JP2012117812A - Corrosion testing method of anti-corrosion steel for hold of coal ship and ship for coal and iron ore and method for predicting usage life of ship using the corrosion testing method - Google Patents

Corrosion testing method of anti-corrosion steel for hold of coal ship and ship for coal and iron ore and method for predicting usage life of ship using the corrosion testing method Download PDF

Info

Publication number
JP2012117812A
JP2012117812A JP2010264746A JP2010264746A JP2012117812A JP 2012117812 A JP2012117812 A JP 2012117812A JP 2010264746 A JP2010264746 A JP 2010264746A JP 2010264746 A JP2010264746 A JP 2010264746A JP 2012117812 A JP2012117812 A JP 2012117812A
Authority
JP
Japan
Prior art keywords
coal
corrosion
ship
sulfuric acid
granular porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010264746A
Other languages
Japanese (ja)
Other versions
JP5659732B2 (en
Inventor
Masataka Omoda
真孝 面田
Yukio Tsuri
之郎 釣
Tsutomu Komori
務 小森
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010264746A priority Critical patent/JP5659732B2/en
Publication of JP2012117812A publication Critical patent/JP2012117812A/en
Application granted granted Critical
Publication of JP5659732B2 publication Critical patent/JP5659732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion testing method capable of reproducing a corrosion environment in a hold of a coal ship and a ship for coal/ore in a laboratory.SOLUTION: The corrosion testing method of the anti-corrosion steel for the hold of the coal ship and the ship for coal/ore to test the corrosion of a steel material by using an atmosphere adjustment chamber includes: a step for preparing a sulfuric acid-added granular porous substance by adding sulfuric acid to a granular porous substance; a step for mounting the sulfuric acid-added granular porous substance on the steel material and putting the steel material in the atmosphere adjustment chamber; a step for arbitrarily selecting relative temperature in the atmosphere adjustment chamber in a range of 80 to 100% and changing heating and cooling of the temperature in a fixed cycle in a range of 20 to 80°C; and a step for measuring the corrosion quantity or hole corrosion depth of the steel material. In the step for preparing the sulfuric acid-added granular porous substance, the amount of sulfuric acid is 0.01 to 100 mg per 1 g of granular porous substance.

Description

本発明は、石炭船、石炭・鉱石兼用船ホールドで使用される鋼材を実験室的に再現し評価することのできる石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法及びそれを用いた船舶の使用寿命を予測する方法に関する。   The present invention relates to a corrosion test method for a corrosion resistance steel for a coal ship and a coal / ore combined-use hold capable of reproducing and evaluating a steel material used in a coal ship and a coal / ore combined-use hold in a laboratory. The present invention relates to a method for predicting the service life of ships.

ばら積み貨物船において、1990年代初頭に海難事故が相次ぎ国際問題となった。特に、石炭船や石炭・鉄鉱石兼用船で事故が多く報告されおり、その原因の大部分は船倉内の損傷であった。ばら積み貨物船では、積荷を直接、船倉(以下「ホールド」と言う場合もある)に積載するため、腐食性の積荷の影響を受け易く、船倉内の腐食、特に石炭船、石炭・鉄鉱石兼用船の倉内の側壁部での孔食により、局所的に強度が減少することが問題と考えられている。この孔食が著しく進行した事例や、船の強度を確保する肋骨部分の板厚が極端に減少している事例が報告されている。   In bulk cargo ships, marine accidents became an international issue one after another in the early 1990s. In particular, many accidents were reported on coal ships and coal / iron ore combined ships, most of which were damage in the hold. Bulk cargo ships are loaded directly into the hold (sometimes referred to as “hold”) and are therefore susceptible to corrosive loads. Corrosion in the hold, especially coal ships, coal / iron ore combined It is considered a problem that the strength locally decreases due to pitting corrosion at the side wall in the ship's hold. Cases in which this pitting corrosion has progressed remarkably and cases in which the thickness of the rib portion that ensures the strength of the ship has been extremely reduced have been reported.

前記孔食の発生するばら積み貨物船の側壁部は、シングルハルとなっていて、積荷と海水とは鋼材一枚隔てているだけである。そのため、海水と船倉内の温度差により、船倉側壁部には結露水が生じやすく、その場所に石炭の硫黄成分が溶け出し、結露水と反応し硫酸を生成し、硫酸腐食が起こる。   The side wall of the bulk carrier where pitting occurs is a single hull, and the load and seawater are separated from each other only by one steel material. Therefore, due to the temperature difference between the seawater and the cargo hold, dew condensation is likely to occur on the side wall of the hold, and the sulfur component of the coal dissolves in the place, reacts with the dew condensation water to produce sulfuric acid, and sulfuric acid corrosion occurs.

このような船倉内の腐食対策として、船倉内には変性エポキシ系塗装が被覆厚さ約150〜200μm施されている。しかし、石炭や鉄鉱石によるメカニカルダメージや積荷搬出の際の重機による傷・磨耗により、塗装が剥がされる場合が多いため、十分な防食効果は望めない。   As a countermeasure against such corrosion in the hold, a modified epoxy coating is applied to the hold with a coating thickness of about 150 to 200 μm. However, since the coating is often peeled off due to mechanical damage caused by coal or iron ore, and scratches and wear caused by heavy machinery during loading and unloading, a sufficient anticorrosive effect cannot be expected.

そこで、さらに腐食対策として定期的に再塗装や一部補修する方法が取られているが、このような方法は、非常に大きなコストがかかるため、船舶のメンテナンス費用を含め、ライフサイクルコストを低減させることが課題となっている。   Therefore, as a countermeasure against corrosion, methods of repainting and partial repairs are taken regularly, but such methods are very expensive and reduce life cycle costs including ship maintenance costs. It is a problem to make it.

