JP2012118449A - Charging member - Google Patents

Charging member Download PDF

Info

Publication number
JP2012118449A
JP2012118449A JP2010270382A JP2010270382A JP2012118449A JP 2012118449 A JP2012118449 A JP 2012118449A JP 2010270382 A JP2010270382 A JP 2010270382A JP 2010270382 A JP2010270382 A JP 2010270382A JP 2012118449 A JP2012118449 A JP 2012118449A
Authority
JP
Japan
Prior art keywords
fine particles
charging
surface layer
major axis
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010270382A
Other languages
Japanese (ja)
Inventor
Masayuki Nishi
正之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2010270382A priority Critical patent/JP2012118449A/en
Publication of JP2012118449A publication Critical patent/JP2012118449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging member capable of uniformly charging a surface of a photosensitive body without using an additional member and without being affected by residual potential.SOLUTION: A conductive elastic layer 72 and a surface layer 73 are provided in this order on a circumference of a conductive base 71. Fine particles 74 in the shape of a spindle, a cylinder or a needle are involved in the surface layer 73 so as to cause irregularities derived from the fine particles 74, and the fine particles 74 are aligned so as to have their major axis direction substantially according with the normal direction of the conductive base 71. From the viewpoint of further improvement of uniform charging properties, the fine particles 74 have a major axis of preferably 15 μm to 20 μm, a minor axis of preferably 3 μm to 6 μm, and an aspect ratio (major axis/minor axis) of preferably 5 or less. Furthermore, the surface layer 73 has ten-point surface roughness Rz of preferably 10 μm to 20 μm, and an average distance Sm between the irregularities is preferably 10 μm to 20 μm.

Description

本発明は帯電部材に関し、より詳細には、感光体などの静電潜像担持体に圧接し、所定電圧の印加によって静電潜像担持体の表面を均一に帯電させる帯電部材に関するものである。   The present invention relates to a charging member, and more particularly to a charging member that is in pressure contact with an electrostatic latent image carrier such as a photoconductor and uniformly charges the surface of the electrostatic latent image carrier by applying a predetermined voltage. .

ファクシミリやプリンタ、複写機などの電子写真方式を用いた画像形成装置では、感光体(静電潜像担持体)表面を所定電位に一様に帯電させた後、感光体表面を露光して画像情報に対応した静電潜像を形成する。そして、形成された静電潜像を現像装置によってトナー現像して、可視像化する。次いで、感光体表面のトナー像を直接あるいは中間転写機構を経由して用紙上に転写した後、加熱・加圧してトナー像を用紙に溶融定着する。   In an image forming apparatus using an electrophotographic system such as a facsimile, a printer, or a copying machine, the surface of a photoconductor (electrostatic latent image carrier) is uniformly charged to a predetermined potential, and then the photoconductor surface is exposed to form an image. An electrostatic latent image corresponding to the information is formed. The formed electrostatic latent image is developed with toner by a developing device to form a visible image. Next, after the toner image on the surface of the photoreceptor is transferred onto the paper directly or via an intermediate transfer mechanism, the toner image is melted and fixed on the paper by heating and pressing.

ここで、感光体表面を一様に帯電させる帯電部材としては、感光体に接触して帯電させる接触帯電方式と、コロナ放電により感光体を帯電させる非接触方式とに大別される。オゾン発生量及び消費電力が少ないことなどから、接触帯電方式が近年多用されつつある。   Here, the charging member that uniformly charges the surface of the photosensitive member is roughly classified into a contact charging method that contacts and charges the photosensitive member and a non-contact method that charges the photosensitive member by corona discharge. In recent years, the contact charging method has been widely used due to the small amount of ozone generation and low power consumption.

接触帯電方式は、導電性支持体の外周に導電性弾性層と抵抗層とをこの順で積層した帯電ローラを用いて、前記導電性基体に電圧を印加し、帯電ローラと感光体とのニップ部の近傍で微小な放電をさせて感光体の表面を帯電させる方式である。帯電ローラへの電圧印加方式には交流電圧印加と直流電圧印加とがあり、消費電力がより少なく、また小型化できることなどから直流電圧印加方式が注目されている。   In the contact charging method, a voltage is applied to the conductive substrate using a charging roller in which a conductive elastic layer and a resistance layer are laminated in this order on the outer periphery of a conductive support, and the nip between the charging roller and the photosensitive member is used. In this method, the surface of the photosensitive member is charged by causing a minute discharge in the vicinity of the portion. The voltage application method to the charging roller includes an alternating voltage application and a direct current voltage application. The direct current voltage application method is attracting attention because it consumes less power and can be miniaturized.

