JP2012117818A - Simplified computation method for permeability coefficient and simplified computation device therefor - Google Patents

Simplified computation method for permeability coefficient and simplified computation device therefor Download PDF

Info

Publication number
JP2012117818A
JP2012117818A JP2010264859A JP2010264859A JP2012117818A JP 2012117818 A JP2012117818 A JP 2012117818A JP 2010264859 A JP2010264859 A JP 2010264859A JP 2010264859 A JP2010264859 A JP 2010264859A JP 2012117818 A JP2012117818 A JP 2012117818A
Authority
JP
Japan
Prior art keywords
specimen
water
injection hole
water injection
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010264859A
Other languages
Japanese (ja)
Other versions
JP5541523B2 (en
Inventor
Mitsuo Satoie
光男 郷家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010264859A priority Critical patent/JP5541523B2/en
Publication of JP2012117818A publication Critical patent/JP2012117818A/en
Application granted granted Critical
Publication of JP5541523B2 publication Critical patent/JP5541523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simplified computation method for a permeability coefficient and a simplified computation device therefor capable of easily and quickly obtaining the permeability coefficient of a specimen.SOLUTION: A method for computing a permeability coefficient of a columnar specimen where a nonpenetrating water filling hole is coaxially provided includes the following steps: a provisional permeability coefficient is obtained on the assumption that a flow in the specimen during a permeability test is a two-dimentional emission flow (step S1); on the other hand, a conversion factor a showing a nonpenetrating effect of the water filling hole is obtained (step S2); and the permeability coefficient k is computed by converting the provisional permeability coefficient with the conversion factor a (step S3).

Description

本発明は、透水係数の簡易算定方法および装置に関するものである。   The present invention relates to a simple calculation method and apparatus for hydraulic conductivity.

従来、岩石の透水特性を室内試験により評価する透水試験方法が知られている(例えば、非特許文献1参照)。また、岩石のせん断変形下における透水特性の変化を調べることを目的として、三軸圧縮試験の途中で透水試験を行うせん断破壊透水試験方法が知られている(例えば、特許文献1および非特許文献2参照)。   2. Description of the Related Art Conventionally, a water permeability test method for evaluating the water permeability characteristics of rocks by laboratory tests is known (for example, see Non-Patent Document 1). In addition, for the purpose of investigating changes in permeability characteristics under the shear deformation of rocks, a shear fracture permeability test method is known in which a permeability test is performed in the middle of a triaxial compression test (for example, Patent Document 1 and Non-Patent Document). 2).

図5および図6に、非特許文献2のせん断破壊透水試験で用いる供試体と試験装置を示す。図5に示すように、非特許文献2のせん断破壊透水試験では、非貫通の注水孔を同軸に設けた円柱状の供試体を使用する。試験装置は、図6に示すように、供試体下端とペデスタルの間に溝付き排水板を挟む一方、供試体側面に排水材を巻いて、その外側をメンブレンで覆ったものを用いる。   5 and 6 show a specimen and a test apparatus used in the shear fracture permeability test of Non-Patent Document 2. As shown in FIG. 5, in the shear fracture permeability test of Non-Patent Document 2, a cylindrical specimen having a non-penetrated water injection hole provided coaxially is used. As shown in FIG. 6, the test apparatus uses a drainage plate with a groove between the lower end of the specimen and the pedestal, while a drainage material is wound around the side face of the specimen, and the outside is covered with a membrane.

そして、三軸圧縮試験中に供試体が所定の応力状態、または、ひずみ状態に達したときに、軸方向の変位を一定に保持した状態で定水位法によって透水試験を行う。この透水試験では、せん断破壊面が供試体に形成されたとき、その影響を考慮できるように放射流による方法を採用する。   Then, when the specimen reaches a predetermined stress state or strain state during the triaxial compression test, a water permeability test is performed by a constant water level method while maintaining a constant axial displacement. In this water permeability test, when a shear fracture surface is formed on the specimen, a method using a radiant flow is adopted so that the influence can be taken into consideration.

具体的には、図6に示すように、注水孔と供試体側面に一定の差圧を与えると、注水孔から供試体内に流れ込んだ水は供試体側面、排水材、排水板の溝の順に通過して排水される。このときの通過流量Qを計測し、この流量Qに基づいて透水係数kを算定する。ここで、供試体内部の流れは完全な二次元の放射流ではないことから、供試体の透水係数k[m/s]の算定式として非特許文献1に示される下記の放射流の理論式(1)をそのまま適用することはできない。   Specifically, as shown in FIG. 6, when a certain differential pressure is applied to the water injection hole and the side surface of the test piece, the water flowing into the test body from the water injection hole is transferred to the side surface of the test piece, the drainage material, and the groove of the drainage plate. It passes through and drains in order. The passing flow rate Q at this time is measured, and the hydraulic conductivity k is calculated based on the flow rate Q. Here, since the flow inside the specimen is not a perfect two-dimensional radiant flow, the following theoretical formula of the radiant flow shown in Non-Patent Document 1 is shown as a calculation formula for the permeability coefficient k [m / s] of the specimen. (1) cannot be applied as it is.