これまで、石炭船および石炭・鉱石兼用船ホールド用耐食鋼の評価の例として、特許文献1および2の実施例に示されるように、60℃、100%RH、6時間⇒60℃で0.5%NaCl+0.1%CaCl+0.5%NaSO溶液に0.5時間浸漬⇒60℃、50%RH、17.5時間のサイクル(周期)で裸材およびスクラッチを入れた塗装材の評価が行なわれている。 Until now, as an example of evaluation of a corrosion resistant steel for holding a coal ship and a coal / ore combined ship, as shown in Examples of Patent Documents 1 and 2, the temperature is 60 ° C., 100% RH, 6 hours → Immersion in 5% NaCl + 0.1% CaCl 2 + 0.5% Na 2 SO 4 solution for 0.5 hour ⇒ Paint material with bare material and scratch in 60 ° C, 50% RH, 17.5 hour cycle Is being evaluated.

特開2007−262555号公報JP 2007-262555 A 特開2008−174768号公報JP 2008-174768 A

中井達郎、松下久雄、山本規雄、平成18年度日本海事協会(ClassNK)発表会、 p.25−37Tatsuro Nakai, Hisao Matsushita, Norio Yamamoto, 2006 Japan Maritime Association (ClassNK) presentation, p.25-37

しかしながら、特許文献1と2では、使用している溶液は0.5%NaCl+0.1%CaCl+0.5%NaSOであり、腐食を加速させる因子として非特許文献1に開示されている希硫酸環境条件とは異なり、実際の石炭船および石炭・鉱石兼用船のホールドの腐食環境を模擬されているとは言えない。また、石炭船および石炭・鉱石兼用船は、ホールド内側壁部や肋骨部の孔食により局所的強度が減少し、破壊に至ることが問題と考えられている。さらに、ホールド内は、塗装が施されるが石炭や鉄鉱石によるメカニカルダメージや積荷搬出の際の重機による磨耗により、塗装が剥がされるため裸材の孔食深さの評価が必要である。 However, in Patent Documents 1 and 2, the solution used is 0.5% NaCl + 0.1% CaCl 2 + 0.5% Na 2 SO 4, which is disclosed in Non-Patent Document 1 as a factor that accelerates corrosion. Unlike the dilute sulfuric acid environmental conditions, it cannot be said that the corrosive environment of the hold of actual coal ships and coal / ore combined ships is simulated. In addition, it is considered that coal ships and coal / ore combined ships have a problem in that local strength decreases due to pitting corrosion of the inner wall of the hold or ribs, leading to destruction. Furthermore, the inside of the hold is painted, but the coating is peeled off due to mechanical damage caused by coal or iron ore and wear by heavy machinery during loading and unloading, so it is necessary to evaluate the pitting corrosion depth of the bare material.

本発明は、上記問題点を解決するために、石炭船・石炭および鉱石兼用船のホールド内の腐食環境を実験室的に再現した腐食試験方法を提供し、さらには船舶の寿命を推定することを目的とする。   In order to solve the above problems, the present invention provides a corrosion test method that reproduces the corrosive environment in the hold of a coal ship / coal and ore combined ship in a laboratory, and further estimates the life of the ship. With the goal.

上記課題は、以下の本発明の構成により解決される。
1.雰囲気調整室を用いた鋼材の腐食試験方法において、
粒状の多孔質物質に硫酸を添加し、硫酸添加粒状多孔質物質を作る工程と、
前記鋼材の上に前記硫酸添加粒状多孔質物質を載置し、前記雰囲気調整室内に設置する工程と、
前記雰囲気調整室の相対湿度を80〜100%の範囲で任意に選定し、かつ、温度を20℃から80℃の範囲で加熱及び冷却を一定サイクルで変化させる工程と、
前記鋼材の腐食量又は孔食深さを測定する工程
とを有し、前記硫酸添加粒状多孔質物質を作る工程において、前記硫酸が前記粒状の多孔質物質1g当たり0.01〜100mgの量であることを特徴とする石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
2.前記粒状の多孔質物質は、活性炭であることを特徴とする1に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
3.前記粒状の多孔質物質の粒径は1〜20mmの範囲であることを特徴とする1または2に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
4.前記硫酸添加粒状多孔質物質を載置する量が前記鋼材の単位面積あたり0.1〜5g/cmであることを特徴とする1〜3のいずれか1つに記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
5.前記一定周期が1日であることを特徴とする1〜4のいずれか1つに記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
6.前記1〜5のいずれか1つに記載の腐食試験方法を用いることを特徴とする船舶の使用寿命を予測する方法。
The above problems are solved by the following configurations of the present invention.
1. In the steel corrosion test method using the atmosphere adjustment chamber,
Adding sulfuric acid to a granular porous material to produce a sulfuric acid-added granular porous material;
Placing the sulfuric acid-added granular porous material on the steel material, and installing in the atmosphere adjustment chamber;
A step of arbitrarily selecting the relative humidity of the atmosphere adjustment chamber in the range of 80 to 100%, and changing the heating and cooling in a constant cycle in the range of 20 ° C. to 80 ° C .;
A step of measuring the corrosion amount or pitting depth of the steel material, and in the step of forming the sulfuric acid-added granular porous material, the sulfuric acid is in an amount of 0.01 to 100 mg per 1 g of the granular porous material. A corrosion test method for a corrosion resistant steel for holding a coal ship and a combined coal and ore ship.
2. 2. The corrosion test method for a corrosion resistant steel for holding a coal ship and a coal / ore combined ship, according to 1, wherein the granular porous material is activated carbon.
3. 3. The corrosion test method for a corrosion resistant steel for holding a coal ship and a combined coal / ore ship according to 1 or 2, wherein the granular porous material has a particle size in the range of 1 to 20 mm.
4). The amount of the sulfuric acid-added granular porous material is 0.1 to 5 g / cm 2 per unit area of the steel material, and the coal ship according to any one of 1 to 3, Corrosion test method for anti-corrosion steel for ore holding ship.
5. 5. The corrosion test method for a corrosion resistant steel for holding a coal ship and a coal / ore combined ship according to any one of 1 to 4, wherein the predetermined period is one day.
6). A method for predicting a service life of a ship, wherein the corrosion test method according to any one of 1 to 5 is used.

