JP2012118538A - Color display device, liquid crystal display device, and transflective liquid crystal display device - Google Patents

Color display device, liquid crystal display device, and transflective liquid crystal display device Download PDF

Info

Publication number
JP2012118538A
JP2012118538A JP2011287949A JP2011287949A JP2012118538A JP 2012118538 A JP2012118538 A JP 2012118538A JP 2011287949 A JP2011287949 A JP 2011287949A JP 2011287949 A JP2011287949 A JP 2011287949A JP 2012118538 A JP2012118538 A JP 2012118538A
Authority
JP
Japan
Prior art keywords
sub
display device
liquid crystal
crystal display
subpixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287949A
Other languages
Japanese (ja)
Other versions
JP5420632B2 (en
Inventor
Shoichi Hirota
昇一 廣田
Shinichi Komura
真一 小村
Yoshifumi Sekiguchi
好文 關口
Tsunenori Yamamoto
恒典 山本
Masaya Adachi
昌哉 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Japan Display East Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd, Japan Display East Inc filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2011287949A priority Critical patent/JP5420632B2/en
Publication of JP2012118538A publication Critical patent/JP2012118538A/en
Application granted granted Critical
Publication of JP5420632B2 publication Critical patent/JP5420632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem that if a white (W) sub-pixel is added in addition to sub-pixels of red (R), green (G), and blue (B) in a color display device without increasing number of a line, number of pixels of each color per unit area decreases, and therefore, resolution is degraded.SOLUTION: Area and number of sub-pixels are adjusted according to visibility. Concretely, area for sub-pixels of red (R) and green (G) of which the visibility is relatively low is made about twice as large as the area for the sub-pixels of green (G) and white (W) of which the visibility is relatively high, and the number of the sub-pixels of green (G) and white (W) is made twice as many as the number of the sub-pixels of red (R) and blue (B). The sub-pixels of larger one is constituted of two or more unit sub-pixels. And the sub-pixels of smaller one is constituted of a single unit sub-pixel.

Description

本発明は、画像を表示するカラー表示装置,液晶表示装置、および半透過液晶表示装置に関する。   The present invention relates to a color display device that displays an image, a liquid crystal display device, and a transflective liquid crystal display device.

カラー表示装置としては、CRT(Cathode Ray Tube),液晶表示装置(LCD、Liquid Crystal Display),プラズマディスプレイパネル(PDP、Plasma Display Panel),有機LED(OLED、Organic Light Emitting Diode),フィールドエミッションディスプレイ(FED、Field Emission Display),電気泳動やエレクトロクロミックに代表される電子ペーパー表示装置等、様々な方式が実用化されている。カラー表示を実現するための手段として主流な方式は、非発光型の方式であるLCDにおいては、赤色(R),緑色(G),青色(B)の三原色カラーフィルタ備えた副画素を並置して画素を構成し、各副画素毎の明るさを任意に調整して加法混色により色を表現する方式である。また、発光型の方式である他の方式においては、赤色(R),緑色(G),青色(B)の三原色の蛍光体を備えた副画素を並置して画素を構成し、LCDと同様に各副画素毎の明るさを任意に調整しLCDと同じく加法混色により色を表現している。   Color display devices include CRT (Cathode Ray Tube), Liquid Crystal Display (LCD), Plasma Display Panel (PDP), Organic LED (OLED, Organic Light Emitting Diode), Field Emission Display ( Various systems such as FED (Field Emission Display), electronic paper display devices represented by electrophoresis and electrochromic have been put into practical use. The mainstream method for realizing color display is a non-light emitting type LCD, in which sub-pixels having three primary color filters of red (R), green (G), and blue (B) are juxtaposed. In this method, the pixels are configured, and the brightness of each sub-pixel is arbitrarily adjusted to express the color by additive color mixture. In another method which is a light emitting type, a pixel is configured by juxtaposing sub-pixels including phosphors of three primary colors of red (R), green (G), and blue (B), and is similar to an LCD. In addition, the brightness of each sub-pixel is arbitrarily adjusted, and the color is expressed by additive color mixture as in the LCD.

三原色の副画素を並置して加法混色によりカラー表示を行う方式の場合色鮮やかなカラー表示が可能な反面、各原色が割り当てられる副画素の面積が画素の面積の1/3であるため効率が低く十分な光量を確保しようとする場合に問題が生じる。   In the case of a system in which three primary color sub-pixels are juxtaposed and color display is performed by additive color mixing, while vivid color display is possible, the area of the sub-pixel to which each primary color is assigned is 1/3 of the area of the pixel. Problems arise when trying to ensure a low enough light quantity.

この問題を解決する方法の一つとして、特許文献1に記載のような白色(W)の副画素を追加する構成が提案されている。非発光型のLCDにおける白色(W)の副画素においては、カラーフィルタの光吸収がないため、光源の利用効率を高めることができる。発光型の方式における白色(W)の副画素は単位面積あたりの輝度が高いために、表示装置の高輝度化が容易である。   As one method for solving this problem, a configuration in which a white (W) sub-pixel as described in Patent Document 1 is added has been proposed. In the white (W) sub-pixel in the non-light emitting LCD, the color filter does not absorb light, so that the utilization efficiency of the light source can be increased. The white (W) sub-pixel in the light-emitting type has a high luminance per unit area, so that it is easy to increase the luminance of the display device.

白色(W)の副画素を追加する場合に、単純に副画素を追加すると信号線ないしは走査線のいずれかないし双方が増加するという副作用が存在する。白色(W)の副画素追加によっても配線数を増加させない画素構成について記述している例としては特許文献2が挙げられる。   In the case of adding a white (W) subpixel, there is a side effect that if a subpixel is simply added, either a signal line or a scanning line is increased, or both are increased. As an example describing a pixel configuration in which the number of wirings is not increased by adding a white (W) subpixel, Patent Document 2 is cited.

三原色の副画素を並置して加法混色によりカラー表示を行う方式の場合の他の課題として、色再現範囲が三原色の各色の色度座標から決定される3角形の範囲内に限られてしまい、自然界の実際の色のうち再現できない領域が広く残るという点が挙げられる。本課題の解決方法としては四原色の副画素を並置することにより色再現範囲を3角形から4角形に広げる試みがなされている。   As another problem in the method of performing color display by additive color mixing with juxtaposed sub-pixels of the three primary colors, the color reproduction range is limited to a triangular range determined from the chromaticity coordinates of the three primary colors. The area that cannot be reproduced in the actual colors in the natural world remains wide. As a solution to this problem, an attempt has been made to expand the color reproduction range from a triangle to a quadrangle by juxtaposing four primary color sub-pixels.

四原色の表示装置の例としては特許文献3が挙げられる。   As an example of a display device of four primary colors, Patent Document 3 is cited.

特開平11−295717号公報JP 11-295717 A US20050225575US20050225575 特開2005−338783号公報JP 2005-338783 A

カラーフィルタによる吸収損失を軽減する方法として白色(W)画素を追加することは有効であるが、単純に赤色(R),緑色(G),青色(B)に加えて白色(W)副画素数を増やすことになるため配線数が増加してしまう。この問題を特許文献2に記載の方法で解決しようとした場合には、精細度の赤色(R),緑色(G),青色(B)並置方式に比べて横方向の色毎の画素数を半分にしているため、副作用として解像度低下の問題が発生する。300ppi(Pixels per inch)を超えるような超高精細表示装置の場合にはこの副作用は顕在化し難い。しかしながら、200ppi 前後の中精細から高精細表示装置においては画像によっては本副作用が顕在化する。本発明は解像度の低下を防止しながらカラーフィルタによる吸収損失を軽減した表示装置を提供することを目的とする。   Although it is effective to add a white (W) pixel as a method of reducing absorption loss due to a color filter, a white (W) subpixel is simply added to red (R), green (G), and blue (B). The number of wirings increases because the number increases. When trying to solve this problem by the method described in Patent Document 2, the number of pixels for each color in the horizontal direction is set as compared with the red (R), green (G), and blue (B) juxtaposition methods. Since it is halved, the problem of reduced resolution occurs as a side effect. In the case of an ultra-high-definition display device exceeding 300 ppi (Pixels per inch), this side effect is difficult to manifest. However, this side effect becomes apparent depending on the image in the medium to high definition display device of about 200 ppi. It is an object of the present invention to provide a display device in which absorption loss due to a color filter is reduced while preventing a decrease in resolution.

また、特に液晶表示装置の場合の課題として、カラーフィルタによる損失の低減と同時に副画素の周辺部分を遮光するためのブラックマトリクスによる損失の低減が挙げられる。あるいはまた、特に液晶表示装置として同一基板上に形成されたコモン電極とくし歯状の信号電極により液晶を駆動する方式を採用した場合の課題として、隣接する副画素間での混色を防止するために、くし歯状の信号電極端部と信号線との距離を十分確保する必要があるが、それによる損失を低減することも課題として挙げられる。   Further, particularly in the case of a liquid crystal display device, there is a reduction in loss due to a black matrix for shielding a peripheral portion of a sub-pixel simultaneously with a reduction in loss due to a color filter. Alternatively, in order to prevent color mixing between adjacent sub-pixels as a problem particularly when a liquid crystal display device adopts a method of driving liquid crystal with a common electrode and comb-shaped signal electrodes formed on the same substrate. It is necessary to secure a sufficient distance between the end portions of the comb-like signal electrodes and the signal lines, but reducing the loss due to this is also an issue.

