JP2012118683A - Pedestrian recognition device - Google Patents

Pedestrian recognition device Download PDF

Info

Publication number
JP2012118683A
JP2012118683A JP2010266683A JP2010266683A JP2012118683A JP 2012118683 A JP2012118683 A JP 2012118683A JP 2010266683 A JP2010266683 A JP 2010266683A JP 2010266683 A JP2010266683 A JP 2010266683A JP 2012118683 A JP2012118683 A JP 2012118683A
Authority
JP
Japan
Prior art keywords
pedestrian
posture
obstacle
specified
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010266683A
Other languages
Japanese (ja)
Inventor
Itsugun O
軼群 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010266683A priority Critical patent/JP2012118683A/en
Publication of JP2012118683A publication Critical patent/JP2012118683A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately recognize a pedestrian by a configuration in which the number of patterns to be collated is small and costs are reduced.SOLUTION: By part specifying means of an image recognition processing part 4, a part in the case of defining that an obstacle around a present vehicle 1 detected by a distance measuring radar 2 and a monocular camera 3 is a pedestrian 6 is specified. By posture determination means of the image recognition processing part 4, from the collation of the predicted posture of the part of the pedestrian 6 read from a storage part 5 by predicting a posture change of the specified part and the posture of the part specified by the part specifying means, whether or not the movement of the specified part matches with the movement of a pedestrian is determined. By recognition means of the image recognition processing part 4, whether or not the obstacle is a pedestrian is determined on the basis of a determination result of the posture determination means and the pedestrian is recognized.

Description

この発明は、パターンマッチングにより歩行者を認識する歩行者認識装置に関し、詳しくは、コストを低減した認識精度の向上に関する。   The present invention relates to a pedestrian recognition apparatus that recognizes a pedestrian by pattern matching, and more particularly, to an improvement in recognition accuracy with reduced cost.

従来、自動車の分野においては、レーダ探査やカメラの撮影により検出した自車両前方等の自車両周辺の障害物が歩行者であるか否かを認識することが、衝突回避等において重要である。   Conventionally, in the field of automobiles, it is important for collision avoidance and the like to recognize whether or not an obstacle around the host vehicle, such as in front of the host vehicle, detected by radar exploration or camera photography is a pedestrian.

そして、カメラの撮影画像のパターンマッチングにより、撮影された障害物が歩行者であるか否を極力正確に認識するため、従来、障害物が歩行者であるとした場合の障害物全体のパターンを記憶するのではなく、歩行者の頭部、胴体部、脚部などの部位毎のパターンを記憶手段に個別に記憶しておき、検出された障害物の特定された部位と記憶された各部位のパターンとを照合し、その障害物が歩行者であるか否かを判定して認識することが提案されている(例えば、特許文献1参照)。   And, in order to recognize as accurately as possible whether or not the captured obstacle is a pedestrian by pattern matching of the captured image of the camera, conventionally, the pattern of the entire obstacle when the obstacle is assumed to be a pedestrian, Instead of memorizing, the pattern for each part such as the pedestrian's head, torso, and leg is individually stored in the memory means, and the identified part of the detected obstacle and each part stored. It has been proposed to recognize the obstacle by determining whether or not the obstacle is a pedestrian (see, for example, Patent Document 1).

特開2009−25956号公報Japanese Unexamined Patent Publication No. 2009-25959

特許文献1に記載の歩行者認識では、特定された部位に対応して記憶手段に記憶された全ての姿勢(歩行者の自車両に対する向き等も含む)のパターンを順次に照合して歩行者を認識するので、膨大な量のパターン照合等が必要になり、それらの処理負荷が極めて大きくなる。そのため、処理速度の速い高価な画像処理装置等を要し、高価になる問題がある。   In the pedestrian recognition described in Patent Document 1, pedestrians are sequentially collated with patterns of all postures (including directions of the pedestrians with respect to the own vehicle) stored in the storage unit corresponding to the specified part. Therefore, a huge amount of pattern matching or the like is necessary, and their processing load becomes extremely large. Therefore, an expensive image processing apparatus having a high processing speed is required, and there is a problem that the cost becomes high.

