embodiment, the brightness gradient direction detector detects the brightness gradient direction based on the brightness gradient direction detector shown in FIG. 9 and the flowchart shown in FIG. Except for the angle conversion unit B7, the same configuration as the luminance gradient direction detector shown in FIG. The flowchart of FIG. 10 is the same as the flowchart of FIG. 7 of the first embodiment and the flowchart of FIG. 8 of the second embodiment except for the procedure of step S7. Therefore, the description is omitted here also by omitting or simplifying the overlapping description.

本実施例でも、実施例1(又は実施例2)で説明したステップS1〜S6の手順を経て、輝度勾配方向Po(0以上8未満の数値)を検出している。その後、輝度勾配方向検出器14(演算装置)の輝度勾配方向−角度換算部B7において、検出した輝度勾配方向Poを、下記式により、360度の角度方向θへ変換し、ディスプレイ13へ出力するようにしている(ステップS7)。なお、ここでは、12時の方向(図中の真上の方向)を0度としている。   Also in the present embodiment, the luminance gradient direction Po (a numerical value of 0 or more and less than 8) is detected through the procedure of steps S1 to S6 described in the first embodiment (or the second embodiment). Thereafter, in the luminance gradient direction-angle conversion unit B7 of the luminance gradient direction detector 14 (arithmetic unit), the detected luminance gradient direction Po is converted into an angular direction θ of 360 degrees according to the following equation and output to the display 13. (Step S7). Here, the 12 o'clock direction (directly above in the figure) is set to 0 degrees.

θ=Po×(360/8)   θ = Po × (360/8)

本実施例では、輝度勾配方向を360度の角度方向θで出力するので、実施例1、実施例2での効果に加え、三角関数で輝度勾配方向を計算する従来の装置と簡単に置き換えることができる。   In this embodiment, since the luminance gradient direction is output in an angular direction θ of 360 degrees, in addition to the effects in the first and second embodiments, it can be easily replaced with a conventional device that calculates the luminance gradient direction using a trigonometric function. Can do.

(実施例4)
図12は、本実施例の輝度勾配方向検出器を示す概略構成図であり、図13は、本実施例の輝度勾配方向検出方法を説明するフローチャートである。
Example 4
FIG. 12 is a schematic configuration diagram showing the luminance gradient direction detector of the present embodiment, and FIG. 13 is a flowchart for explaining the luminance gradient direction detection method of the present embodiment.

本実施例においては、図12に示す輝度勾配方向検出器、図13に示すフローチャートに基づいて、輝度勾配方向を検出している。図12に示す本実施例の輝度勾配方向検出器は、実施例1の図6に示した輝度勾配方向検出器と略同等の構成であるが、画素番号再設定部B4を有しておらず、同様に、図13に示すフローチャートも、実施例1の図7に示したフローチャートと略同等であるが、画素番号再設定のステップを有しておらず、この点が相違する。従って、ここでは、重複する記載を簡略化して説明を行う。   In this embodiment, the luminance gradient direction is detected based on the luminance gradient direction detector shown in FIG. 12 and the flowchart shown in FIG. The luminance gradient direction detector of the present embodiment shown in FIG. 12 has substantially the same configuration as the luminance gradient direction detector shown in FIG. 6 of the first embodiment, but does not have the pixel number resetting unit B4. Similarly, the flowchart shown in FIG. 13 is substantially the same as the flowchart shown in FIG. 7 of the first embodiment, but does not have a pixel number resetting step, and this point is different. Therefore, here, the description is simplified while overlapping description.

本実施例においても、まず、画素番号設定部B1では、実施例1のステップS1と同様に、選択した位置の注目画素Pを囲む8つの画素に対し、時計回りに順に0から7までの整数の番号を設定する(ステップS11)。   Also in the present embodiment, first, in the pixel number setting unit B1, as in Step S1 of the first embodiment, integers from 0 to 7 are sequentially assigned to the eight pixels surrounding the target pixel P at the selected position in the clockwise direction. Is set (step S11).

