JP2012117093A - Transparent conductive film and substrate with transparent conductive film - Google Patents

Transparent conductive film and substrate with transparent conductive film Download PDF

Info

Publication number
JP2012117093A
JP2012117093A JP2010265776A JP2010265776A JP2012117093A JP 2012117093 A JP2012117093 A JP 2012117093A JP 2010265776 A JP2010265776 A JP 2010265776A JP 2010265776 A JP2010265776 A JP 2010265776A JP 2012117093 A JP2012117093 A JP 2012117093A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
substrate
film
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010265776A
Other languages
Japanese (ja)
Other versions
JP5680386B2 (en
Inventor
Tetsuya Yamamoto
哲也 山本
Naoki Yamamoto
直樹 山本
Hisao Makino
久雄 牧野
Akira Ujihara
彰 氏原
Takahiro Ito
孝洋 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2010265776A priority Critical patent/JP5680386B2/en
Publication of JP2012117093A publication Critical patent/JP2012117093A/en
Application granted granted Critical
Publication of JP5680386B2 publication Critical patent/JP5680386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ZnO-based transparent conductive film having a crystal structure which has practically sufficient electrical conductivity and transmittance, and a low refractive index, and can be deposited at a low temperature, and to provide a substrate with a transparent conductive film where the ZnO-based transparent conductive film is deposited on a film.SOLUTION: The transparent conductive film is composed of a zinc oxide containing at least one of aluminum and gallium in an amount within a range of 1-10 wt.% and is formed on a transparent substrate. The transparent conductive film is characterized in that transmittance in a visible light region is ≥85%, the refractive index at a wavelength of 550 nm is within a range of 1.75-1.80, and specific resistance is ≤8.0×10Ω cm.

Description

本発明は、透明導電膜及び透明導電膜付き基板に係り、特に、液晶表示素子、プラズマ発光素子等の表示装置に用いられる透明電極や太陽電池用透明電極として有用な、高導電性、高透過性を有し、低屈折率であると共に、低温域で成膜可能である透明電導膜及び透明導電膜付き基板に関する。   The present invention relates to a transparent conductive film and a substrate with a transparent conductive film, and in particular, has high conductivity and high transmittance useful as a transparent electrode used in a display device such as a liquid crystal display element and a plasma light emitting element and a transparent electrode for a solar cell. The present invention relates to a transparent conductive film and a substrate with a transparent conductive film that have a low refractive index and can be formed in a low temperature range.

透明導電膜は可視光域で高い透過率と高い導電性を併せもつものであり、液晶表示素子、プラズマ発光素子、EL(エレクトロ・ルミネッセンス)素子等の表示素子用透明電極や、太陽電池、TFT(薄膜トランジスタ)、その他各種受光素子の透明電極に利用されている。
従来、透明導電膜としてはガラス基板上に堆積した、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)、あるいは、錫をドーパントとして含む酸化インジウム(In23)、酸化亜鉛(ZnO)等が知られており、特に錫を添加した酸化インジウム(以下ITOと記載)は高導電性、即ち低抵抗の膜が容易に得られることから各種の機器に広く用いられている。
The transparent conductive film has both high transmittance and high conductivity in the visible light region. Transparent electrodes for display elements such as liquid crystal display elements, plasma light-emitting elements, EL (electroluminescence) elements, solar cells, TFTs (Thin film transistor) and other transparent electrodes of various light receiving elements.
Conventionally, as the transparent conductive film, tin oxide (SnO 2 ) containing antimony or fluorine as a dopant deposited on a glass substrate, indium oxide (In 2 O 3 ) containing tin as a dopant, zinc oxide (ZnO), or the like In particular, indium oxide to which tin is added (hereinafter referred to as ITO) is widely used in various devices because a film having high conductivity, that is, low resistance can be easily obtained.

しかしながら、ITO等の酸化インジウム系材料の場合、希少金属のインジウムが高価であること、インジウム元素が環境や人体に悪影響を与えるような毒性を有する成分を含むこと等の難点があり、近年、非インジウム系の透明導電膜材料が求められている。そして、非インジウム系の材料としては、資源として豊富に埋蔵されていて比較的に安価であり、人体にも優しい酸化亜鉛(ZnO)系材料が注目されている。   However, in the case of an indium oxide-based material such as ITO, indium rare metal is expensive, and there are difficulties such as containing a toxic component that the indium element adversely affects the environment and the human body. There is a need for indium-based transparent conductive film materials. As a non-indium-based material, zinc oxide (ZnO) -based materials that are abundantly embedded as resources, are relatively inexpensive, and are friendly to the human body are attracting attention.

ところで、上記のような透明導電膜の製法は、スパッタリング、蒸着等の物理蒸着法(ドライプロセス)と塗布による方法(ウェットプロセス)とに大別される。ドライプロセスの中でもスパッタリングによる成膜方法が、近年の技術進歩に伴い、装置の小型化、成膜工程の簡略化、及びそれに伴うコストダウンも可能であることから最も広く採用されており、ZnO系透明導電膜の成膜においても同様である。また、スパッタリングにおいては、300〜500℃程度の高温で成膜する方が膜の結晶性が向上して緻密になり、且つ性能も安定するというのが一般的な傾向であり、成膜時の基板温度を300℃以上に設定されることが多い。   By the way, the manufacturing method of the above transparent conductive films is divided roughly into physical vapor deposition methods (dry process), such as sputtering and vapor deposition, and methods by coating (wet process). Among the dry processes, the film formation method by sputtering is most widely adopted because it can reduce the size of the apparatus, simplify the film formation process, and reduce the cost associated with the recent technological progress. The same applies to the formation of the transparent conductive film. In sputtering, it is a general tendency that film formation at a high temperature of about 300 to 500 ° C. improves the crystallinity of the film and becomes dense, and also stabilizes the performance. In many cases, the substrate temperature is set to 300 ° C. or higher.