本発明は、石炭船・石炭および鉱石兼用船のホールド内の腐食環境を実験室的に再現しており、本発明により、石炭船・石炭および鉱石兼用船のホールド用の鋼材選定および評価への利用ができる。また、鋼材の腐食量や孔食深さの経時変化を追い、その結果を外挿することで船舶の寿命を予測することができる。   The present invention reproduces the corrosive environment in the hold of a coal ship / coal and ore combined ship in a laboratory, and according to the present invention, it is possible to select and evaluate the steel material for holding the coal ship / coal and ore combined ship. Can be used. Further, it is possible to predict the life of the ship by following the change over time in the corrosion amount and pitting depth of the steel material and extrapolating the results.

実施例の腐食試験方法により形成された孔食の直径と深さの関係を示す図。The figure which shows the relationship between the diameter and depth of a pitting corrosion formed by the corrosion test method of the Example. 石炭船および石炭・鉱石兼用船の孔食深さの予測を示す図。The figure which shows the prediction of the pitting depth of a coal ship and a coal and ore combined use ship. 石炭船および石炭・鉱石兼用船の平均腐食厚さの予測を示す図。The figure which shows the prediction of the average corrosion thickness of a coal ship and a coal and ore combined ship.

以下に、本発明を実施するための形態について説明する。
まず、本発明者らは、石炭船及び石炭・鉱石兼用船のホールド内の腐食で、船舶の破壊に最も影響を与える孔食発生のメカニズムを以下に検討した。
Below, the form for implementing this invention is demonstrated.
First, the inventors examined the mechanism of pitting corrosion that has the most influence on the destruction of ships due to corrosion in the hold of coal ships and coal / ore combined ships.

ところで、ばら積み貨物船の側壁部は、シングルハルとなっていて、積荷と海水とは鋼材一枚隔てているだけである。そのため、海水と船倉内の温度差により、船倉側壁部には結露水が生じ、鋼材及び石炭表面が濡れ、石炭表面に吸着しているHSO由来の物質が水膜に滲出する。鋼材は、メニスカスを形成する石炭下で孔食が進展し、メニスカス部分では、鋼材の腐食にHが消費されていくため、H濃度が減少していく。 By the way, the side wall portion of the bulk carrier is a single hull, and the cargo and the seawater are separated from each other only by one steel material. Therefore, due to the temperature difference between the seawater and the hold, dew condensation water is generated on the side wall of the hold, the steel material and the surface of the coal are wet, and the H 2 SO 4 -derived substance adsorbed on the surface of the coal oozes into the water film. The steel material undergoes pitting corrosion under the coal forming the meniscus, and in the meniscus portion, H + is consumed for corrosion of the steel material, so the H + concentration decreases.

一方、石炭表面にはHが多く存在するため、石炭表面とメニスカス部分でH濃度の差が生まれる。その化学ポテンシャルの差を駆動力とし、メニスカス部分に石炭表面からHが供給されると考えられる。そして、乾燥過程で未反応のHは再び石炭表面に固着し、次の結露過程で腐食反応に使用され、この過程が長期的なサイクルで起こり、メニスカス部分で腐食がより進行し、孔食が形成されていく。本発明者らは、この孔食発生のメカニズムを基に、石炭船および石炭・鉱石兼用船のホールド内の孔食を実験室的に模擬すべく以下の条件を見出した。 On the other hand, since a large amount of H + exists on the coal surface, a difference in H + concentration is produced between the coal surface and the meniscus portion. The difference in chemical potential is used as the driving force, and it is considered that H + is supplied from the coal surface to the meniscus portion. Unreacted H + adheres to the coal surface again during the drying process, and is used for the corrosion reaction in the next dew condensation process. This process takes place in a long-term cycle, causing more corrosion in the meniscus area and pitting corrosion. Will be formed. Based on this mechanism of pitting corrosion, the present inventors have found the following conditions for simulating pitting corrosion in the hold of coal ships and coal / ore combined ships.

石炭船および石炭・鉱石兼用船のホールド内の腐食は、温度と湿度に大きく左右される。ホールド内の温度は、航路や積荷の石炭の種類によっても異なるが、日中は50〜80℃、夜間は20℃〜30℃程度となる。そこで、本発明において温度範囲を20℃〜80℃とすることが好ましく、その間で温度を任意に変動させることで結露を発生させる。   Corrosion in the hold of coal ships and coal / ore combined ships depends greatly on temperature and humidity. Although the temperature in the hold varies depending on the channel and the type of coal in the cargo, it is about 50 to 80 ° C. during the day and about 20 to 30 ° C. at night. Therefore, in the present invention, the temperature range is preferably 20 ° C. to 80 ° C., and condensation is generated by arbitrarily changing the temperature therebetween.

この範囲内で試験温度の高温の温度と低温の温度を選定した。高温から低温または低温から高温の温度調整は0.3〜1.0h(時間)の時間内で調整することが望ましい。長時間の温度調整時間を採用することもできるが、温度調整は0.3〜1.0h(時間)の時間内であると、促進試験として好ましいからである。   Within this range, the high temperature and low temperature of the test temperature were selected. It is desirable to adjust the temperature from high temperature to low temperature or from low temperature to high temperature within a time of 0.3 to 1.0 h (hour). Although a long temperature adjustment time can be adopted, it is preferable that the temperature adjustment is within a time of 0.3 to 1.0 h (hour) as an accelerated test.