Figure 2012117818
ここに、Qは計測された流量[m/s]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。
Figure 2012117818
Where Q is the measured flow rate [m 3 / s], r 1 is the radius of the water injection hole [m], r 2 is the radius of the specimen [m], and L 2 is the height of the specimen [m]. is there.

このため、従来は、非特許文献2のようなコンピュータによる軸対称FEM定常浸透流解析により繰り返し計算を行って透水係数kを算定していた。この解析モデルの一例を図7に示す。   For this reason, conventionally, the hydraulic conductivity k has been calculated by repeatedly performing an axisymmetric FEM steady osmotic flow analysis by a computer as in Non-Patent Document 2. An example of this analysis model is shown in FIG.

解析の境界条件は、図7に示すように、透水試験の状態を再現するために、供試体の上下端面を不透水とし、注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差Δh(=h−h)[m]を透水試験時の間隙水圧の差圧の水頭換算値と同じになるように与える。そして、上述の軸対称FEM定常浸透流解析により、供試体側面から排出する水の流量q[m/s]を求めて、その流量が透水試験時に計測された流量Q[m/s]と一致するまで、供試体の透水係数k[m/s]を変えて解析を繰り返すことによって、供試体の透水係数k[m/s]を求める。この場合の透水係数の算定手順は図8に示すとおりである。 As shown in FIG. 7, the boundary conditions of the analysis are as follows. In order to reproduce the state of the water permeability test, the upper and lower end surfaces of the specimen are made impermeable, the water head h 1 [m] of the pore water pressure on the water injection hole side and the side surface of the specimen The water head difference Δh (= h 1 −h 2 ) [m] of the water head h 2 [m] of the pore water pressure on the side is given so as to be the same as the water head converted value of the pressure difference of the pore water pressure during the water permeability test. Then, the flow rate q [m 3 / s] of water discharged from the side surface of the specimen is obtained by the above-described axially symmetric FEM steady osmotic flow analysis, and the flow rate Q [m 3 / s] measured during the permeability test is obtained. Until it agrees, the permeability coefficient k [m / s] of the specimen is determined by repeating the analysis while changing the permeability coefficient k [m / s] of the specimen. The calculation procedure of the hydraulic conductivity in this case is as shown in FIG.

特開2000−9631号公報JP 2000-9631 A

「岩の調査と試験」(第48章 室内透水試験)、土質工学会(現 社団法人地盤工学会)、1989年9月"Investigation and testing of rocks" (Chapter 48 Indoor Permeability Test), Geotechnical Society of Japan (currently Geotechnical Society of Japan), September 1989 「軟岩の掘削影響領域における透水性変化モデルの提案」、郷家光男、岸野佑次、土木学会トンネル工学委員会、トンネル工学論文集第19巻、pp.59−68、2009年11月“Proposal of permeability change model in soft rock excavation affected area”, Mitsuo Goya, Koji Kino, Tunnel Society Committee of Japan Society of Civil Engineers, Tunnel Engineering Papers Vol. 19, pp. 59-68, November 2009

ところで、1個の透水係数を求めるためには、経験上、上記のコンピュータによる解析を少なくとも4〜5回繰り返す必要があり、透水係数を簡易かつ迅速に求めることができなかった。また、誰でも容易に算定結果をチェックすることができるというわけではなかった。このため、供試体の透水係数を簡易かつ迅速に求めることができる技術の開発が求められていた。   By the way, in order to obtain one water permeability coefficient, it is necessary to repeat the analysis by the above computer at least 4 to 5 times based on experience, and the water permeability coefficient cannot be obtained easily and quickly. Moreover, not everyone could easily check the calculation results. For this reason, development of the technique which can obtain | require the permeability coefficient of a test body simply and rapidly was calculated | required.

本発明は、上記に鑑みてなされたものであって、供試体の透水係数を簡易かつ迅速に求めることができる透水係数の簡易算定方法および装置を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the simple calculation method and apparatus of a water permeability coefficient which can obtain | require the water permeability coefficient of a test body easily and rapidly.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る透水係数の簡易算定方法は、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数を算定する方法であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定することを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the simple calculation method of the hydraulic conductivity according to claim 1 of the present invention is based on the hydraulic conductivity of a columnar specimen in which non-penetrating water injection holes are provided coaxially. By calculating the provisional permeability coefficient when assuming that the flow in the specimen during the permeability test is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the water injection hole. It is characterized by calculating the hydraulic conductivity.

また、本発明の請求項2に係る透水係数の簡易算定方法は、上述した請求項1において、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする。

Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。 In addition, a simple method for calculating a permeability coefficient according to claim 2 of the present invention is characterized in that, in claim 1 described above, the permeability coefficient k [m / s] of the specimen is calculated by the following equation.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.

また、本発明の請求項3に係る透水係数の簡易算定方法は、上述した請求項1において、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする。

Figure 2012117818
ただし、上記の式中のbは、下記の式で与えられる。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。 In addition, a simple method for calculating a water permeability coefficient according to claim 3 of the present invention is characterized in that, in claim 1 described above, the water permeability coefficient k [m / s] of the specimen is calculated by the following equation.
Figure 2012117818
However, b in the above formula is given by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.