透明導電膜の特性としては、可視光領域での高透過性と高導電性(低比抵抗)が最も重要な指標であり、ZnO系透明導電膜についても、この二つをともに実用レベルとして充分な性能とするべく、技術開発が進められてきた。特に、透明導電膜が成膜された基板全体の透過性を考慮した場合、基板と透明導電膜の界面での反射を抑えるためには、膜の屈折率は基板(ガラスあるいはフィルム)の屈折率に近い方が有利である。しかし、これらの基板の屈折率は通常のZnO系透明導電膜の屈折率よりも低いため、ZnO系透明導電膜を低屈折率とすることも課題となっていた。
一方で、表示素子等において、軽量化、形状加工の容易さ、取り扱いの容易さから、透明基板をガラスから樹脂フィルムに置き換える動きが顕著である。しかし、基板としてフィルムを用いると、基板が堪えうる温度で成膜しなければならないため、200℃近辺以下の温度での成膜が要求される。
As the characteristics of the transparent conductive film, high transmittance and high conductivity (low specific resistance) in the visible light region are the most important indicators, and both of these are sufficient as practical levels for the ZnO-based transparent conductive film. Technological development has been promoted to achieve high performance. In particular, when considering the transparency of the entire substrate on which the transparent conductive film is formed, the refractive index of the film is the refractive index of the substrate (glass or film) in order to suppress reflection at the interface between the substrate and the transparent conductive film. It is advantageous to be close to. However, since the refractive index of these substrates is lower than the refractive index of a normal ZnO-based transparent conductive film, it has been a problem to make the ZnO-based transparent conductive film have a low refractive index.
On the other hand, in the display element etc., the movement which replaces a transparent substrate from glass to a resin film is remarkable from weight reduction, the ease of shape processing, and the ease of handling. However, when a film is used as the substrate, the film must be formed at a temperature that the substrate can withstand, so that the film formation at a temperature of about 200 ° C. or lower is required.

上記の問題を踏まえ、何らかの工夫を加えて、比較的低温でのスパッタ法で、高透過性と高導電性を両立させるZnO系透明導電膜を形成する技術が提案されている(例えば特許文献1,2,3参照)。   In consideration of the above problems, a technique for forming a ZnO-based transparent conductive film that achieves both high permeability and high conductivity by sputtering at a relatively low temperature has been proposed (for example, Patent Document 1). , 2, 3).

特許文献1では、150℃の成膜温度で比抵抗が10−4Ω・cm台、可視光透過率が85%以上のZnO膜を実現しているが、屈折率に関しては何も言及されていない。特許文献1では、通常のマグネトロンカソードに加えて、ターゲット面に垂直でマグネトロン磁界と逆方向の磁界を加える方法が開示されているが、この方法を実現するためには、成膜装置を変更する必要があり、製造工程が複雑となる。
特許文献2では、ZnにGaを添加したターゲットを用い、基板温度200℃において比抵抗が3.5×10−4Ω・cmの酸化亜鉛系透明導電膜積層体が得られることが開示されている。しかし、酸化亜鉛系透明導電膜積層体の可視光透過率については、基板を含めて80%以上との記載があるだけで、酸化亜鉛系透明導電膜積層体の詳細な物性値は不明である。また、特許文献1と同じく、酸化亜鉛系透明導電膜積層体の屈折率については言及されていない。
特許文献3ではZnO系透明導電膜の屈折率を制御する方法を開示しており、屈折率1.61と、通常1.8〜1.9とされる屈折率と比較して顕著に低下した低屈折率膜が開示されている。しかし、当該低屈折率膜の比抵抗、透過率に関しては記載されていない。
Patent Document 1 realizes a ZnO film having a specific resistance of about 10 −4 Ω · cm and a visible light transmittance of 85% or more at a film forming temperature of 150 ° C., but nothing is mentioned regarding the refractive index. Absent. Patent Document 1 discloses a method of applying a magnetic field perpendicular to the target surface and opposite to the magnetron magnetic field in addition to a normal magnetron cathode, but in order to realize this method, the film forming apparatus is changed. It is necessary and the manufacturing process becomes complicated.
Patent Document 2 discloses that a zinc oxide-based transparent conductive film laminate having a specific resistance of 3.5 × 10 −4 Ω · cm can be obtained at a substrate temperature of 200 ° C. using a target obtained by adding Ga to Zn. Yes. However, the visible light transmittance of the zinc oxide-based transparent conductive film laminate is only described as 80% or more including the substrate, and detailed physical property values of the zinc oxide-based transparent conductive film laminate are unknown. . Further, as in Patent Document 1, no mention is made of the refractive index of the zinc oxide-based transparent conductive film laminate.
Patent Document 3 discloses a method for controlling the refractive index of a ZnO-based transparent conductive film, which is significantly lower than the refractive index of 1.61, which is usually 1.8 to 1.9. A low refractive index film is disclosed. However, the specific resistance and transmittance of the low refractive index film are not described.

特開昭61−214306号公報JP 61-214306 A 特開2009−199986号公報JP 2009-199986 A 特開2010−43334号公報JP 2010-43334 A

透明導電膜の実用上の基準としては、比抵抗10−4Ω・cm台以下、可視光域での透過率85%以上が高導電性、高透過率の目安である。そして、透明導電膜の屈折率に関しては、基板がガラス、あるいはフィルムを用いることが一般的であることから、1.8以下が好ましい。上述のように、導電性、透過率、屈折率のいずれかにおいて、実用上の基準を満たす透明導電膜は特許文献1,2,3において開示されているものの、特許文献1,2,3において開示された透明導電膜は、導電性、透過率、屈折率のすべてにおいて、実用上の基準を満たすものではない。そしてさらに、導電性、透過率、屈折率のすべてにおいて実用上の基準を満たし、且つ低温成膜可能な透明導電膜が望まれていた。したがって、このような透明導電膜が得られていないことから、ZnO系透明導電膜が上記の特性を有するための結晶構造がどのようなものであるかについての解明も進んでいなかった。 As a practical standard of the transparent conductive film, a specific resistance of 10 −4 Ω · cm or less and a transmittance of 85% or more in the visible light region are a guideline for high conductivity and high transmittance. And about the refractive index of a transparent conductive film, since it is common to use glass or a film for a board | substrate, 1.8 or less is preferable. As described above, transparent conductive films that satisfy practical standards in any one of conductivity, transmittance, and refractive index are disclosed in Patent Documents 1, 2, and 3, but in Patent Documents 1, 2, and 3, The disclosed transparent conductive film does not satisfy practical standards in terms of conductivity, transmittance, and refractive index. Furthermore, there has been a demand for a transparent conductive film that satisfies practical standards in terms of conductivity, transmittance, and refractive index, and can be formed at a low temperature. Therefore, since such a transparent conductive film has not been obtained, the elucidation of the crystal structure for the ZnO-based transparent conductive film to have the above characteristics has not been advanced.

