JP2012117088A - Fine particle and method for production thereof - Google Patents

Fine particle and method for production thereof Download PDF

Info

Publication number
JP2012117088A
JP2012117088A JP2010265386A JP2010265386A JP2012117088A JP 2012117088 A JP2012117088 A JP 2012117088A JP 2010265386 A JP2010265386 A JP 2010265386A JP 2010265386 A JP2010265386 A JP 2010265386A JP 2012117088 A JP2012117088 A JP 2012117088A
Authority
JP
Japan
Prior art keywords
fine particles
wire
nickel
internal electrode
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010265386A
Other languages
Japanese (ja)
Inventor
Masasuke Takada
雅介 高田
Tomoichiro Okamoto
智一郎 岡元
Yuichiro Kuroki
雄一郎 黒木
Ikuhisa Tada
育久 多田
Ryuji Fujisawa
竜二 藤澤
Atsushi Hitomi
篤志 人見
Daisuke Iwanaga
大介 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
TDK Corp
Original Assignee
Nagaoka University of Technology NUC
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC, TDK Corp filed Critical Nagaoka University of Technology NUC
Priority to JP2010265386A priority Critical patent/JP2012117088A/en
Publication of JP2012117088A publication Critical patent/JP2012117088A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide fine particles having a shape of single crystal-like cube or cuboid and excellent in sintering resistance, to provide electronic components using the fine particles as an internal electrode, and to provide a method for efficient production of the fine particles.SOLUTION: The fine particle is 1-200 nm on a side, has the shape of substantially cube or cuboid, and is composed of nickel and/or nickel oxide.

Description

本発明は、微粒子と、その微粒子を内部電極層に有する電子部品と、微粒子の製造方法に関する。   The present invention relates to fine particles, an electronic component having the fine particles in an internal electrode layer, and a method for producing the fine particles.

たとえばセラミックコンデンサなどの積層電子部品においては、内部電極層としてニッケル粒子(Ni粒子)が用いられており、電子部品の小型化および薄層化と共に、Ni粒子の微細化が求められている。   For example, in a multilayer electronic component such as a ceramic capacitor, nickel particles (Ni particles) are used as an internal electrode layer, and miniaturization of Ni particles is required as electronic components are reduced in size and thickness.

ニッケル微粒子粉の製造方法としては液相合成法と気相合成法とに大別される。液相合成法としては主として液相還元法が挙げられ、これは水酸化ニッケルを水溶液中で還元させることによりNi微粒子を合成する手法である(例えば特許文献1参照)。   The production method of the nickel fine particle powder is roughly classified into a liquid phase synthesis method and a gas phase synthesis method. The liquid phase synthesis method mainly includes a liquid phase reduction method, which is a method of synthesizing Ni fine particles by reducing nickel hydroxide in an aqueous solution (see, for example, Patent Document 1).

また、気相合成法は化学気相蒸着法と物理気相蒸着法の二つが確立されており、化学気相蒸着法は気体原料を用い、減圧真空下で熱、プラズマ若しくは光により化学反応を促進し、Ni微粒子を合成する手法である(例えば特許文献2参照)。さらに、物理気相蒸着法は、イオンビーム若しくはアーク放電加熱等により原料固体ターゲットを真空中で蒸発させNi微粒子を得る手法である。   In addition, chemical vapor deposition methods and physical vapor deposition methods have been established as vapor phase synthesis methods. Chemical vapor deposition methods use gaseous raw materials and perform chemical reactions by heat, plasma, or light under reduced pressure and vacuum. This is a technique for promoting and synthesizing Ni fine particles (for example, see Patent Document 2). Further, the physical vapor deposition method is a method of obtaining Ni fine particles by evaporating a raw material solid target in vacuum by an ion beam or arc discharge heating.

上述した液相合成法では20〜100nm程度の球状Ni超微粒子を比較的に粒度分布よく得られるが、Ni粒子中の結晶子サイズが小さく、現在の薄層多層化が進んでいるMLCCの分野で利用されるNi粒子としては、過焼結の観点から主流となっていない。   In the liquid phase synthesis method described above, spherical Ni ultrafine particles of about 20 to 100 nm can be obtained with a relatively good particle size distribution, but the crystallite size in the Ni particles is small, and the current MLCC field is progressing in thin-layer multilayering. Ni particles used in No. 1 are not mainstream from the viewpoint of oversintering.

一方で、現在主流となっている気相合成法は、化学気相蒸着法・物理気相蒸着法共々、Ni粒子中の結晶子サイズが大きい球状Ni粒子が得られるが、粒度分布が悪く分級工程が必要となり、現状100nm以下のNi超微粉の合成は難しい。また、熱プラズマ化学気相蒸着法においては、Ni粒子中の結晶子サイズが大きく100nm以下の球状Ni微粒子を得ることができるが、大量生産には不向きである。   On the other hand, the current mainstream vapor phase synthesis method, both chemical vapor deposition method and physical vapor deposition method, can obtain spherical Ni particles with large crystallite size in Ni particles, but classification is poor due to poor particle size distribution. A process is required, and it is difficult to synthesize Ni ultrafine powder of 100 nm or less at present. Further, in the thermal plasma chemical vapor deposition method, spherical Ni fine particles having a large crystallite size in Ni particles and 100 nm or less can be obtained, but are not suitable for mass production.

また、超薄層電極構造のMLCCにおいては、焼成前電極乾燥塗膜中にNi粒子が高密度に充填していることが望ましいが、上記方法で作製される球状Ni粉では最密充填構造をとったとしてもNi粉の充填率は約74%程度にしかならない。このことより、結晶性の高いNi超微粒子を得られたとしても、焼成時にNi粒子が過焼結し、MLCCの内部電極として十分な機能を発揮しない。   In addition, in the MLCC having an ultra-thin layer electrode structure, it is desirable that Ni particles are packed in the electrode dry coating film before firing at high density, but the spherical Ni powder produced by the above method has a close-packed structure. Even if it takes, the filling rate of Ni powder will be only about 74%. For this reason, even if Ni ultrafine particles with high crystallinity are obtained, Ni particles are oversintered during firing and do not exhibit a sufficient function as an internal electrode of MLCC.

特開2001−203121号公報JP 2001-203121 A 特開2005−248198号公報JP-A-2005-248198

本発明は、このような実状に鑑みてなされ、その目的は、耐焼結性に優れ、単結晶ライクな立方体または直方体の形状を有する微粒子と、その微粒子を内部電極層として用いた電子部品と、その微粒子を効率的に製造するための製造方法を提供することである。   The present invention has been made in view of such a situation, and the object thereof is excellent in sintering resistance, fine particles having a single crystal-like cubic or cuboid shape, and an electronic component using the fine particles as an internal electrode layer, It is to provide a production method for efficiently producing the fine particles.

上記目的を達成するために、本発明に係る微粒子は、一辺が1〜200nmであり実質的に立方体または直方体の形状を有し、ニッケルおよび/またはニッケル酸化物で構成してある微粒子である。   In order to achieve the above object, the fine particles according to the present invention are fine particles having a side of 1 to 200 nm, a substantially cubic or rectangular parallelepiped shape, and composed of nickel and / or nickel oxide.

本発明に係る微粒子では、実質的に立方体または直方体の形状を有し、ニッケルおよび/またはニッケル酸化物で構成してある超微粒子であるため、焼成前電極乾燥塗膜中に、これらの微粒子を密に充填することが容易になる。そのため、焼成時に微粒子が過焼結することを抑制することが可能であり、電極途切れが少ない超薄層電極構造の電子部品を実現することが容易になる。   Since the fine particles according to the present invention are ultrafine particles having a substantially cubic or rectangular parallelepiped shape and composed of nickel and / or nickel oxide, these fine particles are included in the electrode dry coating film before firing. It becomes easy to pack densely. Therefore, it is possible to suppress the oversintering of the fine particles during firing, and it becomes easy to realize an electronic component having an ultrathin layer electrode structure with few electrode breaks.

本発明に係る微粒子の製造方法は、
ニッケル金属で構成してあるワイヤに電流を流し、前記ワイヤの近くで、前記ワイヤから飛散して得られる前記微粒子を捕集することを特徴とする。
The method for producing fine particles according to the present invention includes:
An electric current is applied to a wire made of nickel metal, and the fine particles obtained by scattering from the wire are collected near the wire.

本発明に係る微粒子の製造方法によれば、上述した超微粒子を容易且つ多量に低コストで製造することができる。   According to the method for producing fine particles according to the present invention, the above-described ultrafine particles can be produced easily and in large quantities at low cost.

好ましくは、前記微粒子を捕集し、さらに還元処理する。還元処理を行うことで、捕集された微粒子の内、ニッケル酸化物から成る超微粒子を、ニッケルから成る導電性の超微粒子に還元することができる。   Preferably, the fine particles are collected and further reduced. By performing the reduction treatment, the ultrafine particles made of nickel oxide among the collected fine particles can be reduced to conductive ultrafine particles made of nickel.

好ましくは、前記微粒子の捕集は、ガラス製の捕集板により行う。   Preferably, the collection of the fine particles is performed by a glass collecting plate.

本発明に係る電子部品は、
上記に記載の微粒子を含む内部電極層と、
前記内部電極層に挟まれる絶縁層と、を有する。
The electronic component according to the present invention is
An internal electrode layer containing the fine particles described above;
And an insulating layer sandwiched between the internal electrode layers.

あるいは、本発明に係る電子部品は、
上記に記載の微粒子を含む内部電極層と、
前記内部電極層に挟まれる半導体層と、を有する。
Alternatively, the electronic component according to the present invention is
An internal electrode layer containing the fine particles described above;
And a semiconductor layer sandwiched between the internal electrode layers.

図1は本発明の一実施形態に係るNi微粒子を製造するための製造装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a production apparatus for producing Ni fine particles according to an embodiment of the present invention. 図2は本発明の実施例に係るNi微粒子の透過電子顕微鏡写真である。FIG. 2 is a transmission electron micrograph of Ni fine particles according to an example of the present invention. 図3は本発明の実施例に係るNi微粒子の粒度分布を示すグラフである。FIG. 3 is a graph showing the particle size distribution of Ni fine particles according to an example of the present invention. 図4は本発明の他の実施例に係るNi微粒子の粒度分布を示すグラフである。FIG. 4 is a graph showing the particle size distribution of Ni fine particles according to another embodiment of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。
まず、図1に基づき、本発明の一実施形態に係る微粒子を製造するための微粒子製造装置2について説明する。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
First, based on FIG. 1, the microparticle manufacturing apparatus 2 for manufacturing microparticles according to an embodiment of the present invention will be described.

図1に示すように、この微粒子製造装置2は、チャンバ4を有する。チャンバ4の内部には、ワイヤ6が配置してある。ワイヤ6の両端には、電源8が接続してあり、電圧が印加されるようになっている。電源8は、チャンバ4の外部に配置することが一般的であるが、チャンバ4の内部に配置しても良い。   As shown in FIG. 1, the fine particle manufacturing apparatus 2 has a chamber 4. A wire 6 is arranged inside the chamber 4. A power source 8 is connected to both ends of the wire 6 so that a voltage is applied. The power source 8 is generally disposed outside the chamber 4, but may be disposed inside the chamber 4.

チャンバ4の内部には、ワイヤ6の近くで、ワイヤ6の上方位置には、捕集板10が配置してある。ワイヤ6と捕集板10との距離は、特に限定されないが、好ましくは、1〜500mm、さらに好ましくは5〜10mmである。これらの距離範囲にあるときに、後述するニッケル微粒子を得やすくなる。これらの距離が近すぎると、補修板が熱のために変形する傾向にあり、遠すぎると、補修効率がさがる傾向にある。
捕集板10は、たとえばセラミックス(ガラス、多結晶、単結晶)、金属(ステンレス、銅など)、耐熱樹脂(フッ素樹脂(例えばテフロン(登録商標))、ポリイミドなど)で構成してあることが好ましい。また、捕集板10には、捕集板10を所定温度に冷却するための冷却手段、あるいは捕集板10を所定温度に加熱するためのヒータが具備してあっても良い。
Inside the chamber 4, a collecting plate 10 is disposed near the wire 6 and above the wire 6. Although the distance of the wire 6 and the collection board 10 is not specifically limited, Preferably, it is 1-500 mm, More preferably, it is 5-10 mm. When in these distance ranges, it becomes easy to obtain nickel fine particles to be described later. If these distances are too close, the repair plate tends to deform due to heat, and if they are too far, the repair efficiency tends to decrease.
The collection plate 10 may be made of, for example, ceramics (glass, polycrystal, single crystal), metal (stainless steel, copper, etc.), heat resistant resin (fluorine resin (eg, Teflon (registered trademark)), polyimide, etc.). preferable. Further, the collecting plate 10 may include a cooling means for cooling the collecting plate 10 to a predetermined temperature, or a heater for heating the collecting plate 10 to a predetermined temperature.

ワイヤ6の線径は、特に限定されないが、好ましくは0.02〜2.00mm、さらに好ましくは0.45〜0.70mmである。ワイヤの線径が、この範囲にあるときに、後述するニッケル微粒子を得やすくなる。ワイヤの線径が小さすぎると、単位電流あたりの製造量が減少する傾向にあり、線径が大きすぎると、酸化反応が十分に進まなくなる傾向にある。
ワイヤ6の横断面形状は、特に限定されず、たとえば円形、三角、四角、多角、楕円などが例示され、好ましくは円形である。ワイヤ6の長さは、好ましくは35mmである。ワイヤ6は、Ni、ニクロム、ニッケルを含む合金、ニッケルを含むセラミックスで構成してあり、好ましくはNiで構成してある。
Although the wire diameter of the wire 6 is not specifically limited, Preferably it is 0.02-2.00 mm, More preferably, it is 0.45-0.70 mm. When the wire diameter is in this range, nickel fine particles described later can be easily obtained. If the wire diameter is too small, the production amount per unit current tends to decrease. If the wire diameter is too large, the oxidation reaction tends not to proceed sufficiently.
The cross-sectional shape of the wire 6 is not particularly limited, and examples thereof include a circle, a triangle, a square, a polygon, an ellipse, and the like, and preferably a circle. The length of the wire 6 is preferably 35 mm. The wire 6 is made of Ni, nichrome, an alloy containing nickel, or a ceramic containing nickel, and is preferably made of Ni.

電源8によりワイヤ6の両端に印加される電圧は、好ましくはパルス状電圧、あるいは直流または交流電圧であり、1回当たりの通電時間が好ましくは1〜600秒、さらに好ましくは10〜300秒である。この時の電圧の値は、2.2〜4.0Vが好ましく、さらに好ましくは2.2〜3.0である。電圧が小さすぎると断線し難くなり、ニッケル微粒子が得られなくなる。電圧が高すぎると粒度分布が広がる傾向にある。ワイヤ6の両端に印加される電圧を制御することにより粒子径を制御することが可能になる。ワイヤ6の横断面における単位面積当たりの電流密度は、たとえば10〜1000A/mmとなる。 The voltage applied to both ends of the wire 6 by the power source 8 is preferably a pulse voltage, or a direct current or an alternating voltage, and the energization time per time is preferably 1 to 600 seconds, more preferably 10 to 300 seconds. is there. The value of the voltage at this time is preferably 2.2 to 4.0 V, and more preferably 2.2 to 3.0. If the voltage is too small, disconnection is difficult and nickel fine particles cannot be obtained. If the voltage is too high, the particle size distribution tends to spread. The particle diameter can be controlled by controlling the voltage applied to both ends of the wire 6. The current density per unit area in the cross section of the wire 6 is, for example, 10 to 1000 A / mm 2 .

チャンバ4には、ガス入り口12とガス出口14とが形成してあり、チャンバ4の内部を、所定の雰囲気下にしてある。チャンバ4の内部を充填するガスとしては、酸素、酸素と窒素または不活性ガスとの混合ガスが好ましい。チャンバ4の内部圧力は、好ましくは1〜10Pa、さらに好ましくは10〜10Paである。雰囲気ガス中の酸素ガスの濃度は、好ましくは25%以上、さらに好ましくは99.5%以上である。 A gas inlet 12 and a gas outlet 14 are formed in the chamber 4, and the inside of the chamber 4 is under a predetermined atmosphere. As the gas filling the inside of the chamber 4, oxygen or a mixed gas of oxygen and nitrogen or an inert gas is preferable. The internal pressure of the chamber 4 is preferably 1 to 10 6 Pa, more preferably 10 4 to 10 5 Pa. The concentration of oxygen gas in the atmospheric gas is preferably 25% or more, more preferably 99.5% or more.

本実施形態に係る装置2によれば、捕集板10におけるワイヤ6に向けての表面に、図2に示すような微粒子が付着する。この微粒子は、実質的に立方体または直方体の形状(以下、立方体形状とも総称する)を有し、ニッケルおよび/またはニッケル酸化物で構成してある微粒子である。この微粒子の一辺は、好ましくは1〜200nm、さらに好ましくは4〜100nmである。微粒子の一辺とは、立方体または直方体の微粒子の辺の内、最大の大きさの辺を意味し、微粒子の一辺が大きすぎると、コンデンサの内部電極厚みが大きくなりコンデンサが小型化できず好ましくない。一辺の大きさが小さすぎる1nm以下の微粒は、分散しにくく製造が困難である。   According to the apparatus 2 according to the present embodiment, fine particles as shown in FIG. 2 adhere to the surface of the collection plate 10 toward the wire 6. The fine particles are substantially fine particles having a cubic or rectangular parallelepiped shape (hereinafter also collectively referred to as a cubic shape) and made of nickel and / or nickel oxide. One side of the fine particles is preferably 1 to 200 nm, more preferably 4 to 100 nm. The side of the fine particles means the side of the largest size among the sides of the cubic or rectangular parallelepiped fine particles. If one side of the fine particles is too large, the internal electrode thickness of the capacitor is increased, and the capacitor cannot be reduced in size. . Fine particles of 1 nm or less whose side size is too small are difficult to disperse and difficult to manufacture.

ワイヤ6を通電することにより、このような超微粒子が捕集板10に堆積する理由は、たとえば以下のように説明することができる。   The reason why such ultrafine particles are deposited on the collecting plate 10 by energizing the wire 6 can be explained as follows, for example.

酸化雰囲気中で線材が加熱されることにより線材表面に酸化皮膜が形成される。線材が高温となり、ニッケルの融点に達しても酸化皮膜の融点は更に高い為に、断線せず、通電が維持される。更に高温になり断線が起きると、線材内部の融液が露出し、そこからニッケルまたは酸化ニッケルの気相が噴出する。その気相が、捕集板に達するまでの間に急激に冷却されることにより、立方体に近い形状のナノ結晶が支配的に成長したものと考えられる。   By heating the wire in an oxidizing atmosphere, an oxide film is formed on the surface of the wire. Even when the temperature of the wire becomes high and the melting point of nickel is reached, the melting point of the oxide film is still higher, so that the electric current is maintained without disconnection. When the wire breakage occurs at a higher temperature, the melt inside the wire is exposed, and a vapor phase of nickel or nickel oxide is ejected therefrom. It is thought that nanocrystals having a shape close to a cube grew predominantly by rapidly cooling the gas phase until reaching the collecting plate.

なお、捕集板10の表面に付着しているニッケルおよび/またはニッケル酸化物で構成してある微粒子の還元処理を行っても良い。   In addition, you may perform the reduction process of the microparticles | fine-particles comprised with the nickel and / or nickel oxide adhering to the surface of the collection board 10. FIG.

このようにして得られたニッケル粒子は、たとえば積層セラミックコンデンサの内部電極層を形成するための導電性ペーストとして用いられる。本実施形態のニッケル粒子を含む導電性ペーストを、支持フィルム上に直接、あるいは誘電体グリーンシートの表面に印刷して電極パターン印刷膜を形成した後、電極パターン印刷膜の乾燥前、あるいは乾燥中に、印刷膜に対して磁場を印加することが好ましい。   The nickel particles thus obtained are used as a conductive paste for forming an internal electrode layer of a multilayer ceramic capacitor, for example. After the conductive paste containing nickel particles of the present embodiment is printed directly on the support film or on the surface of the dielectric green sheet to form the electrode pattern printed film, before the electrode pattern printed film is dried or during drying In addition, it is preferable to apply a magnetic field to the printed film.

印刷膜に磁場を印加することで、印刷膜に含まれる立方体形状のニッケル微粒子が印刷膜中で磁場により配列させられ、より高密度のニッケル微粒子から成る焼成前電極乾燥塗膜が得られる。   By applying a magnetic field to the printed film, the cubic nickel fine particles contained in the printed film are arranged in the printed film by the magnetic field, and a pre-fired electrode dry coating film composed of higher density nickel fine particles is obtained.

本実施形態に係る微粒子は、実質的に立方体または直方体の形状を有する超微粒子であるため、焼成前電極乾燥塗膜中に、これらの微粒子を密に充填することが容易になる。MLCCの小型化、大容量化には内部電極層の厚みは薄ければ薄いほど良いが、この厚みは原料となるニッケル粒子の粒径と形状に強く依存する。
たとえば、球状粒子を最密充填しても充填率は約74%程度であるため、粒径と同程度の厚みを有する電極層を作製した場合には、焼結の過程で過焼結による電極切れが起こり、MLCC内部電極として十分な機能を発揮しない。これに対して本実験形態にかかる微粒子である立方体もしくは直方体のニッケル微粒子を用いれば、充填率を100%近くにできることから、過焼結が起こり難く、粒径と同程度の一様な厚さを有する内部電極層の作製が可能となる。そのため、焼成時に微粒子が過焼結することを抑制することが可能であり、電極途切れが少ない超薄層電極構造の積層セラミックコンデンサを実現することが容易になる。
Since the fine particles according to the present embodiment are ultra-fine particles having a substantially cubic or rectangular parallelepiped shape, it is easy to densely fill these fine particles in the dry electrode film before firing. To reduce the size and increase the capacity of MLCC, the thinner the internal electrode layer, the better. However, this thickness strongly depends on the particle size and shape of the nickel particles used as a raw material.
For example, even if the spherical particles are packed most closely, the filling rate is about 74%. Therefore, when an electrode layer having a thickness similar to the particle size is produced, an electrode formed by oversintering in the sintering process is used. Cutting occurs, and the MLCC internal electrode does not function sufficiently. On the other hand, if cubic or cuboidal nickel fine particles, which are fine particles according to the present experimental form, are used, the filling rate can be made close to 100%, so that oversintering hardly occurs, and a uniform thickness comparable to the particle size. It is possible to produce an internal electrode layer having Therefore, it is possible to suppress oversintering of fine particles during firing, and it becomes easy to realize a multilayer ceramic capacitor having an ultrathin layer electrode structure with few electrode interruptions.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

たとえば、本発明に係る微粒子を含む導電性ペーストを用いて形成される内部電極層により挟まれる絶縁層は、誘電体層に限らず、その他の絶縁層でも良く、あるいはバリスタ層などの半導体層であっても良い。   For example, the insulating layer sandwiched between the internal electrode layers formed using the conductive paste containing fine particles according to the present invention is not limited to the dielectric layer, and may be other insulating layers, or a semiconductor layer such as a varistor layer. There may be.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
実施例1
Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.
Example 1

図1に示すチャンバ4の内部に収容するワイヤ6としては、断面外径が0.5mmで、長さ35mmの純ニッケル製のワイヤを用いた。ワイヤ6の両端には、電源8を接続した。   As the wire 6 accommodated inside the chamber 4 shown in FIG. 1, a pure nickel wire having a cross-sectional outer diameter of 0.5 mm and a length of 35 mm was used. A power source 8 was connected to both ends of the wire 6.

チャンバ4の内部には、ワイヤ6から最短距離で7.5mm離れて捕集板10を配置した。捕集板10は、ガラス製の厚さ0.7mmの板であった。チャンバ4の内部には、純度99.5%以上の酸素ガスを流した。チャンバ4の内部圧力は、10Paであった。 Inside the chamber 4, a collecting plate 10 was disposed at a distance of 7.5 mm at the shortest distance from the wire 6. The collection plate 10 was a glass plate having a thickness of 0.7 mm. Inside the chamber 4, oxygen gas having a purity of 99.5% or more was flowed. The internal pressure of the chamber 4 was 10 5 Pa.

電源8からワイヤ6の両端に印加される電圧は、直流電圧2.2Vであり、1回当たりの通電時間が140秒であった。この間、ワイヤ6の横断面における単位面積当たりの電流密度は、通電開始直後は354.8A/mm2 であり、その後減少し、断線直前は66.3A/mm2 であった。 The voltage applied to both ends of the wire 6 from the power source 8 was a DC voltage of 2.2 V, and the energization time per time was 140 seconds. During this time, the current density per unit area in the cross section of the wire 6 was 354.8 A / mm 2 immediately after the start of energization, and thereafter decreased, and 66.3 A / mm 2 immediately before the disconnection.

ワイヤ6への通電に際して、ワイヤ6の全体が赤熱し、表面が変形したことが観察された。ワイヤの断線時に端部が丸まり、煙が観察された。捕集板10を目視にて観察すると、捕集板10には白い堆積物が観察された。この堆積物を、
透過型電子顕微鏡で撮影したところ、図2に示すような画像が得られた。一辺が1〜15nmであり実質的に立方体または直方体の形状を有する微粒子が得られることが確認できた。この微粒子を、X線回折法により分析したところ、ニッケルとニッケル酸化物のピークが観察された。得られた微粒子粉の粒度分布を、透過型電子顕微鏡観察から求めたところ、図3に示すようにシャープであることが確認できた。
When the wire 6 was energized, it was observed that the entire wire 6 was red hot and the surface was deformed. When the wire was disconnected, the ends were rounded and smoke was observed. When the collection plate 10 was visually observed, white deposits were observed on the collection plate 10. This deposit
When taken with a transmission electron microscope, an image as shown in FIG. 2 was obtained. It was confirmed that fine particles having a side of 1 to 15 nm and a substantially cubic or cuboid shape were obtained. When the fine particles were analyzed by X-ray diffraction, peaks of nickel and nickel oxide were observed. When the particle size distribution of the obtained fine particle powder was determined by observation with a transmission electron microscope, it was confirmed that the particle size was sharp as shown in FIG.

また、前述のようにして得られた微粒子を、250℃の水素雰囲気中で30分間熱処理したところ、ニッケルが立方体形状を維持したまま面で結合していることを確認した。このことから、過焼結を抑制した導電性の高い膜が得られることがわかった。
実施例2
Further, when the fine particles obtained as described above were heat-treated in a hydrogen atmosphere at 250 ° C. for 30 minutes, it was confirmed that nickel was bonded on the surface while maintaining the cubic shape. From this, it was found that a highly conductive film with suppressed oversintering can be obtained.
Example 2

電源8からワイヤ6の両端に印加される電圧を2.6〜3.0Vと変化させ、1回当たりの通電時間が2〜60秒であった以外は、実施例1と同様にして、ワイヤ6に通電を行った。微粒子粉の粒度分布を、透過電子顕微鏡観察から求めたところ、図4に示すように、2〜20nmの粒子径であった。印加電圧の上昇に伴い、粒度分布は広がり、頻度がピークとなる粒子径は大きくなることが確認された。このことから、印加電圧の変更によって、微粒子の粒径を制御できることが分かった。
比較例1
In the same manner as in Example 1 except that the voltage applied to both ends of the wire 6 from the power source 8 was changed to 2.6 to 3.0 V and the energization time per one time was 2 to 60 seconds. 6 was energized. When the particle size distribution of the fine particle powder was determined by observation with a transmission electron microscope, the particle size was 2 to 20 nm as shown in FIG. It was confirmed that as the applied voltage increased, the particle size distribution expanded, and the particle size at which the frequency peaked increased. From this, it was found that the particle size of the fine particles can be controlled by changing the applied voltage.
Comparative Example 1

チャンバ4の内部に流すガスをアルゴンガスとした以外は、実施例1と同様にして、ワイヤ6に通電を行った。通電に際して、赤熱時や断線時にも煙は観察されなかった。捕集板10を透過型電子顕微鏡で撮影したが、微粒子は確認されなかった。
比較例2
The wire 6 was energized in the same manner as in Example 1 except that argon gas was used as the gas flowing into the chamber 4. During energization, no smoke was observed even when red hot or disconnected. The collection plate 10 was photographed with a transmission electron microscope, but fine particles were not confirmed.
Comparative Example 2

チャンバ4の内部に流すガスを空気とした以外は、実施例1と同様にして、ワイヤ6に通電を行った。通電に際して、ワイヤ6全体が赤熱し、ワイヤの表面が変形することが観察され、火花も観察された。捕集板10を光学顕微鏡で撮影したところ、直径が100〜500μmの球状の微粒子が確認された。   The wire 6 was energized in the same manner as in Example 1 except that the gas flowing inside the chamber 4 was air. Upon energization, it was observed that the entire wire 6 was red-hot, the surface of the wire was deformed, and sparks were also observed. When the collection plate 10 was photographed with an optical microscope, spherical fine particles having a diameter of 100 to 500 μm were confirmed.

2… 微粒子製造装置
4… チャンバ
6… ワイヤ
8… 電源
10… 捕集板
2 ... Fine particle production apparatus 4 ... Chamber 6 ... Wire 8 ... Power supply 10 ... Collection plate

Claims (6)

一辺が1〜200nmであり実質的に立方体または直方体の形状を有し、ニッケルおよび/またはニッケル酸化物で構成してある微粒子。   Fine particles having a side of 1 to 200 nm, a substantially cubic or rectangular parallelepiped shape, and composed of nickel and / or nickel oxide. 請求項1に記載の微粒子を含む内部電極層と、
前記内部電極層に挟まれる絶縁層と、を有する電子部品。
An internal electrode layer comprising the fine particles according to claim 1;
And an insulating layer sandwiched between the internal electrode layers.
請求項1に記載の微粒子を含む内部電極層と、
前記内部電極層に挟まれる半導体層と、を有する電子部品。
An internal electrode layer comprising the fine particles according to claim 1;
And an electronic component having a semiconductor layer sandwiched between the internal electrode layers.
請求項1に記載の微粒子を製造する方法であって、
ニッケルで構成してあるワイヤに電流を流し、前記ワイヤの近くで、前記ワイヤから飛散して得られる前記微粒子を捕集することを特徴とする微粒子の製造方法。
A method for producing the fine particles according to claim 1,
A method for producing fine particles, wherein an electric current is passed through a wire made of nickel, and the fine particles obtained by scattering from the wire are collected near the wire.
前記微粒子を捕集し、さらに還元処理することを特徴とする請求項4に記載の微粒子の製造方法。   The method for producing fine particles according to claim 4, wherein the fine particles are collected and further subjected to a reduction treatment. 前記微粒子の捕集は、ガラス製の捕集板により行うことを特徴とする請求項4に記載の微粒子の製造方法。   The method for producing fine particles according to claim 4, wherein the collection of the fine particles is performed by a glass collecting plate.
JP2010265386A 2010-11-29 2010-11-29 Fine particle and method for production thereof Withdrawn JP2012117088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265386A JP2012117088A (en) 2010-11-29 2010-11-29 Fine particle and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265386A JP2012117088A (en) 2010-11-29 2010-11-29 Fine particle and method for production thereof

Publications (1)

Publication Number Publication Date
JP2012117088A true JP2012117088A (en) 2012-06-21

Family

ID=46500279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265386A Withdrawn JP2012117088A (en) 2010-11-29 2010-11-29 Fine particle and method for production thereof

Country Status (1)

Country Link
JP (1) JP2012117088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828432B1 (en) * 2016-09-01 2018-02-13 한국생산기술연구원 Method for controlling shape of metal powder by surface energy controlling and metal powder by the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828432B1 (en) * 2016-09-01 2018-02-13 한국생산기술연구원 Method for controlling shape of metal powder by surface energy controlling and metal powder by the same method

Similar Documents

Publication Publication Date Title
CA2570216C (en) Nickel powder and production method therefor
TWI580800B (en) Copper powder
TWI517914B (en) Nickel powder and its manufacturing method
TWI584891B (en) A metal powder coated with carbon, a conductive paste containing a metal powder coated with carbon, and a method for producing a metal powder coated with a metal powder and a metal powder coated with the same
KR102589697B1 (en) nickel powder
TWI548752B (en) Nickel alloys for hydrogen storage and the generation of energy therefrom
KR20160142842A (en) Nickel powder
CN104837580B (en) Nickel by powder, conductive paste and monolithic ceramic electronic component
US20150000469A1 (en) Method for manufacturing metal nanopowder by wire-explosion and apparatus for manufacturing the same
WO2017056741A1 (en) Nickel powder and nickel paste
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
TWI599659B (en) Nickel alloy powder and method for producing the same
JP6425367B1 (en) Nickel powder and nickel paste
JP5669280B2 (en) Oxide hollow particles, production method thereof, and oxide hollow particle production apparatus
JP2012117088A (en) Fine particle and method for production thereof
JP3798994B2 (en) Metal powder, method for producing the same, and conductive paste containing the metal powder
JP7194544B2 (en) Particle manufacturing method
JP2010120786A (en) Oxide hollow particles, production method thereof and apparatus for manufacturing oxide hollow particles
JP2008095183A (en) Oxide-coated copper fine particle and method for producing the same
CN107428529B (en) Ozone gas generation device and method for manufacturing ozone gas generation device
JP2002294311A (en) Method for producing metal grain powder
RU2530070C1 (en) METHOD FOR SYNTHESIS OF HOLLOW NANOPARTICLES OF γ-Al2O3
JP5084674B2 (en) Discharge electrode member and ozone generator using the same
KR20140148158A (en) Method for forming nano paticle and nano particle forming device
JP5255311B2 (en) Method for producing fine particles

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204