また、本発明の請求項4に係る透水係数の簡易算定方法は、上述した請求項1〜3のいずれか一つにおいて、換算係数を、コンピュータによる解析によって予め求めた注水孔の半径rと供試体の半径rの比(r/r)と、注水孔の深さLと供試体の高さLの比(L/L)の関係に基づいて決定することを特徴とする。 Further, the simple method of calculating hydraulic conductivity according to claim 4 of the present invention, in any one of claims 1 to 3 described above, the conversion factor, the radius r 1 of the previously obtained water injection hole by computer analysis It is determined based on the ratio of the radius r 2 of the specimen (r 1 / r 2 ) and the ratio of the depth L 1 of the water injection hole and the height L 2 of the specimen (L 1 / L 2 ). Features.

また、本発明の請求項5に係る透水係数の簡易算定装置は、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数をコンピュータを用いて算定する装置であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定する演算部を備えることを特徴とする。   Moreover, the simple calculation apparatus of the hydraulic conductivity which concerns on Claim 5 of this invention is an apparatus which calculates the hydraulic conductivity of the column-shaped test body in which the non-penetrating water injection hole was provided coaxially, Comprising: Calculation unit that calculates the hydraulic conductivity by converting the temporary hydraulic conductivity when assuming that the flow in the specimen during the test is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the water injection hole. It is characterized by providing.

また、本発明の請求項6に係る透水係数の簡易算定装置は、上述した請求項5において、演算部は、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする。

Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。 Moreover, the simple calculation device of the water permeability coefficient according to claim 6 of the present invention is characterized in that, in claim 5 described above, the calculation unit calculates the water permeability coefficient k [m / s] of the specimen by the following equation. And
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.

また、本発明の請求項7に係る透水係数の簡易算定装置は、上述した請求項5において、演算部は、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする。

Figure 2012117818
ただし、上記の式中のbは、下記の式で与えられる。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。 Moreover, the simple calculation apparatus of the hydraulic conductivity which concerns on Claim 7 of this invention is characterized by the calculation part calculating the hydraulic conductivity k [m / s] of a test piece by the following formula in Claim 5 mentioned above. And
Figure 2012117818
However, b in the above formula is given by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.

また、本発明の請求項8に係る透水係数の簡易算定装置は、上述した請求項5〜7のいずれか一つにおいて、コンピュータによる解析によって予め求めた注水孔の半径rと供試体の半径rの比(r/r)と、注水孔の深さLと供試体の高さLの比(L/L)と、換算係数の関係を表すデータが記憶されたデータ記憶部をさらに備え、演算部は、データ記憶部から前記データを参照して透水係数を算定することを特徴とする。 Also, a simple calculating device of permeability according to Claim 8 of the present invention, in any one of claims 5-7 as described above, the specimen and the radius r 1 of the previously obtained water injection hole by computer analysis radius Data representing the relationship between the ratio of r 2 (r 1 / r 2 ), the ratio of the depth L 1 of the water injection hole to the height L 2 of the specimen (L 1 / L 2 ), and the conversion coefficient was stored. A data storage unit is further provided, and the calculation unit calculates the hydraulic conductivity by referring to the data from the data storage unit.

本発明に係る透水係数の簡易算定方法によれば、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数を算定する方法であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定するので、供試体の透水係数を簡易かつ迅速に求めることができるという効果を奏する。   According to the simple calculation method of the hydraulic conductivity according to the present invention, the method of calculating the hydraulic conductivity of a cylindrical specimen provided with a non-penetrating water injection hole coaxially, the flow in the specimen during the permeability test Since the permeability coefficient is calculated by converting the temporary permeability coefficient when assuming that is a two-dimensional radiant flow with a conversion coefficient representing the non-penetration effect of the water injection hole, the permeability coefficient of the specimen is simplified and There is an effect that it can be quickly obtained.

また、本発明に係る透水係数の簡易算定装置によれば、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数をコンピュータを用いて算定する装置であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定する演算部を備えるので、供試体の透水係数を簡易かつ迅速に求めることができるという効果を奏する。   Further, according to the simple calculation device for the hydraulic conductivity according to the present invention, it is a device for calculating the hydraulic conductivity of a cylindrical specimen having a non-penetrating water injection hole coaxially using a computer, and at the time of the hydraulic test It is equipped with a calculation unit that calculates the hydraulic conductivity by converting the temporary hydraulic conductivity when assuming that the flow in the specimen is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the water injection hole. Therefore, there is an effect that the permeability coefficient of the specimen can be obtained easily and quickly.