本発明の目的は、上記の課題を解決し、実用上十分な高導電性、高透過率、を有し、且つ通常用いられる基板の屈折率に近い低屈折率を備えたZnO系透明導電膜を提供することにある。そして、本発明の他の目的は、フィルム基板に適用可能な230℃以下の低温での成膜条件において、複雑な成膜装置及び方法を用いることなく(通常のスパッタ技術の枠内で)、実用上十分な高導電性、高透過率、を有し、且つ通常用いられる基板の屈折率に近い低屈折率を備えたZnO系透明導電膜を提供することにある。   An object of the present invention is to solve the above-mentioned problems, have a practically sufficient high conductivity and high transmittance, and a ZnO-based transparent conductive film having a low refractive index close to the refractive index of a commonly used substrate. Is to provide. Another object of the present invention is to use a film forming condition at a low temperature of 230 ° C. or lower applicable to a film substrate without using a complicated film forming apparatus and method (within a normal sputtering technique). An object of the present invention is to provide a ZnO-based transparent conductive film having high conductivity and high transmittance sufficient for practical use and having a low refractive index close to the refractive index of a commonly used substrate.

前記課題は、アルミニウム又はガリウムの少なくとも一方が1〜10wt%の範囲で含まれた酸化亜鉛からなり、透明基板上に形成された透明導電膜であって、該透明導電膜は、可視光域における透過率が85%以上であり、波長550nmにおける屈折率が1.75〜1.80の範囲にあり、比抵抗が8.0×10Ω・cm以下であること、により解決される。 The subject is a transparent conductive film made of zinc oxide containing at least one of aluminum or gallium in a range of 1 to 10 wt%, and formed on a transparent substrate, the transparent conductive film being in the visible light region. This is solved by having a transmittance of 85% or more, a refractive index in the range of 1.75 to 1.80 at a wavelength of 550 nm, and a specific resistance of 8.0 × 10 4 Ω · cm or less.

本発明のZnO系透明導電膜は、アルミニウム又はガリウムの少なくとも一方を含むターゲットを用いたスパッタリング法によって得られるものであり、導電性、透過率ともにITO膜と同等かそれ以上となっている。比抵抗は、最も大きい室温成膜の場合でも8.0×10−4Ω・cm以下であり、100〜230℃での成膜では6.0×10−4Ω・cmを下回る。この範囲の成膜温度を採用すれば、薄膜太陽電池用透明導電膜に求められるシート抵抗の大きさ、10Ω/□に対して、本発明によるZnO系透明導電膜は膜厚が600nm(nmは0.001μm)、すなわち1μm以下の膜厚で前記要求を満たすことが可能であり生産性に有利である。加えて、特に短波長側での透過率は有意に高い。また、屈折率が低いことからガラス又はフィルム基板との界面での反射が少なく、結果として透明導電膜付き基板の透過率を向上させ、表示装置用透明電極として優れた特性を有している。 The ZnO-based transparent conductive film of the present invention is obtained by a sputtering method using a target containing at least one of aluminum or gallium, and both conductivity and transmittance are equal to or higher than those of the ITO film. The specific resistance is 8.0 × 10 −4 Ω · cm or less even in the case of the largest room temperature film formation, and is less than 6.0 × 10 −4 Ω · cm in the film formation at 100 to 230 ° C. If a film forming temperature in this range is employed, the ZnO-based transparent conductive film according to the present invention has a film thickness of 600 nm (nm is equivalent to 10 Ω / □), which is required for the transparent conductive film for thin film solar cells. 0.001 μm), that is, a film thickness of 1 μm or less can satisfy the above requirement, which is advantageous for productivity. In addition, the transmittance is particularly high on the short wavelength side. Further, since the refractive index is low, there is little reflection at the interface with the glass or film substrate. As a result, the transmittance of the substrate with a transparent conductive film is improved, and it has excellent characteristics as a transparent electrode for a display device.

このとき、単位結晶格子のc軸方向の格子定数が5.23〜5.28Åの範囲にあり、a軸方向の格子定数が3.24〜3.26Åの範囲にあり、密度が5.55〜5.65g/cmの範囲にあると好ましい。
本発明のZnO系透明導電膜は、a軸方向の格子定数は従来例と同等であるのに対して、c軸方向の結晶成長が進み、c軸方向の格子定数は有意に増大している。即ち、柱の高さが高くなったより明確な柱状結晶構造を呈している。その構造に対応して密度が低くなっており、空間的には空隙部が増した構造となっている。物質の屈折率は、ローレンツ・ローレンツの式に示されるように、物質を構成する原子、あるいは分子(イオン)の原子屈折の和で決まる。ここで原子屈折とは個々の原子の分極率とその原子の単位体積当たりの個数との積で表わされる。本発明によるZnO系透明導電膜は密度が低く、前記個々の原子の単位体積当たりの個数が小さい。その結果、より小さい屈折率が得られ、これが高透過率に寄与している。空隙が多いにも係わらず、通常透明導電膜として電流が流れるa軸方向の格子定数に対しては従来例と同等であることから、導電性が低下しないという、極めて特異な結晶構造が実現されており、前記の特性を実現している。
At this time, the lattice constant in the c-axis direction of the unit crystal lattice is in the range of 5.23 to 5.28 、, the lattice constant in the a-axis direction is in the range of 3.24 to 3.26 、, and the density is 5.55. It is preferable in the range of ˜5.65 g / cm 2 .
In the ZnO-based transparent conductive film of the present invention, the lattice constant in the a-axis direction is the same as that of the conventional example, whereas the crystal growth in the c-axis direction proceeds and the lattice constant in the c-axis direction is significantly increased. . That is, a more clear columnar crystal structure with a higher column height is exhibited. Corresponding to the structure, the density is low, and the gap is increased in space. The refractive index of a substance is determined by the sum of atomic refractions of atoms or molecules (ions) constituting the substance, as shown by the Lorentz-Lorentz equation. Here, atomic refraction is represented by the product of the polarizability of each atom and the number of atoms per unit volume. The ZnO-based transparent conductive film according to the present invention has a low density and a small number of individual atoms per unit volume. As a result, a smaller refractive index is obtained, which contributes to high transmittance. In spite of the large number of voids, the lattice constant in the a-axis direction in which current normally flows as a transparent conductive film is equivalent to that of the conventional example, so that an extremely unique crystal structure in which the conductivity does not decrease is realized. The above characteristics are realized.