上記課題を解決するため本発明においては、複数の赤色(R),緑色(G),青色(B),白色(W)副画素から構成される単位画素配列をマトリクス状に配列してカラー表示を行うカラー表示装置において、各色の総面積は略等しくしながらも、色毎に副画素の面積及び数が異なっていることを特徴とするカラー表示装置を提供する。   In order to solve the above-described problems, in the present invention, a unit pixel array composed of a plurality of red (R), green (G), blue (B), and white (W) sub-pixels is arranged in a matrix to perform color display. In the color display device that performs the above, there is provided a color display device characterized in that the total area of each color is substantially equal, but the area and the number of subpixels are different for each color.

より具体的には、赤色(R)及び青色(B)副画素の面積を緑色(G)及び白色(W)副画素の面積の略2倍とし、緑色(G)及び白色(W)副画素の数を赤色(R)及び青色(B)副画素の数の2倍とし、繰り返し単位の画素単位構成に含まれる副画素が、2個の赤色(R)副画素と2個の青色(B)副画素と4個の緑色(G)副画素と4個の白色(W)副画素の合計12副画素から構成する。   More specifically, the area of the red (R) and blue (B) subpixels is approximately twice the area of the green (G) and white (W) subpixels, and the green (G) and white (W) subpixels. Is twice the number of red (R) and blue (B) subpixels, and the subpixels included in the pixel unit configuration of the repeating unit are two red (R) subpixels and two blue (B ) It is composed of a total of 12 subpixels including a subpixel, four green (G) subpixels, and four white (W) subpixels.

また、各副画素は1つないし複数連続して配置された略同じ面積の単位副画素から構成されており、赤色(R)及び青色(B)副画素は2個の単位副画素から構成されており、緑色(G)及び白色(W)副画素は1つの単位副画素から構成されている。   Each sub-pixel is composed of unit sub-pixels having substantially the same area that are arranged one or more in succession, and the red (R) and blue (B) sub-pixels are composed of two unit sub-pixels. The green (G) and white (W) subpixels are composed of one unit subpixel.

また、カラー液晶表示装置における上記課題を解決するため本発明においては、複数の赤色(R),緑色(G),青色(B),白色(W)副画素から構成される単位画素配列をマトリクス状に配列してカラー表示を行うカラー表示装置が2枚の基板間に設けた間隙に液晶を充填されたカラー液晶表示装置であって、赤色(R)副画素と緑色(G)副画素の間、及び青色(B)副画素と緑色(G)副画素の間にはブラックマトリクスを形成し、赤色(R)副画素と白色(W)副画素の間、及び青色(B)副画素と白色(W)副画素との間にはブラックマトリクスを形成しないことを特徴とするカラー液晶表示装置を提供する。   In order to solve the above-mentioned problems in the color liquid crystal display device, in the present invention, a unit pixel array composed of a plurality of red (R), green (G), blue (B), and white (W) subpixels is arranged in a matrix. A color liquid crystal display device in which a liquid crystal is filled in a gap provided between two substrates is a color liquid crystal display device that performs color display in a color arrangement, and includes a red (R) subpixel and a green (G) subpixel. A black matrix is formed between the blue (B) subpixel and the green (G) subpixel, and between the red (R) subpixel and the white (W) subpixel, and the blue (B) subpixel. Provided is a color liquid crystal display device in which a black matrix is not formed between white (W) sub-pixels.

前記カラー液晶表示装置においては、赤色(R)ないし青色(B)副画素と白色(W)副画素との間における赤色ないし青色カラーフィルタの境界を赤色(R)ないし青色(B)副画素と白色(W)副画素との間の信号線よりも白色(W)副画素側に配置するとなおよい。   In the color liquid crystal display device, a red or blue color filter boundary between a red (R) or blue (B) subpixel and a white (W) subpixel is defined as a red (R) or blue (B) subpixel. It is even better to place the signal line on the white (W) subpixel side than the signal line between the white (W) subpixel.

あるいはまた、複数の赤色(R),緑色(G),青色(B),白色(W)副画素から構成される単位画素配列をマトリクス状に配列してカラー表示を行うカラー表示装置が2枚の基板間に設けた間隙に液晶を充填されたカラー液晶表示装置における上記課題を解決するため本発明においては、前記各副画素において一方の基板上に設けられたコモン電極とくし歯状の信号電極により液晶を駆動される構成をとっており、色によって信号線と信号電極端部との距離を変えていることを特徴とするカラー液晶表示装置を提供する。   Alternatively, two color display devices that perform color display by arranging unit pixel arrays composed of a plurality of red (R), green (G), blue (B), and white (W) subpixels in a matrix. In order to solve the above-described problem in the color liquid crystal display device in which the liquid crystal is filled in the gap provided between the substrates, in the present invention, the common electrode and the comb-shaped signal electrode provided on one substrate in each of the sub-pixels. A color liquid crystal display device is provided in which the liquid crystal is driven by the above-described configuration, and the distance between the signal line and the signal electrode end is changed depending on the color.

さらに前記カラー液晶表示装置においては、色によってくし歯状の信号電極のくし歯の本数を変えるとなおよい。   Furthermore, in the color liquid crystal display device, it is more preferable to change the number of comb teeth of the comb-like signal electrode depending on the color.

本発明によれば、配線数を増やさずに白色(W)画素を追加することによりカラーフィルタによる損失を軽減して、なおかつ解像度の低下を軽減した表示装置ならびにそれを用いた情報端末機器を提供することができる。   According to the present invention, it is possible to provide a display device that reduces loss due to a color filter by adding white (W) pixels without increasing the number of wirings, and also reduces a decrease in resolution, and an information terminal device using the same. can do.

本発明の実施例1の表示装置の平面図。The top view of the display apparatus of Example 1 of this invention. 本発明の実施例1の画素単位構成の説明図。FIG. 3 is an explanatory diagram of a pixel unit configuration according to the first embodiment of the present invention. 本発明の実施例1の画素単位構成の他の例の説明図。Explanatory drawing of the other example of the pixel unit structure of Example 1 of this invention. 本発明のブラックマトリクスレイアウト方法の応用例の説明図。Explanatory drawing of the application example of the black-matrix layout method of this invention. 従来のR,G,B並置方式における実施例1と同等の面積の画素配列の説明図。Explanatory drawing of the pixel arrangement | sequence of the area equivalent to Example 1 in the conventional R, G, B juxtaposition system. 信号配線駆動回路における階調生成部および階調電圧セレクタの説明図。Explanatory drawing of the gradation production | generation part and gradation voltage selector in a signal wiring drive circuit. 携帯電話システムの説明図。Explanatory drawing of a mobile phone system. 本発明の実施例3の画素単位構成の説明図。Explanatory drawing of the pixel unit structure of Example 3 of this invention. 本発明の実施例3の画素単位構成の他の例の説明図。Explanatory drawing of the other example of the pixel unit structure of Example 3 of this invention. 本発明の実施例4の画素単位構成の説明図。Explanatory drawing of the pixel unit structure of Example 4 of this invention. 本発明の実施例4の画素単位構成の他の例の説明図。Explanatory drawing of the other example of the pixel unit structure of Example 4 of this invention. 本発明の実施例4の画素単位構成の他の例の説明図。Explanatory drawing of the other example of the pixel unit structure of Example 4 of this invention.

以下、図を用いて各実施例を説明します。   Each example will be described below with reference to the figures.

図1を用いて本実施例の構成について説明する。図1は本実施例の表示装置の平面図であり、色毎に設けられた副画素からなる画素がマトリクス状に配置された表示領域における複数の画素である。本実施例の表示装置は液晶表示装置であり、各副画素毎に設けられた薄膜トランジスタ,配線などをマトリクス状に配置した第一の基板とカラーフィルタやブラックマトリクスを配置した第二の基板との間に液晶層が充填された構成であり、いわゆるアクティブマトリクス駆動方式である。第一の基板及び第二の基板の液晶層とは反対側の表面には偏光板などの光学フィルムが貼付けされている。本実施例の表示装置は、図示されていないバックライトを光源として、偏光板を通過した偏光を液晶層を電気的に制御することによりその偏光状態を変調し、他方の偏光板の透過率を変調することにより任意の明るさの表示を行うことができる。   The configuration of this embodiment will be described with reference to FIG. FIG. 1 is a plan view of the display device according to the present embodiment, which is a plurality of pixels in a display region in which pixels composed of sub-pixels provided for each color are arranged in a matrix. The display device of this embodiment is a liquid crystal display device, and includes a first substrate in which thin film transistors and wirings provided for each subpixel are arranged in a matrix, and a second substrate in which color filters and a black matrix are arranged. A configuration in which a liquid crystal layer is filled in between is a so-called active matrix driving method. An optical film such as a polarizing plate is attached to the surface of the first substrate and the second substrate opposite to the liquid crystal layer. The display device of this example uses a backlight (not shown) as a light source, modulates the polarization state by electrically controlling the liquid crystal layer of the polarized light that has passed through the polarizing plate, and adjusts the transmittance of the other polarizing plate. By modulating, it is possible to display an arbitrary brightness.

図1は周期的に配列された画素の単位構成120を示しており、赤色(R)副画素121R及び青色(B)副画素121Bは各々2つずつ、緑色(G)副画素121G及び白色(W)副画素121Wは各々4つずつ、合計12副画素を含んでいる。赤色(R)副画素121R及び青色(B)副画素121Bについては、さらに単位副画素109に分割することができ、赤色(R)副画素121R及び青色(B)副画素121Bは2つの単位副画素から構成されている。赤色(R)副画素121R及び青色(B)副画素121Bの縦横比は横1に対し概ね縦2である。一方、緑色(G)副画素121G及び白色(W)副画素121Wの縦横比は概ね1:1である。緑色(G)副画素121G及び白色(W)副画素121Wは1つの単位副画素109から構成されている。   FIG. 1 shows a unit configuration 120 of periodically arranged pixels. Two red (R) sub-pixels 121R and two blue (B) sub-pixels 121B, two green (G) sub-pixels 121G and white ( W) Four subpixels 121W each include four subpixels 121W in total. The red (R) subpixel 121R and the blue (B) subpixel 121B can be further divided into unit subpixels 109, and the red (R) subpixel 121R and the blue (B) subpixel 121B have two unit subpixels. It consists of pixels. The aspect ratio of the red (R) sub-pixel 121 </ b> R and the blue (B) sub-pixel 121 </ b> B is approximately vertical 2 with respect to horizontal 1. On the other hand, the aspect ratio of the green (G) subpixel 121G and the white (W) subpixel 121W is approximately 1: 1. The green (G) subpixel 121G and the white (W) subpixel 121W are composed of one unit subpixel 109.

赤色(R)副画素121R及び青色(B)副画素121Bと緑色(G)副画素121G及び白色(W)副画素121Wの面積は異なっており、前者の面積は後者の略2倍である。   The areas of the red (R) subpixel 121R, the blue (B) subpixel 121B, the green (G) subpixel 121G, and the white (W) subpixel 121W are different, and the former area is approximately twice the latter area.

このように赤色(R)副画素121R及び青色(B)副画素121Bと緑色(G)副画素121G及び白色(W)副画素121Wとで数及び面積を変えている理由は視感度と解像度との関係に基づく。人間の目は視感度が高い色の分解能が視感度の低い色の分解能に比べ相対的に高いことが知られている。本実施例においては、赤色(R),緑色(G),青色(B),白色(W)のうち相対的に視感度の高いG、W副画素の数を相対的に視感度の低いR,B副画素の数に対して2倍としている。   The reason why the number and area of the red (R) sub-pixel 121R, the blue (B) sub-pixel 121B, the green (G) sub-pixel 121G, and the white (W) sub-pixel 121W are changed is as follows. Based on the relationship. It is known that the human eye has a relatively high resolution of colors with high visibility compared to the resolution of colors with low visibility. In this embodiment, among the red (R), green (G), blue (B), and white (W), the number of G and W sub-pixels having relatively high visibility is set to R having relatively low visibility. , B is twice the number of sub-pixels.

各副画素の配列を単純化して表記した図を図2に示す。また、従来のR,G,B並置方式において、図2に示した本実施例の画素単位構成120と同等の面積の副画素配列を単純化して表記した図を図5に示す。従来のR,G,B並置方式においては、1つの画素は3つの副画素からなっており、図5は2×2の画素における合計12副画素を示している。図2と図5を比較すると分かるように、本実施例は白色(W)副画素121Wを追加しているが、同等の面積における副画素数は同じく12副画素である。緑色(G)副画素121G及び白色(W)副画素121Wの数は同等であるのに対し、赤色(R)副画素121R及び青色(B)副画素121Bの数は半分としている。   FIG. 2 shows a simplified representation of the arrangement of each subpixel. Further, FIG. 5 shows a simplified representation of the sub-pixel arrangement having the same area as the pixel unit configuration 120 of the present embodiment shown in FIG. 2 in the conventional R, G, B juxtaposition method. In the conventional R, G, B juxtaposition method, one pixel is composed of three subpixels, and FIG. 5 shows a total of 12 subpixels in a 2 × 2 pixel. As can be seen from a comparison between FIG. 2 and FIG. 5, this embodiment adds a white (W) subpixel 121 </ b> W, but the number of subpixels in the same area is also 12 subpixels. The number of green (G) subpixels 121G and the number of white (W) subpixels 121W is equal, while the number of red (R) subpixels 121R and blue (B) subpixels 121B is halved.

図2の副画素配列の変形例として図3のような、一部の緑色(G)副画素と白色(W)副画素の配置を図2の配列とは入れ替えた構成も可能である。   As a modification of the subpixel arrangement in FIG. 2, a configuration in which the arrangement of some green (G) subpixels and white (W) subpixels is replaced with the arrangement in FIG. 2 as shown in FIG.

画素は少なくとも第一の基板上に形成された走査線101,第一の信号線102B,第二の信号線102G,第三の信号線102W,薄膜トランジスタ103R,103G,103B,103W,コモン電極104(図1中の記号はコモン電極に設けられたコンタクトホールを示している),アモルファスシリコン層105,信号電極106及び113と、第二の基板上に形成されたブラックマトリクス110,赤色(R)カラーフィルタ111R,緑色(G)カラーフィルタ111G,青色(B)カラーフィルタ111B,白色(W)カラーフィルタ111Wと、第一の基板と第二の基板との間に設けられた間隙に充填された液晶層から構成されている。ブラックマトリクス110は遮光が目的であるため不透明であるが、図中においては背景の構成を隠さないように輪郭を示すに留めている。赤色(R)カラーフィルタ111R,緑色(G)カラーフィルタ111G,青色(B)カラーフィルタ111Bについては、既存のカラーレジストにより形成されている。白色(W)カラーフィルタ111Wとしては、カラーレジストを除去しておくか、あるいはカラーレジストが除去されたことにより形成された段差を透明なレジストにより埋めて形成しても良い。走査線101,信号線102B,102G,102W,信号電極106は低抵抗の金属材料により形成されている。コモン電極104や信号電極113は透明電極により形成されている。信号電極106と信号電極113はコンタクトホール107,108を介して接続されている。液晶層はコモン電極104と信号電極113との間に印加される電界により駆動される。本実施例は薄膜トランジスタ103においてアモルファスシリコン層105を用いたアモルファスシリコン薄膜トランジスタを用いているが、他のトランジスタ方式、例えば低温ポリシリコントランジスタや有機トランジスタなどを用いてもかまわない。   The pixel includes at least a scanning line 101, a first signal line 102B, a second signal line 102G, a third signal line 102W, thin film transistors 103R, 103G, 103B, 103W, and a common electrode 104 (on the first substrate). 1 indicates a contact hole provided in the common electrode), the amorphous silicon layer 105, the signal electrodes 106 and 113, the black matrix 110 formed on the second substrate, and the red (R) color. Liquid crystal filled in a gap provided between the filter 111R, the green (G) color filter 111G, the blue (B) color filter 111B, the white (W) color filter 111W, and the first substrate and the second substrate. It is composed of layers. The black matrix 110 is opaque because it aims to shield the light, but in the drawing, the outline is only shown so as not to hide the background configuration. The red (R) color filter 111R, the green (G) color filter 111G, and the blue (B) color filter 111B are formed of an existing color resist. The white (W) color filter 111W may be formed by removing the color resist or filling a step formed by removing the color resist with a transparent resist. The scanning line 101, the signal lines 102B, 102G, and 102W and the signal electrode 106 are formed of a low-resistance metal material. The common electrode 104 and the signal electrode 113 are formed of transparent electrodes. The signal electrode 106 and the signal electrode 113 are connected through contact holes 107 and 108. The liquid crystal layer is driven by an electric field applied between the common electrode 104 and the signal electrode 113. In this embodiment, an amorphous silicon thin film transistor using the amorphous silicon layer 105 is used in the thin film transistor 103, but other transistor methods such as a low-temperature polysilicon transistor or an organic transistor may be used.

(他のディスプレイについての記述)
本発明の副画素配列は本実施例において述べた液晶表示装置以外の他の表示装置、例えば有機LED,電気泳動やエレクトロクロミック等の電子ペーパー表示装置,プラズマディスプレイパネル,フィールドエミッションディスプレイパネル,CRT等においても適用できるのはいうまでもない。
(Description about other displays)
The sub-pixel arrangement of the present invention is a display device other than the liquid crystal display device described in this embodiment, for example, an organic LED, an electronic paper display device such as electrophoresis or electrochromic, a plasma display panel, a field emission display panel, a CRT, etc. Needless to say, this can also be applied.

有機LEDやプラズマディスプレイパネル等の自発光型の表示装置においては、液晶表示装置におけるカラーフィルタの役割に相当するのが各色毎の蛍光体であることは言うまでもない。   In a self-luminous display device such as an organic LED or a plasma display panel, it goes without saying that a phosphor for each color corresponds to the role of a color filter in the liquid crystal display device.

自発光型の表示装置においても白色蛍光体とカラーフィルタとを組み合わせてカラー表示を行う方式が知られているが、その場合には本実施例の液晶表示装置と同様な考え方で設計できる。   In a self-luminous display device, a method of performing color display by combining a white phosphor and a color filter is known, but in that case, it can be designed based on the same concept as the liquid crystal display device of this embodiment.

(単位副画素についての詳細)
赤色(R)副画素121R及び青色(B)副画素121Bは次に述べる理由により同一の信号線に薄膜トランジスタ103が接続された2つの単位副画素109から形成されている。本実施例の副画素は色毎にサイズが異なっているが、もしも大きいほうの副画素である赤色(R)副画素121Rないし青色(B)副画素121Bを単位副画素109に分割しなかった場合、薄膜トランジスタ103Rないし103Bで駆動するべき液晶層の面積が緑色(G)副画素121Gないし白色(W)副画素121Wのそれとは異なってしまう。したがって、薄膜トランジスタ103が担う液晶層を誘電体としたいわゆる液晶容量の大きさが色毎に異なってしまう。あるいは、副画素の大きさが色毎に異なると信号電極113と信号線102との間の寄生容量の大きさが色毎に異なってしまう。アクティブマトリクス駆動においては、薄膜トランジスタ103自身の容量や寄生容量に起因するフィードスルー電圧が駆動電圧の誤差として発生する。フィードスルー電圧は液晶容量や寄生容量の大きさに依存する。したがってもしも液晶容量や寄生容量が副画素毎に異なると、フィードスルー電圧も異なってしまう。各副画素のフィードスルー電圧が一定であれば、コモン電位と信号電位との相対関係を補正することによりフィードスルー電圧の影響を緩和することも可能であるが、副画素毎にフィードスルー電圧が異なる場合には補正できない。このため、本実施例においては大きいほうの副画素を小さい方の副画素と同じ大きさの単位副画素で分割し、各薄膜トランジスタ103が担うべき液晶容量や寄生容量が略等しくなるように構成している。この構成により、フィードスルー電圧の副画素依存性が十分小さく抑えることができ、副画素の面積が色毎に異なる構成においても、従来から知られているフィードスルー電圧対策をそのまま適用することができるようにしている。
(Details about unit subpixels)
The red (R) subpixel 121R and the blue (B) subpixel 121B are formed of two unit subpixels 109 in which the thin film transistor 103 is connected to the same signal line for the following reason. The sub-pixels of this embodiment have different sizes for each color, but the red (R) sub-pixel 121R or blue (B) sub-pixel 121B, which is the larger sub-pixel, is not divided into unit sub-pixels 109. In this case, the area of the liquid crystal layer to be driven by the thin film transistors 103R to 103B is different from that of the green (G) subpixel 121G to the white (W) subpixel 121W. Therefore, the so-called liquid crystal capacitance using the liquid crystal layer carried by the thin film transistor 103 as a dielectric differs in color. Alternatively, if the size of the sub-pixel is different for each color, the size of the parasitic capacitance between the signal electrode 113 and the signal line 102 is different for each color. In the active matrix driving, a feedthrough voltage resulting from the capacitance of the thin film transistor 103 itself and the parasitic capacitance is generated as an error of the driving voltage. The feedthrough voltage depends on the size of the liquid crystal capacitance and the parasitic capacitance. Therefore, if the liquid crystal capacitance and the parasitic capacitance are different for each subpixel, the feedthrough voltage is also different. If the feedthrough voltage of each subpixel is constant, it is possible to reduce the influence of the feedthrough voltage by correcting the relative relationship between the common potential and the signal potential. If it is different, it cannot be corrected. For this reason, in this embodiment, the larger sub-pixel is divided into unit sub-pixels having the same size as the smaller sub-pixel so that the liquid crystal capacitance and parasitic capacitance that each thin film transistor 103 should bear are substantially equal. ing. With this configuration, the sub-pixel dependency of the feedthrough voltage can be suppressed to be sufficiently small, and the conventionally known countermeasures for the feedthrough voltage can be applied as they are even in a configuration in which the area of the subpixel is different for each color. I am doing so.

(他のディスプレイ方式についての説明)
ここまで本実施例は主としてアクティブマトリクス駆動方式の液晶表示装置について述べたが、本発明の大きさの異なる副画素のうち大きいほうの副画素を単位副画素に分割した構成は他のアクティブマトリクス駆動方式の表示方式、具体的には有機LED表示装置、電気泳動やエレクトロクロミック等の電子ペーパー表示装置、においても適用できるのはいうまでもない。なぜならば、アクティブマトリクス駆動方式の場合、各副画素の薄膜トランジスタ103の担う容量が変動するとノイズとしてのフィードスルー電圧が変動してしまうことにより表示画像が意図した明るさからずれてしまう現象は共通であるからである。
(Description of other display methods)
So far, the present embodiment has mainly described the liquid crystal display device of the active matrix driving system. However, the configuration in which the larger subpixel of the subpixels having different sizes is divided into unit subpixels is another active matrix driving method. Needless to say, the present invention can also be applied to a display method of a method, specifically, an organic LED display device and an electronic paper display device such as electrophoresis or electrochromic. This is because, in the case of the active matrix driving method, when the capacitance of the thin film transistor 103 of each subpixel changes, the phenomenon that the display image deviates from the intended brightness due to the change of the feedthrough voltage as noise is common. Because there is.

(ブラックマトリクスについて)
ブラックマトリクス110の役割としては次に示すいくつかの理由が挙げられる。(1)薄膜トランジスタ103への外光の浸入の防止、(2)液晶層が所定の動きを示さず黒表示時に光漏れを生じてしまう領域の遮光、(3)第一の基板と第二の基板とを張り合わせた際にずれが発生した場合にカラーフィルタが隣接副画素に露出することの防止、などが主たる理由である。三番目の理由からR−G間,G−B間,R−B間にはブラックマトリクスが設けられている。例えば彩度の高い赤色(R)表示をしている場合には赤色(R)副画素121Rのみ点灯し、隣接する緑色(G)副画素121Gや青色(B)副画素121Bは非点灯である。第一の基板と第二の基板がずれていて、緑色(G)カラーフィルタ111Gないし青色(B)カラーフィルタ111Bが赤色(R)副画素121Rに一部重畳すると混色が生じてしまう。このため第一の基板と第二の基板とのずれがある一定の範囲内であれば混色が生じないように隣接副画素間にブラックマトリクスが形成されている。このブラックマトリクス配置の副作用は、表示に有効な領域を一部遮光してしまい効率が低下することである。
(About black matrix)
The role of the black matrix 110 includes the following reasons. (1) Prevention of intrusion of external light into the thin film transistor 103, (2) light shielding of a region where the liquid crystal layer does not exhibit a predetermined movement and causes light leakage during black display, and (3) the first substrate and the second substrate The main reason is to prevent the color filter from being exposed to adjacent sub-pixels when a deviation occurs when the substrates are bonded to each other. For the third reason, a black matrix is provided between RG, GB, and RB. For example, when a highly saturated red (R) display is performed, only the red (R) subpixel 121R is lit, and the adjacent green (G) subpixel 121G and blue (B) subpixel 121B are not lit. . If the first substrate and the second substrate are displaced and the green (G) color filter 111G or the blue (B) color filter 111B partially overlaps the red (R) subpixel 121R, color mixing occurs. For this reason, a black matrix is formed between adjacent sub-pixels so that color mixture does not occur if the deviation between the first substrate and the second substrate is within a certain range. A side effect of this black matrix arrangement is that a part of the display effective area is shielded from light and the efficiency is lowered.

そこで本実施例のW−B間,W−R間の一部にはブラックマトリクスを設けていない。白色(W)副画素121Wを点灯するのは彩度の低い色であることから、青色(B)副画素121B及び赤色(R)副画素121Rも同時に点灯する。したがって、赤色(R)カラーフィルタ111Rないし青色(B)カラーフィルタ111Bが白色(W)副画素121Wに僅かに重畳しても影響は無視できる。この観点からW−B間,W−R間の一部にはブラックマトリクスを設けていない。ただし、W−R間でブラックマトリクスを設けていない領域における赤色(R)カラーフィルタの境界112Rは白色(W)画素側に設けられている。また、W−B間でブラックマトリクスを設けていない領域における青色(B)カラーフィルタの境界112Bについても同様に白色(W)副画素側に設けられている。これは、第一の基板と第二の基板とを張り合わせた際にずれたとしても白色(W)カラーフィルタが隣接する青色(B)副画素ないし赤色(R)副画素に浸入しないようにするためである。本実施例のブラックマトリクスレイアウトにより、本来表示に有効な領域をブラックマトリクスにより遮光して低下させていた効率を回復させている。   Therefore, no black matrix is provided in a part between WB and WR in the present embodiment. Since the white (W) subpixel 121W is lit with a low-saturation color, the blue (B) subpixel 121B and the red (R) subpixel 121R are also lit simultaneously. Therefore, even if the red (R) color filter 111R or the blue (B) color filter 111B is slightly superimposed on the white (W) subpixel 121W, the influence can be ignored. From this point of view, no black matrix is provided between WB and a part between WR. However, the boundary 112R of the red (R) color filter in the region where the black matrix is not provided between WR is provided on the white (W) pixel side. Similarly, the blue (B) color filter boundary 112B in the region where no black matrix is provided between WB is also provided on the white (W) subpixel side. This prevents the white (W) color filter from entering the adjacent blue (B) sub-pixel or red (R) sub-pixel even if the first substrate and the second substrate are displaced. Because. According to the black matrix layout of the present embodiment, the efficiency which has been reduced by shading the area that is originally effective for display by the black matrix is restored.