次に、輝度差分値計算部B2では、実施例1のステップS2aと同様に、注目画素Pを中心とする8つの点対称方向の画素間の輝度差分値Di(i=0〜7)を、輝度勾配強度として計算する(ステップS12)。なお、ここでの輝度差分値Diの計算は、実施例2のステップ2bと同様に、複数画素の輝度値を用いて計算してもよい。   Next, in the luminance difference value calculation unit B2, as in step S2a of the first embodiment, the luminance difference values Di (i = 0 to 7) between the pixels in the eight point-symmetrical directions with the pixel of interest P as the center are calculated. The luminance gradient intensity is calculated (step S12). Note that the luminance difference value Di here may be calculated using the luminance values of a plurality of pixels as in step 2b of the second embodiment.

次に、最大輝度差分値計算部B3では、実施例1のステップS3と同様に、求めた8つの輝度差分値Diから最大輝度差分値を求め、最大輝度差分値の方向の画素の番号をmとし、最大輝度差分値をDmで表す(ステップS13)。   Next, in the maximum luminance difference value calculation unit B3, as in step S3 of the first embodiment, the maximum luminance difference value is obtained from the obtained eight luminance difference values Di, and the pixel number in the direction of the maximum luminance difference value is set to m. And the maximum luminance difference value is represented by Dm (step S13).

実施例1〜3においては、次に、重み付き平均値Paを正しく計算するため、画素番号を仮番号に再設定する手順を行っているが、本実施例においては、図11(a)、(b)に示すように、画素の番号を横軸する輝度値I0〜I7、輝度差分値D0〜D7の分布のグラフにおいて、「−1」の画素の番号を導入することにより、画素番号再設定の手順を不要としている。なお、この「−1」の画素は、画素7に該当する。又、図11(b)に示す輝度差分値D0〜D7の分布も、正側と負側で対称のグラフとなる。   In the first to third embodiments, the procedure for resetting the pixel number to the temporary number is performed in order to correctly calculate the weighted average value Pa. In this embodiment, in FIG. As shown in (b), by introducing the pixel number “−1” in the distribution graph of the luminance values I0 to I7 and the luminance difference values D0 to D7 with the horizontal axis of the pixel number, the pixel number is reproduced. The setting procedure is unnecessary. The pixel “−1” corresponds to the pixel 7. The distribution of the luminance difference values D0 to D7 shown in FIG. 11B is also a symmetric graph on the positive side and the negative side.

図11(a)、(b)に示す点線のグラフG2のように、輝度勾配方向が画素7と画素0の間にあり、最大の輝度値がI0であり、最大の輝度差分値はD0である場合、最大輝度差分値D0と隣接する2画素の輝度差分値D7、D1を重みとし、画素の番号7、0、1の重み付き平均値を計算すると、画素の番号7、0、1が不連続となっているので、重み付き平均値の計算が正しくできず、輝度勾配方向を求めることができない。   Like the dotted line graph G2 shown in FIGS. 11A and 11B, the luminance gradient direction is between the pixel 7 and the pixel 0, the maximum luminance value is I0, and the maximum luminance difference value is D0. In some cases, when the weighted average value of pixel numbers 7, 0 and 1 is calculated using the maximum luminance difference value D0 and the luminance difference values D7 and D1 of two adjacent pixels as weights, the pixel numbers 7, 0 and 1 are Since it is discontinuous, the weighted average value cannot be calculated correctly, and the luminance gradient direction cannot be obtained.

このような場合、本実施例では、計算に用いる画素の番号7の替わりに「−1」を用いることにより、画素の番号を−1、0、1と連続させるので、正しく重み付き平均値を計算することができる。   In such a case, in this embodiment, by using “−1” instead of the pixel number 7 used in the calculation, the pixel numbers are made consecutive with −1, 0, and 1, so that the weighted average value is correctly calculated. Can be calculated.