また、キャリア濃度が1.0×1021/cmより大きく、バンドギャップが3.93〜4.00eVの範囲にあると更に好ましい。
バンドギャップが従来技術により得られた透明導電膜のバンドギャップよりも大きく、短波長側での透過率が向上する。
Further, it is more preferable that the carrier concentration is larger than 1.0 × 10 21 / cm 3 and the band gap is in the range of 3.93 to 4.00 eV.
The band gap is larger than the band gap of the transparent conductive film obtained by the conventional technique, and the transmittance on the short wavelength side is improved.

さらにまた、成膜時の前記透明基板の温度を230℃以下として、スパッタリング法により形成されると好ましい。
このように、透明導電膜を低温で成膜できることからフィルム基板への適用が可能となる。また、液晶表示装置のカラーフィルタや半導体のPN接合上に成膜する場合にも好適である。
Furthermore, it is preferable that the transparent substrate is formed at a temperature of 230 ° C. or lower during film formation by a sputtering method.
Thus, since a transparent conductive film can be formed at a low temperature, it can be applied to a film substrate. Further, it is also suitable for forming a film on a color filter of a liquid crystal display device or a semiconductor PN junction.

前記課題は、請求項4に記載の透明導電膜が形成された透明導電膜付き基板であって、
前記透明基板は、樹脂フィルムであること、により解決される。
このように、透明導電膜は230℃以下という低温で成膜可能であることから、ガラス等と比較して耐熱温度が低いフィルム状基板に対しても成膜することができる。その結果、透明導電膜を備えた透明導電性フィルム、とすることができる。透明導電膜付き基板は、フレキシブル、且つ軽量であるため、持ち運び可能な表示装置等への応用が広がる。
The subject is a substrate with a transparent conductive film on which the transparent conductive film according to claim 4 is formed,
The transparent substrate is solved by being a resin film.
Thus, since the transparent conductive film can be formed at a low temperature of 230 ° C. or lower, it can be formed even on a film-like substrate having a lower heat-resistant temperature than glass or the like. As a result, it can be set as the transparent conductive film provided with the transparent conductive film. Since a substrate with a transparent conductive film is flexible and lightweight, its application to portable display devices and the like is widened.

本発明のZnO系透明導電膜は、膜自体として実用上十分な高導電性、高透過率、を有しており、また低屈折率を備えていることから、基板界面での反射が少なくなり、電気抵抗の小さい透明導電膜付き基板を得ることができる。このように、導電性、透過率、屈折率においてすべて実用上の基準値を満たす透明導電膜を作成可能であるため、液晶表示素子、プラズマ発光素子等の表示装置用透明電極あるいは太陽電池用透明電極として用いれば、それらの性能を顕著に向上させることができる。
更に、実用上十分な高導電性、高透過率、低屈折率を備えると共に、低温で成膜可能であることから、耐熱性の低いフィルム上にもZnO系透明導電膜を成膜することができるため、透明導電性フィルムを提供することができる。
The ZnO-based transparent conductive film of the present invention has practically sufficient high conductivity and high transmittance as the film itself, and has a low refractive index, so that reflection at the substrate interface is reduced. A substrate with a transparent conductive film having a low electrical resistance can be obtained. Thus, since it is possible to create a transparent conductive film that satisfies practical standard values in terms of conductivity, transmittance, and refractive index, transparent electrodes for display devices such as liquid crystal display elements and plasma light emitting elements, or transparent for solar cells If used as electrodes, their performance can be significantly improved.
Furthermore, since it has practically sufficient high conductivity, high transmittance, low refractive index and can be formed at a low temperature, it is possible to form a ZnO-based transparent conductive film on a film having low heat resistance. Therefore, a transparent conductive film can be provided.

本発明の透明導電膜の比抵抗を示すグラフ図である。It is a graph which shows the specific resistance of the transparent conductive film of this invention. 本発明の透明導電膜の分光特性(透過率)を示すグラフ図である。It is a graph which shows the spectral characteristic (transmittance) of the transparent conductive film of this invention. 本発明の透明導電膜の屈折率を示すグラフ図である。It is a graph which shows the refractive index of the transparent conductive film of this invention. 本発明の透明導電膜のc軸格子定数を示すグラフ図である。It is a graph which shows the c-axis lattice constant of the transparent conductive film of this invention. 本発明の透明導電膜のa軸格子定数を示すグラフ図である。It is a graph which shows the a-axis lattice constant of the transparent conductive film of this invention. 本発明の透明導電膜の密度を示すグラフ図である。It is a graph which shows the density of the transparent conductive film of this invention. 本発明の透明導電膜の単位格子の体積を示すグラフ図である。It is a graph which shows the volume of the unit cell of the transparent conductive film of this invention. 本発明の透明導電膜のキャリア濃度を示すグラフ図である。It is a graph which shows the carrier concentration of the transparent conductive film of this invention. 本発明の透明導電膜の移動度を示すグラフ図である。It is a graph which shows the mobility of the transparent conductive film of this invention. 本発明の透明導電膜のバンドギャップを示すグラフ図である。It is a graph which shows the band gap of the transparent conductive film of this invention. 本発明の透明導電膜の波長380nmにおける消衰係数を示すグラフ図である。It is a graph which shows the extinction coefficient in wavelength 380nm of the transparent conductive film of this invention. 本発明の透明導電膜の波長400nmにおける消衰係数を示すグラフ図である。It is a graph which shows the extinction coefficient in wavelength 400nm of the transparent conductive film of this invention. 本発明の透明導電膜を発光体基板の透明電極とした場合の透過率シミュレーションである。It is the transmittance | permeability simulation at the time of using the transparent conductive film of this invention as the transparent electrode of a light-emitting body board | substrate.

本発明の実施形態に係る透明導電膜を図面に基づいて説明する。なお、以下に説明する材料、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。   The transparent conductive film which concerns on embodiment of this invention is demonstrated based on drawing. The materials, arrangements, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

図1乃至図12は本発明の二つの実施形態の透明導電膜に関して、特性および結晶構造の成膜温度による挙動を従来例との比較で示したものである。図1乃至図13は、本発明の実施形態に係る透明導電膜に関するもので、図1は比抵抗を示すグラフ図、図2は分光特性(透過率)を示すグラフ図、図3は屈折率を示すグラフ図、図4はc軸格子定数を示すグラフ図、図5はa軸格子定数を示すグラフ図、図6は密度を示すグラフ図、図7は単位格子の体積を示すグラフ図、図8はキャリア濃度を示すグラフ図、図9は移動度を示すグラフ図、図10はバンドギャップを示すグラフ図、図11は波長380nmにおける消衰係数を示すグラフ図、図12は波長400nmにおける消衰係数を示すグラフ図、図13は本発明の透明導電膜を発光体基板の透明電極とした場合の透過率シミュレーションである。   FIG. 1 to FIG. 12 show the behavior of the characteristics and crystal structure of the transparent conductive film according to the two embodiments of the present invention depending on the film formation temperature in comparison with the conventional example. 1 to 13 relate to a transparent conductive film according to an embodiment of the present invention. FIG. 1 is a graph showing specific resistance, FIG. 2 is a graph showing spectral characteristics (transmittance), and FIG. 3 is a refractive index. FIG. 4 is a graph showing the c-axis lattice constant, FIG. 5 is a graph showing the a-axis lattice constant, FIG. 6 is a graph showing the density, and FIG. 7 is a graph showing the volume of the unit cell. 8 is a graph showing the carrier concentration, FIG. 9 is a graph showing the mobility, FIG. 10 is a graph showing the band gap, FIG. 11 is a graph showing the extinction coefficient at a wavelength of 380 nm, and FIG. 12 is at a wavelength of 400 nm. FIG. 13 is a graph showing the extinction coefficient, and FIG. 13 is a transmittance simulation when the transparent conductive film of the present invention is used as a transparent electrode of a light emitter substrate.

[実施形態1]
本発明の透明導電膜は、ガラス基板上にスパッタ法により作成される。成膜条件の詳細は以下の通りである。
ガラス基板として、コーニング社製、品番1737、寸法が10cm×10cm×厚み1.1mmのものを用いた。成膜前に、超音波を加えたアルカリ洗浄、純水洗浄を行い、その後乾燥させた。
スパッタリングターゲットには、ZnOにガリウム(Ga)をGa換算で5.7wt%含む、Ga添加ZnO(GZOと称される)のターゲット(AGGセラミックス社製)を用い、マグネトロンスパッタ装置によって成膜した。なお、ガリウムの含有比率はこれに限定されるものではなく、透明導電膜中に1〜10wt%の範囲で含まれていればよい。また、ガリウムでなく、アルミニウムが添加されたZnOとしてもよい。膜厚は150nmとした。
成膜前真空度が7×10−6Torrになるまでターボ分子ポンプにより排気し、ArとHの混合ガスを1mTorr導入してスパッタリングを実施した。このときのArとH混合比は95:5とした。
スパッタリングは、直流(DC)電源に周波数13.65MHzの高周波(RF)を重畳させた電源で行った。それぞれの電力の比は、1kW:1kWとした。成膜時の基板温度をシースヒータ出力の調整により制御し、230℃以下、すなわち、室温(約20℃)、100℃、150℃、180℃、200℃、230℃、の6条件で成膜した。得られたサンプルを、成膜時の基板温度の低い方から順に実施例(a)1〜(a)6とした。
[Embodiment 1]
The transparent conductive film of the present invention is formed on a glass substrate by a sputtering method. Details of the film forming conditions are as follows.
As the glass substrate, a product manufactured by Corning Corporation, product number 1737, dimensions 10 cm × 10 cm × thickness 1.1 mm was used. Prior to film formation, ultrasonic cleaning with pure water and pure water cleaning were performed, followed by drying.
As the sputtering target, a Ga-added ZnO (called GZO) target (AGG Ceramics) containing 5.7 wt% of gallium (Ga) in terms of Ga 2 O 3 in ZnO is used, and is formed by a magnetron sputtering apparatus. Filmed. The content ratio of gallium is not limited to this, and it may be contained in the range of 1 to 10 wt% in the transparent conductive film. Alternatively, ZnO to which aluminum is added instead of gallium may be used. The film thickness was 150 nm.
Evacuation was performed by a turbo molecular pump until the degree of vacuum before film formation reached 7 × 10 −6 Torr, and sputtering was performed by introducing a mixed gas of Ar and H 2 into 1 mTorr. At this time, the mixing ratio of Ar and H 2 was 95: 5.
Sputtering was performed with a power source in which a high frequency (RF) with a frequency of 13.65 MHz was superimposed on a direct current (DC) power source. The ratio of each power was 1 kW: 1 kW. The substrate temperature at the time of film formation was controlled by adjusting the sheath heater output, and film formation was performed under six conditions of 230 ° C. or lower, that is, room temperature (about 20 ° C.), 100 ° C., 150 ° C., 180 ° C., 200 ° C., 230 ° C. . The obtained sample was made into Examples (a) 1 to (a) 6 in order from the lowest substrate temperature during film formation.

[実施形態2]
スパッタガスをArのみとし、他は実施形態1と同一の条件で基板温度150℃、230℃の2条件で得られたサンプルを実施例(b)1、(b)2とした。
[Embodiment 2]
Samples obtained under two conditions of substrate temperatures of 150 ° C. and 230 ° C. under the same conditions as in Embodiment 1 except that the sputtering gas was Ar were used as Examples (b) 1 and (b) 2.

[比較例]
従来技術に係わる比較例として、スパッタ電源;DC、スパッタガス;Arとし、温度を、室温(約20℃)、100℃、150℃、180℃、200℃、230℃、の6条件で成膜したサンプルを比較例1〜6とした。
[Comparative example]
As a comparative example related to the prior art, sputtering power source: DC, sputtering gas: Ar, and film formation under six conditions of room temperature (about 20 ° C.), 100 ° C., 150 ° C., 180 ° C., 200 ° C., 230 ° C. These samples were referred to as Comparative Examples 1-6.

実施例、及び比較例の成膜条件の一覧を表1に示す。   Table 1 shows a list of film forming conditions for the examples and comparative examples.

Figure 2012117093
Figure 2012117093

本発明の実施形態1、2に係る実施例(a),(b)と、それに対する従来技術による比較例について、図表を参照して詳細に説明する。
図1は成膜温度(成膜時の基板温度)を横軸、比抵抗を縦軸とし、比抵抗の挙動を示している。なお、比抵抗は抵抗率計で測定した。
実施例(a),(b)(実施形態1,2)では、低温側で比抵抗が上昇する傾向はあるものの、比較例とは有意な差があり、実施例(a),(b)は比較例と比較して、比抵抗が小さくなることが示された。実施例(a)では、室温(20℃)成膜でもITO膜と同等の10−4Ω・cm台を実現している。より詳細には、比抵抗が8.0×10−4Ω・cm以下であり、表示装置等のデバイスに組み立てたとき、消費電力の少ない機器とすることができる。
図2には、150℃で成膜した実施例(a)3と比較例3のガラス基板上での分光特性の比較を示した。実施例(a)3において特に短波長側で透過率が向上していることが分かる。より詳細には、可視光域(430nm〜850nm)において、透過率が85%以下である。この領域で透過率に差があると、表示装置において、人間の視感度との関係から、透過率の差以上に明るさが顕著に感じられる。
Examples (a) and (b) according to Embodiments 1 and 2 of the present invention and comparative examples according to the related art will be described in detail with reference to the drawings.
FIG. 1 shows the behavior of specific resistance with the film formation temperature (substrate temperature during film formation) as the horizontal axis and the specific resistance as the vertical axis. The specific resistance was measured with a resistivity meter.
In Examples (a) and (b) (Embodiments 1 and 2), although the specific resistance tends to increase on the low temperature side, there is a significant difference from Comparative Examples, and Examples (a) and (b) It was shown that the specific resistance is smaller than that of the comparative example. In Example (a), even at room temperature (20 ° C.) film formation, the 10 −4 Ω · cm level equivalent to the ITO film is realized. More specifically, the specific resistance is 8.0 × 10 −4 Ω · cm or less, and when assembled into a device such as a display device, the device can consume less power.
FIG. 2 shows a comparison of spectral characteristics on the glass substrates of Example (a) 3 and Comparative Example 3 formed at 150 ° C. In Example (a) 3, it can be seen that the transmittance is improved particularly on the short wavelength side. More specifically, the transmittance is 85% or less in the visible light region (430 nm to 850 nm). If there is a difference in transmittance in this region, the brightness of the display device is more noticeable than the difference in transmittance due to the relationship with human visibility.

図3には、実施例(a),(b)及び比較例の透明導電膜に関し、分光エリプソメータにより求めた波長550nmにおける屈折率の成膜温度による挙動を示す。屈折率は成膜温度が低くなると上昇する傾向があるが、実施例(a),(b)ではその傾向が小さく、室温成膜の比較例では屈折率が1.9まで上昇するのに対して、実施例(a)では1.8以下を保っており、より詳細には、1.75〜1.80の範囲である。透明基板に用いられるガラス、フィルムの屈折率は一般的に1.5〜1.6の範囲にあるが、実施例(a)の透明導電膜は、基板の屈折率との差が小さいことで界面での反射が抑えられ、透明導電膜付き基板としての透過率を向上させることができる。   FIG. 3 shows the behavior of the refractive index at a wavelength of 550 nm determined by a spectroscopic ellipsometer depending on the film forming temperature for the transparent conductive films of Examples (a) and (b) and the comparative example. Although the refractive index tends to increase as the film forming temperature decreases, the tendency is small in Examples (a) and (b), whereas the refractive index increases to 1.9 in the comparative example of room temperature film formation. In Example (a), 1.8 or less is maintained, and more specifically, the range is from 1.75 to 1.80. The refractive index of the glass and film used for the transparent substrate is generally in the range of 1.5 to 1.6, but the transparent conductive film of Example (a) has a small difference from the refractive index of the substrate. Reflection at the interface is suppressed, and the transmittance as a substrate with a transparent conductive film can be improved.

図4、図5にはそれぞれ、X線回折装置(XRD)での測定結果から求めた、結晶のc軸、a軸の格子定数を、成膜時の基板温度を横軸にして示したグラフ図である。本発明のZnO系透明導電膜は、c軸方向に顕著に結晶が成長し、特に成膜温度の低温域で比較例との差が大きい。一方、a軸方向の格子定数は比較例と同等である。
図6に密度、図7に単位格子の体積を同様のグラフで示した。本発明のZnO系透明導電膜は、c軸方向に優先的に結晶成長する結果として、柱状で結晶内に間隙が多い構造となり、単位格子の体積は大きくなる。その結果、密度は比較例よりも小さくなる。一般に、間隙が多く密度が小さい結晶の場合、通常は導電性が低下する、即ち比抵抗が上昇すること多いが、後述のように、本発明の実施例において、比抵抗は従来技術による比較例よりも低下している。即ち、若干間隙の多い構造でありながら、導電性が向上するという、特異な結晶構造を有しているといえる。
このとき、図4、図5において示されるように、単位結晶格子のc軸方向の格子定数は5.23〜5.28Åであり、a軸方向の格子定数が3.24〜3.26Åである。そして、図6に示されるように、密度は5.55〜5.65g/cmである。a軸及びc軸の格子定数と密度が前記の範囲にあることが、後述するように、電気的、光学的特性に寄与していると考えられる。
4 and 5 are graphs showing the lattice constants of the c-axis and a-axis of the crystal obtained from the measurement results with an X-ray diffractometer (XRD), with the substrate temperature during film formation as the horizontal axis. FIG. In the ZnO-based transparent conductive film of the present invention, crystals grow remarkably in the c-axis direction, and the difference from the comparative example is large particularly in the low temperature region of the film formation temperature. On the other hand, the lattice constant in the a-axis direction is equivalent to the comparative example.
The density is shown in FIG. 6, and the volume of the unit cell is shown in the same graph in FIG. As a result of preferential crystal growth in the c-axis direction, the ZnO-based transparent conductive film of the present invention has a columnar structure with many gaps in the crystal, and the unit cell volume increases. As a result, the density is smaller than that of the comparative example. In general, in the case of a crystal having a large gap and a low density, the conductivity usually decreases, that is, the specific resistance increases. However, as described later, in the examples of the present invention, the specific resistance is a comparative example according to the prior art. Is lower than. That is, it can be said that it has a unique crystal structure in which the conductivity is improved while the structure has a little gap.
At this time, as shown in FIGS. 4 and 5, the lattice constant of the unit crystal lattice in the c-axis direction is 5.23 to 5.28 、, and the lattice constant in the a-axis direction is 3.24 to 3.26 Å. is there. And as FIG. 6 shows, a density is 5.55-5.65 g / cm < 3 >. The fact that the a-axis and c-axis lattice constants and densities are in the above ranges is considered to contribute to electrical and optical characteristics, as will be described later.

図8にはキャリア濃度、図9には移動度についての比較を示した。これらはホール効果測定法により測定した。本発明の実施例(a)のキャリア濃度は、低温域で若干減少する動きはあるが、成膜温度による変化はそれほど大きくない。一方、比較例では、キャリア濃度が低温側で大きく減少している。そして、図9より、本発明の実施例(a),(b)に関し、移動度は従来例よりも若干低下していることが示されているが、図8より、キャリア濃度の向上(より詳細には、キャリア濃度が1.0×1021cm−3よりも大きい)により従来技術による比較例に優る高導電性(低比抵抗)を実現していると考えられる。 FIG. 8 shows a comparison of carrier concentration, and FIG. 9 shows a comparison of mobility. These were measured by the Hall effect measurement method. The carrier concentration in Example (a) of the present invention has a tendency to slightly decrease in the low temperature range, but the change due to the film forming temperature is not so large. On the other hand, in the comparative example, the carrier concentration is greatly reduced on the low temperature side. FIG. 9 shows that the mobility is slightly lower than that of the conventional example with respect to the embodiments (a) and (b) of the present invention. In detail, it is considered that the carrier concentration is higher than 1.0 × 10 21 cm −3 ), thereby realizing high conductivity (low specific resistance) superior to the comparative example according to the prior art.

図10には成膜時の基板温度と、分光透過率より算出した透明導電膜のバンドギャップとの関係を示した。バンドギャップにおいても特に低温域で実施例(a),(b)と比較例との差が大きく、成膜時の基板温度が200℃以下である時、比較例のバンドギャップは急激に低下するのに対して、実施例(a),(b)ではほぼ一定である。この差は、図2において実施例(a)3が短波長側で光の吸収が少なく、透過率が高くなっていることと対応している。このとき、具体的には、バンドギャップは3.93〜4.00eVである。   FIG. 10 shows the relationship between the substrate temperature during film formation and the band gap of the transparent conductive film calculated from the spectral transmittance. Also in the band gap, the difference between the examples (a) and (b) and the comparative example is particularly large in a low temperature range, and when the substrate temperature during film formation is 200 ° C. or lower, the band gap of the comparative example rapidly decreases. On the other hand, in Examples (a) and (b), it is almost constant. This difference corresponds to the fact that Example (a) 3 in FIG. 2 has less light absorption and higher transmittance on the short wavelength side. At this time, specifically, the band gap is 3.93 to 4.00 eV.

図11、図12は、それぞれ波長380nm、400nmにおける、分光エリプソメータで求めた消衰係数を示すグラフ図である。比較例のデータにバラツキが見られるが、実施例(a),(b)は比較例に対して有意に小さな値であり、その差は380nmの方が顕著である。この消衰係数の差も短波長側で透過率が高いことの一因となっている。   11 and 12 are graphs showing extinction coefficients obtained by a spectroscopic ellipsometer at wavelengths of 380 nm and 400 nm, respectively. Although there is variation in the data of the comparative example, Examples (a) and (b) are significantly smaller values than the comparative example, and the difference is more remarkable at 380 nm. This difference in extinction coefficient also contributes to the high transmittance on the short wavelength side.

図13は、実施例(a)3と比較例3に関して、図2の分光特性をベースにして、有機EL素子を形成した場合を想定した透過率をシミュレーションした結果である。本シミュレーションでは、ガラス基板、ZnO系透明導電膜、有機発光層の3層を積層した構造とし、有機発光層の屈折率を1.7と設定している。実施例(a)3では、屈折率が低いことによる効果として透過率が向上しており、350〜700nmでの透過率平均では、2.6%程度、特に、350〜550nm(可視域に於ける短波長域)の透過率平均では、15.5%向上している。このことにより、表示装置(有機EL素子、液晶素子等)においては、短波長域での透過率向上に伴う青色の輝度が増加し、全体的に明るく、且つ、きれいな白色表示が可能となる。   FIG. 13 is a result of simulating the transmittance of Example (a) 3 and Comparative Example 3 on the assumption that an organic EL element is formed based on the spectral characteristics of FIG. In this simulation, a structure in which three layers of a glass substrate, a ZnO-based transparent conductive film, and an organic light emitting layer are stacked is used, and the refractive index of the organic light emitting layer is set to 1.7. In Example (a) 3, the transmittance is improved as an effect due to the low refractive index, and the average transmittance at 350 to 700 nm is about 2.6%, particularly 350 to 550 nm (in the visible region). In the short wavelength region), the average transmittance is improved by 15.5%. As a result, in the display device (organic EL element, liquid crystal element, etc.), the luminance of blue accompanying an increase in transmittance in the short wavelength region increases, and a bright and clear white display is possible as a whole.