本発明は、照合するパターン数が少なくコストを削減した構成により、精度よく歩行者を認識することを目的とする。   An object of the present invention is to recognize a pedestrian with high accuracy by a configuration in which the number of patterns to be compared is small and the cost is reduced.

上記した目的を達成するために、本発明の歩行者認識装置は、検出手段により検出された自車両周辺の障害物が歩行者であるとした場合の部位を特定し、特定した部位と記憶手段に記憶された歩行者の部位パターンとを照合し、照合結果に基づき、前記障害物が歩行者か否かを判定して歩行者を認識する歩行者認識装置であって、前記検出手段により検出された障害物が歩行者であるとした場合の部位を特定する部位特定手段と、前記部位特定手段が特定した部位の姿勢変化を予測して前記記憶手段から読み出した歩行者の当該部位の予測された姿勢と、前記部位特定手段が特定した部位の姿勢との照合から、前記特定した部位の動きが歩行者の動きに合致するか否かを判定する姿勢判定手段と、前記姿勢判定手段の判定結果から前記障害物が歩行者であるか否かを判定して歩行者を認識する認識手段とを備えたことを特徴としている(請求項1)。   In order to achieve the above-described object, the pedestrian recognition apparatus of the present invention specifies a region when the obstacle around the host vehicle detected by the detection unit is a pedestrian, and specifies the specified region and storage unit. Is a pedestrian recognition device that recognizes a pedestrian by determining whether or not the obstacle is a pedestrian based on the result of the comparison, and is detected by the detection means A part specifying unit that specifies a part when the obstacle is a pedestrian, and a prediction of the part of the pedestrian read from the storage unit by predicting a posture change of the part specified by the part specifying unit A posture determination unit that determines whether or not the movement of the identified part matches the movement of the pedestrian based on a comparison between the determined posture and the posture of the part specified by the part specifying unit; The obstacle from the judgment result Is characterized by comprising a recognition means for recognizing the pedestrian by determining whether a pedestrian (claim 1).

請求項1に係る本発明によれば、検出手段により検出された自車両周辺の障害物が歩行者であるとした場合の部位が部位特定手段により特定されると、姿勢判定手段により、その部位が歩行者の部位であればつぎにどのような動きをするか(どのような姿勢をとるか)を予測し、予測された姿勢と部位特定手段が特定した部位の姿勢との照合から、少ないパターン照合であっても高いパターン照合確率で特定した部位の動きが歩行者の動きに合致するか否かを判定することができる。そして、姿勢判定手段の判定結果から認識手段により障害物が歩行者であるか否かを精度よく判定することができる。この場合、パターン照合等の処理負荷が少なくて済み、高性能で高価な処理速度の速い画像処理装置等は不要であり、照合するパターン数が少なくコストを削減した構成により、精度よく歩行者を認識することをができる。   According to the first aspect of the present invention, when a part when the obstacle around the host vehicle detected by the detecting unit is a pedestrian is specified by the part specifying unit, the part is determined by the posture determining unit. If it is a part of a pedestrian, what kind of movement will be performed next (what kind of posture will be taken) is predicted, and there are few from the collation with the predicted posture and the posture of the part specified by the part specifying means Even in the case of pattern matching, it can be determined whether or not the movement of the part specified with a high pattern matching probability matches the movement of the pedestrian. Then, from the determination result of the posture determination means, it is possible to accurately determine whether the obstacle is a pedestrian by the recognition means. In this case, the processing load for pattern matching and the like is small, and there is no need for a high-performance and expensive image processing device with a high processing speed. Can recognize.

本発明の歩行者認識装置の一実施形態のブロック図である。It is a block diagram of one embodiment of a pedestrian recognition device of the present invention. 図1の歩行者認識装置が特定する部位の説明図である。It is explanatory drawing of the site | part which the pedestrian recognition apparatus of FIG. 1 specifies. 図1の歩行者認識装置の姿勢パターン例の説明図である。It is explanatory drawing of the example of an attitude | position pattern of the pedestrian recognition apparatus of FIG. 図1の歩行者認識装置の状態遷移例の説明図である。It is explanatory drawing of the example of a state transition of the pedestrian recognition apparatus of FIG. 図1の歩行者認識装置の処理手順例を説明するフローチャートである。It is a flowchart explaining the example of a process sequence of the pedestrian recognition apparatus of FIG.