そして、重み付き平均計算部B5では、実施例1のステップS5と同様に、最大輝度差分値の方向の画素の番号mと両隣の画素の番号(m−1)、(m+1)について、最大輝度差分値Dmと両隣の画素の輝度差分値D(m−1)、D(m+1)を重みとし、下記の(式3)を用いて、重み付き平均値Paを計算する(ステップS14)。   Then, in the weighted average calculation unit B5, as in step S5 of the first embodiment, the maximum luminance is calculated for the pixel number m in the direction of the maximum luminance difference value and the numbers (m−1) and (m + 1) of both adjacent pixels. Using the difference value Dm and the luminance difference values D (m−1) and D (m + 1) of the adjacent pixels as weights, the weighted average value Pa is calculated using the following (Equation 3) (step S14).

Figure 2012118854
但し、D(m−1)がD(−1)となる場合、D(−1)はD7とし、D(m+1)がD(8)となる場合、D(8)はD0とする。
Figure 2012118854
However, when D (m−1) is D (−1), D (−1) is D7, and when D (m + 1) is D (8), D (8) is D0.

例えば、図11(a)、(b)に示すように、m=0、Dm=D0である場合には、上記(式3)は以下の通りとなる。
Pa=(D7×(−1)+D0×0+D1×1)/(D7+D0+D1)
=(D1−D7)/(D7+D0+D1)
For example, as shown in FIGS. 11A and 11B, when m = 0 and Dm = D0, the above (Formula 3) is as follows.
Pa = (D7 × (−1) + D0 × 0 + D1 × 1) / (D7 + D0 + D1)
= (D1-D7) / (D7 + D0 + D1)

本実施例の場合、このようにして求めたPaが、番号i=0〜7の8つの画素における輝度勾配方向となる。即ち、Po=Paである(輝度勾配計算部B6;ステップS15)。但し、本実施例でも、Po<0となる場合、Po=Po+8とする。   In the case of the present embodiment, Pa thus obtained is the luminance gradient direction in the eight pixels with the number i = 0 to 7. That is, Po = Pa (luminance gradient calculation unit B6; step S15). However, in this embodiment as well, when Po <0, Po = Po + 8.

このように、本実施例でも、計算量の多い三角関数を用いることなく、簡単且つ高速に輝度勾配方向を検出することができる。   As described above, also in this embodiment, the luminance gradient direction can be detected easily and at high speed without using a trigonometric function having a large calculation amount.

更に、実施例3で説明したように、検出した輝度勾配方向Poを、360度の角度方向θへ変換してもよい。   Further, as described in the third embodiment, the detected luminance gradient direction Po may be converted into an angular direction θ of 360 degrees.

本発明は、画像処理装置に好適なものであり、例えば、AGV(Auto Guided Vehicle)等に搭載される。   The present invention is suitable for an image processing apparatus, and is mounted on, for example, an AGV (Auto Guided Vehicle).

11、14、15 輝度勾配方向検出器
12 カメラ
13 ディスプレイ
11, 14, 15 Luminance gradient direction detector 12 Camera 13 Display

Claims (8)