Claims (5)

アルミニウム又はガリウムの少なくとも一方が1〜10wt%の範囲で含まれた酸化亜鉛からなり、透明基板上に形成された透明導電膜であって、
該透明導電膜は、
可視光域における透過率が85%以上であり、
波長550nmにおける屈折率が1.75〜1.80の範囲にあり、
比抵抗が8.0×10−4Ω・cm以下であることを特徴とする透明導電膜。
A transparent conductive film made of zinc oxide containing at least one of aluminum and gallium in a range of 1 to 10 wt%, formed on a transparent substrate,
The transparent conductive film
The transmittance in the visible light region is 85% or more,
The refractive index at a wavelength of 550 nm is in the range of 1.75 to 1.80,
A transparent conductive film having a specific resistance of 8.0 × 10 −4 Ω · cm or less.
単位結晶格子のc軸方向の格子定数が5.23〜5.28Åの範囲にあり、
a軸方向の格子定数が3.24〜3.26Åの範囲にあり、
密度が5.55〜5.65g/cmの範囲にあることを特徴とする請求項1記載の透明導電膜。
The lattice constant in the c-axis direction of the unit crystal lattice is in the range of 5.23-5.28Å,
The lattice constant in the a-axis direction is in the range of 3.24 to 3.26 mm,
The transparent conductive film according to claim 1, wherein the density is in the range of 5.55 to 5.65 g / cm 3 .
キャリア濃度が1.0×1021/cmより大きく、
バンドギャップが3.93〜4.00eVの範囲にあることを特徴とする請求項2記載の透明導電膜。
The carrier concentration is greater than 1.0 × 10 21 / cm 3 ;
The transparent conductive film according to claim 2, wherein the band gap is in the range of 3.93 to 4.00 eV.
成膜時の前記透明基板の温度を230℃以下として、スパッタリング法により形成されることを特徴とする請求項1〜3のいずれか一項記載の透明導電膜。   The transparent conductive film according to claim 1, wherein the transparent conductive film is formed by a sputtering method with a temperature of the transparent substrate during film formation being 230 ° C. or lower. 請求項4に記載の透明導電膜が形成された透明導電膜付き基板であって、
前記透明基板は、樹脂フィルムであることを特徴とする透明導電膜付き基板。
A substrate with a transparent conductive film on which the transparent conductive film according to claim 4 is formed,
The substrate with a transparent conductive film, wherein the transparent substrate is a resin film.
JP2010265776A 2010-11-29 2010-11-29 Transparent conductive film and substrate with transparent conductive film Active JP5680386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265776A JP5680386B2 (en) 2010-11-29 2010-11-29 Transparent conductive film and substrate with transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265776A JP5680386B2 (en) 2010-11-29 2010-11-29 Transparent conductive film and substrate with transparent conductive film

Publications (2)

Publication Number Publication Date
JP2012117093A true JP2012117093A (en) 2012-06-21
JP5680386B2 JP5680386B2 (en) 2015-03-04

Family

ID=46500284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265776A Active JP5680386B2 (en) 2010-11-29 2010-11-29 Transparent conductive film and substrate with transparent conductive film

Country Status (1)

Country Link
JP (1) JP5680386B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
JP2010043334A (en) * 2008-08-15 2010-02-25 Ulvac Japan Ltd Film deposition method for antireflection film, antireflection film, and film deposition apparatus
JPWO2008146693A1 (en) * 2007-05-23 2010-08-19 独立行政法人産業技術総合研究所 Oxide transparent conductive film, and photoelectric conversion element and photodetection element using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
JPWO2008146693A1 (en) * 2007-05-23 2010-08-19 独立行政法人産業技術総合研究所 Oxide transparent conductive film, and photoelectric conversion element and photodetection element using the same
JP2010043334A (en) * 2008-08-15 2010-02-25 Ulvac Japan Ltd Film deposition method for antireflection film, antireflection film, and film deposition apparatus

Also Published As

Publication number Publication date
JP5680386B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
El Hajj et al. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
JP4537434B2 (en) Zinc oxide thin film, transparent conductive film using the same, and display element
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
KR101321554B1 (en) An oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it
WO2010021106A1 (en) Semiconductor device, method for manufacturing semiconductor device, transistor substrate, light emitting device and display device
Bissig et al. Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering
WO2007058232A1 (en) Semiconductor thin film and method for manufacturing same, and thin film transistor
Zhu et al. Thickness study of AZO films by RF sputtering in Ar+ H2 atmosphere at room temperature
Zhang et al. Highly transparent conductive F-doped ZnO films in wide range of visible and near infrared wavelength deposited on polycarbonate substrates
Sato et al. Structural, electrical, and optical properties of transparent conductive In2O3–SnO2 films
Yamamoto et al. Ga‐doped zinc oxide: An attractive potential substitute for ITO, large‐area coating, and control of electrical and optical properties on glass and polymer substrates
Rezaie et al. Quality enhancement of AZO thin films at various thicknesses by introducing ITO buffer layer
Yu et al. The effect of ITO films thickness on the properties of flexible organic light emitting diode
Ri et al. The effect of SiO2 buffer layer on the electrical and structural properties of Al-doped ZnO films deposited on soda lime glasses
Wang et al. ITO films with different preferred orientations prepared by DC magnetron sputtering
Lim et al. Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes
Tabassum et al. Sol–gel and rf sputtered AZO thin films: analysis of oxidation kinetics in harsh environment
JP4687374B2 (en) Transparent conductive film and transparent conductive substrate containing the same
JP5680386B2 (en) Transparent conductive film and substrate with transparent conductive film
KR102164629B1 (en) Composite transparent electrodes
Shigesato In Based TCOs
JP5695221B2 (en) Sintered body and amorphous film
Ashraf et al. Characterization of ternary MgxZn1− xO thin films deposited by electron beam evaporation
Luo et al. Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments
KR20090101571A (en) Boron-doped zinc oxide based transparent conducting film and manufacturing method of thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250