図1は、本発明に係る透水係数の簡易算定方法の実施例を示す概略フローチャートである。FIG. 1 is a schematic flowchart showing an embodiment of a simple method for calculating a hydraulic conductivity according to the present invention. 図2は、換算係数aとL/Lの関係の一例を示す図である。FIG. 2 is a diagram illustrating an example of the relationship between the conversion coefficient a and L 1 / L 2 . 図3は、係数bとL/Lの関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between the coefficient b and L 1 / L 2 . 図4は、本発明に係る透水係数の簡易算定装置の実施例を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing an embodiment of a simple permeability calculating device according to the present invention. 図5は、透水試験に用いる供試体の外観を示す斜視図である。FIG. 5 is a perspective view showing an appearance of a specimen used for the water permeability test. 図6は、透水試験の試験装置を示す断面図である。FIG. 6 is a cross-sectional view showing a test apparatus for a water permeability test. 図7は、軸対称FEM定常浸透流解析モデルの一例を示す図である。FIG. 7 is a diagram illustrating an example of an axially symmetric FEM steady osmotic flow analysis model. 図8は、従来の供試体の透水係数の算定手順を示すフローチャートである。FIG. 8 is a flowchart showing a procedure for calculating the hydraulic conductivity of a conventional specimen.

上述したように、従来は透水係数を簡易かつ容易に求めることができず、また、結果のチェックも容易ではなかった。このため、本発明者は、電卓さえあれば簡単に計算できる方法として、従来の二次元の放射流による透水係数の算定式と、非貫通の効果を表す換算係数を組み合わせて、不完全な放射流でも透水係数を算定できる方法を考案した。   As described above, conventionally, the hydraulic conductivity could not be determined easily and easily, and the result check was not easy. For this reason, the present inventor, as a method that can be easily calculated as long as there is a calculator, combines a conventional equation for calculating the hydraulic conductivity by a two-dimensional radial flow and a conversion factor that represents the effect of non-penetration, and thereby provides incomplete radiation. We devised a method that can calculate hydraulic conductivity even in the flow.

以下に、本発明に係る透水係数の簡易算定方法および装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a simple calculation method and apparatus for a hydraulic conductivity according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

[透水係数の簡易算定方法]
まず、本発明に係る透水係数の簡易算定方法の実施例について説明する。
図1に示すように、本発明に係る透水係数の簡易算定方法は、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数を算定する方法であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を求める一方(ステップS1)、注水孔の非貫通効果を表す換算係数aを得る(ステップS2)。そして、仮の透水係数をこの換算係数aで換算することにより、透水係数kを算定する(ステップS3)、という手順による。
[Simple calculation method of hydraulic conductivity]
First, the Example of the simple calculation method of the hydraulic conductivity based on this invention is described.
As shown in FIG. 1, the simple calculation method for the hydraulic conductivity according to the present invention is a method for calculating the hydraulic conductivity of a cylindrical specimen provided with non-penetrating water injection holes coaxially. While obtaining a temporary water permeability coefficient when it is assumed that the flow in the specimen is a two-dimensional radiation flow (step S1), a conversion coefficient a representing the non-penetration effect of the water injection hole is obtained (step S2). And it is based on the procedure of calculating the hydraulic conductivity k by converting a temporary hydraulic conductivity with this conversion coefficient a (step S3).

ステップS1において、仮の透水係数は、透水試験で計測された流量Q等から上記の放射流の理論式(1)により算定する。   In step S1, the provisional hydraulic conductivity is calculated by the theoretical formula (1) of the radiant flow from the flow rate Q and the like measured in the hydraulic test.

ステップS2において、注水孔の非貫通効果を表す換算係数aは、上記のコンピュータによるFEM定常浸透流解析などを用いて予め求めておく。より具体的には、解析モデル(供試体)に透水係数と水頭差を与えて、解析モデルの側面から出てくる流量を求め、その流量から放射流の理論式(1)による透水係数を算定し、最後に、解析モデルに与えた透水係数を理論式(1)から得られた透水係数で除することによってこの解析モデルの形状に対応する換算係数aを得ることができる。   In step S2, the conversion coefficient a representing the non-penetrating effect of the water injection hole is obtained in advance using the above-described FEM steady osmotic flow analysis by the computer. More specifically, the hydraulic conductivity and hydraulic head difference are given to the analysis model (specimen), the flow rate coming out from the side of the analysis model is obtained, and the hydraulic conductivity is calculated from the flow rate using the theoretical formula (1) of the radiant flow. Finally, the conversion coefficient a corresponding to the shape of the analysis model can be obtained by dividing the permeability coefficient given to the analysis model by the permeability coefficient obtained from the theoretical formula (1).

ここで、換算係数aは、供試体の半径rと高さLの比(r:L)毎に、注水孔の半径rと深さLに関するパラメータスタディを実施すること等によって、予め様々な供試体と注水孔の寸法と関連付けて求めておく。 Here, the conversion factor a is a parameter study on the radius r 1 and the depth L 1 of the water injection hole for each ratio (r 2 : L 2 ) between the radius r 2 and the height L 2 of the specimen. Thus, it is obtained in advance in association with various specimens and dimensions of the water injection hole.