また、湿度は石炭の持つ水分や海水とホールド内の温度差により生じる結露水により、常に高湿潤状態となることから、80〜100%RH(ここで、RHとは相対湿度の略称である。)とした。さらに、一定のサイクルは、ホールド内環境を再現する為に、一昼夜、即ち、一日とすることが好ましい。   Moreover, since humidity will always be in a highly humid state by the water | moisture content which coal has, or the dew condensation water which arises by the temperature difference in seawater and a hold | maintenance, 80-100% RH (Here, RH is an abbreviation for relative humidity.). ). Further, it is preferable that the fixed cycle is one day and night, that is, one day in order to reproduce the hold environment.

次に、使用する多孔質物質に関して説明する。本発明者らは、本孔食発生のメカニズムにおいて、孔食形成にはメニスカス部分に長期的な酸の供給が必要である事を明らかにした。したがって、多孔質物質は、乾燥時には添加した硫酸を固着させ、湿潤時に硫酸をメニスカス部に供給する。多孔質物質は粒状であることが好ましく、粒状の多孔質物質を使用することで、本メカニズムの硫酸供給状況を模擬できる。ただし、多孔質物質は硫酸を添加することから、耐硫酸性を持つことが好ましい。本発明において、多孔質物質とは、細かい空孔を有する物質で、特に、その空孔容積が0.1〜10cm/gの範囲にある物質をさすものとする。ここで、空孔容積(細孔容積とも呼ばれる)は、ガス吸着法や水銀圧入法など、公知の方法により測定することができる。 Next, the porous material to be used will be described. The present inventors have revealed that, in the mechanism of the occurrence of pitting corrosion, long-term acid supply to the meniscus portion is necessary for pitting formation. Accordingly, the porous material fixes the added sulfuric acid when drying, and supplies the sulfuric acid to the meniscus portion when wet. The porous material is preferably granular, and by using the granular porous material, the sulfuric acid supply situation of this mechanism can be simulated. However, it is preferable that the porous material has sulfuric acid resistance because sulfuric acid is added. In the present invention, the porous material is a material having fine pores, and particularly refers to a material having a pore volume in the range of 0.1 to 10 cm 3 / g. Here, the pore volume (also referred to as pore volume) can be measured by a known method such as a gas adsorption method or a mercury intrusion method.

多孔質物質としたのは、硫酸を内部に吸収・含浸させるためであり、粒状としたのは実際のホールド内環境での石炭及び鉱石の状態を模擬するためである。多孔質物質は例えば多孔質セラミクッス、試薬一級珪砂、ジルコニヤ、アルミナが挙げられ、石炭、鉱石でも良い。本発明に用いられる石炭としては、活性炭が好ましい。活性炭は品質が一定で多孔性であるため試験結果が安定的に得られる。しかし、これに限られず、石炭を用いる場合は、運搬が予想される石炭の種類を適宜選定することができる。   The porous material is used to absorb and impregnate sulfuric acid inside, and the granular material is used to simulate the state of coal and ore in the actual hold environment. Examples of the porous material include porous ceramics, reagent primary silica sand, zirconia, and alumina, and may be coal or ore. Activated carbon is preferable as the coal used in the present invention. Since the activated carbon has a constant quality and is porous, the test results can be obtained stably. However, the present invention is not limited to this, and when using coal, the type of coal expected to be transported can be selected as appropriate.

次に、添加する硫酸量に関して説明する。硫酸添加粒状多孔質物質とは粒状の多孔質物質に硫酸を添加して作られる。石炭はその銘柄により大きく性状が異なり、含有する硫酸根の種類及びその含有量も大きく異なってくる。たとえば、本発明者らが多孔質物質である各種の石炭に対して検討したところ、石炭1gあたり0.04〜70mgの硫酸イオンを確認した。これを、硫酸換算で表すと、多孔質物質1gあたりに0.1〜100mgの硫酸添加に相当し、本発明では、この範囲にすることが好ましい。   Next, the amount of sulfuric acid to be added will be described. The sulfuric acid-added granular porous material is made by adding sulfuric acid to a granular porous material. The properties of coal vary greatly depending on the brand, and the type and content of sulfate radicals contained vary greatly. For example, when the present inventors examined various kinds of coal which is a porous material, 0.04 to 70 mg of sulfate ion was confirmed per 1 g of coal. When this is expressed in terms of sulfuric acid, it corresponds to 0.1 to 100 mg of sulfuric acid added per 1 g of the porous material, and in the present invention, this range is preferable.

さらに、腐食量、孔食深さ測定の容易さ及び得られる測定値のばらつきの観点から、多孔質物質1gあたり10mg以上の硫酸添加が好ましい。   Furthermore, from the viewpoint of the corrosion amount, the ease of measuring the pitting depth, and the variation in the measured values obtained, it is preferable to add 10 mg or more of sulfuric acid per 1 g of the porous material.

つぎに、雰囲気調整室の内部にこのようにして作られた硫酸添加粒状多孔質物質を鋼材の上に載置する。載置してから雰囲気調整室内に設置するのが効率的であるが、雰囲気調整室内にて硫酸添加粒状多孔質物質を鋼材の上に載置することもできる。   Next, the sulfuric acid-added granular porous material thus produced is placed on the steel material in the atmosphere adjustment chamber. Although it is efficient to place it in the atmosphere adjustment chamber after being placed, the sulfuric acid-added granular porous material can also be placed on the steel material in the atmosphere adjustment chamber.