ところが、直流電圧印加方式では、帯電ローラと感光体とのニップ部の、帯電ローラの回転方向上流側で帯電を完了させることが重要であるところ、直流電圧印加方式は交流電圧印加方式に比べて放電領域が狭く、感光体の表面電位が所望電位にまで達しないことがある。帯電ローラと感光体とのニップ部の、帯電ローラの回転方向上流側で、感光体の表面電位が所望電位にまで達しないと、ニップ部の、帯電ローラの回転方向下流側で異常放電が起こりやすくなり均一帯電が得られないことがあった。加えて、直流電圧印加方式では、感光体表面における、画像転写後の画像領域と非画像領域との残電位差の影響を受けやすく、帯電ローラによる感光体の帯電にムラが生じることがあった。感光体表面の残電位差の影響を排除するには、帯電ローラによる帯電前に感光体全体を光を照射して表面電位を全体に低下させればよいが、残電位除去用の光除電部材が新たに必要となり、装置の小型軽量化及び省電力化に反することとなる。   However, in the DC voltage application method, it is important to complete charging at the upstream side in the rotation direction of the charging roller at the nip portion between the charging roller and the photosensitive member. However, the DC voltage application method is different from the AC voltage application method. The discharge area is narrow, and the surface potential of the photoreceptor may not reach the desired potential. If the surface potential of the photoconductor does not reach the desired potential on the upstream side in the rotation direction of the charging roller at the nip portion between the charging roller and the photoconductor, abnormal discharge occurs on the downstream side in the rotation direction of the charging roller in the nip portion. It became easy and uniform charge could not be obtained. In addition, the DC voltage application method is easily affected by the residual potential difference between the image area after image transfer and the non-image area on the surface of the photoconductor, and the photoconductor may be charged unevenly by the charging roller. In order to eliminate the influence of the residual potential difference on the surface of the photoconductor, it is sufficient to irradiate the entire photoconductor with light before charging by the charging roller to reduce the overall surface potential. This is newly required and goes against the reduction in size and weight of the device and power saving.

そこで、例えば、帯電ローラの表面に微細な凹凸を設けて感光体表面の帯電を均一化する技術が提案されている(例えば特許文献1,2を参照)。   Thus, for example, a technique has been proposed in which fine unevenness is provided on the surface of the charging roller to make the surface of the photosensitive member uniform (see, for example, Patent Documents 1 and 2).

特開2009-9057号公報JP 2009-9057 A 特開2009-9029号公報JP 2009-9029 A

しかしながら、前記提案技術でも未だ満足できる帯電ローラの帯電性能を得ることはできていない。   However, even with the proposed technique, the charging performance of the charging roller that is still satisfactory cannot be obtained.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、新たな部材を追加することなく、残電位の影響を受けず感光体表面を均一に帯電できる帯電部材を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a charging member that can uniformly charge the surface of the photoreceptor without being affected by the residual potential without adding a new member. There is to do.

前記目的を達成する本発明に係る帯電部材は、導電性基体と、前記導電性基体上に形成した導電性弾性層と、前記導電性弾性層上に形成した表層とを備え、前記表層は紡錘状又は円柱状又は針状の微粒子を含有し、当該微粒子に由来する凹凸を有し、前記微粒子はその長径方向が前記導電性基体に対して略法線方向となるように配向していることを特徴とする。なお、本明細書において「略法線方向」とは、法線方向を中心に±5°の範囲を含む方向をいう。   The charging member according to the present invention that achieves the above object includes a conductive substrate, a conductive elastic layer formed on the conductive substrate, and a surface layer formed on the conductive elastic layer, and the surface layer is a spindle. Containing fine particles in the shape of a cylinder, cylinder, or needle, having irregularities derived from the fine particles, and the fine particles are oriented so that the major axis direction thereof is substantially normal to the conductive substrate It is characterized by. In the present specification, the “substantially normal direction” refers to a direction including a range of ± 5 ° from the normal direction.

ここで、均一帯電性を一層向上させる観点からは、前記微粒子の長径は15μm〜20μmの範囲であり、短径は3μm〜6μmの範囲であり、アスペクト比(長径/短径)は5以下であるのが好ましい。   Here, from the viewpoint of further improving the uniform chargeability, the major axis of the fine particles is in the range of 15 μm to 20 μm, the minor axis is in the range of 3 μm to 6 μm, and the aspect ratio (major axis / minor axis) is 5 or less. Preferably there is.

また、前記表層の十点表面粗さRzは10μm〜20μmの範囲であり、凹凸の平均間隔Smは10μm〜20μmの範囲であるのが好ましい。   Further, the ten-point surface roughness Rz of the surface layer is preferably in the range of 10 μm to 20 μm, and the average interval Sm of the irregularities is preferably in the range of 10 μm to 20 μm.

そしてまた本発明によれば、前記のいずれかに記載の帯電部材を備えたことを特徴とする画像形成装置が提供される。   In addition, according to the present invention, there is provided an image forming apparatus comprising any one of the charging members described above.

本発明に係る帯電部材では、その表層に、紡錘状又は円柱状又は針状の微粒子を含有させて微粒子に由来する凹凸を形成するとともに、微粒子の長径方向が前記導電性基体に対して略法線方向となるように微粒子を配向させているので、直流電圧を印加する場合であっても、残電位の影響を受けず感光体表面を均一に帯電できる。   In the charging member according to the present invention, spindle-shaped, columnar, or needle-shaped microparticles are included in the surface layer to form irregularities derived from the microparticles, and the major axis direction of the microparticles is substantially the same as that of the conductive substrate. Since the fine particles are oriented in the linear direction, the surface of the photoreceptor can be uniformly charged without being affected by the residual potential even when a DC voltage is applied.

本発明に係る画像形成装置によれば、小型軽量化及び省電力化が図れると共に、長期間にわたって濃度ムラや微小ノイズのない高品質の画像が得られる。   According to the image forming apparatus of the present invention, it is possible to reduce the size and weight and save power, and to obtain a high-quality image free from density unevenness and minute noise over a long period of time.

本発明に係る画像形成装置の一例を示す概説図である。1 is a schematic diagram illustrating an example of an image forming apparatus according to the present invention. 本発明に係る帯電ローラの一例を示す垂直断面図である。It is a vertical sectional view showing an example of a charging roller according to the present invention. 図2の帯電ローラの表層部分の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a surface layer portion of the charging roller in FIG. 2.

以下、本発明を図に基づいてよりさらに詳しく説明するが本発明はこれらの実施形態に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these embodiments.

図1に、本発明に係る画像形成装置の一実施形態を示す概説図を示す。図1の画像形成装置Dは所謂タンデム方式のカラープリンタである。もちろん、プリンタのほか、さらにスキャナを有する複写機、ファクシミリ又はそれらの機能を複合的に備えた複合機等にも本発明を適用することができる。また、画像形成方式としてはタンデム方式に限定されるものではなく、他の方式、例えば、回転軸の周囲に4つの現像装置を配置し、これらを順次静電潜像担持体に対向させてフルカラー画像を作成する所謂4サイクル方式、あるいは一つの現像装置でモノクロ画像を作成するモノクロ方式であっても構わない。   FIG. 1 is a schematic diagram showing an embodiment of an image forming apparatus according to the present invention. The image forming apparatus D in FIG. 1 is a so-called tandem color printer. Of course, in addition to a printer, the present invention can also be applied to a copying machine having a scanner, a facsimile, or a multi-function machine having these functions combined. Further, the image forming method is not limited to the tandem method, and other methods, for example, four developing devices are arranged around the rotation shaft, and these are sequentially opposed to the electrostatic latent image carrier to be full color. A so-called four-cycle method of creating an image or a monochrome method of creating a monochrome image with one developing device may be used.

画像形成装置Dは、導電性を有する無端状の中間転写ベルト33を有する。中間転写ベルト33は、図の左右両側にそれぞれ配置された一対のローラ31,32に掛架されている。ローラ32は不図示のモータに連結されており、モータの駆動によってローラ32は反時計回りに回転し、これによって中間転写ベルト33とこれに接するローラ31は従動回転する。ローラ32に支持されているベルト部分の外側には、二次転写ローラ34が圧接している。この二次転写ローラ34と中間転写ベルト33とのニップ部(二次転写領域)において中間転写ベルト33上に形成されたトナー像が、搬送されてきた用紙Pに転写される。   The image forming apparatus D includes an endless intermediate transfer belt 33 having conductivity. The intermediate transfer belt 33 is hung on a pair of rollers 31 and 32 disposed on both the left and right sides in the drawing. The roller 32 is connected to a motor (not shown), and the roller 32 rotates counterclockwise by driving the motor, whereby the intermediate transfer belt 33 and the roller 31 in contact therewith are driven to rotate. A secondary transfer roller 34 is in pressure contact with the outside of the belt portion supported by the roller 32. The toner image formed on the intermediate transfer belt 33 at the nip portion (secondary transfer region) between the secondary transfer roller 34 and the intermediate transfer belt 33 is transferred onto the conveyed paper P.

また、ローラ31に支持されているベルト部分の外側には、中間転写ベルト33の表面をクリーニングするクリーニングブレード92が設けられている。クリーニングブレード92は、中間転写ベルト33との当接部で、未転写の残留トナーを除去・回収する。   A cleaning blade 92 that cleans the surface of the intermediate transfer belt 33 is provided outside the belt portion supported by the roller 31. The cleaning blade 92 removes and collects untransferred residual toner at a contact portion with the intermediate transfer belt 33.

ローラ31とローラ32とに掛架された中間転写ベルト33の下側には、中間転写ベルト33の回転方向上流側から順に、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4つの作像部2Y,2M,2C,2K(以下、「作像部2」と総称することがある)が、装置本体10に対して着脱自在に配置されている。これらの作像部2では、各色の現像剤をそれぞれ用いて対応する色のトナー像が作成される。   Below the intermediate transfer belt 33 suspended between the rollers 31 and 32, yellow (Y), magenta (M), cyan (C), black ( K) four image forming units 2Y, 2M, 2C, and 2K (hereinafter may be collectively referred to as “image forming unit 2”) are detachably arranged with respect to the apparatus main body 10. In these image forming units 2, corresponding color toner images are created using the respective color developers.

作像部2は、静電潜像担持体として円筒状の感光体20を有する。そして、感光体20の周囲には、その回転方向(時計回り方向)に沿って順に、帯電ローラ(帯電部材)7、現像装置23、一次転写ローラ24、およびクリーニングブレード62が配置されている。そして、クリーニングブレード62の一端側が感光体20の外周面に当接し、感光体20の表面に残留するトナーを除去・回収する。一次転写ローラ24は中間転写ベルト33を挟んで感光体20に圧接し、ニップ部(一次転写領域)を形成している。また、作像部2の下方には露光装置22が配置されている。なお、後述するように、帯電ローラ7はローラ帯電方式である。   The image forming unit 2 includes a cylindrical photoconductor 20 as an electrostatic latent image carrier. Around the photoreceptor 20, a charging roller (charging member) 7, a developing device 23, a primary transfer roller 24, and a cleaning blade 62 are arranged in this order along the rotation direction (clockwise direction). Then, one end side of the cleaning blade 62 comes into contact with the outer peripheral surface of the photoconductor 20, and the toner remaining on the surface of the photoconductor 20 is removed and collected. The primary transfer roller 24 is in pressure contact with the photoconductor 20 with the intermediate transfer belt 33 interposed therebetween to form a nip portion (primary transfer region). An exposure device 22 is disposed below the image forming unit 2. As will be described later, the charging roller 7 is a roller charging system.

中間転写ベルト33の上方には、各色の現像装置23に補給するトナーを収容したホッパー4Y,4M,4C,4K(以下、「ホッパー4」と総称することがある)がそれぞれ配置されている。また、露光装置22の下部には、給紙装置として給紙カセット50が着脱可能に配置されている。給紙カセット50内に積載収容された用紙Pは、給紙カセット50の近傍に配置された給紙ローラ51の回転によって最上紙から順に1枚ずつ搬送路に送り出される。給紙カセット50から送り出された用紙Pは、レジストローラ対52に搬送され、ここで所定のタイミングで二次転写領域に送り出される。   Above the intermediate transfer belt 33, hoppers 4Y, 4M, 4C, and 4K (hereinafter sometimes collectively referred to as “hopper 4”) containing toner to be supplied to the developing devices 23 of the respective colors are arranged. A paper feed cassette 50 is detachably disposed as a paper feed device below the exposure device 22. The sheets P stacked and accommodated in the sheet cassette 50 are sent out one by one to the conveyance path in order from the uppermost sheet by the rotation of the sheet feed roller 51 disposed in the vicinity of the sheet cassette 50. The paper P sent out from the paper feed cassette 50 is conveyed to the registration roller pair 52 and is sent out to the secondary transfer area at a predetermined timing.

画像形成装置Dは、1色のトナー(例えばブラック)を用いてモノクロ画像を形成するモノクロモードと、4色のトナーを用いてカラー画像を形成するカラーモードとに切り替え可能となっている。   The image forming apparatus D can be switched between a monochrome mode in which a monochrome image is formed using one color toner (for example, black) and a color mode in which a color image is formed using four color toners.

カラーモードにおける画像形成動作例について簡単に説明すると、まず、各作像部2において、所定の周速度で回転駆動される感光体20の外周面が帯電ローラ7により帯電される。次に、帯電された感光体20の表面に、画像情報に応じた光が露光装置22から投射されて静電潜像が形成される。続いて、この静電潜像は、現像装置23から供給される現像剤としてのトナーにより顕在化される。このようにして感光体20の表面に形成された各色のトナー像は、感光体20の回転によって一次転写領域に達すると、イエロー、マゼンタ、シアン、ブラックの順で、感光体20から中間転写ベルト33上へ転写(一次転写)されて重ねられる。   An image forming operation example in the color mode will be briefly described. First, in each image forming unit 2, the outer peripheral surface of the photoconductor 20 that is rotationally driven at a predetermined peripheral speed is charged by the charging roller 7. Next, light corresponding to image information is projected from the exposure device 22 on the surface of the charged photoconductor 20 to form an electrostatic latent image. Subsequently, the electrostatic latent image is made visible by toner as a developer supplied from the developing device 23. When the toner image of each color formed on the surface of the photoreceptor 20 in this way reaches the primary transfer region by the rotation of the photoreceptor 20, the toner image is transferred from the photoreceptor 20 to the intermediate transfer belt in the order of yellow, magenta, cyan, and black. 33 is transferred (primary transfer) and superimposed.

中間転写ベルト33に転写されることなく感光体20上に残った残留トナーは、クリーニングブレード62で掻き取られ、感光体20の外周面から除去される。   Residual toner remaining on the photoconductor 20 without being transferred to the intermediate transfer belt 33 is scraped off by the cleaning blade 62 and removed from the outer peripheral surface of the photoconductor 20.

重ね合わされた4色のトナー像は、中間転写ベルト33によって二次転写領域に搬送される。一方、そのタイミングに合わせて、レジストローラ対52から二次転写領域に用紙Pが搬送される。そして、4色のトナー像が、二次転写領域において中間転写ベルト33から用紙Pに転写(二次転写)される。4色のトナー像が転写された用紙Pは、定着装置1へ搬送される。定着装置1において用紙Pは、定着ローラ11と加圧ローラ12とのニップ部を通過する。この間に用紙Pは加熱・加圧され、用紙P上のトナー像は用紙Pに溶融定着する。トナー像が定着した用紙Pは排出ローラ対53によって排紙トレイ54に排出される。   The superimposed four color toner images are conveyed to the secondary transfer region by the intermediate transfer belt 33. On the other hand, the paper P is conveyed from the registration roller pair 52 to the secondary transfer area in accordance with the timing. Then, the four color toner images are transferred (secondary transfer) from the intermediate transfer belt 33 to the paper P in the secondary transfer region. The paper P on which the four color toner images are transferred is conveyed to the fixing device 1. In the fixing device 1, the paper P passes through the nip portion between the fixing roller 11 and the pressure roller 12. During this time, the paper P is heated and pressurized, and the toner image on the paper P is melted and fixed on the paper P. The paper P on which the toner image is fixed is discharged to a paper discharge tray 54 by a discharge roller pair 53.

一方、用紙Pに転写されることなく中間転写ベルト33上に残った残留トナーは、クリーニングブレード92で掻き取られ、中間転写ベルト33の外周面から除去される。その後、各感光体20及び中間転写ベルト33の回転駆動が停止される。   On the other hand, residual toner remaining on the intermediate transfer belt 33 without being transferred onto the paper P is scraped off by the cleaning blade 92 and removed from the outer peripheral surface of the intermediate transfer belt 33. Thereafter, the rotational drive of each photoconductor 20 and the intermediate transfer belt 33 is stopped.

図2に、帯電ローラ7の断面構成図を示す。この図の帯電ローラ7は、円柱状の導電性基体71と、その外周に形成された導電性弾性層72と、導電性弾性層72の外周に形成された表層73とを備える。   FIG. 2 shows a cross-sectional configuration diagram of the charging roller 7. The charging roller 7 in this figure includes a cylindrical conductive substrate 71, a conductive elastic layer 72 formed on the outer periphery thereof, and a surface layer 73 formed on the outer periphery of the conductive elastic layer 72.

導電性基体71の材質は導電性であればよく、例えば、鉄、銅、ステンレス鋼、アルミニウム、ニッケル等の金属材料が挙げられる。また、導電性基体71は、導電性を害さない範囲において耐傷性や防錆性を高めるめっき等の表面処理を施していてもよい。導電性基体71の形状は円柱状に限定されるものではなく、円筒状や無端ベルト状などであっても構わない。   The material of the conductive substrate 71 may be conductive, and examples thereof include metal materials such as iron, copper, stainless steel, aluminum, and nickel. In addition, the conductive substrate 71 may be subjected to a surface treatment such as plating that enhances scratch resistance and rust prevention as long as the conductivity is not impaired. The shape of the conductive substrate 71 is not limited to a columnar shape, and may be a cylindrical shape or an endless belt shape.

導電性弾性層72は導電性と弾性とを備え、例えば、高分子弾性体に導電剤を分散させたものが好適に使用される。高分子弾性体としては、例えば、EPDMゴムやポリブタジエンゴム、ポリイソプレンゴム、スチレン−ブタジエンゴム、クロロプレン、シリコーンゴム、アクリルゴム、ニトリルゴム、ウレタンゴム、アクリロニトリル−ブタジエンゴム、エピクロルヒドリンゴムなどが挙げられる。また導電剤としては、カーボンブラックやグラファイト、導電性酸化チタン、導電性酸化スズ、銅粉、銀粉、導電性繊維などが挙げられる。   The conductive elastic layer 72 has conductivity and elasticity. For example, a conductive elastic layer dispersed in a polymer elastic body is preferably used. Examples of the polymer elastic body include EPDM rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, chloroprene, silicone rubber, acrylic rubber, nitrile rubber, urethane rubber, acrylonitrile-butadiene rubber, and epichlorohydrin rubber. Examples of the conductive agent include carbon black, graphite, conductive titanium oxide, conductive tin oxide, copper powder, silver powder, and conductive fiber.

導電性弾性層72の体積抵抗率としては、通常、10Ω・cm〜1010Ω・cmの範囲が好ましく、体積抵抗率の調整は分散させる導電剤の種類や量によって調整できる。 The volume resistivity of the conductive elastic layer 72 is usually preferably in the range of 10 2 Ω · cm to 10 10 Ω · cm, and the volume resistivity can be adjusted depending on the type and amount of the conductive agent to be dispersed.

また、導電性弾性層72の硬度としては30度〜80度の範囲が好ましく、軟化油や可塑剤などの添加量によって調整できる。   The hardness of the conductive elastic layer 72 is preferably in the range of 30 to 80 degrees, and can be adjusted by the amount of softening oil or plasticizer added.

導電性弾性層72の層厚としては特に限定はないが、通常、0.5mm〜5mmの範囲が好適である。   Although there is no limitation in particular as the layer thickness of the electroconductive elastic layer 72, Usually, the range of 0.5 mm-5 mm is suitable.

導電性弾性層72の形成は、例えば、高分子弾性体及び導電剤などの原料を混合した後、導電性基体の外周に塗布形成すればよい。あるいは、押出成形等により導電性弾性層を別途成形した後、導電性基体に嵌め入れればよい。   The conductive elastic layer 72 may be formed, for example, by coating the outer periphery of the conductive substrate after mixing raw materials such as a polymer elastic body and a conductive agent. Alternatively, the conductive elastic layer may be separately formed by extrusion molding or the like and then fitted into the conductive substrate.

導電性弾性層72には、前記特性を害さない範囲において、充填剤や軟化剤、可塑剤、加硫遅延剤など添加剤を配合してもよい。   The conductive elastic layer 72 may be blended with additives such as fillers, softeners, plasticizers, and vulcanization retarders as long as the above properties are not impaired.

図3に、表層73の部分拡大断面図を示す。表層73は結着樹脂に微粒子74が分散混合されてなる。そして、表層の表面には微粒子に由来する凹凸が形成されている。結着樹脂としては、例えば、フッ素樹脂やシリコーン樹脂、アクリル樹脂、アミド樹脂などの表面保護機能を有するものが好適に使用される。   In FIG. 3, the partial expanded sectional view of the surface layer 73 is shown. The surface layer 73 is formed by dispersing and mixing fine particles 74 in a binder resin. Unevenness derived from fine particles is formed on the surface of the surface layer. As the binder resin, for example, those having a surface protection function such as a fluororesin, a silicone resin, an acrylic resin, and an amide resin are preferably used.

微粒子74は、紡錘状又は円柱状又は針状のいずれかであり、長径は15μm〜20μmの範囲が好ましく、短径は3μm〜6μmの範囲が好ましく、アスペクト比(長径/短径)は5以下であるのが好ましい。微粒子74の材質は、有機材料、無機材料、金属材料のいずれであってもよい。   The fine particles 74 are either spindle-shaped, cylindrical, or needle-shaped. The major axis is preferably in the range of 15 μm to 20 μm, the minor axis is preferably in the range of 3 μm to 6 μm, and the aspect ratio (major axis / minor axis) is 5 or less. Is preferred. The material of the fine particles 74 may be any of an organic material, an inorganic material, and a metal material.

本発明に係る帯電ローラでは、表層73に含有される微粒子74が長径方向が導電性基体71に対して略法線方向となるように配向していることが重要である。これにより、帯電ローラ7の放電点を増やすことができ、帯電ローラ7と感光体20とのニップ部の帯電ローラ回転方向上流側のみならず下流側においても感光体20を帯電させることができ、また同時に異常放電を抑制することができる。   In the charging roller according to the present invention, it is important that the fine particles 74 contained in the surface layer 73 are oriented so that the major axis direction is substantially normal to the conductive substrate 71. As a result, the discharge point of the charging roller 7 can be increased, and the photosensitive member 20 can be charged not only on the upstream side in the charging roller rotation direction but also on the downstream side of the nip portion between the charging roller 7 and the photosensitive member 20, At the same time, abnormal discharge can be suppressed.

微粒子74を長径方向が導電性基体71に対して略法線方向となるように配向させるには、従来公知の方法を用いることができる。例えば、微粒子74の長径方向の一方側の先端部に磁性材料を塗布した後、微粒子74と結着樹脂と混合した塗料を導電性弾性層72の外周に塗布すると同時に、導電性基体71に対して法線方向となるように磁力線を形成し、微粒子74の長径方向が導電性基体71に対して略法線方向となるように配向する。あるいは、微粒子74を誘電体とし、導電性基体71に対して法線方向となるように電界を形成し、微粒子74の長径方向が導電性基体71に対して略法線方向となるように配向する。   In order to align the fine particles 74 such that the major axis direction is substantially normal to the conductive substrate 71, a conventionally known method can be used. For example, after applying a magnetic material to the tip of one side in the major axis direction of the fine particles 74, a paint mixed with the fine particles 74 and a binder resin is applied to the outer periphery of the conductive elastic layer 72 and simultaneously applied to the conductive substrate 71. Magnetic field lines are formed so as to be in the normal direction, and the long diameter direction of the fine particles 74 is oriented so as to be substantially normal to the conductive substrate 71. Alternatively, the fine particles 74 are used as a dielectric, an electric field is formed so as to be in a normal direction with respect to the conductive substrate 71, and the long diameter direction of the fine particles 74 is aligned in a substantially normal direction with respect to the conductive substrate 71. To do.

表層73の形成は、例えば、結着樹脂に微粒子74を分散させて塗料を作製し、ディッピング法、塗工法など従来公知の方法により導電性弾性層72の外周に形成する。表層73の層厚としては、通常、15μm〜100μmの範囲が好ましく、20μm〜50μmの範囲がより好ましい。なお、表層73の層厚は、導電性弾性層72との境界面から表層73の凸部の頂点までの長さをいう。   The surface layer 73 is formed by, for example, preparing a paint by dispersing fine particles 74 in a binder resin and forming it on the outer periphery of the conductive elastic layer 72 by a conventionally known method such as a dipping method or a coating method. As a layer thickness of the surface layer 73, the range of 15 micrometers-100 micrometers is preferable normally, and the range of 20 micrometers-50 micrometers is more preferable. The layer thickness of the surface layer 73 refers to the length from the boundary surface with the conductive elastic layer 72 to the apex of the convex portion of the surface layer 73.

表層73の十点表面粗さRzは10μm〜20μmの範囲が好ましい。微粒子74によって表層73の凸部をこの範囲の高さに調整することにより、効果的に放電を発生させることができ感光体20表面を均一に帯電させることができるようになる。また、凹凸の平均間隔Smは10μm〜20μmの範囲が好ましい。凹凸の形成間隔Smをこの範囲に調整することにより、充分な数の放電点と放電に必要な空間とが確保され感光体20表面を均一に帯電させることができるようになる。なお、十点表面粗さRzはJIS B0601に準じて測定した値である。   The ten-point surface roughness Rz of the surface layer 73 is preferably in the range of 10 μm to 20 μm. By adjusting the convex portion of the surface layer 73 to a height in this range by the fine particles 74, discharge can be effectively generated and the surface of the photoreceptor 20 can be uniformly charged. Moreover, the average interval Sm of the irregularities is preferably in the range of 10 μm to 20 μm. By adjusting the concave / convex formation interval Sm within this range, a sufficient number of discharge points and a space necessary for discharge are secured, and the surface of the photoconductor 20 can be uniformly charged. The 10-point surface roughness Rz is a value measured according to JIS B0601.

実施例1〜6
図2に示す構造を有し、表1に示す長径と短径を有する紡錘状の微粒子を帯電ローラの表層に長径方向が導電性基体に対して法線方向となるように配向させた帯電ローラを用いて、交流電圧(最大1kV,振幅1kV,周波数1kHz)及び直流電圧(1kV)をそれぞれ印加して感光体を接触帯電させた。そして、露光装置によってハーフトーン(網点状)の静電潜像を形成しトナーで現像した。次いで、現像された画像を所定の基準見本と比較しそのザラツキ状態を評価した。結果を表1に示す。
Examples 1-6
A charging roller having the structure shown in FIG. 2 and having spindle-shaped fine particles having a major axis and a minor axis shown in Table 1 oriented on the surface layer of the charging roller so that the major axis direction is normal to the conductive substrate. Were used to apply an AC voltage (maximum 1 kV, amplitude 1 kV, frequency 1 kHz) and DC voltage (1 kV) to charge the photoconductor in contact. Then, a halftone (halftone dot) electrostatic latent image was formed by an exposure device and developed with toner. Next, the developed image was compared with a predetermined reference sample to evaluate its roughness. The results are shown in Table 1.

表1から理解されるように、本発明に係る帯電部材である実施例1〜5の帯電ローラでは、交流電圧を印加した場合のみならず、直流電圧を印加した場合であっても感光体を均一に帯電させることができた。   As can be understood from Table 1, in the charging rollers of Examples 1 to 5 which are charging members according to the present invention, not only when an AC voltage is applied, but also when a DC voltage is applied, the photosensitive member is used. Uniform charging was possible.

本発明の帯電部材で、新たな部材を追加することなく、残電位の影響を受けず感光体表面を均一に帯電でき有用である。   The charging member of the present invention is useful because the surface of the photoreceptor can be uniformly charged without being affected by the residual potential without adding a new member.

7 帯電ローラ(帯電部材)
D 画像形成装置
71 導電性基体
72 導電性弾性層
73 表層
74 微粒子
7 Charging roller (charging member)
D Image forming apparatus 71 Conductive substrate 72 Conductive elastic layer 73 Surface layer 74 Fine particles

Claims (4)

導電性基体と、前記導電性基体上に形成した導電性弾性層と、前記導電性弾性層上に形成した表層とを備え、
前記表層は紡錘状又は円柱状又は針状の微粒子を含有し、当該微粒子に由来する凹凸を有し、前記微粒子はその長径方向が前記導電性基体に対して略法線方向となるように配向していることを特徴とする帯電部材。
A conductive base, a conductive elastic layer formed on the conductive base, and a surface layer formed on the conductive elastic layer;
The surface layer contains spindle-shaped, columnar, or needle-shaped microparticles, has irregularities derived from the microparticles, and the microparticles are oriented so that the major axis direction is substantially normal to the conductive substrate. A charging member.
前記微粒子の長径が15μm〜20μmの範囲であり、短径が3μm〜6μmの範囲であり、アスペクト比(長径/短径)が5以下である請求項1記載の帯電部材。   2. The charging member according to claim 1, wherein the fine particles have a major axis in the range of 15 μm to 20 μm, a minor axis in the range of 3 μm to 6 μm, and an aspect ratio (major axis / minor axis) of 5 or less. 前記表層の十点表面粗さRzが10μm〜20μmの範囲であり、凹凸の平均間隔Smが10μm〜20μmの範囲である請求項1又は2記載の帯電部材。   3. The charging member according to claim 1, wherein a ten-point surface roughness Rz of the surface layer is in a range of 10 μm to 20 μm, and an average interval Sm of unevenness is in a range of 10 μm to 20 μm. 請求項1〜3のいずれかに記載の帯電部材を備えたことを特徴とする画像形成装置。   An image forming apparatus comprising the charging member according to claim 1.
JP2010270382A 2010-12-03 2010-12-03 Charging member Pending JP2012118449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270382A JP2012118449A (en) 2010-12-03 2010-12-03 Charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270382A JP2012118449A (en) 2010-12-03 2010-12-03 Charging member

Publications (1)

Publication Number Publication Date
JP2012118449A true JP2012118449A (en) 2012-06-21

Family

ID=46501294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270382A Pending JP2012118449A (en) 2010-12-03 2010-12-03 Charging member

Country Status (1)

Country Link
JP (1) JP2012118449A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746792B1 (en) 2016-03-22 2017-08-29 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus for reducing production of micro-chromatic line
JP2017173441A (en) * 2016-03-22 2017-09-28 富士ゼロックス株式会社 Charging member, charging device, process cartridge, and image forming apparatus
WO2020175432A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charging roll
WO2020175431A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charging roller
WO2020175430A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charged roller

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746792B1 (en) 2016-03-22 2017-08-29 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus for reducing production of micro-chromatic line
US9753391B1 (en) 2016-03-22 2017-09-05 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus for reducing production of micro-chromatic line and white spot
JP2017173441A (en) * 2016-03-22 2017-09-28 富士ゼロックス株式会社 Charging member, charging device, process cartridge, and image forming apparatus
US9817328B2 (en) 2016-03-22 2017-11-14 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus
WO2020175432A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charging roll
WO2020175431A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charging roller
WO2020175430A1 (en) * 2019-02-27 2020-09-03 Nok株式会社 Charged roller
CN113195910A (en) * 2019-02-27 2021-07-30 Nok株式会社 Charged roller
CN113242939A (en) * 2019-02-27 2021-08-10 Nok株式会社 Charged roller
JPWO2020175431A1 (en) * 2019-02-27 2021-10-21 Nok株式会社 Charging roll
JPWO2020175430A1 (en) * 2019-02-27 2021-10-21 Nok株式会社 Charging roll
EP3933219A4 (en) * 2019-02-27 2022-04-06 NOK Corporation Charging roller
EP3933220A4 (en) * 2019-02-27 2022-04-06 NOK Corporation Charged roller
US11480886B2 (en) 2019-02-27 2022-10-25 Nok Corporation Charging roll

Similar Documents

Publication Publication Date Title
JP4850928B2 (en) Transfer device and image forming apparatus
JP2012118449A (en) Charging member
US9128404B2 (en) Image formation unit and image formation apparatus
JP2010231007A (en) Charging roll, and replacement component and image forming apparatus using the same
JP2008170954A (en) Charging device, image forming apparatus and charging method
JP2002333762A (en) Electrifying device and image forming device
JP2006208550A (en) Electrophotographic apparatus
WO2022018933A1 (en) Conductive roll, image forming apparatus, and inspection method for conductive roll
JP2014186280A (en) Image forming apparatus
JP6065223B2 (en) Charging method and image forming method
JP7424139B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2011107532A (en) Charging device and image forming apparatus
JP5365732B2 (en) Charging device, process cartridge, and image forming apparatus
JP5446194B2 (en) Conductive roll and image forming apparatus provided with conductive roll
JP2007052070A (en) Charger and image forming apparatus
JP7429787B2 (en) Conductive roll, image forming device, and conductive roll inspection method
WO2022018934A1 (en) Conductive roller
JP2019003057A (en) Image formation apparatus and cartridge
JP2012247488A (en) Charging device, and image forming apparatus using the same
JP4789517B2 (en) Image forming apparatus
JP5328633B2 (en) Image forming apparatus
JP2018132536A (en) Charging device and image forming apparatus
JP2004219818A (en) Image forming apparatus
JP2004233423A (en) Image forming apparatus
JP2007155846A (en) Image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418