図2は、予め求めた換算係数aとL/Lの関係の一例を示したものであり、供試体の大きさの比がr:L=1:4の場合の関係図である。図2のような関係図を参照すれば、透水試験時の供試体と注水孔の寸法の比(L/L、r/r)に対応した換算係数aを求めることができる。 FIG. 2 shows an example of the relationship between the conversion factor a and L 1 / L 2 obtained in advance, and is a relationship diagram when the ratio of the size of the specimen is r 2 : L 2 = 1: 4. is there. With reference to the relational diagram as shown in FIG. 2, the conversion coefficient a corresponding to the ratio of the dimensions of the specimen and the water injection hole (L 1 / L 2 , r 1 / r 2 ) during the water permeability test can be obtained.

ステップS3における透水係数k[m/s]の簡易算定式を式(2)に示す。

Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。 A simple calculation formula for the hydraulic conductivity k [m / s] in Step S3 is shown in Formula (2).
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.

上記の式(2)中の換算係数aは、上述したように、供試体と注水孔の寸法と図2より求めることができる。例えば、供試体の半径r=25mm、高さL=100mm、注水孔の半径r=3mm、深さL=80mmの場合、r/r=0.12、L/L=0.8となって、図2からa=1.16と求められる。 As described above, the conversion coefficient a in the above equation (2) can be obtained from the dimensions of the specimen and the water injection hole and FIG. For example, when the radius r 2 = 25 mm of the specimen, the height L 2 = 100 mm, the radius r 1 = 3 mm of the water injection hole, and the depth L 1 = 80 mm, r 1 / r 2 = 0.12 and L 1 / L 2 = 0.8, and a = 1.16 is obtained from FIG.

また、上記の式(2)については、

Figure 2012117818
とおけば、さらに簡略化した形となる。この場合、透水係数k[m/s]は、以下の式(3)のようになる。 Moreover, about said Formula (2),
Figure 2012117818
Then, it becomes a simplified form. In this case, the water permeability coefficient k [m / s] is expressed by the following equation (3).

Figure 2012117818
上記の式(3)中の係数bは、供試体と注水孔の寸法と図3より求めることができる。例えば、供試体の半径r=25mm、高さL=100mm、注水孔の半径r=3mm、深さL=80mmの場合、r/r=0.12、L/L=0.8となって、図3からb=0.391と求められる。ただし、図3も、供試体の大きさの比がr:L=1:4の場合の関係図である。
Figure 2012117818
The coefficient b in the above equation (3) can be obtained from the dimensions of the specimen and the water injection hole and FIG. For example, when the radius r 2 = 25 mm of the specimen, the height L 2 = 100 mm, the radius r 1 = 3 mm of the water injection hole, and the depth L 1 = 80 mm, r 1 / r 2 = 0.12 and L 1 / L 2 = 0.8, and b = 0.391 is obtained from FIG. However, FIG. 3 is also a relationship diagram in the case where the ratio of the size of the specimens is r 2 : L 2 = 1: 4.

上記の式(2)または式(3)により、供試体の透水係数を簡易かつ迅速に求めることができる。特に、電卓等にて一回で算定できるので透水係数を求める効率が非常に良くなる。また、電卓さえあれば誰でも計算できるので、結果のチェックも誰にでも容易にできるようになる。なお、本発明者の検証によれば、本発明により算定した透水係数と、従来の軸対称FEM定常浸透流解析により得られた透水係数との差は数パーセント程度であったことから、実用上の精度も十分であると考えられる。   From the above formula (2) or formula (3), the water permeability coefficient of the specimen can be obtained easily and quickly. In particular, since it can be calculated once with a calculator or the like, the efficiency of obtaining the hydraulic conductivity becomes very good. Also, anyone with a calculator can make calculations, so anyone can easily check the results. According to the verification by the present inventor, the difference between the hydraulic conductivity calculated according to the present invention and the hydraulic conductivity obtained by the conventional axisymmetric FEM steady osmotic flow analysis was about several percent. Is considered to be sufficiently accurate.

[透水係数の簡易算定装置]
次に、本発明に係る透水係数の簡易算定装置の実施例について説明する。
図4に示すように、本発明に係る透水係数の簡易算定装置10は、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数をコンピュータを用いて算定する装置であって、入力部12と出力部14と演算部16とデータ記憶部18とこれらを制御する制御部20とを備える。
[Simple calculation device for hydraulic conductivity]
Next, the Example of the simple calculation apparatus of the hydraulic conductivity which concerns on this invention is described.
As shown in FIG. 4, the simple calculation device 10 of the hydraulic conductivity according to the present invention is a device that calculates the hydraulic conductivity of a cylindrical specimen having a non-penetrating water injection hole coaxially using a computer. , An input unit 12, an output unit 14, a calculation unit 16, a data storage unit 18 and a control unit 20 for controlling them.

演算部16は、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数aで換算することにより、透水係数kを算定するものである。これは、上記の式(2)または式(3)を用いる。   The calculation unit 16 converts the temporary permeability coefficient when assuming that the flow in the test body at the time of the permeability test is a two-dimensional radiant flow by the conversion coefficient a representing the non-penetration effect of the water injection hole, The hydraulic conductivity k is calculated. For this, the above formula (2) or formula (3) is used.