本実施例と同様な原理により液晶を駆動する従来のカラー表示装置においては、隣接する副画素の信号電極113の端部間の距離は電界の隣接副画素への漏れに起因する混色を防止するために一定の距離を確保しておく必要がある。効率の観点からはこの距離はやや広過ぎる。なぜならば、信号線102と信号電極113の端部との距離が広いと、この間の領域を効率よく駆動することが困難となるためである。本実施例においては、副画素間に2本の信号線102B及び102Wが配置される部分が存在しており、この部分においては信号電極113の端部の隣接副画素間の距離は十分確保できる。したがって、2本の信号線102B及び102Wに隣接する副画素の信号電極113端部と信号線102Bないし102Wとの距離は、1本の信号線102Gに隣接する副画素の信号電極113端部と信号線102Gとの距離に比べ短くしている。   In the conventional color display device that drives the liquid crystal according to the same principle as in this embodiment, the distance between the ends of the signal electrodes 113 of the adjacent subpixels prevents color mixing caused by leakage of the electric field to the adjacent subpixels. Therefore, it is necessary to secure a certain distance. From an efficiency standpoint, this distance is a little too large. This is because if the distance between the signal line 102 and the end portion of the signal electrode 113 is large, it is difficult to drive the region between them efficiently. In this embodiment, there is a portion where the two signal lines 102B and 102W are arranged between the sub-pixels. In this portion, a sufficient distance between adjacent sub-pixels at the end of the signal electrode 113 can be secured. . Therefore, the distance between the signal electrode 113 end of the subpixel adjacent to the two signal lines 102B and 102W and the signal line 102B to 102W is the same as the end of the signal electrode 113 of the subpixel adjacent to the one signal line 102G. The distance is shorter than the distance to the signal line 102G.

本構成のブラックマトリクスの配置は他のカラーフィルタ配列方式においても適用できる。   The arrangement of the black matrix of this configuration can also be applied to other color filter arrangement methods.

図4は特許文献2に記載のようなカラーフィルタ配列に本実施例のブラックマトリクスレイアウトを適用した場合についての説明図である。緑色(G)副画素と赤色(R)副画素との間、緑色(G)副画素と青色(B)副画素との間には基板合わせずれ起因の混色を防止するためにブラックマトリクス110を設けているのに対し、白色(W)副画素の左右にはブラックマトリクス110を設けていない。   FIG. 4 is an explanatory diagram of a case where the black matrix layout of this embodiment is applied to a color filter array as described in Patent Document 2. A black matrix 110 is provided between the green (G) sub-pixel and the red (R) sub-pixel, and between the green (G) sub-pixel and the blue (B) sub-pixel in order to prevent color mixing due to substrate misalignment. In contrast, the black matrix 110 is not provided on the left and right sides of the white (W) subpixel.

また、青色(B)副画素のカラーフィルタの境界112Bは信号線102よりも白色(W)副画素側に設けており、赤色(R)副画素のカラーフィルタの境界112Rも信号線102よりも白色(W)副画素側に設けている。これは、基板合わせずれが生じたとしても白色(W)副画素のカラーフィルタが赤色(R)ないし青色(B)副画素に浸入しないようにするためである。白色(W)副画素の信号電極113Wのくし歯本数は他の色の信号電極113のくし歯本数に比べて増やしている。隣接する副画素の信号電極113の端部間の距離は電界の隣接副画素への漏れに起因する混色を防止するために一定の距離を確保しておく必要がある。   Also, the color filter boundary 112B of the blue (B) subpixel is provided on the white (W) subpixel side with respect to the signal line 102, and the color filter boundary 112R of the red (R) subpixel is also closer than the signal line 102. It is provided on the white (W) subpixel side. This is to prevent the color filter of the white (W) subpixel from entering the red (R) or blue (B) subpixel even if the substrate misalignment occurs. The number of comb teeth of the signal electrode 113W of the white (W) subpixel is increased as compared with the number of comb teeth of the signal electrode 113 of other colors. The distance between the ends of the signal electrodes 113 of the adjacent subpixels needs to be a certain distance in order to prevent color mixing due to leakage of the electric field to the adjacent subpixels.

しかしながら効率の観点からはこの距離はやや広過ぎる。三原色の副画素に加えて白色(W)副画素を設けた構成の場合、赤色(R)副画素ないし青色(B)副画素を点灯する際に白色(W)副画素を消灯することはあるが、逆に白色(W)副画素を点灯する場合には赤色(R)副画素、青色(B)副画素は同時に点灯するため、白色(W)副画素の信号電極113W端部の電界が隣接する副画素に漏れることに起因する混色を心配する必要がない。したがって、三原色の他の副画素とは異なり白色(W)副画素の信号電極113Wのくし歯の本数を増やし、信号電極113W端部と信号線102との間の距離を三原色の副画素における信号電極113の端部と信号線102との間の距離に対して短くしている。   However, this distance is a little too large from an efficiency standpoint. When the white (W) subpixel is provided in addition to the three primary color subpixels, the white (W) subpixel may be turned off when the red (R) subpixel or the blue (B) subpixel is turned on. However, when the white (W) subpixel is turned on, the red (R) subpixel and the blue (B) subpixel are turned on at the same time, so that the electric field at the end of the signal electrode 113W of the white (W) subpixel is reduced. There is no need to worry about color mixing due to leakage to adjacent subpixels. Therefore, unlike the other subpixels of the three primary colors, the number of comb teeth of the signal electrode 113W of the white (W) subpixel is increased, and the distance between the end of the signal electrode 113W and the signal line 102 is set to the signal in the subpixel of the three primary colors. The distance between the end of the electrode 113 and the signal line 102 is shortened.

単位副画素構成を取らない場合の周辺回路の工夫
本実施例は、図2ないし図3に示した画素配列において、単位副画素構成を採用せずに色毎に副画素サイズが異なる場合に生じる課題の、実施例1とは異なる解決方法である。色毎に副画素サイズが異なる場合に生じる問題点は、各副画素の電気特性(保持容量,寄生容量)が異なることにより、副画素毎にフィードスルー電圧が異なり、最適コモン電位が異なった値をとることである。大きさの異なる副画素を夫々第1種の副画素と第2種の副画素と称する。大きさの異なる第1種の副画素と第2種の副画素、それぞれに最適な階調電圧を供給する方法について図6を用いて説明する。本実施例では、第1種の副画素を緑色(G)と白色(W)副画素、第2種の副画素を赤色(R)と青色(B)副画素とした場合について説明する。
Device of Peripheral Circuit when Unit Subpixel Configuration is Not Used This embodiment occurs when the pixel arrangement shown in FIGS. 2 to 3 does not employ the unit subpixel configuration and the subpixel size differs for each color. This is a solution to the problem different from that of the first embodiment. The problem that arises when the sub-pixel size is different for each color is that the sub-pixels have different feed-through voltages due to different electrical characteristics (retention capacitance, parasitic capacitance), and the optimum common potential is different. Is to take. The subpixels having different sizes are referred to as a first type subpixel and a second type subpixel, respectively. A method for supplying the optimum gradation voltages to the first and second sub-pixels having different sizes will be described with reference to FIG. In this embodiment, a case will be described in which the first type of sub-pixels are green (G) and white (W) sub-pixels, and the second type of sub-pixels are red (R) and blue (B) sub-pixels.

図6(a)は、構成の概略図である。階調電圧生成部305はV0からV255の256個の階調電圧を階調電圧セレクタ302に供給する。階調電圧セレクタは、前記256個の階調電圧から、画像データに対応する階調電圧を画像データ出力端子4001に出力する。セレクタスイッチ4002は、画像データ出力端子4001を信号SELにしたがって、緑色(G)と白色(W)の副画素に接続されている信号配線4003又は、赤色(R)と(B)の副画素に接続されている信号配線4004に接続する。図6(a)では、セレクタスイッチ4002を液晶パネル上に作製した場合を示していて、画像データ出力端子4001は、信号配線数の半分になっている。例えば、図6(b)のように、セレクタスイッチ4002を信号配線駆動回路内に作製し、画像データ出力端子4001が信号配線の数だけ存在する構成も考えられる。   FIG. 6A is a schematic diagram of the configuration. The gradation voltage generator 305 supplies 256 gradation voltages from V0 to V255 to the gradation voltage selector 302. The gradation voltage selector outputs a gradation voltage corresponding to the image data to the image data output terminal 4001 from the 256 gradation voltages. The selector switch 4002 connects the image data output terminal 4001 to the signal wiring 4003 connected to the green (G) and white (W) subpixels or the red (R) and (B) subpixels according to the signal SEL. Connect to the connected signal wiring 4004. FIG. 6A shows a case where the selector switch 4002 is formed on a liquid crystal panel, and the image data output terminal 4001 is half the number of signal wirings. For example, as shown in FIG. 6B, a configuration in which selector switches 4002 are produced in the signal wiring drive circuit and there are as many image data output terminals 4001 as the number of signal wirings is also conceivable.

階調電圧生成部は、電流増幅を行うオペアンプ3052と階調数を増やすためのストリング抵抗3083からなる出力段3080と、第1階調電圧の基準電圧を生成する第1ラダー抵抗3081と第2階調電圧の基準電圧を生成する第2ラダー抵抗3082と、第1ラダー抵抗および第2ラダー抵抗から出力される電圧を、信号SELに同期して切り替えて、前記オペアンプ3052に電圧を出力する基準電圧切り替えスイッチ3084を有する。本実施例においては、各ラダー抵抗を、液晶の極性反転周期に同期した極性反転信号Mによって制御されるスイッチも記載されている。このスイッチによって、極性反転にも同期してラダー抵抗値が切り替わる。本構成は、2種類のラダー抵抗で基準電位を、少なくても2系統生成し、信号SELで切り替えてオペアンプに入力することで、第1階調電圧及び第2階調電圧を信号配線に供給する構成である。   The gradation voltage generation unit includes an operational amplifier 3052 that performs current amplification, an output stage 3080 that includes a string resistor 3083 for increasing the number of gradations, a first ladder resistor 3081 that generates a reference voltage for the first gradation voltage, and a second A reference for outputting a voltage to the operational amplifier 3052 by switching the second ladder resistor 3082 for generating a reference voltage of the gradation voltage and the voltage output from the first ladder resistor and the second ladder resistor in synchronization with the signal SEL. A voltage changeover switch 3084 is included. In this embodiment, there is also described a switch in which each ladder resistor is controlled by a polarity inversion signal M synchronized with the polarity inversion period of the liquid crystal. By this switch, the ladder resistance value is switched in synchronization with the polarity inversion. In this configuration, at least two systems of reference potentials are generated with two types of ladder resistors, and the first gradation voltage and the second gradation voltage are supplied to the signal wiring by switching with the signal SEL and inputting the reference potential to the operational amplifier. It is the structure to do.

その他の構成としては、ラダー抵抗を一本とし、その抵抗値を時分割で変更できる構成としても、第1階調電圧及び第2階調電圧を信号配線に時分割で供給できるし、ストリング抵抗を時分割で制御する構成も考えられる。   Other configurations include a single ladder resistor and the resistance value can be changed in a time division manner, but the first gradation voltage and the second gradation voltage can be supplied to the signal wiring in a time division manner, and the string resistance It is also possible to adopt a configuration that controls the time-division.

図7は、本発明を携帯電話機に適用した場合のブロック図である。図7において、1004はホスト局を表し、1000は携帯電話機を表している。携帯電話機の主な構成要素は、入力手段1001,主メモリ1002,送受信部1003,CPU,液晶表示装置1である。また、液晶表示装置の主な構成要素は、液晶パネル2,信号配線駆動回路3,走査配線駆動回路4,電源回路5,バックライト部6である。さらに、信号配線駆動回路3の構成要素はタイミング制御回路300,メモリ301,階調電圧セレクタ302,インターフェイス303,制御レジスタ304,階調電圧生成部305である。   FIG. 7 is a block diagram when the present invention is applied to a mobile phone. In FIG. 7, 1004 represents a host station, and 1000 represents a mobile phone. Main components of the cellular phone are an input unit 1001, a main memory 1002, a transmission / reception unit 1003, a CPU, and a liquid crystal display device 1. The main components of the liquid crystal display device are a liquid crystal panel 2, a signal wiring drive circuit 3, a scanning wiring drive circuit 4, a power supply circuit 5, and a backlight unit 6. Further, the signal wiring driving circuit 3 includes a timing control circuit 300, a memory 301, a gradation voltage selector 302, an interface 303, a control register 304, and a gradation voltage generation unit 305.

携帯電話機1000のCPUは、携帯電話機の各種動作制御を行う。液晶表示装置1の制御に関しては、前記ホスト局1004から受信した情報や、主メモリ1002内に記録されていたデータを表示できるように、表示同期信号及び画像データ306をタイミング制御部300に出力する。また、動作を規定するデータ307(本実施例では、このデータをインストラクションと呼ぶことにする。)を発行する。インターフェイス303はCPUとインストラクションを含むデータの送受信を行い、また、制御レジスタ304とも前記データの送受信を行う。インストラクションは制御レジスタ304に格納される。   The CPU of the mobile phone 1000 controls various operations of the mobile phone. Regarding the control of the liquid crystal display device 1, the display synchronization signal and the image data 306 are output to the timing control unit 300 so that the information received from the host station 1004 and the data recorded in the main memory 1002 can be displayed. . Also, data 307 defining the operation (in the present embodiment, this data is referred to as an instruction) is issued. The interface 303 transmits / receives data including instructions to / from the CPU, and also transmits / receives the data to / from the control register 304. Instructions are stored in the control register 304.

信号配線駆動回路3は信号線101を、走査配線駆動回路4は走査線102を駆動する。電源回路5は、携帯電話機から供給される電圧を元に、信号配線駆動回路3,走査配線駆動回路4に電源電圧を供給する。また、該回路は対向電極を駆動する回路を内蔵する。   The signal wiring driving circuit 3 drives the signal line 101, and the scanning wiring driving circuit 4 drives the scanning line 102. The power supply circuit 5 supplies a power supply voltage to the signal wiring drive circuit 3 and the scanning wiring drive circuit 4 based on the voltage supplied from the mobile phone. The circuit includes a circuit for driving the counter electrode.

タイミング制御部300は画像データをメモリ301からリードし、1行分の画像データを、階調電圧セレクタ302に順次一斉に出力する。階調電圧セレクタ302は画像データに従って、階調電圧生成部305で生成される階調電圧の何れかの電圧を選択して各信号配線に電圧を印加する。階調電圧生成部305は全階調数分の階調電圧を生成する部位である(64階調表示の場合、64個の電圧を生成する。)。   The timing controller 300 reads the image data from the memory 301 and sequentially outputs the image data for one row to the gradation voltage selector 302 simultaneously. The gradation voltage selector 302 selects one of the gradation voltages generated by the gradation voltage generation unit 305 according to the image data, and applies the voltage to each signal wiring. The gradation voltage generation unit 305 is a part that generates gradation voltages for all gradations (in the case of 64 gradation display, 64 voltages are generated).

(RGBC配列)
本実施例は、図2ないし図3に示した副画素配列におけるカラーフィルタの他の構成について述べる。図2ないし図3においては、三原色の赤色(R),緑色(G),青色(B)に加え白色(W)副画素を備える構成であったが、図8ないし図9に示したように赤色(R)及び青色(B)に比べて視感度の高い緑色(G)及び白色(W)副画素を夫々同じく視感度の高い青味を帯びた緑色(CG)及び黄色味を帯びた緑色(YG)とした四原色の構成としてもよい。この構成の効果は三原色の赤色(R),緑色(G),青色(B)だけの場合に比べて色再現範囲を広げることができることである。それでいてなおかつ、三原色の赤色(R),緑色(G),青色(B)のみの従来の画素構成に対して信号線及び走査線の数は増えていない。そのため、同じ面積の四原色の副画素を並置した構成に比べて開口率を高めることが可能であり、高効率かつ広色再現範囲の表示装置を実現できる。
(RGBC array)
In the present embodiment, another configuration of the color filter in the sub-pixel arrangement shown in FIGS. 2 to 3 will be described. 2 to 3, the configuration includes the white (W) subpixels in addition to the three primary colors red (R), green (G), and blue (B), but as shown in FIGS. 8 to 9. The green (G) and white (W) subpixels, which have higher visibility than red (R) and blue (B), have the same high visibility blue-green (CG) and yellowish green, respectively. A configuration of four primary colors (YG) may be used. The effect of this configuration is that the color reproduction range can be expanded compared to the case of only the three primary colors red (R), green (G), and blue (B). Nevertheless, the number of signal lines and scanning lines has not increased compared to the conventional pixel configuration of only the three primary colors red (R), green (G), and blue (B). Therefore, the aperture ratio can be increased as compared with a configuration in which sub-pixels of the four primary colors having the same area are juxtaposed, and a display device with high efficiency and a wide color reproduction range can be realized.

(半透過の場合)
本実施例は、副画素が透過部と反射部とから構成される半透過液晶表示装置に関する。三原色の赤色(R),緑色(G),青色(B)の副画素のみからなる、従来の半透過液晶表示装置においては、充分な反射率と透過表示の高色再現性とを両立させるために、反射部におけるカラーフィルタを一部除去して白色の領域を副画素内に設ける構成がとられている。反射表示は白黒でもよいという場合には、図10ないし図11に示したように白色(W)副画素にのみ反射部121W(R)を設ける構成としてもよい。あるいはまた、図12に示したように全ての副画素に反射部121B(R),121G(R),121R(R),121W(R)を設けて半透過仕様の画素とした場合に、白色(W)副画素と他の副画素とで反射部の面積比率を変えても良い。
(For transflective)
The present embodiment relates to a transflective liquid crystal display device in which a sub-pixel includes a transmissive portion and a reflective portion. In a conventional transflective liquid crystal display device consisting only of the three primary colors red (R), green (G), and blue (B) sub-pixels, in order to achieve both sufficient reflectance and high color reproducibility of transmissive display. In addition, a configuration in which a part of the color filter in the reflection portion is removed and a white region is provided in the sub-pixel is employed. In the case where the reflective display may be black and white, as shown in FIGS. 10 to 11, a configuration may be adopted in which the reflective portion 121W (R) is provided only for the white (W) subpixel. Alternatively, as shown in FIG. 12, when the reflective portions 121B (R), 121G (R), 121R (R), and 121W (R) are provided in all the sub-pixels to obtain a transflective pixel, (W) The area ratio of the reflection portion may be changed between the sub-pixel and another sub-pixel.

何れの場合にも反射部においては白色(W)の領域の比率が透過部に比較して高く、反射部において色再現範囲を下げて反射率を高める効果が期待できる。本構成を別の見方をすると、白色(W)副画素のみ透過部の面積比率が低い構成とも言える。白色(W)画素の追加は、輝度向上には資するものの、原色の面積比率が相対的に低下し、原色と白色との輝度比が増大する傾向にある。白色(W)副画素の透過部開口率を三原色の副画素の開口率に比べて小さくすることにより白色表示時の輝度と三原色単独表示時の輝度との比を緩和することが可能となる。   In any case, the ratio of the white (W) region is higher in the reflective portion than in the transmissive portion, and an effect of increasing the reflectance by lowering the color reproduction range in the reflective portion can be expected. From another viewpoint of this configuration, it can be said that only the white (W) subpixel has a low area ratio of the transmission part. Although the addition of the white (W) pixel contributes to the improvement of the luminance, the area ratio of the primary colors is relatively decreased, and the luminance ratio between the primary colors and the white tends to increase. By reducing the aperture ratio of the transmissive portion of the white (W) sub-pixel as compared with the aperture ratio of the three primary color sub-pixels, it is possible to reduce the ratio between the luminance when displaying white and the luminance when displaying only the three primary colors.

本発明は、携帯電話に代表される情報端末機器に用いられる液晶表示装置の視認性を向上するための重要な発明である。   The present invention is an important invention for improving the visibility of a liquid crystal display device used in an information terminal device typified by a mobile phone.

101 走査線、102 信号線、103 薄膜トランジスタ、106,113 信号電極、104 コモン電極、105 アモルファスシリコン層、107,108 コンタクトホール、109 単位副画素、110 ブラックマトリクス、111 カラーフィルタ、112 カラーフィルタの境界、120 画素単位構成、121 副画素。   101 scanning line, 102 signal line, 103 thin film transistor, 106, 113 signal electrode, 104 common electrode, 105 amorphous silicon layer, 107, 108 contact hole, 109 unit subpixel, 110 black matrix, 111 color filter, 112 color filter boundary , 120 pixel unit configuration, 121 subpixels.

Claims (10)

複数の赤色(R),緑色(G),青色(B),白色(W)副画素から構成される単位画素配列をマトリクス状に配列してカラー表示を行うカラー表示装置が2枚の基板間に設けた間隙に液晶を充填されたカラー液晶表示装置であって、
赤色(R)副画素と緑色(G)副画素の間、及び青色(B)副画素と緑色(G)副画素の間にはブラックマトリクスを形成し、赤色(R)副画素と白色(W)副画素の間、及び青色(B)副画素と白色(W)副画素との間にはブラックマトリクスを形成しないことを特徴とするカラー液晶表示装置。
A color display device that performs color display by arranging unit pixel arrangements composed of a plurality of red (R), green (G), blue (B), and white (W) sub-pixels in a matrix is provided between two substrates. A color liquid crystal display device in which liquid crystal is filled in a gap provided in
A black matrix is formed between the red (R) subpixel and the green (G) subpixel, and between the blue (B) subpixel and the green (G) subpixel, and the red (R) subpixel and the white (W ) A color liquid crystal display device characterized in that no black matrix is formed between subpixels and between a blue (B) subpixel and a white (W) subpixel.
請求項1記載のカラー液晶表示装置において、
赤色(R)ないし青色(B)副画素と白色(W)副画素との間における赤色ないし青色カラーフィルタの境界を赤色(R)ないし青色(B)副画素と白色(W)副画素との間の信号線よりも白色(W)副画素側に配置していることを特徴とするカラー液晶表示装置。
The color liquid crystal display device according to claim 1,
The boundary of the red or blue color filter between the red (R) or blue (B) subpixel and the white (W) subpixel is defined between the red (R) or blue (B) subpixel and the white (W) subpixel. A color liquid crystal display device, wherein the color liquid crystal display device is disposed on a white (W) sub-pixel side with respect to a signal line therebetween.
階調電圧を生成する階調電圧生成部と該階調電圧生成部で生成された電圧から画像データに応じた電圧を選択して画像データ出力端子から当該電圧を出力する階調電圧セレクタを有する液晶パネルにおいて、
大きさの異なる第1種の副画素と第2種の副画素が存在し、第1信号配線に接続される全ての副画素を第1種の副画素、第2信号配線に接続される全ての副画素を第2種の副画素とし、
当該副画像データ出力端子は、セレクタスイッチによって、第1または第2信号配線に接続される構成であり、セレクタスイッチは信号SELによって、接続先を第1または、第2信号配線に切り替える構成であって、
該階調電圧生成部は、第1種の副画素に対応する第1階調電圧と第2種の副画素に対応する第2階調電圧を、それぞれ生成し、信号SELに同期して、画像データ出力端子が第1信号配線に接続されているときは、階調電圧生成回路は第1階調電圧を出力し、画像データ出力端子が第2信号配線に接続されているときは、階調電圧生成回路は第2階調電圧を出力することを特徴とする液晶表示装置。
A gradation voltage generation unit that generates a gradation voltage, and a gradation voltage selector that selects a voltage corresponding to image data from the voltages generated by the gradation voltage generation unit and outputs the voltage from an image data output terminal In the liquid crystal panel,
There are first-type subpixels and second-type subpixels having different sizes, and all subpixels connected to the first signal wiring are all connected to the first type subpixels and the second signal wiring. The sub-pixel is the second type sub-pixel,
The sub-image data output terminal is connected to the first or second signal wiring by a selector switch, and the selector switch is configured to switch the connection destination to the first or second signal wiring by a signal SEL. And
The gradation voltage generation unit generates a first gradation voltage corresponding to the first type sub-pixel and a second gradation voltage corresponding to the second type sub-pixel, and synchronizes with the signal SEL. When the image data output terminal is connected to the first signal wiring, the gradation voltage generating circuit outputs the first gradation voltage, and when the image data output terminal is connected to the second signal wiring, the gradation voltage generating circuit outputs the first gradation voltage. A liquid crystal display device, wherein the regulated voltage generation circuit outputs a second gradation voltage.
請求項3記載の液晶表示装置において、
前記階調電圧生成部は、第1階調電圧の基準となる電圧を生成するための第1ラダー抵抗と第2階調電圧の基準となる電圧を生成するための第2ラダー抵抗を、少なくても1本ずつ有することを特徴とする液晶表示装置。
The liquid crystal display device according to claim 3.
The gradation voltage generation unit reduces a first ladder resistor for generating a voltage serving as a reference for the first gradation voltage and a second ladder resistor for generating a voltage serving as a reference for the second gradation voltage. A liquid crystal display device having at least one each.
請求項4記載の液晶表示装置において、
前記階調電圧生成部は、前記第1および第2ラダー抵抗と階調電圧を階調電圧セレクタに出力する段に設けられるオペアンプから構成され、第1ラダー抵抗と第2ラダー抵抗から出力される電圧を、信号SELに同期して切り替えて、前記オペアンプに電圧を出力するスイッチを有することを特徴とする液晶表示装置。
The liquid crystal display device according to claim 4.
The gradation voltage generation unit includes an operational amplifier provided in a stage for outputting the first and second ladder resistors and the gradation voltage to the gradation voltage selector, and is output from the first ladder resistor and the second ladder resistor. A liquid crystal display device comprising a switch for switching a voltage in synchronization with a signal SEL and outputting the voltage to the operational amplifier.
請求項3記載の液晶表示装置において、
前記階調電圧生成部において、階調電圧の基準となる電圧を生成するためのラダー抵抗を、走査期間よりも短時間の間に、切り替えることを特徴とする液晶表示装置。
The liquid crystal display device according to claim 3.
The liquid crystal display device, wherein the gradation voltage generator switches a ladder resistor for generating a voltage serving as a reference for a gradation voltage within a shorter time than a scanning period.
請求項3記載の液晶表示装置において、
前記液晶パネルに、セレクタスイッチを内蔵することを特徴とする液晶表示装置。
The liquid crystal display device according to claim 3.
A liquid crystal display device comprising a selector switch in the liquid crystal panel.
4色の副画素から構成される単位画素配列をマトリクス状に配列してカラー表示を行うカラー表示装置がバックライトからの照明光のオンオフ制御による透過表示を行う透過部と外光の反射率を制御する反射表示を行う反射部の双方を兼ね備えた半透過液晶表示装置であって、
前記副画素における前記透過部と前記反射部との比率が色によって異なることを特徴とする半透過液晶表示装置。
A color display device that performs color display by arranging unit pixel arrays composed of sub-pixels of four colors in a matrix form, a transmission unit that performs transmissive display by on / off control of illumination light from a backlight, and a reflectance of external light A transflective liquid crystal display device having both a reflective portion for performing reflective display to be controlled,
The transflective liquid crystal display device, wherein a ratio between the transmissive portion and the reflective portion in the sub-pixel differs depending on colors.
請求項8記載の半透過液晶表示装置において、
4色の副画素が赤色(R),緑色(G),青色(B),白色(W)副画素から構成されており、前記白色(W)副画素における前記透過部と前記反射部の比率が他の色の副画素と異なっており、副画素の面積に占める前記反射部の比率が大きいことを特徴とする半透過液晶表示装置。
The transflective liquid crystal display device according to claim 8,
The four color sub-pixels are composed of red (R), green (G), blue (B), and white (W) sub-pixels, and the ratio of the transmissive part and the reflective part in the white (W) sub-pixel. Is different from the sub-pixels of other colors, and the ratio of the reflecting portion in the area of the sub-pixel is large.
請求項8に記載の半透過液晶表示装置において、
4色の副画素が赤色(R),緑色(G),青色(B),白色(W)副画素から構成されており、前記反射部が白色(W)副画素にのみ構成されていることを特徴とする半透過液晶表示装置。
The transflective liquid crystal display device according to claim 8,
The four color sub-pixels are composed of red (R), green (G), blue (B), and white (W) sub-pixels, and the reflection portion is composed only of the white (W) sub-pixels. A transflective liquid crystal display device.
JP2011287949A 2011-12-28 2011-12-28 Color display device, liquid crystal display device, and transflective liquid crystal display device Active JP5420632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287949A JP5420632B2 (en) 2011-12-28 2011-12-28 Color display device, liquid crystal display device, and transflective liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287949A JP5420632B2 (en) 2011-12-28 2011-12-28 Color display device, liquid crystal display device, and transflective liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006275967A Division JP5403860B2 (en) 2006-10-10 2006-10-10 Color liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013101198A Division JP5642230B2 (en) 2013-05-13 2013-05-13 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2012118538A true JP2012118538A (en) 2012-06-21
JP5420632B2 JP5420632B2 (en) 2014-02-19

Family

ID=46501340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287949A Active JP5420632B2 (en) 2011-12-28 2011-12-28 Color display device, liquid crystal display device, and transflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP5420632B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064221A (en) * 2012-12-28 2013-04-24 南京中电熊猫液晶显示科技有限公司 Transparent display device
JP2013200571A (en) * 2013-05-13 2013-10-03 Japan Display Inc Liquid crystal display device and transflective liquid crystal display device
JP2014126805A (en) * 2012-12-27 2014-07-07 Semiconductor Energy Lab Co Ltd Method for processing and displaying image information, program, and information processing device
JP2014194540A (en) * 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Method for processing and displaying image information, program, and information processor
US9191636B2 (en) 2013-03-08 2015-11-17 Kabushiki Kaisha Toshiba Solid-state imaging device having varying pixel exposure times
US9343008B2 (en) 2013-04-23 2016-05-17 Samsung Display Co., Ltd. Organic light emitting diode display
US9804432B2 (en) 2014-05-29 2017-10-31 Japan Display Inc. Liquid crystal display device
CN108287444A (en) * 2018-02-26 2018-07-17 厦门天马微电子有限公司 A kind of array substrate and display panel
CN113450731A (en) * 2021-07-29 2021-09-28 浙江富涌电子科技有限公司 Gbrwk mixed color electronic paper display device and display method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183919B1 (en) 2014-07-31 2020-11-30 삼성디스플레이 주식회사 Liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295717A (en) * 1998-04-13 1999-10-29 Hitachi Ltd Liquid crystal display device
JP2003308048A (en) * 2002-04-15 2003-10-31 Nec Lcd Technologies Ltd Liquid crystal display device
JP2004004822A (en) * 2002-05-04 2004-01-08 Samsung Electronics Co Ltd Liquid crystal display using four color and panel for it
JP2004102992A (en) * 2003-07-31 2004-04-02 Toyomaru Industry Co Ltd Monitoring system, game machine, and device control system
JP2005107513A (en) * 2003-09-10 2005-04-21 Seiko Epson Corp Electrooptic device, color filter substrate, manufacturing method for electooptic device and electronic equipment
JP2005182067A (en) * 2003-12-23 2005-07-07 Lg Phillips Lcd Co Ltd Liquid crystal display and fabricating method thereof
JP2006235633A (en) * 2005-02-24 2006-09-07 Samsung Electronics Co Ltd Liquid crystal display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295717A (en) * 1998-04-13 1999-10-29 Hitachi Ltd Liquid crystal display device
JP2003308048A (en) * 2002-04-15 2003-10-31 Nec Lcd Technologies Ltd Liquid crystal display device
JP2004004822A (en) * 2002-05-04 2004-01-08 Samsung Electronics Co Ltd Liquid crystal display using four color and panel for it
JP2004102992A (en) * 2003-07-31 2004-04-02 Toyomaru Industry Co Ltd Monitoring system, game machine, and device control system
JP2005107513A (en) * 2003-09-10 2005-04-21 Seiko Epson Corp Electrooptic device, color filter substrate, manufacturing method for electooptic device and electronic equipment
JP2005182067A (en) * 2003-12-23 2005-07-07 Lg Phillips Lcd Co Ltd Liquid crystal display and fabricating method thereof
JP2006235633A (en) * 2005-02-24 2006-09-07 Samsung Electronics Co Ltd Liquid crystal display apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126805A (en) * 2012-12-27 2014-07-07 Semiconductor Energy Lab Co Ltd Method for processing and displaying image information, program, and information processing device
CN103064221A (en) * 2012-12-28 2013-04-24 南京中电熊猫液晶显示科技有限公司 Transparent display device
CN103064221B (en) * 2012-12-28 2015-06-10 南京中电熊猫液晶显示科技有限公司 Transparent display device
JP2014194540A (en) * 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Method for processing and displaying image information, program, and information processor
US9191636B2 (en) 2013-03-08 2015-11-17 Kabushiki Kaisha Toshiba Solid-state imaging device having varying pixel exposure times
US9343008B2 (en) 2013-04-23 2016-05-17 Samsung Display Co., Ltd. Organic light emitting diode display
JP2013200571A (en) * 2013-05-13 2013-10-03 Japan Display Inc Liquid crystal display device and transflective liquid crystal display device
US9804432B2 (en) 2014-05-29 2017-10-31 Japan Display Inc. Liquid crystal display device
US10401673B2 (en) 2014-05-29 2019-09-03 Japan Display Inc. Liquid crystal display device
CN108287444A (en) * 2018-02-26 2018-07-17 厦门天马微电子有限公司 A kind of array substrate and display panel
CN108287444B (en) * 2018-02-26 2022-03-01 厦门天马微电子有限公司 Array substrate and display panel
CN113450731A (en) * 2021-07-29 2021-09-28 浙江富涌电子科技有限公司 Gbrwk mixed color electronic paper display device and display method thereof

Also Published As

Publication number Publication date
JP5420632B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5403860B2 (en) Color liquid crystal display device
JP5420632B2 (en) Color display device, liquid crystal display device, and transflective liquid crystal display device
US10762855B2 (en) Liquid crystal display device
US10068541B2 (en) Display device
JP5770073B2 (en) Display device and electronic device
JP4003714B2 (en) Electro-optical device and electronic apparatus
TWI420443B (en) Display apparatus and driving method
JP5650918B2 (en) Image display device
KR20090038204A (en) Display device and driving method of the same
JP5642230B2 (en) Liquid crystal display
JP2016126337A (en) Display device and driving method of the same
JP2015099331A (en) Liquid crystal display device
KR100923497B1 (en) Liquid crystal display device and driving method the same
KR20210085299A (en) Display device and rendering method thereof
JP2013218230A (en) Liquid crystal display device
TWI819688B (en) Display device with non-rectangular active area and pixel structure thereof
KR102075696B1 (en) Display apparatus and method of driving the same
JP2010096894A (en) Display device and driving method thereof
KR20080054507A (en) Back light assembly, driving method of the same and display apparatus having the same
JP2024008677A (en) display device
JP2015172783A (en) Display apparatus and electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250