さらに、つぎの工程では、雰囲気調整室の内部の相対湿度を高湿潤一定で温度を変化させる。この場合、温度上昇時に結露が起こる。これは鋼材温度が雰囲気調整室の温度上昇に遅れて追随していくため、鋼材と雰囲気調整室の間に温度差が生じるためである。この温度差は鋼材に載置する硫酸添加粒状多孔質物質の種類又は状態により変わり、これによって結露量が変わってくる。また、硫酸添加粒状多孔質物質の量が変化すると鋼材に供給される希硫酸も変化する。したがって、硫酸添加粒状多孔質物質の量により腐食量、孔食進展の度合いも異なってくる。そこで、より正確な腐食量と孔食深さの評価の観点から、硫酸添加粒状多孔質物質を載置する量を鋼材単位面積あたり0.1〜5g/cmとすることが好ましい。この範囲では、腐食量、孔食進展の度合いを再現性よく確認することができるからである。 Further, in the next step, the temperature is changed while the relative humidity inside the atmosphere adjusting chamber is kept constant at high humidity. In this case, condensation occurs when the temperature rises. This is because the temperature difference between the steel material and the atmosphere adjustment chamber is generated because the steel material temperature follows with a delay in the temperature increase in the atmosphere adjustment chamber. This temperature difference changes depending on the type or state of the sulfuric acid-added granular porous material placed on the steel material, and the amount of condensation changes accordingly. Moreover, when the amount of the sulfuric acid-added granular porous material changes, the dilute sulfuric acid supplied to the steel also changes. Accordingly, the amount of corrosion and the degree of progress of pitting corrosion vary depending on the amount of the sulfuric acid-added granular porous material. Therefore, from the viewpoint of more accurate evaluation of the corrosion amount and the pitting depth, the amount of the sulfuric acid-added granular porous material is preferably set to 0.1 to 5 g / cm 2 per unit area of the steel material. This is because in this range, the amount of corrosion and the degree of pitting corrosion can be confirmed with good reproducibility.

また、本腐食メカニズムでは、実船の孔食は、石炭及び石炭・鉱石が鋼材に接触し、そこに溜まる結露水により形成されるメニスカス部分に石炭由来の硫酸が濃縮することにより発生する。そのため、形成される孔食は石炭の粒径により、形状が異なる。一方、また、非特許文献1によると、ホールド側壁部の孔食は、その大きさに因らず、孔食直径と深さのアスペクト比が、8:1〜10:1になると報告されている。ちなみに、タンカーの孔食は、孔食直径と深さの比は4:1となる。このことから、本腐食試験方法が実船の孔食を再現しているかの判断基準を孔食直径と深さのアスペクト比が、8:1〜10:1となることとした。ここで、測定は試験片上に現れる全ての孔食を対象とし、孔食の直径はデプスメーター(Mitutoyo製:Model No.CD−15C)によって測定し、長径と短径の平均を測定することにより行った。また、孔食の深さはデプスメーター(TECLOCK製:DMD−215)によって測定した。   Moreover, in this corrosion mechanism, pitting corrosion of an actual ship occurs when coal and coal / ore come into contact with steel materials, and sulfuric acid derived from coal is concentrated in a meniscus portion formed by condensed water accumulated there. Therefore, the shape of pitting corrosion formed varies depending on the particle size of coal. On the other hand, according to Non-Patent Document 1, it is reported that the pitting corrosion of the hold side wall portion is 8: 1 to 10: 1 in the aspect ratio of the pitting diameter and the depth, regardless of the size. Yes. Incidentally, the pitting corrosion of the tanker has a ratio of the pitting diameter to the depth of 4: 1. From this, it was decided that the aspect ratio between the pitting corrosion diameter and the depth would be 8: 1 to 10: 1 as a criterion for judging whether or not this corrosion test method reproduces pitting corrosion of an actual ship. Here, the measurement targets all pitting corrosion appearing on the test piece, and the diameter of the pitting corrosion is measured by a depth meter (manufactured by Mitutoyo: Model No. CD-15C), and the average of the major axis and the minor axis is measured. went. Moreover, the depth of pitting corrosion was measured with a depth meter (manufactured by TECLOCK: DMD-215).

ここでは、この形状の孔食を形成させるために、粒状の多孔質物質の粒径を1〜20mmとすることが好ましい。この範囲であれば、上述した再現性ある評価基準の明確性ある実船の孔食の形状が得られるからである。   Here, in order to form pitting corrosion of this shape, it is preferable that the particle size of the granular porous material is 1 to 20 mm. This is because, within this range, the shape of pitting corrosion of an actual ship with clearness of the above-described reproducible evaluation criteria can be obtained.

ここで、粒状の多孔質物質のこの範囲の粒径とは、例えばJIS8801の規定により、目開き1〜20mm範囲のふるいにより選定調整できる。   Here, the particle size in this range of the granular porous material can be selected and adjusted by sieving in the range of 1 to 20 mm, for example, according to JIS8801.

さらに、本発明は、試験によって得られた鋼材の孔食深さ又は腐食量を経時変化で観察し、外挿することで、10年、20年後の孔食深さを予測し、船舶の寿命を予測することが出来る。   Furthermore, the present invention predicts the pitting corrosion depth after 10 years and 20 years by observing the pitting corrosion depth or corrosion amount of the steel material obtained by the test over time, and extrapolating it. Life expectancy can be predicted.

すなわち、まず、鋼材の孔食深さを経時変化で追うとは、期間を変化させて本試験を行い各期間の孔食深さの測定を行うことであり、その結果を用いて腐食許容板厚に達する期間を予測するとは、経時変化で得られた孔食深さを外挿し、腐食許容板厚に達する期間を計算することである。また、船舶の寿命とは、ばら積貨物船用共通構造規則(鋼船規則CSR-B編)で規定されている鋼材の切替板厚に孔食深さが達することを意味する。   That is, first of all, tracking the pitting depth of a steel material over time is to measure the pitting depth of each period by performing this test while changing the period. Predicting the period to reach the thickness is to extrapolate the pitting depth obtained by the change over time and calculating the period to reach the corrosion-acceptable plate thickness. Ship life means that the pitting depth reaches the switching thickness of steel as specified in the Common Structural Rules for Bulk Cargo Ships (CSR-B Rules).