本発明の一実施形態について、図1〜図5を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は自車両1に搭載された本実施形態の歩行者認識装置を示し、自車両1は例えば自車両1の前方を探査するレーザレーダ、超音波レーダ等の測距レーダ2と、自車両1の前方を撮影する単眼カメラ3とを、本発明の自車両周辺の障害物の検出手段として備える。なお、本実施形態の場合、安価な単眼カメラ3の撮影画像だけでは前方の障害物の存在を把握するのが難しいので、測距レーダ2と単眼カメラ3の組み合わを検出手段とするが、単眼カメラに代えて、いわゆるステレオカメラを備える場合等には、このカメラだけで検出手段が形成される。   FIG. 1 shows a pedestrian recognition apparatus of the present embodiment mounted on a host vehicle 1. The host vehicle 1 includes a ranging radar 2 such as a laser radar or an ultrasonic radar that searches the front of the host vehicle 1, and the host vehicle. A monocular camera 3 that captures the front of 1 is provided as an obstacle detection means around the host vehicle of the present invention. In the case of this embodiment, it is difficult to grasp the presence of an obstacle ahead by using only an inexpensive image of the monocular camera 3, so the combination of the ranging radar 2 and the monocular camera 3 is used as the detection means. When a so-called stereo camera is provided instead of the camera, the detection means is formed only by this camera.

そして、測距レーダ2の時々刻々の探査結果及び単眼カメラ3の毎フレームの撮影画像は、マイクロコンピュータ等で形成された画像認識処理部4に入力される。この画像認識処理部4は、測距レーダ2の探査結果から前方の障害物の範囲を検出し、単眼カメラ3の撮影画像の前記障害物の範囲をROI(関心領域)として抽出し、抽出した領域画像を障害物画像とする。   Then, the result of the search by the ranging radar 2 and the captured image of each frame of the monocular camera 3 are input to the image recognition processing unit 4 formed by a microcomputer or the like. The image recognition processing unit 4 detects a range of obstacles ahead from the search result of the ranging radar 2, extracts the range of the obstacles in the captured image of the monocular camera 3 as an ROI (region of interest), and extracts it. The area image is an obstacle image.

さらに、画像認識処理部4は、基本的に、パターンマッチングの手法で前記障害物画像が歩行者であるとした場合の部位を特定し、特定した部位と本発明の記憶手段としての記憶部5に記憶された歩行者の部位パターンとを照合し、照合結果に基づいて障害物が歩行者か否かを判定して歩行者を認識するものであり、本発明の部位特定手段、姿勢判定手段、認識手段を形成する。   Further, the image recognition processing unit 4 basically specifies a part when the obstacle image is a pedestrian by a pattern matching method, and specifies the specified part and the storage unit 5 as a storage unit of the present invention. The pedestrian part pattern stored in the pedestrian is collated, and the pedestrian is recognized by determining whether the obstacle is a pedestrian based on the collation result. Forming a recognition means.

ところで、歩行者は、姿勢変化の特徴等から、いくつかの部位の集合とみなせる。   By the way, the pedestrian can be regarded as a set of several parts from the feature of the posture change.

図2は歩行者6の上記部位の例を示し、本実施形態においては、歩行者6を、胴体部61と姿勢変化の有る腕部(手先も含む)62と、脚部(足先も含む)63とに分解し、胴体部61、腕部(手先も含む)62、脚部(足先も含む)63の基本パターンおよび、それらの動き方や動く範囲(角度)の情報を記憶部5の歩行者基本辞書51に予め記憶する。   FIG. 2 shows an example of the above-mentioned part of the pedestrian 6. In this embodiment, the pedestrian 6 is divided into a trunk portion 61, an arm portion (including the hand) 62 having a posture change, and a leg portion (including the toe). ) 63, and the basic pattern of the torso 61, the arm (including the hand) 62, and the leg (including the toe) 63, and information on how to move and the range of movement (angle) are stored in the storage 5. Are stored in advance in the pedestrian basic dictionary 51.

つぎに、腕部62、脚部63の部位パターンは、歩行者6の姿勢によって種々に異なるだけでなく、その姿勢から予想される歩行者の動きに基づいて遷移し、この遷移から歩行者6のつぎの姿勢を予測できる。   Next, the part pattern of the arm part 62 and the leg part 63 not only varies depending on the posture of the pedestrian 6, but also changes based on the movement of the pedestrian predicted from the posture. The next posture can be predicted.

そこで、腕部62、脚部63について、それらの部位パターンとして、種々の姿勢のパターン(姿勢パターン)を、動きの順の遷移情報を付けて記憶部5の姿勢辞書52に、別々に予め記憶する。   Therefore, for the arm part 62 and the leg part 63, various posture patterns (posture patterns) are stored in advance in the posture dictionary 52 of the storage unit 5 with the transition information of the movement order as their part patterns. To do.

図3(a)〜(g)は腕部62の姿勢1〜姿勢7と分類された姿勢パターンP1〜P7の例を示し、各姿勢パターンP1〜P7は、腕の動きから予想されるつぎの1または複数の姿勢パターンへの優先順序の確率をつけた遷移情報(遷移フラグ)が付される。ここで予想されるつぎの1または複数の姿勢パターンの優先順序の確率について説明すると、例えば歩行者6の腕部62の現在の姿勢パターンが姿勢1であって、予想されるつぎの1または複数の姿勢パターンが姿勢1か姿勢2になるとすれば、姿勢1と姿勢2に高い優先順序の確率が付けられる。脚部63についても同様の優先順序の確率を付した姿勢パターンが姿勢辞書52に記憶される。   FIGS. 3A to 3G show examples of posture patterns P1 to P7 classified as posture 1 to posture 7 of the arm portion 62. Each posture pattern P1 to P7 is the next predicted from the movement of the arm. Transition information (transition flag) with a probability of priority order to one or a plurality of posture patterns is attached. The probability of the priority order of the next one or more posture patterns expected here will be described. For example, the current posture pattern of the arm portion 62 of the pedestrian 6 is the posture 1, and the next one or more predicted. If the posture pattern becomes posture 1 or posture 2, the probability of high priority order is assigned to posture 1 and posture 2. For the legs 63, posture patterns with similar priority order probabilities are stored in the posture dictionary 52.

図4は前記遷移フラグに基づく一部の姿勢の遷移変化の例を示し、歩行者6であれば姿勢パターンP1〜P7から確率の高い姿勢パターンに変化し易く、障害物の腕部62や脚部63と判断された部分があり得ない遷移や極端に低い確率の遷移の姿勢変化をすれば、それは歩行者6ではないことがわかる。   FIG. 4 shows an example of a change in the posture of a part of the posture based on the transition flag, and if it is a pedestrian 6, it is easy to change from posture patterns P1 to P7 to a posture pattern with high probability. If the posture is changed such that there is no portion determined to be the part 63 or a transition with an extremely low probability, it can be understood that it is not the pedestrian 6.

そして、本実施形態の場合、腕部62や脚部63と判断された部分の姿勢パターンと予想される姿勢遷移の設定確率以上のパターンとの比較に基づいて障害物の腕部62や脚部63の姿勢遷移を推定し、障害物の腕部62や脚部63の予想される姿勢遷移が設定時間内に総合的に設定確率以上になるか否かによって、姿勢変化が歩行者として自然であるか否かも推定して障害物が歩行者6か否かを判断し、歩行車6を認識する。   In the case of the present embodiment, the arm portion 62 or the leg portion of the obstacle is based on a comparison between the posture pattern of the portion determined to be the arm portion 62 or the leg portion 63 and a pattern that is equal to or higher than the set probability of the expected posture transition. 63 posture changes are estimated, and depending on whether or not the expected posture transitions of the arm part 62 and the leg part 63 of the obstacle are not less than the set probability in a set time, the posture change is natural as a pedestrian. Whether the obstacle is a pedestrian 6 or not is also estimated, and the walking vehicle 6 is recognized.

図5は画像認識処理部4の部位特定手段、姿勢判定手段、認識手段により実行される歩行者認識処理の手順例を示し、まず、部位特定手段により、前記障害物画像の胴体部、腕部、脚部の候補部分を、そのパターンや画像位置等から特定する(ステップS1)。つぎに特定した胴部の候補部分のパターンと基本辞書51の胴体部61のパターンとのパターンマッチングを行い(ステップS2)、しきい値以上でマッチングする胴体部61のパターンを検索する。しきい値以上でマッチングする胴体部61が見つかれば、特定した腕部、脚部の候補部分のパターンと基本辞書51の腕部62、脚部63のパターンとのパターンマッチングを行い(ステップS3)、しきい値以上でマッチングする腕部62、脚部63のパターンを検索する。しきい値以上でマッチングする腕部62、脚部63が見つかれば、マッチングした胴部61と腕部62と脚部63を組み合わせて統合する(ステップS4)。   FIG. 5 shows an example of the procedure of the pedestrian recognition process executed by the part specifying means, posture determining means, and recognizing means of the image recognition processing unit 4. First, the body part and arm part of the obstacle image are shown by the part specifying means. The candidate leg portion is specified from the pattern, image position, and the like (step S1). Next, pattern matching is performed between the pattern of the candidate part of the specified body part and the pattern of the body part 61 of the basic dictionary 51 (step S2), and a pattern of the body part 61 that matches at or above the threshold is searched. If a matching body part 61 is found above the threshold value, pattern matching is performed between the pattern of the identified arm and leg candidate parts and the pattern of the arm part 62 and leg part 63 of the basic dictionary 51 (step S3). The pattern of the arm part 62 and the leg part 63 that match at a threshold value or more is searched. If the matching arm part 62 and leg part 63 are found above the threshold value, the matched trunk part 61, arm part 62 and leg part 63 are combined and integrated (step S4).

つぎに、推定手段により、統合した状態での腕部62、脚部63の姿勢の状態遷移(時間変化)を検出し、姿勢辞書52を参照したパターンマッチングにより姿勢順序の遷移確率を追跡し、設定時間内に所定以上の確率の姿勢に遷移するか否かから、歩行者の自然な動きである確率がしきい値以上になるか否かを検出して腕部62、脚部63の動きが歩行者6の動きに合致した変化か否かを推定し(ステップS5)、その推定結果に基づき、認識手段により障害物が歩行者6か否かを判定し、しきい値以上になると、障害物を歩行者6と認識する(ステップS6)。   Next, the state transition (time change) of the posture of the arm unit 62 and the leg unit 63 in the integrated state is detected by the estimation unit, and the transition probability of the posture order is tracked by pattern matching with reference to the posture dictionary 52. The movement of the arm part 62 and the leg part 63 by detecting whether or not the probability of the natural movement of the pedestrian exceeds a threshold value based on whether or not the posture changes with a predetermined probability within the set time. Is a change that matches the movement of the pedestrian 6 (step S5), and based on the estimation result, it is determined whether the obstacle is the pedestrian 6 by the recognition means. The obstacle is recognized as a pedestrian 6 (step S6).

この場合、歩行者6のパターンを、胴体部61、腕部62、脚部63に分け、それらの基本パターン等を別々に基本辞書51に記憶し、個別のパターンマッチングから、マッチングの確率が高い胴体部61、腕部62、脚部63のパターンを組み合わせて、基本的なパターンマッチング及び姿勢パタンの遷移変化の検出を行なうので、胴体部61、腕部62、脚部63に分けずにパターンマッチングを行なう場合に比して記憶するパターン数が極めて少なくて済み、画像認識処理部4の処理負荷が大幅に軽減される。   In this case, the pattern of the pedestrian 6 is divided into the body part 61, the arm part 62, and the leg part 63, and those basic patterns are stored separately in the basic dictionary 51, and the probability of matching is high from individual pattern matching. By combining the patterns of the body part 61, the arm part 62, and the leg part 63 to perform basic pattern matching and detection of changes in posture patterns, the pattern is not divided into the body part 61, arm part 62, and leg part 63. Compared to the case of matching, the number of patterns to be stored is extremely small, and the processing load of the image recognition processing unit 4 is greatly reduced.

さらに、腕部62、脚部63については、その動き(姿勢変化)を姿勢辞書62の姿勢パターンを参照して状態遷移確率から歩行者6らしい自然な動きか否かを推定し、極めて高い照合確率で障害物が歩行者6であることを認識できる。   Furthermore, regarding the arm part 62 and the leg part 63, the movement (posture change) is estimated by referring to the posture pattern of the posture dictionary 62 from the state transition probability to determine whether or not it is a natural movement that seems to be a pedestrian 6, and extremely high collation. It can be recognized with probability that the obstacle is a pedestrian 6.

そのため、本実施形態の場合、照合するパターン数が少なくコストを削減した構成により、精度よく歩行者6を認識することができる。   Therefore, in the case of this embodiment, the pedestrian 6 can be recognized with high accuracy by the configuration in which the number of patterns to be compared is small and the cost is reduced.

本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、特定する部位の分類や姿勢パターンの個数等は、前記実施形態に限るものではない。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. Etc. are not limited to the above embodiment.

また、姿勢変化の状態遷移や処理手順も前記実施形態に限るものではない。さらに、自車両1の後方等の前方以外の障害物についても同様にして認識できるのは勿論である。   Further, the state transition of the posture change and the processing procedure are not limited to the above embodiment. Furthermore, it goes without saying that obstacles other than the front such as the rear of the host vehicle 1 can be recognized in the same manner.

そして、本発明の認識結果は種々の運転支援制御等に利用することができる。   And the recognition result of this invention can be utilized for various driving assistance control.

1 自車両
2 測距レーダ
3 単眼カメラ
4 画像認識処理部
5 記憶部
6 歩行者
61 胴体部
62 腕部
63 脚部
DESCRIPTION OF SYMBOLS 1 Own vehicle 2 Ranging radar 3 Monocular camera 4 Image recognition process part 5 Memory | storage part 6 Pedestrian 61 Body part 62 Arm part 63 Leg part

Claims (1)

検出手段により検出された自車両周辺の障害物が歩行者であるとした場合の部位を特定し、特定した部位と記憶手段に記憶された歩行者の部位パターンとを照合し、照合結果に基づき、前記障害物が歩行者か否かを判定して歩行者を認識する歩行者認識装置であって、
前記検出手段により検出された障害物が歩行者であるとした場合の部位を特定する部位特定手段と、
前記部位特定手段が特定した部位の姿勢変化を予測して前記記憶手段から読み出した歩行者の当該部位の予測された姿勢と、前記部位特定手段が特定した部位の姿勢との照合から、前記特定した部位の動きが歩行者の動きに合致するか否かを判定する姿勢判定手段と、
前記姿勢判定手段の判定結果から前記障害物が歩行者か否かを判定して歩行者を認識する認識手段とを備えたことを特徴とする歩行者認識装置。
Based on the result of the collation, the part when the obstacle around the own vehicle detected by the detection means is a pedestrian is identified, the identified part and the part pattern of the pedestrian stored in the storage means are collated , A pedestrian recognition device for recognizing a pedestrian by determining whether the obstacle is a pedestrian,
A part specifying means for specifying a part when the obstacle detected by the detecting means is a pedestrian;
The identification from the collation between the predicted posture of the pedestrian of the pedestrian read out from the storage means by predicting the posture change of the part specified by the part specifying means and the posture of the part specified by the part specifying means Posture determination means for determining whether or not the movement of the selected part matches the movement of the pedestrian,
A pedestrian recognition apparatus comprising: a recognition unit configured to determine whether the obstacle is a pedestrian based on a determination result of the posture determination unit and to recognize the pedestrian.
JP2010266683A 2010-11-30 2010-11-30 Pedestrian recognition device Withdrawn JP2012118683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266683A JP2012118683A (en) 2010-11-30 2010-11-30 Pedestrian recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266683A JP2012118683A (en) 2010-11-30 2010-11-30 Pedestrian recognition device

Publications (1)

Publication Number Publication Date
JP2012118683A true JP2012118683A (en) 2012-06-21

Family

ID=46501450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266683A Withdrawn JP2012118683A (en) 2010-11-30 2010-11-30 Pedestrian recognition device

Country Status (1)

Country Link
JP (1) JP2012118683A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015029A (en) * 2014-07-02 2016-01-28 株式会社デンソー Object detector and object detection program
CN108920993A (en) * 2018-03-23 2018-11-30 武汉雷博合创电子科技有限公司 A kind of pedestrian's gesture recognition method and system based on radar and multiple networks fusion
JP2019008796A (en) * 2017-06-23 2019-01-17 ウーバー テクノロジーズ,インコーポレイテッド Collision avoidance system for autonomous vehicle
CN111965620A (en) * 2020-08-31 2020-11-20 中国科学院空天信息创新研究院 Gait feature extraction and identification method based on time-frequency analysis and deep neural network
JP2020537277A (en) * 2017-10-16 2020-12-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods and systems for driving a vehicle
WO2024075206A1 (en) * 2022-10-05 2024-04-11 日本電信電話株式会社 Pick-and-place operation prediction device, prediction method, and prediction program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015029A (en) * 2014-07-02 2016-01-28 株式会社デンソー Object detector and object detection program
CN106471522A (en) * 2014-07-02 2017-03-01 株式会社电装 Object detection method and device and computer program
JP2019008796A (en) * 2017-06-23 2019-01-17 ウーバー テクノロジーズ,インコーポレイテッド Collision avoidance system for autonomous vehicle
US10649464B2 (en) 2017-06-23 2020-05-12 Uatc Llc Collision-avoidance system for autonomous-capable vehicles
US11402848B2 (en) 2017-06-23 2022-08-02 Uatc, Llc Collision-avoidance system for autonomous-capable vehicles
JP2020537277A (en) * 2017-10-16 2020-12-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods and systems for driving a vehicle
US11498551B2 (en) 2017-10-16 2022-11-15 Robert Bosch Gmbh Method and system for operating a vehicle
CN108920993A (en) * 2018-03-23 2018-11-30 武汉雷博合创电子科技有限公司 A kind of pedestrian's gesture recognition method and system based on radar and multiple networks fusion
CN111965620A (en) * 2020-08-31 2020-11-20 中国科学院空天信息创新研究院 Gait feature extraction and identification method based on time-frequency analysis and deep neural network
CN111965620B (en) * 2020-08-31 2023-05-02 中国科学院空天信息创新研究院 Gait feature extraction and identification method based on time-frequency analysis and deep neural network
WO2024075206A1 (en) * 2022-10-05 2024-04-11 日本電信電話株式会社 Pick-and-place operation prediction device, prediction method, and prediction program

Similar Documents

Publication Publication Date Title
US11003921B2 (en) Apparatus and method for distinguishing false target in vehicle and vehicle including the same
JP6398347B2 (en) Image processing apparatus, recognition object detection method, recognition object detection program, and moving object control system
US9904846B2 (en) Pedestrian behavior predicting device and pedestrian behavior predicting method
JP5407898B2 (en) Object detection apparatus and program
JP5178276B2 (en) Image recognition device
KR20180042254A (en) Systems and methods for object tracking
JP2016081525A (en) Vehicular image recognition system and corresponding method
JP5036611B2 (en) Image recognition device
WO2009055148A1 (en) Hand sign recognition using label assignment
EP2919159A2 (en) Image processing device and image processing method
JP2012118683A (en) Pedestrian recognition device
JP4561346B2 (en) Vehicle motion estimation device and moving object detection device
US10474884B2 (en) Action determination device
KR20130118116A (en) Apparatus and method avoiding collision with moving obstacles in automatic parking assistance system
US20160114804A1 (en) Apparatus and method for identifying target object
US20140002658A1 (en) Overtaking vehicle warning system and overtaking vehicle warning method
US20190354783A1 (en) Method for Identifying Objects in an Image of a Camera
JP6021689B2 (en) Vehicle specification measurement processing apparatus, vehicle specification measurement method, and program
JP6953818B2 (en) Operation judgment device
JP2010218246A (en) Object identification device
WO2014181386A1 (en) Vehicle assessment device
KR20130054637A (en) Apparatus and method detecting object in automatic parking system
JP2014241036A (en) Vehicle driving assist system
JP6483360B2 (en) Object recognition device
JP2012173230A (en) Body recognizing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204