データ記憶部18は、注水孔の半径rと供試体の半径rの比(r/r)と、注水孔の深さLと供試体の高さLの比(L/L)と、換算係数aまたは係数bの関係(図2または図3参照)をデータとして記憶するものである。 Data storage unit 18, a radius r 1 and a ratio of the specimen of radius r 2 of the water injection hole and (r 1 / r 2), the ratio of the height L 2 of the depth L 1 and specimen water injection holes (L 1 / L 2 ) and the conversion coefficient a or the coefficient b (see FIG. 2 or FIG. 3) are stored as data.

上記の構成において、ユーザがキーボード等の入力部12から透水試験時の供試体と注水孔の寸法や計測流量等を入力すると、制御部20は、データ記憶部18のデータを参照し、この透水試験時の供試体と注水孔の寸法の比(L/L、r/r)に対応した換算係数aまたは係数bを取得して演算部16に送信する。演算部16は、この換算係数aまたは係数bと入力部12からの入力値とを上記の式(2)または式(3)に代入して透水係数kを算定する。この算定結果は、モニタ等の出力部14に表示される。このように、本発明の簡易算定装置10によれば、透水試験時の供試体と注水孔の寸法や計測流量等を入力するだけで、供試体の透水係数を簡易かつ迅速に求めることができる。 In the above configuration, when the user inputs the specimen and the size of the water injection hole, the measured flow rate, and the like at the time of the permeability test from the input unit 12 such as a keyboard, the control unit 20 refers to the data in the data storage unit 18 and The conversion factor a or the factor b corresponding to the ratio of the test specimen and the water injection hole size (L 1 / L 2 , r 1 / r 2 ) at the time of the test is acquired and transmitted to the calculation unit 16. The computing unit 16 calculates the water permeability coefficient k by substituting the conversion coefficient a or coefficient b and the input value from the input unit 12 into the above formula (2) or formula (3). The calculation result is displayed on the output unit 14 such as a monitor. Thus, according to the simple calculation device 10 of the present invention, the permeability coefficient of the specimen can be obtained simply and quickly simply by inputting the dimensions of the specimen and the water injection hole, the measured flow rate, etc. during the permeability test. .

なお、本発明に係る透水係数の簡易算定方法および装置は、岩石のせん断変形下における透水特性の変化を調べることを目的とした三軸圧縮試験の途中で行う透水試験に好適である。しかし、供試体が図5に示すような形態で、試験態様が図6に示すようなものであれば、三軸圧縮試験を伴わない透水試験にも適用可能である。   In addition, the simple calculation method and apparatus of the hydraulic conductivity based on this invention are suitable for the hydraulic permeability test performed in the middle of the triaxial compression test for the purpose of investigating the change of the hydraulic permeability characteristic under the shear deformation of a rock. However, if the specimen is in the form as shown in FIG. 5 and the test mode is as shown in FIG. 6, it can be applied to a water permeability test without a triaxial compression test.

以上説明したように、本発明に係る透水係数の簡易算定方法によれば、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数を算定する方法であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定するので、供試体の透水係数を簡易かつ迅速に求めることができる。   As described above, according to the simple method for calculating the hydraulic conductivity according to the present invention, the method of calculating the hydraulic conductivity of a cylindrical specimen provided with a non-penetrating water injection hole coaxially, and at the time of the hydraulic test Since the permeability coefficient is calculated by converting the temporary permeability coefficient when assuming that the flow in the specimen is a two-dimensional radiant flow with the conversion coefficient that represents the non-penetration effect of the water injection hole, The permeability coefficient can be determined easily and quickly.

また、本発明に係る透水係数の簡易算定装置によれば、非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数をコンピュータを用いて算定する装置であって、透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定する演算部を備えるので、供試体の透水係数を簡易かつ迅速に求めることができる。   Further, according to the simple calculation device for the hydraulic conductivity according to the present invention, it is a device for calculating the hydraulic conductivity of a cylindrical specimen having a non-penetrating water injection hole coaxially using a computer, and at the time of the hydraulic test It is equipped with a calculation unit that calculates the hydraulic conductivity by converting the temporary hydraulic conductivity when assuming that the flow in the specimen is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the water injection hole. Therefore, the permeability coefficient of the specimen can be obtained easily and quickly.

以上のように、本発明に係る透水係数の簡易算定方法および装置は、岩石の透水特性を評価するために、非貫通の注水孔が同軸に設けられた円柱状の供試体を使用して行う室内透水試験に有用であり、特に、供試体の透水係数を簡易かつ迅速に求めるのに適している。   As described above, the simple calculation method and apparatus for hydraulic conductivity according to the present invention are performed using a cylindrical specimen having a non-penetrated water injection hole coaxially for evaluating the hydraulic characteristics of rock. It is useful for indoor permeability tests, and is particularly suitable for obtaining the permeability coefficient of a specimen easily and quickly.