以下実施例を設明するが、本発明の実施態様はこれに限られることはない。   Examples are set forth below, but embodiments of the present invention are not limited thereto.

表1に示す成分となる溶鋼を、真空溶解炉で溶製または転炉溶製後、連続鋳造によりスラブとした。ついで、スラブを加熱炉に装入して1200℃に加熱し、仕上圧延終了温度800℃の熱間圧延により25mm厚の一般用造船鋼板とした。   The molten steel which becomes a component shown in Table 1 was made into a slab by continuous casting after melting or converter melting in a vacuum melting furnace. Next, the slab was charged into a heating furnace and heated to 1200 ° C., and a 25 mm thick general shipbuilding steel plate was obtained by hot rolling at a finish rolling finishing temperature of 800 ° C.

Figure 2012117812
Figure 2012117812

この鋼板から、5mm×50mm×75mmの試験片を採取し、その試験片の表面をショットブラストして、表面のスケールや油分を除去した。裏面と端面をシリコン系シールでコーティングした後、アクリル製の治具に嵌め込み、その上に所定量の硫酸を添加した粒状の多孔質物質を載置し、恒温恒湿器 AGX−325により、相対湿度を一定とし、温度を変化させた温湿度サイクルを28日間与えた。試験後、錆剥離液を用い、各試験片の錆を剥離し、腐食量を測定した。 A test piece of 5 mm t × 50 mm W × 75 mm L was taken from this steel plate, and the surface of the test piece was shot blasted to remove surface scale and oil. After coating the back and end faces with a silicon-based seal, it is fitted into an acrylic jig, and a granular porous material to which a predetermined amount of sulfuric acid has been added is placed, and relative temperature is controlled by a constant temperature and humidity chamber AGX-325. A temperature and humidity cycle with constant humidity and varying temperature was given for 28 days. After the test, the rust of each test piece was peeled off using a rust remover and the amount of corrosion was measured.

また、生じた最大孔食深さデプスメーターを用いて測定を行った。実施した試験条件を表2に、結果を表3に示す。表2において、例えばNo.1の場合、湿度は95%RHと一定に保持して、温度を80℃で20h(時間)保持し、その後0.5h(時間)かけて20℃まで降温した。さらに、20℃で3h(時間)保持し、その後0.5h(時間)かけて80℃まで昇温した。以上を24時間(一日)で行い、このサイクルを28days(日)行ったことを意味している。   Moreover, it measured using the generated maximum pitting depth depth meter. The test conditions performed are shown in Table 2, and the results are shown in Table 3. In Table 2, for example, no. In the case of 1, the humidity was kept constant at 95% RH, the temperature was kept at 80 ° C. for 20 h (hours), and then the temperature was lowered to 20 ° C. over 0.5 h (hours). Furthermore, it hold | maintained at 20 degreeC for 3 h (hour), and heated up to 80 degreeC over 0.5 h (time) after that. This means that the above process was performed for 24 hours (one day), and this cycle was performed for 28 days (day).

多孔質物質の粒径3〜5mmとは、数十μm〜十数mmの粒径の石炭を目開き3mmと5mmのふるいを用いて調整したものである。また、表3において測定された腐食量は、試験前サンプルの重量から試験後サンプルの重量を引くことで測定し、最大孔食深さはデプスメーターにより測定した。孔食直径と深さ比はノギスで測定した。実船の孔食の再現の欄が○とは孔食の直径と深さとの比が実船と同様の8:1〜10:1となった試験条件を意味する。   The particle size of the porous material of 3 to 5 mm is obtained by adjusting coal having a particle size of several tens of μm to several tens of mm using a sieve having openings of 3 mm and 5 mm. Further, the amount of corrosion measured in Table 3 was measured by subtracting the weight of the sample after the test from the weight of the sample before the test, and the maximum pitting corrosion depth was measured with a depth meter. The pitting diameter and depth ratio were measured with calipers. “O” in the column of reproduction of pitting corrosion on an actual ship means a test condition in which the ratio between the diameter and depth of the pitting corrosion is 8: 1 to 10: 1, which is the same as that of an actual ship.

Figure 2012117812
Figure 2012117812

Figure 2012117812
Figure 2012117812

表3の結果から、本発明で規定されている範囲で行なわれた試験では孔食が発生していることが分かる。さらに図1には、各実施例における最大の孔食の直径と深さのアスペクト比をプロットしている。この図から、孔食の直径と深さとの比が実船の孔食と同等の8:1〜10:1であることが分かる。すなわち、本腐食試験方法は、石炭・鉱石兼用船ホールドの実際の腐食環境を模擬できていると考えられる。   From the results in Table 3, it can be seen that pitting corrosion has occurred in the test conducted within the range specified in the present invention. Further, FIG. 1 plots the maximum pitting corrosion diameter and depth aspect ratio in each example. From this figure, it can be seen that the ratio of the pitting corrosion diameter to the depth is 8: 1 to 10: 1 which is equivalent to the pitting corrosion of the actual ship. In other words, it is considered that this corrosion test method can simulate the actual corrosive environment of the coal / ore combined ship hold.

ここで、実施例No.3、No.29〜33の最大孔食深さを累乗近似により外挿し、12年(4380日)、13年(4745日)、14年(5110日)、および20年(7300日)後の実船の孔食深さと比較したグラフを図2に示す。   Here, Example No. 3, no. Extrapolation of the maximum pitting corrosion depth of 29-33 by power approximation, hole in actual ship after 12 years (4380 days), 13 years (4745 days), 14 years (5110 days), and 20 years (7300 days) A graph compared with the depth of pitting is shown in FIG.

本試験で得られた、この図の実線の最大孔食深さの外挿曲線は、その曲線が実船で現れる孔食深さの値と近いので、実船の孔食を精度良く予測できることが分かる。   The extrapolation curve of the maximum pitting depth in this figure obtained in this test is close to the value of the pitting depth appearing on the actual ship, so the pitting corrosion of the actual ship can be accurately predicted. I understand.

本腐食試験方法を用いて,最大孔食深さの経時変化を追うことで、数十年後の最大孔食深さを予測でき、その値と石炭船および鉱石兼用船ホールドに設定されている腐食代を比較することで、寿命を予測することが可能である。   By using this corrosion test method, the maximum pitting depth after several decades can be predicted by following the change in the maximum pitting depth over time, and this value is set to hold coal and ore combined ships. By comparing the corrosion allowance, it is possible to predict the life.

同様に得られた腐食量と鋼材の試験面積、鋼材の密度を用いて、数十年後の腐食量(平均腐食厚さ:mm)も予測できる。図3で、実線が外挿した線であり、本試験例では、20年後に平均腐食厚さが1.92 mm、25年後に2.16 mmと予測される。   Similarly, the amount of corrosion (average corrosion thickness: mm) after several decades can be predicted using the obtained corrosion amount, the test area of the steel material, and the density of the steel material. In FIG. 3, the solid line is an extrapolated line. In this test example, the average corrosion thickness is predicted to be 1.92 mm after 20 years and 2.16 mm after 25 years.

本発明は、石炭船および石炭・鉱石兼用船ホールド内の腐食環境を模擬しており、孔食深さを経時変化で追い、外挿することで10年、20年先のホールド内の孔食を精度良く予測できるため、石炭船および石炭・鉱石兼用船ホールド用耐食鋼の評価に用いることができる。   The present invention simulates a corrosive environment in a coal ship and a coal / ore combined ship hold, and the pitting corrosion depth is tracked with time and extrapolated for 10 years or 20 years ahead in the hold. Therefore, it can be used for the evaluation of corrosion resistant steel for holding coal ships and coal / ore combined ships.

Claims (6)

雰囲気調整室を用いた鋼材の腐食試験方法において、
粒状の多孔質物質に硫酸を添加し、硫酸添加粒状多孔質物質を作る工程と、
前記鋼材の上に前記硫酸添加粒状多孔質物質を載置し、前記雰囲気調整室内に設置する工程と、
前記雰囲気調整室の相対湿度を80〜100%の範囲で任意に選定し、かつ、温度を20℃から80℃の範囲で加熱と冷却を一定サイクルで変化させる工程と、
前記鋼材の腐食量又は孔食深さを測定する工程
とを有し、前記硫酸添加粒状多孔質物質を作る工程において、前記硫酸が前記粒状の多孔質物質1g当たり0.01〜100mgの量であることを特徴とする石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。
In the steel corrosion test method using the atmosphere adjustment chamber,
Adding sulfuric acid to a granular porous material to produce a sulfuric acid-added granular porous material;
Placing the sulfuric acid-added granular porous material on the steel material, and installing in the atmosphere adjustment chamber;
A step of arbitrarily selecting the relative humidity of the atmosphere adjusting chamber in a range of 80 to 100%, and changing heating and cooling in a constant cycle in a temperature range of 20 ° C. to 80 ° C .;
A step of measuring the corrosion amount or pitting depth of the steel material, and in the step of forming the sulfuric acid-added granular porous material, the sulfuric acid is in an amount of 0.01 to 100 mg per 1 g of the granular porous material. A corrosion test method for a corrosion resistant steel for holding a coal ship and a combined coal and ore ship.
前記粒状の多孔質物質は、活性炭であることを特徴とする請求項1に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。   The corrosion test method for a corrosion resistant steel for holding a coal ship and a coal / ore combined ship according to claim 1, wherein the granular porous material is activated carbon. 前記粒状の多孔質物質の粒径は1〜20mmの範囲であることを特徴とする請求項1または2に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。   The corrosion test method for a corrosion resistant steel for holding a coal ship and a coal / ore combined ship according to claim 1 or 2, wherein a particle diameter of the granular porous material is in a range of 1 to 20 mm. 前記硫酸添加粒状多孔質物質を載置する量が前記鋼材の単位面積あたり0.1〜5g/cmであることを特徴とする請求項1〜3のいずれか1項に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。 4. The coal ship according to claim 1, wherein an amount of the sulfuric acid-added granular porous material is 0.1 to 5 g / cm 2 per unit area of the steel material. Corrosion test method for corrosion resistant steel for holding coal and ore ships. 前記一定サイクルが1日であることを特徴とする請求項1〜4のいずれか1項に記載の石炭船および石炭・鉱石兼用船ホールド用耐食鋼の腐食試験方法。   The corrosion test method for a corrosion resistant steel for holding a coal ship and a coal / ore combined ship according to any one of claims 1 to 4, wherein the constant cycle is one day. 請求項1〜5のいずれか1項に記載の腐食試験方法を用いることを特徴とする船舶の使用寿命を予測する方法。   A method for predicting the service life of a ship, wherein the corrosion test method according to claim 1 is used.
JP2010264746A 2010-11-29 2010-11-29 Corrosion test method for corrosion resistant steel for coal ship and coal / iron ore combined ship hold and method for predicting the service life of ship using it Active JP5659732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264746A JP5659732B2 (en) 2010-11-29 2010-11-29 Corrosion test method for corrosion resistant steel for coal ship and coal / iron ore combined ship hold and method for predicting the service life of ship using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264746A JP5659732B2 (en) 2010-11-29 2010-11-29 Corrosion test method for corrosion resistant steel for coal ship and coal / iron ore combined ship hold and method for predicting the service life of ship using it

Publications (2)

Publication Number Publication Date
JP2012117812A true JP2012117812A (en) 2012-06-21
JP5659732B2 JP5659732B2 (en) 2015-01-28

Family

ID=46500841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264746A Active JP5659732B2 (en) 2010-11-29 2010-11-29 Corrosion test method for corrosion resistant steel for coal ship and coal / iron ore combined ship hold and method for predicting the service life of ship using it

Country Status (1)

Country Link
JP (1) JP5659732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131340A (en) * 2020-02-21 2021-09-09 日本製鉄株式会社 Sulfuric acid dew point corrosion testing device and sulfuric acid dew point corrosion testing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139484A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2007262555A (en) * 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
JP2009162706A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel material buried in soil
JP2010060549A (en) * 2008-08-08 2010-03-18 Sumitomo Electric Ind Ltd Corrosion testing method
JP2010122085A (en) * 2008-11-20 2010-06-03 Jfe Steel Corp Method for testing accelerated corrosion of steel material in atmospheric environment
JP4695726B2 (en) * 2009-04-09 2011-06-08 新日本製鐵株式会社 Corrosion resistance evaluation test method for the inner surface of the cargo tank on the actual ship

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139484A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2007262555A (en) * 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
JP2009162706A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel material buried in soil
JP2010060549A (en) * 2008-08-08 2010-03-18 Sumitomo Electric Ind Ltd Corrosion testing method
JP2010122085A (en) * 2008-11-20 2010-06-03 Jfe Steel Corp Method for testing accelerated corrosion of steel material in atmospheric environment
JP4695726B2 (en) * 2009-04-09 2011-06-08 新日本製鐵株式会社 Corrosion resistance evaluation test method for the inner surface of the cargo tank on the actual ship

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6011010991; 片山英樹 他: '"腐食環境模擬システムの開発 -大気腐食挙動におよぼす付着海塩粒子サイズの影響-"' 第6回超鉄鋼ワークショップ 新構造用鋼と新構造への期待 , 20020521, 200〜201頁, 独立行政法人 物質・材料研究機構 *
JPN6014016294; GARDINER C P, MELCHERS R E: 'Corrosion of mild steel by coal and iron ore.' Corros Sci Vol.44, No.12, 200212, Page.2665-2673 *
JPN6014016296; 中井達郎、他: 'バルクキャリヤ倉内肋骨の腐食実態と強度' 平成14年度ClassNK研究発表会 , 2003, 35-47, (財)日本海事協会 *
JPN6014016297; 小林佑規, 田中義久, 後藤英信, 松岡一祥: 'ばら積石炭船倉内の腐食を模擬した希硫酸環境における造船用鋼の腐食および腐食疲労' 日本造船学会論文集 No.185, 199606, Page.221-232 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131340A (en) * 2020-02-21 2021-09-09 日本製鉄株式会社 Sulfuric acid dew point corrosion testing device and sulfuric acid dew point corrosion testing method
JP7471103B2 (en) 2020-02-21 2024-04-19 日本製鉄株式会社 Sulfuric acid dew-point corrosion test device and sulfuric acid dew-point corrosion test method

Also Published As

Publication number Publication date
JP5659732B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
Mehmeti et al. Corrosion study of mild steel in aqueous sulfuric acid solution using 4-methyl-4H-1, 2, 4-Triazole-3-Thiol and 2-mercaptonicotinic acid—an experimental and theoretical study
Lu et al. Erosion–corrosion of carbon steel in simulated tailing slurries
Odio et al. Investigation of the effect of corrosion on mild steel in five different environments
JP4767887B2 (en) Corrosion test method for metallic materials for ship ballast tanks
JP5763929B2 (en) Marine steel with excellent corrosion resistance
Sanchez-Amaya et al. Monitoring the degradation of a high solids epoxy coating by means of EIS and EN
Beom et al. Comparison of influences of NaCl and CaCl2 on the corrosion of 11% and 17% Cr ferritic stainless steels during cyclic corrosion test
Aspenes et al. The influence of petroleum acids and solid surface energy on pipeline wettability in relation to hydrate deposition
JP5702683B2 (en) Corrosion-resistant steel for bulk carriers and hold of bulk carriers
JP5659732B2 (en) Corrosion test method for corrosion resistant steel for coal ship and coal / iron ore combined ship hold and method for predicting the service life of ship using it
JP2012058126A (en) Corrosion test method for crude oil tank bottom panel, and steel material and crude oil tank selected on the basis of the same
CN102388302B (en) Method for evaluation test of corrosion resistance of inner surface of upper deck cargo tank in actual ship
JP5659982B2 (en) Corrosion test method of corrosion resistant steel for coal ship and coal / ore combined ship hold and method of predicting the service life of ship using it
JP5831011B2 (en) Corrosion test method of corrosion resistant steel for cargo ship and coal ballast hold
Li et al. Research on corrosion behavior of truck body steel in chlorine-containing sulfuric acid environment
Sperandio et al. Influence of silicon on the corrosion behavior of Al–Zn–In sacrificial anode
JP6061393B2 (en) Degradation state evaluation apparatus, deterioration state evaluation method, and deterioration state evaluation program
Benzakour et al. Investigation of the effect of piperidin-1-yl-phosphonic acid on corrosion of iron in sulfuric acid
Wang et al. A review of organic corrosion inhibitors for resistance under chloride attacks in reinforced concrete: Background, Mechanisms and Evaluation methods
Savaşkan et al. Fatigue behaviour of monotectoid-based Zn–Al–Cu alloys in 3.5% NaCl and 1% HCl solutions
Lin et al. Degradation of magnesium-rich primers over AA2024-T3 during constant immersion in different solutions
Berntsen et al. Uncovering carbide on carbon steels by use of anodic galvanostatic polarization and its effect on CO2 corrosion
KR102176221B1 (en) A composition for coating of a surface, and a coating
JP4923614B2 (en) Corrosion resistant steel for ships
WO2011021714A1 (en) Corrosion evaluation test method for ballast tank on ship

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250