画像データ中の注目している注目画素について、当該注目画素における輝度勾配方向を演算する演算装置を備えた輝度勾配方向検出器において、
前記演算装置は、
前記注目画素を囲む8つの画素に時計回りに順に番号を割り振る画素番号設定部と、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求める輝度差分値計算部と、
8つの前記輝度差分値から最大となる最大輝度差分値を求める最大輝度差分値検出部と、
前記最大輝度差分値を有する方向の画素が最小値及び最大値を除く所定番号となるように、前記8つの画素に時計回りに順に仮番号を振り直す画素番号再設定部と、
前記所定番号と前記所定番号の両隣の画素の仮番号について、前記最大輝度差分値と前記両隣の画素の輝度差分値を重みとして、仮番号の重み付き平均値を求める重み付き平均計算部と、
前記仮番号の重み付き平均値から前記所定番号を引くと共に、前記最大輝度差分値を有する方向の画素の番号を加えることにより、前記注目画素における輝度勾配方向を検出する輝度勾配方向計算部とを有することを特徴とする輝度勾配方向検出器。
For a target pixel of interest in image data, a luminance gradient direction detector including a calculation device that calculates the luminance gradient direction of the target pixel;
The arithmetic unit is:
A pixel number setting unit that sequentially assigns numbers to the eight pixels surrounding the target pixel in a clockwise direction;
A luminance difference value calculation unit for obtaining luminance difference values between pixels in eight point-symmetrical directions centered on the pixel of interest from luminance values of eight pixels surrounding the pixel of interest;
A maximum luminance difference value detection unit for obtaining a maximum luminance difference value that is maximum from the eight luminance difference values;
A pixel number resetting unit that reassigns temporary numbers to the eight pixels in order clockwise so that the pixels in the direction having the maximum luminance difference value have predetermined numbers excluding the minimum value and the maximum value;
For the temporary number of the pixel adjacent to the predetermined number and the predetermined number, the weighted average calculation unit for obtaining the weighted average value of the temporary number using the maximum luminance difference value and the luminance difference value of the adjacent pixels as weights;
A luminance gradient direction calculation unit for detecting a luminance gradient direction in the target pixel by subtracting the predetermined number from the weighted average value of the temporary number and adding a pixel number in a direction having the maximum luminance difference value; A luminance gradient direction detector.
画像データ中の注目している注目画素について、当該注目画素における輝度勾配方向を演算する演算装置を備えた輝度勾配方向検出器において、
前記演算装置は、
前記注目画素を囲む8つの画素に時計回りに順に番号を割り振る画素番号設定部と、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求める輝度差分値計算部と、
8つの前記輝度差分値から最大となる最大輝度差分値を求める最大輝度差分値検出部と、
前記最大輝度差分値を有する方向の画素の番号と当該番号の両隣の番号について、前記最大輝度差分値と前記両隣の方向の輝度差分値を重みとして、番号の重み付き平均値を求める重み付き平均計算部と、
前記番号の重み付き平均値を前記注目画素における輝度勾配方向として検出する輝度勾配方向計算部とを有することを特徴とする輝度勾配方向検出器。
For a target pixel of interest in image data, a luminance gradient direction detector including a calculation device that calculates the luminance gradient direction of the target pixel;
The arithmetic unit is:
A pixel number setting unit that sequentially assigns numbers to the eight pixels surrounding the target pixel in a clockwise direction;
A luminance difference value calculation unit for obtaining luminance difference values between pixels in eight point-symmetrical directions centered on the pixel of interest from luminance values of eight pixels surrounding the pixel of interest;
A maximum luminance difference value detection unit for obtaining a maximum luminance difference value that is maximum from the eight luminance difference values;
For the number of pixels in the direction having the maximum luminance difference value and the number adjacent to the number, the weighted average for obtaining the weighted average value of the numbers using the maximum luminance difference value and the luminance difference value in the adjacent direction as weights A calculation unit;
A luminance gradient direction detector, comprising: a luminance gradient direction calculation unit that detects a weighted average value of the numbers as a luminance gradient direction in the target pixel.
請求項1又は請求項2に記載の輝度勾配方向検出器において、
前記輝度差分値計算部は、前記輝度差分値を求める際、任意の方向の画素及び当該画素の両隣の画素の輝度値の和と、当該複数の画素の点対称位置にある他の画素及び当該他の画素の両隣の画素の輝度値の和との差分を用いることを特徴とする輝度勾配方向検出器。
The brightness gradient direction detector according to claim 1 or 2,
When the luminance difference value calculation unit obtains the luminance difference value, a sum of luminance values of a pixel in an arbitrary direction and pixels adjacent to the pixel, another pixel at a point-symmetrical position of the pixels, and the pixel A luminance gradient direction detector using a difference with a sum of luminance values of pixels adjacent to other pixels.
請求項1から請求項3のいずれか1つに記載の輝度勾配方向検出器において、
前記演算装置は、
更に、検出した前記輝度勾配方向を360度の角度方向へ換算して出力する角度換算部を有することを特徴とする輝度勾配方向検出器。
The luminance gradient direction detector according to any one of claims 1 to 3,
The arithmetic unit is:
Furthermore, the brightness | luminance gradient direction detector characterized by having an angle conversion part which converts and outputs the detected said brightness | luminance gradient direction to the angle direction of 360 degree | times.
画像データ中の注目している注目画素を囲む8つの画素に時計回りに順に番号を割り振り、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求め、
8つの前記輝度差分値から最大となる最大輝度差分値を求め、
前記最大輝度差分値を有する方向の画素が最小値及び最大値を除く所定番号となるように、前記8つの画素に時計回りに順に仮番号を振り直し、
前記所定番号と前記所定番号の両隣の画素の仮番号について、前記最大輝度差分値と前記両隣の画素の輝度差分値を重みとして、仮番号の重み付き平均値を求め、
前記仮番号の重み付き平均値から前記所定番号を引くと共に、前記最大輝度差分値を有する方向の画素の番号を加えることにより、前記注目画素における輝度勾配方向を検出することを特徴とする輝度勾配方向検出方法。
Numbers are assigned sequentially to the eight pixels surrounding the target pixel of interest in the image data,
From the luminance values of the eight pixels surrounding the pixel of interest, a luminance difference value between the pixels in the eight point-symmetrical directions centered on the pixel of interest is obtained.
Find the maximum brightness difference value from the 8 brightness difference values,
Reassign temporary numbers to the eight pixels in order clockwise so that the pixels in the direction having the maximum luminance difference value have predetermined numbers excluding the minimum value and the maximum value,
For the temporary number of the pixel adjacent to the predetermined number and the predetermined number, the weighted average value of the temporary number is obtained using the maximum luminance difference value and the luminance difference value of the adjacent pixels as weights,
A luminance gradient that detects a luminance gradient direction in the target pixel by subtracting the predetermined number from the weighted average value of the temporary number and adding a pixel number in a direction having the maximum luminance difference value. Direction detection method.
画像データ中の注目している注目画素を囲む8つの画素に時計回りに順に番号を割り振り、
前記注目画素を囲む8つの画素の輝度値から、前記注目画素を中心とする8つの点対称方向の画素間の輝度差分値を求め、
8つの前記輝度差分値から最大となる最大輝度差分値を求め、
前記最大輝度差分値を有する方向の画素の番号と当該番号の両隣の番号について、前記最大輝度差分値と前記両隣の方向の輝度差分値を重みとして、番号の重み付き平均値を求め、
前記番号の重み付き平均値を前記注目画素における輝度勾配方向として検出することを特徴とする輝度勾配方向検出方法。
Numbers are assigned sequentially to the eight pixels surrounding the target pixel of interest in the image data,
From the luminance values of the eight pixels surrounding the pixel of interest, a luminance difference value between the pixels in the eight point-symmetrical directions centered on the pixel of interest is obtained.
Find the maximum brightness difference value from the 8 brightness difference values,
For the number of the pixel in the direction having the maximum luminance difference value and the number adjacent to the number, the weighted average value of the number is obtained using the maximum luminance difference value and the luminance difference value in the adjacent direction as weights,
A luminance gradient direction detection method, wherein the weighted average value of the numbers is detected as a luminance gradient direction in the target pixel.
請求項5又は請求項6に記載の輝度勾配方向検出方法において、
前記輝度差分値を求める際、任意の方向の画素及び当該画素の両隣の画素の輝度値の和と、当該複数の画素の点対称位置にある他の画素及び当該他の画素の両隣の画素の輝度値の和との差分を用いることを特徴とする輝度勾配方向検出方法。
In the brightness | luminance gradient direction detection method of Claim 5 or Claim 6,
When calculating the luminance difference value, the sum of the luminance values of a pixel in an arbitrary direction and the pixel adjacent to the pixel, and the other pixel in the point-symmetric position of the pixels and the pixel adjacent to the other pixel. A luminance gradient direction detection method using a difference with a sum of luminance values.
請求項5から請求項7のいずれか1つに記載の輝度勾配方向検出方法において、
更に、検出した前記輝度勾配方向を360度の角度方向へ換算して出力することを特徴とする輝度勾配方向検出方法。
In the brightness | luminance gradient direction detection method as described in any one of Claims 5-7,
Further, the detected luminance gradient direction is converted into an angular direction of 360 degrees and output.
JP2010269190A 2010-12-02 2010-12-02 Luminance gradient direction detector and luminance gradient direction detection method Active JP5561133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269190A JP5561133B2 (en) 2010-12-02 2010-12-02 Luminance gradient direction detector and luminance gradient direction detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269190A JP5561133B2 (en) 2010-12-02 2010-12-02 Luminance gradient direction detector and luminance gradient direction detection method