10 透水係数の簡易算定装置
12 入力部
14 出力部
16 演算部
18 データ記憶部
20 制御部
DESCRIPTION OF SYMBOLS 10 Simple permeability calculation apparatus 12 Input part 14 Output part 16 Calculation part 18 Data storage part 20 Control part

Claims (8)

非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数を算定する方法であって、
透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定することを特徴とする透水係数の簡易算定方法。
A method for calculating the hydraulic conductivity of a cylindrical specimen provided with non-penetrating water injection holes coaxially,
Calculate the permeability coefficient by converting the temporary permeability coefficient assuming that the flow in the specimen during the permeability test is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the water injection hole. Simple calculation method of hydraulic conductivity characterized by
下記の式により供試体の透水係数k[m/s]を算定することを特徴とする請求項1に記載の透水係数の簡易算定方法。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。
The simple permeability calculation method of the permeability coefficient according to claim 1, wherein the permeability coefficient k [m / s] of the specimen is calculated by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.
下記の式により供試体の透水係数k[m/s]を算定することを特徴とする請求項1に記載の透水係数の簡易算定方法。
Figure 2012117818
ただし、上記の式中のbは、下記の式で与えられる。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。
The simple permeability calculation method of the permeability coefficient according to claim 1, wherein the permeability coefficient k [m / s] of the specimen is calculated by the following formula.
Figure 2012117818
However, b in the above formula is given by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.
換算係数を、コンピュータによる解析によって予め求めた注水孔の半径rと供試体の半径rの比(r/r)と、注水孔の深さLと供試体の高さLの比(L/L)の関係に基づいて決定することを特徴とする請求項1〜3のいずれか一つに記載の透水係数の簡易算定方法。 The ratio (r 1 / r 2 ) between the radius r 1 of the water injection hole and the radius r 2 of the specimen, which was previously determined by computer analysis, the depth L 1 of the water injection hole and the height L 2 of the specimen. the ratio (L 1 / L 2) simple calculation method for permeability according to any one of claims 1 to 3, characterized in that determining on the basis of the relation. 非貫通の注水孔が同軸に設けられた円柱状の供試体の透水係数をコンピュータを用いて算定する装置であって、
透水試験時の供試体内の流れが二次元の放射流であると仮定した場合の仮の透水係数を、注水孔の非貫通効果を表す換算係数で換算することにより、透水係数を算定する演算部を備えることを特徴とする透水係数の簡易算定装置。
An apparatus for calculating the permeability coefficient of a cylindrical specimen having a non-penetrated water injection hole coaxially using a computer,
Calculation to calculate the permeability coefficient by converting the temporary permeability coefficient when assuming that the flow in the specimen during the permeability test is a two-dimensional radiant flow with a conversion coefficient that represents the non-penetration effect of the injection hole. A simple calculation device for hydraulic conductivity, comprising a section.
演算部は、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする請求項5に記載の透水係数の簡易算定装置。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。
6. The simple calculation device for hydraulic conductivity according to claim 5, wherein the calculation unit calculates the hydraulic conductivity k [m / s] of the specimen by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.
演算部は、下記の式により供試体の透水係数k[m/s]を算定することを特徴とする請求項5に記載の透水係数の簡易算定装置。
Figure 2012117818
ただし、上記の式中のbは、下記の式で与えられる。
Figure 2012117818
ここに、Qは透水試験時に計測された流量[m/s]、πは円周率、Δhは注水孔側の間隙水圧の水頭h[m]と供試体側面側の間隙水圧の水頭h[m]の水頭差(h−h)[m]、rは注水孔の半径[m]、rは供試体の半径[m]、Lは供試体の高さ[m]である。また、aはr/rとL/Lの関係に基づいて決定する換算係数であり、Lは注水孔の深さ[m]である。
6. The simple calculation device for hydraulic conductivity according to claim 5, wherein the calculation unit calculates the hydraulic conductivity k [m / s] of the specimen by the following formula.
Figure 2012117818
However, b in the above formula is given by the following formula.
Figure 2012117818
Here, Q is the flow rate [m 3 / s] measured during the water permeability test, π is the circumference, Δh is the water head h 1 [m] of the pore water pressure on the water injection hole side, and the water head of the pore water pressure on the side surface of the specimen. h 2 water head difference [m] (h 1 -h 2 ) [m], r 1 is the radius [m] of water injection hole, r 2 is the radius of the specimen [m], L 2 is the specimen height [ m]. Moreover, a is a conversion factor determined based on the relationship between r 1 / r 2 and L 1 / L 2 , and L 1 is the depth [m] of the water injection hole.
コンピュータによる解析によって予め求めた注水孔の半径rと供試体の半径rの比(r/r)と、注水孔の深さLと供試体の高さLの比(L/L)と、換算係数の関係を表すデータが記憶されたデータ記憶部をさらに備え、
演算部は、データ記憶部から前記データを参照して透水係数を算定することを特徴とする請求項5〜7のいずれか一つに記載の透水係数の簡易算定装置。
The ratio (r 1 / r 2 ) of the radius r 1 of the water injection hole and the radius r 2 of the specimen obtained in advance by analysis by a computer, and the ratio of the depth L 1 of the water injection hole and the height L 2 of the specimen (L 1 / L 2 ) and a data storage unit storing data representing the conversion coefficient,
The simple calculation device for the hydraulic conductivity according to any one of claims 5 to 7, wherein the calculation unit calculates the hydraulic conductivity by referring to the data from the data storage unit.
JP2010264859A 2010-11-29 2010-11-29 Simple calculation method and apparatus for hydraulic conductivity Expired - Fee Related JP5541523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264859A JP5541523B2 (en) 2010-11-29 2010-11-29 Simple calculation method and apparatus for hydraulic conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264859A JP5541523B2 (en) 2010-11-29 2010-11-29 Simple calculation method and apparatus for hydraulic conductivity