Publications (2)

Publication Number Publication Date
JP2012118854A true JP2012118854A (en) 2012-06-21
JP5561133B2 JP5561133B2 (en) 2014-07-30

Family

ID=46501572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269190A Active JP5561133B2 (en) 2010-12-02 2010-12-02 Luminance gradient direction detector and luminance gradient direction detection method

Country Status (1)

Country Link
JP (1) JP5561133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126361A (en) * 2012-12-25 2014-07-07 Meidensha Corp Inspection device for support component of rigid overhead rail
JP2015184944A (en) * 2014-03-25 2015-10-22 株式会社明電舎 Person detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644875A (en) * 1987-06-29 1989-01-10 Mitsubishi Heavy Ind Ltd Huff converter
JP2007294017A (en) * 2006-04-25 2007-11-08 Sharp Corp Position deviation detecting device, position deviation detecting method, and recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644875A (en) * 1987-06-29 1989-01-10 Mitsubishi Heavy Ind Ltd Huff converter
JP2007294017A (en) * 2006-04-25 2007-11-08 Sharp Corp Position deviation detecting device, position deviation detecting method, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126361A (en) * 2012-12-25 2014-07-07 Meidensha Corp Inspection device for support component of rigid overhead rail
JP2015184944A (en) * 2014-03-25 2015-10-22 株式会社明電舎 Person detection device

Also Published As

Publication number Publication date
JP5561133B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5847924B2 (en) 2D image capture for augmented reality representation
TWI575503B (en) Image processing apparatus and image processing method
US9569688B2 (en) Apparatus and method of detecting motion mask
CN104284192B (en) Image processing equipment and image processing method
US9064178B2 (en) Edge detection apparatus, program and method for edge detection
EP3167429B1 (en) System and method for supporting image denoising based on neighborhood block dimensionality reduction
JP2010079655A (en) Image processing apparatus, image processing method, image pickup device, and program
TW201841139A (en) Method and apparatus for processing an image property map
JPWO2019092844A1 (en) Image processing apparatus, image processing method, and image processing program
JP2012221117A (en) Image processing device and program
JP2009130764A (en) Pixel interpolation method
US20140072180A1 (en) Image processing apparatus and image processing method
KR20150072090A (en) Apparatus for detecting region of interest and the method thereof
WO2014013792A1 (en) Noise evaluation method, image processing device, imaging device, and program
JP2013048375A (en) Device and method for generating motion compensation frame
JP5561133B2 (en) Luminance gradient direction detector and luminance gradient direction detection method
US8502891B2 (en) Method and apparatus for realizing dynamic image effect
JP5223912B2 (en) Imaging apparatus and focus determination program
US10158790B2 (en) Image processing apparatus, image processing system, and image processing method
KR102094507B1 (en) Method of generating hierarchical saliency images detection with selective refinement, Computer readable storage medium of recording the method and an saliency image generationg device
US9961309B2 (en) Image processing apparatus, image processing method, and projection apparatus
WO2013031418A1 (en) Device for detecting line segment and arc
JP2009094862A (en) Video signal processor
JP6352150B2 (en) Image processing apparatus and image processing method
JP2013048376A (en) Device and method for generating motion compensation frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150