Publications (2)

Publication Number Publication Date
JP2012117818A true JP2012117818A (en) 2012-06-21
JP5541523B2 JP5541523B2 (en) 2014-07-09

Family

ID=46500842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264859A Expired - Fee Related JP5541523B2 (en) 2010-11-29 2010-11-29 Simple calculation method and apparatus for hydraulic conductivity

Country Status (1)

Country Link
JP (1) JP5541523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717039A (en) * 2018-05-31 2018-10-30 西安建筑科技大学 A kind of marginal test analog machine of infiltration fracture grouting
CN111665183A (en) * 2020-06-17 2020-09-15 长江勘测规划设计研究有限责任公司 Rock mass permeability coefficient measuring method based on drilling water pressure test
WO2023193833A1 (en) * 2022-11-14 2023-10-12 中国水电基础局有限公司 High standard anti-seepage system permeability coefficient measurement apparatus and method for fabricated hdpe membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266953B (en) * 2014-10-15 2016-09-14 许昌金科资源再生股份有限公司 Full-automatic permeability coefficient detector of pervious brick

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014002709; 郷家光男、石井卓、木下直人、船山潤一: 'せん断変形下における軟岩基質部の透水特性の変化' 第32回岩盤力学に関するシンポジウム講演論文集 , 200301, 167-172ページ *
JPN6014002714; '第48章 室内透水試験' 岩の調査と試験 , 19890915, 396-400ページ *
JPN6014002717; 郷家光男、岸野佑次: '軟岩の掘削影響領域における透水性変化モデルの提案' トンネル工学論文集 第19巻, 200911, pp.59-68 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717039A (en) * 2018-05-31 2018-10-30 西安建筑科技大学 A kind of marginal test analog machine of infiltration fracture grouting
CN108717039B (en) * 2018-05-31 2020-08-21 西安建筑科技大学 Critical test simulation equipment for permeation splitting grouting
CN111665183A (en) * 2020-06-17 2020-09-15 长江勘测规划设计研究有限责任公司 Rock mass permeability coefficient measuring method based on drilling water pressure test
CN111665183B (en) * 2020-06-17 2022-08-26 长江勘测规划设计研究有限责任公司 Rock mass permeability coefficient measuring method based on drilling water pressure test
WO2023193833A1 (en) * 2022-11-14 2023-10-12 中国水电基础局有限公司 High standard anti-seepage system permeability coefficient measurement apparatus and method for fabricated hdpe membrane

Also Published As

Publication number Publication date
JP5541523B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
Tovar-Valencia et al. Effect of surface roughness on the shaft resistance of displacement model piles in sand
Li et al. A novel true triaxial apparatus to study the geomechanical and fluid flow aspects of energy exploitations in geological formations
Lin et al. Interaction between laterally loaded pile and surrounding soil
Papamichos et al. Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion
JP5541523B2 (en) Simple calculation method and apparatus for hydraulic conductivity
CN102865952A (en) Nondestructive testing method for working stress of concrete
Biglari et al. Shear modulus and damping ratio of unsaturated kaolin measured by new suction-controlled cyclic triaxial device
De Chaunac et al. Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay
Lin et al. Application of an acoustic emission source-tracing method to visualise shear banding in granular materials
Li et al. Estimating p-y Curves for Clays by CPTU Method: Framework and Empirical Study
Shi et al. Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock
Hazirbaba et al. Strain-based assessment of liquefaction and seismic settlement of saturated sand
Zhang et al. Field study on the behavior of destructive and non-destructive piles under compression
Soriano Camelo et al. Seismic centrifuge modeling of a gentle slope of layered clay, including a weak layer
CN105825012B (en) A kind of FCEC construction method causes the calculation method of earth horizontal displacement
Goodarzi et al. Numerical simulation of cone penetration test in a small-volume calibration chamber: The effect of boundary conditions
Suleiman et al. Measured soil–structure interaction for concrete piles subjected to lateral loading
Lim Numerical study of cone penetration test in clays using press-replace method
Tewatia Trend of settlement in primary and secondary consolidations
Zhu et al. Experimental Study on Passive Earth Pressure against Flexible Retaining Wall with Drum Deformation.
Minga et al. Validation of PLAXIS MoDeTo based on the Cowden till PISA field tests
Olson et al. Experimental and numerical investigation of cyclic response of dense sand under multidirectional shaking
Minga et al. Validation of the PLAXIS MoDeTo 1D model for dense sand
Bahar et al. Undrained strength of clays derived from pressuremeter tests
Ding et al. Effects of spudcan installation processes on the bearing capacity of foundations under combined loading in soft-over-stiff clay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5541523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees