JP2012116821A - Paclitaxel derivative - Google Patents

Paclitaxel derivative Download PDF

Info

Publication number
JP2012116821A
JP2012116821A JP2010270797A JP2010270797A JP2012116821A JP 2012116821 A JP2012116821 A JP 2012116821A JP 2010270797 A JP2010270797 A JP 2010270797A JP 2010270797 A JP2010270797 A JP 2010270797A JP 2012116821 A JP2012116821 A JP 2012116821A
Authority
JP
Japan
Prior art keywords
group
paclitaxel
derivative
mmol
paclitaxel derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010270797A
Other languages
Japanese (ja)
Inventor
Hisao Nemoto
尚夫 根本
Koichiro Tsuchiya
浩一郎 土屋
Ayato Katagiri
彩人 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Original Assignee
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC filed Critical University of Tokushima NUC
Priority to JP2010270797A priority Critical patent/JP2012116821A/en
Publication of JP2012116821A publication Critical patent/JP2012116821A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paclitaxel derivative which not only exhibits high water solubility but also retains an outstanding anti-cancer activity, and to provide a medicine formed of the paclitaxel derivative and an anticancer agent including the paclitaxel derivative.SOLUTION: The paclitaxel derivative is represented by general formula (I) (in formula, X represents a linker group, Y represents a bonding group for bonding 2pieces of glycerol derivative group to X, and n represents an integer of 1 or more).

Description

本発明は、パクリタキセル誘導体、当該パクリタキセル誘導体からなる医薬、および当該パクリタキセル誘導体を含む抗がん剤に関するものである。   The present invention relates to a paclitaxel derivative, a pharmaceutical comprising the paclitaxel derivative, and an anticancer agent containing the paclitaxel derivative.

我国における死亡原因として、明治から昭和初期にかけて多かった結核や肺炎などの感染症が第二次世界大戦後に急速に減少し、代わって心疾患や脳血管疾患などの生活習慣病が上位を占めるようになった。さらに、がんは1981年から死因の第1位となり、2007年におけるがんによる死亡者数は33万6468人、人口10万人に対する死亡者数は266.9人であり、総死亡の30.4%を占めている。部位別のがんによる死亡数は、1位:肺、2位:胃、3位:肝臓、4位:結腸、5位:脾臓となっている。   As a cause of death in Japan, infections such as tuberculosis and pneumonia that frequently occurred from the Meiji period to the early Showa era decreased rapidly after the Second World War, and lifestyle-related diseases such as heart disease and cerebrovascular disease seem to occupy the top place. Became. Furthermore, cancer has become the leading cause of death since 1981, and the number of deaths due to cancer in 2007 was 336,468, with 266.9 deaths for a population of 100,000. It accounts for 4%. The number of cancer deaths by region is 1st: lung, 2nd: stomach, 3rd: liver, 4th: colon, 5th: spleen.

これらのうち、肺癌の罹患率と死亡率は、共に40歳代後半から増加し始め、高齢ほど高くなる。また、肺癌の罹患率と死亡率には大きな差がなく、このことは、肺癌患者の生存率が低いことを示している。肺癌は、非小細胞肺癌と小細胞肺癌の2つの型に大きく分類され、非小細胞肺癌は、さらに腺癌、扁平上皮癌、大細胞癌などに分類される。腺癌は、我国で最も発生頻度が高く、男性の肺癌の40%、女性の肺癌の70%以上を占めている。次に多い扁平上皮癌は、男性の肺癌の40%、女性の肺癌の15%を占めている。大細胞癌は、一般に増殖が速く、肺癌と診断された時には既に進行している場合が多い。これらの非小細胞肺癌に対する化学療法としては、シスプラチンと他の抗がん剤との併用が強く勧められている。シスプラチンと併用して用いられる抗がん剤としては、パクリタキセル、塩酸イリノテカン、ビノレルビン、ゲムシタビン、ドセタキセルなどを挙げることができる。   Among these, the morbidity and mortality of lung cancer both begin to increase in the late 40s and become higher as the age increases. In addition, there is no significant difference between the morbidity and mortality of lung cancer, which indicates that the survival rate of lung cancer patients is low. Lung cancer is roughly classified into two types, non-small cell lung cancer and small cell lung cancer, and non-small cell lung cancer is further classified into adenocarcinoma, squamous cell carcinoma, large cell carcinoma and the like. Adenocarcinoma occurs most frequently in Japan, accounting for 40% of male lung cancer and more than 70% of female lung cancer. The next most squamous cell carcinoma accounts for 40% of male lung cancer and 15% of female lung cancer. Large cell carcinoma is generally fast growing and often already progresses when diagnosed with lung cancer. As chemotherapy for these non-small cell lung cancers, the combination of cisplatin and other anticancer agents is strongly recommended. Examples of the anticancer agent used in combination with cisplatin include paclitaxel, irinotecan hydrochloride, vinorelbine, gemcitabine, docetaxel and the like.

パクリタキセルは微小管重合促進作用を有する代表的な抗がん剤であり、1993年の発売以来、卵巣癌、乳癌、胃癌、子宮体癌、頭頸癌、カポジ肉腫、そして非小細胞肺癌など、様々な腫瘍に対して用いられてきた。   Paclitaxel is a typical anticancer agent that has a microtubule polymerization-promoting action. Since its launch in 1993, paclitaxel has various ovarian cancer, breast cancer, stomach cancer, endometrial cancer, head and neck cancer, Kaposi sarcoma, and non-small cell lung cancer. Has been used for various tumors.

しかし、パクリタキセルの欠点としては、水に対して難溶性であることが挙げられる。その結果、製剤化の過程で、可溶化のためにポリオキシエチレンヒマシ油のような界面活性剤やエタノールなどを用いざるを得ないが、これらが過敏症や痛みの発生を引き起こすという問題がある。特にポリオキシエチレンヒマシ油はアナフィラキシーショックを誘発するとの報告もあるため、ステロイド薬であるリン酸デキサメタゾンナトリウムや抗アレルギー薬である塩酸ジフェンヒドラミンなどの併用が指示されている。しかし、これら薬剤による副作用も懸念される。   However, a drawback of paclitaxel is that it is sparingly soluble in water. As a result, in the formulation process, surfactants such as polyoxyethylene castor oil and ethanol must be used for solubilization, but these cause problems of hypersensitivity and pain. . In particular, polyoxyethylene castor oil has been reported to induce anaphylactic shock, and it has been instructed to use steroid drug dexamethasone sodium phosphate and antiallergic drug diphenhydramine hydrochloride. However, side effects caused by these drugs are also a concern.

そこで、パクリタキセルの水溶性を向上させるための技術が求められていた。例えば非特許文献1には、親水性であるポリエチレングリコール(PEG)を含む外殻でパクリタキセルをコーティングした高分子ミセル化製剤が開示されている。また、非特許文献2には、ポリビニルアルコール(PVA)によりパクリタキセルを修飾した例が記載されている。   Therefore, a technique for improving the water solubility of paclitaxel has been demanded. For example, Non-Patent Document 1 discloses a polymer micelle preparation in which paclitaxel is coated with an outer shell containing a hydrophilic polyethylene glycol (PEG). Non-Patent Document 2 describes an example in which paclitaxel is modified with polyvinyl alcohol (PVA).

しかし、PEGなどの高分子キャリアーを用いたDDS製剤では、抗がん活性や免疫原性が変化すると共に、エンドサイトーシスによるパクリタキセルの細胞への取り込みが制限されるという問題がある。また、PVAなどの高分子でパクリタキセルを修飾すると、活性部位への作用が阻害されて活性が著しく低下したり、PVAの分子量がパクリタキセルの数倍から数十倍に及ぶために同量のパクリタキセルを作用させるには投与量が極端に増大するといった問題がある。   However, a DDS preparation using a polymer carrier such as PEG has problems that the anticancer activity and immunogenicity are changed, and uptake of paclitaxel into cells by endocytosis is limited. In addition, when paclitaxel is modified with a polymer such as PVA, the activity on the active site is inhibited and the activity is remarkably reduced, or the molecular weight of PVA ranges from several times to several tens of times that of paclitaxel. In order to make it act, there exists a problem that a dosage increases extremely.

ところで本発明者らは、化合物の水溶性を有効に向上させるグリセロール誘導体基を開発している(特許文献1〜3)。   By the way, the present inventors have developed a glycerol derivative group that effectively improves the water solubility of a compound (Patent Documents 1 to 3).

国際公開第2004/029018号パンフレットInternational Publication No. 2004/029018 Pamphlet 国際公開第2005/023844号パンフレットInternational Publication No. 2005/023844 Pamphlet 国際公開第2008/093655号パンフレットInternational Publication No. 2008/093655 Pamphlet

Yong Woo Choら,Journal of Controlled Release,97,pp.249-257(2004)Yong Woo Cho et al., Journal of Controlled Release, 97, pp.249-257 (2004) Atsufumi KAKINOKIら,Biol.Pharm.Bull.,31(5),pp.963-969(2008)Atsufumi KAKINOKI et al., Biol. Pharm. Bull. , 31 (5), pp.963-969 (2008)

上述したように、パクリタキセルの水溶性を向上させる技術が切望されていた状況下、本発明者らは、パクリタキセルの誘導体を種々合成した。その結果、同じ置換基を導入する場合であっても、その置換位置により水溶性に差が生じるのみならず、抗がん活性自体も相違することが実験的に明らかとなった。   As described above, the present inventors have synthesized various derivatives of paclitaxel under the circumstances that the technology for improving the water solubility of paclitaxel has been desired. As a result, even when the same substituent was introduced, it was experimentally clarified that not only the water solubility differs depending on the substitution position, but also the anticancer activity itself differs.

そこで本発明が解決すべき課題は、高い水溶性を示すのみならず、優れた抗がん活性が維持されているパクリタキセル誘導体と、当該パクリタキセル誘導体からなる医薬および当該パクリタキセル誘導体を含む抗がん剤を提供することにある。   Thus, the problem to be solved by the present invention is that paclitaxel derivatives not only exhibit high water solubility but also maintain excellent anticancer activity, a medicament comprising the paclitaxel derivative, and an anticancer agent comprising the paclitaxel derivative Is to provide.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、3位のアミノ基にグリセロール誘導体基を導入したパクリタキセル誘導体は、他の誘導体に比べて特に水溶性が高いのみならず、優れた抗がん活性を有することを見出して、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it was found that paclitaxel derivatives in which a glycerol derivative group was introduced into the amino group at the 3-position were not only highly water-soluble compared to other derivatives, but also had excellent anticancer activity. completed.

本発明に係るパクリタキセル誘導体は、下記一般式(I)で表されるものであることを特徴とする。   The paclitaxel derivative according to the present invention is represented by the following general formula (I).

[式中
Xは、C1-6アルキレン基;アミノ基(−NH−等)、エーテル基(−O−)、チオエーテル基(−S−)、カルボニル基(>C=O)、チオニル基(>C=S)、エステル基(−C(=O)O−または−OC(=O)−)、アミド基(−C(=O)NH−または−NHC(=O)−)、ウレア基(−NHC(=O)NH−)およびチオウレア基(−NHC(=S)NH−)からなる群から選択される1以上の基を内部に含むC2-6アルキレン基;アミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される1の基を一方の末端に有するC1-6アルキレン基;または、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される2の基を両末端に有するC1-6アルキレン基を示し;
Yは、2n-1個のグリセロール誘導体基をXに結合させるための結合基を示し;
nは1以上の整数を示す]
[Wherein X is a C 1-6 alkylene group; amino group (—NH— etc.), ether group (—O—), thioether group (—S—), carbonyl group (> C═O), thionyl group ( > C = S), ester group (—C (═O) O— or —OC (═O) —), amide group (—C (═O) NH— or —NHC (═O) —), urea group A C 2-6 alkylene group containing one or more groups selected from the group consisting of (—NHC (═O) NH—) and a thiourea group (—NHC (═S) NH—); an amino group, an ether group , A thioether group, a carbonyl group, a thionyl group, an ester group, an amide group, a urea group, and a C 1-6 alkylene group having one group selected from the group consisting of a thiourea group at one end; or a carbonyl group, thionyl Group, ester group, amide group, urea group and thiourea A C 1-6 alkylene group having two groups at both ends selected from the group consisting of groups;
Y represents a linking group for linking 2 n-1 glycerol derivative groups to X;
n represents an integer of 1 or more]

本発明において、「C1-6アルキレン基」とは、炭素数が1以上、6以下の直鎖状または分枝状の二価炭化水素基をいう。例えば、メチレン基、エチレン基、プロピレン基、メチルプロピレン基、ジメチルプロピレン基、ブチレン基、メチルブチレン基、ジメチルブチレン基、ペンチレン基、ヘキシレン基を挙げることができ、好適にはC2-4アルキレン基である。 In the present invention, the “C 1-6 alkylene group” refers to a linear or branched divalent hydrocarbon group having 1 to 6 carbon atoms. Examples include a methylene group, an ethylene group, a propylene group, a methylpropylene group, a dimethylpropylene group, a butylene group, a methylbutylene group, a dimethylbutylene group, a pentylene group, and a hexylene group, and preferably a C 2-4 alkylene group. It is.

「アミノ基」には、−NH−基の他、−NR−基(Rは、C1-6アルキル基)が含まれるものとする。ここで、「C1-6アルキル基」とは、炭素数が1以上、6以下の直鎖状または分枝状の一価炭化水素基をいう。例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基を挙げることができ、C1-4アルキル基が好ましく、C1-2アルキル基がより好ましく、メチル基がさらに好ましい。 The “amino group” includes an —NR— group (where R is a C 1-6 alkyl group) in addition to an —NH— group. Here, the “C 1-6 alkyl group” refers to a linear or branched monovalent hydrocarbon group having 1 to 6 carbon atoms. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group can be exemplified. A 1-4 alkyl group is preferable, a C 1-2 alkyl group is more preferable, and a methyl group is more preferable.

Xは、パクリタキセルの3位のアミノ基と、グリセロール誘導体基を結合させるための基Yを結び付けるリンカー基であり、パクリタキセルへのグリセロール誘導体基の導入を容易にしたり、また、グリセロール誘導体基がパクリタキセルの抗がん活性を害さないため両者の距離を適度に保つという効果を有する。但し、パクリタキセルの3位のアミノ基やYとの関係で、−O−O−など不安定な構造が生じるような場合は範囲に含まれないものとする。なお、アミノ基等を内部に含むC2-6アルキレン基は、少なくとも両末端が炭化水素基であり、その内側に1以上のアミノ基等を有するものをいい、Xがカルボニル基などを含む場合には、その炭素数はアルキレン基の炭素数には含まれないものとする。 X is a linker group that links the amino group at the 3-position of paclitaxel and a group Y for linking the glycerol derivative group, and facilitates introduction of the glycerol derivative group into paclitaxel. Since it does not impair the anticancer activity, it has the effect of keeping the distance between the two moderate. However, it is not included in the range when an unstable structure such as —O—O— is generated due to the amino group at position 3 of paclitaxel or Y. The C 2-6 alkylene group containing an amino group or the like is a hydrocarbon group having at least both ends having a hydrocarbon group and having one or more amino groups or the like inside, and X contains a carbonyl group or the like. The carbon number is not included in the carbon number of the alkylene group.

Yは、2n-1個のグリセロール誘導体基をリンカー基Xに結合させるための結合基である。より具体的には、nが1、即ち導入されるべきグリセロール誘導体基が1つのみである場合、Yは単結合でよい。 Y is a bonding group for bonding 2 n-1 glycerol derivative groups to the linker group X. More specifically, when n is 1, that is, there is only one glycerol derivative group to be introduced, Y may be a single bond.

nが2以上の場合には、Yは、リンカー基Xと複数のグリセロール誘導体基とを結合させなければならない。この場合、Yは、複数のグリセロール誘導体基を2個ずつ下記構造(II)により結合し、さらに複数の下記構造を2個ずつ同構造により結合する直列的な分岐構造を有することが好ましい。   When n is 2 or more, Y must bind the linker group X and a plurality of glycerol derivative groups. In this case, Y preferably has a serial branched structure in which a plurality of glycerol derivative groups are bonded together by the following structure (II), and a plurality of the following structures are bonded by the same structure.

[式中、Y1は、単結合、C1-6アルキレン基、アミノ基、エーテル基、チオエーテル基、カルボニル基、エステル基またはアミド基を示し;Y2は−CH<または−N<を示し;Y3およびY4は、互いに独立して、単結合、C1-6アルキレン基、アミノ基、エーテル基、チオエーテル基、カルボニル基、エステル基またはアミド基を示す] [Wherein Y 1 represents a single bond, a C 1-6 alkylene group, an amino group, an ether group, a thioether group, a carbonyl group, an ester group or an amide group; Y 2 represents —CH <or —N <. And Y 3 and Y 4 each independently represent a single bond, a C 1-6 alkylene group, an amino group, an ether group, a thioether group, a carbonyl group, an ester group or an amide group]

Yが、複数の構造(II)が結合した末広がりの分岐構造を有する場合には、本発明のパクリタキセル誘導体は、2以上のグリセロール誘導体基を有することから高い水溶性を有しながらもパクリタキセル由来の部分はグリセロール誘導体基により被覆されないため、活性は少なくとも保持される。ここでの分岐構造とは、例えば上記構造(II)が枝分かれ状に連なったデンドリマー型の下記構造をいう。   In the case where Y has a divergent branched structure in which a plurality of structures (II) are bonded, the paclitaxel derivative of the present invention has two or more glycerol derivative groups, and thus has high water solubility and is derived from paclitaxel. The activity is at least retained because the moiety is not covered by glycerol derivative groups. The branched structure here refers to, for example, the following dendrimer-type structure in which the structure (II) is linked in a branched manner.

具体的な構造(II)としては、下記構造を例示することができる。   The following structure can be illustrated as specific structure (II).

Y中に複数の構造(II)が含まれる場合、構造(II)は互いに同一であってもよいし、異なっていてもよい。但し、合成のし易さから、複数の構造(II)は互いに同一であることが好ましい。   When a plurality of structures (II) are included in Y, the structures (II) may be the same as or different from each other. However, the plurality of structures (II) are preferably the same as each other from the viewpoint of ease of synthesis.

例えば、nが3、即ちグリセロール誘導体基の数が4である場合、Yの構造としては以下のものが挙げられる。   For example, when n is 3, that is, the number of glycerol derivative groups is 4, examples of the structure of Y include the following.

nとしては、2以上、5以下が好ましい。nが2以上の場合、即ちグリセロール誘導体基の数が2以上である場合、パクリタキセル誘導体の水溶性は十分に高まる。一方、nが大き過ぎる、即ちグリセロール誘導体基の数が多過ぎるとパクリタキセル誘導体の分子量や全体の構造が大きくなり過ぎ、抗がん活性などに悪影響が出るおそれがあり得るので、5以下が好ましい。nとしては、4以下がより好ましく、3以下がさらに好ましい。   n is preferably 2 or more and 5 or less. When n is 2 or more, that is, when the number of glycerol derivative groups is 2 or more, the water solubility of the paclitaxel derivative is sufficiently increased. On the other hand, if n is too large, that is, if the number of glycerol derivative groups is too large, the molecular weight of the paclitaxel derivative and the overall structure may become too large, which may adversely affect anticancer activity and the like. n is more preferably 4 or less, and even more preferably 3 or less.

上記パクリタキセル誘導体において、Xとしては、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される2の基を両末端に有するC2-4アルキレン基が;Yとしては、上記構造(II)または複数の構造(II)が結合した末広がりの分岐構造が;nとしては2または3が好適である。かかるパクリタキセル誘導体の優れた水溶性や抗がん活性は、後述する実施例で実験的に証明されている。 In the paclitaxel derivative, X is a C 2-4 alkylene group having two groups at both ends selected from the group consisting of a carbonyl group, a thionyl group, an ester group, an amide group, a urea group, and a thiourea group; Is preferably a divergent branched structure in which the above structure (II) or a plurality of structures (II) are bonded; and n is preferably 2 or 3. The excellent water solubility and anticancer activity of such paclitaxel derivatives have been experimentally proven in the examples described later.

本発明に係る医薬は、上記パクリタキセル誘導体からなることを特徴とする。また、本発明に係る抗がん剤は、上記パクリタキセル誘導体を含むことを特徴とする。   The medicament according to the present invention comprises the paclitaxel derivative. The anticancer agent according to the present invention is characterized by containing the paclitaxel derivative.

本発明に係るパクリタキセル誘導体は、優れた水溶性を示すことから、水に対する溶解性が低いパクリタキセルに比べ、水を溶媒として用いる製剤化が可能であり、より安全な製剤を調製することができる。また、本発明に係るパクリタキセル誘導体に導入されているグリセロール誘導体基は、比較的低分子量で多数の水酸基を有するため、パクリタキセルの抗がん活性に悪影響を与えることなく水溶性を高めることができる。さらに、本発明のパクリタキセル誘導体は、本発明者らによる実験的知見によれば、他の誘導体に比べてin vitroでの抗がん活性は弱いものの、in vivoでの抗がん活性が顕著に優れるものである。従って、本発明に係るパクリタキセル誘導体は、医薬、さらには抗がん剤の有効成分として、産業上極めて有用である。   Since the paclitaxel derivative according to the present invention exhibits excellent water solubility, it can be formulated using water as a solvent compared to paclitaxel having low solubility in water, and a safer formulation can be prepared. In addition, since the glycerol derivative group introduced into the paclitaxel derivative according to the present invention has a relatively low molecular weight and a large number of hydroxyl groups, the water solubility can be enhanced without adversely affecting the anticancer activity of paclitaxel. Furthermore, the paclitaxel derivative of the present invention, according to the experimental findings by the present inventors, has a weak in vitro anticancer activity compared to other derivatives, but has a remarkable in vivo anticancer activity. It is excellent. Therefore, the paclitaxel derivative according to the present invention is extremely useful industrially as an active ingredient of medicines and further anticancer agents.

図1は、本発明に係るパクリタキセル誘導体と、パクリタキセルおよびその他のパクリタキセル誘導体とで、水に対する溶解性を比較するためのグラフである。FIG. 1 is a graph for comparing the solubility in water of a paclitaxel derivative according to the present invention, paclitaxel and other paclitaxel derivatives. 図2は、本発明に係るパクリタキセル誘導体と、パクリタキセルおよびその他のパクリタキセル誘導体とで、1−オクタノールに対する溶解性を比較するためのグラフである。FIG. 2 is a graph for comparing the solubility in 1-octanol of a paclitaxel derivative according to the present invention, paclitaxel and other paclitaxel derivatives. 図3は、本発明に係るパクリタキセル誘導体と、パクリタキセルおよびその他のパクリタキセル誘導体とで、抗がん活性を比較するためのグラフである。FIG. 3 is a graph for comparing the anticancer activity of a paclitaxel derivative according to the present invention, paclitaxel and other paclitaxel derivatives.

本発明に係るパクリタキセル誘導体は、例えば、下記スキームにより合成することができる。   The paclitaxel derivative according to the present invention can be synthesized, for example, according to the following scheme.

原料化合物(III)は公知化合物であり、国際公開第96/23780号パンフレットに記載の方法に従って製造することができる。   The raw material compound (III) is a known compound and can be produced according to the method described in WO 96/23780.

原料化合物(IV)のZは、Xのうち原料化合物(III)のアミノ基に結合する方の端部を結合させるための基である。例えば、Xのうち原料化合物(III)のアミノ基に結合する方の端部がアルキル基である場合、Zはハロゲン基とすることができる。また、Xのうち原料化合物(III)のアミノ基に結合する方の端部がカルボニル基である場合、当該カルボニル基とZ、即ち−C(=O)−Zは、コハク酸イミド、フタル酸イミド、N−ヒドロキシスクシンイミド、5−ノルボルネン−2,3−ジカルボキシイミドなどの活性イミド;p−ニトロフェニルエステルなどの活性エステル;酸クロライドなどの酸ハライドとすることができる。   Z of the raw material compound (IV) is a group for bonding the end portion of X which is bonded to the amino group of the raw material compound (III). For example, in the case where the end of X that is bonded to the amino group of the raw material compound (III) is an alkyl group, Z can be a halogen group. Further, when the end of X that is bonded to the amino group of the raw material compound (III) is a carbonyl group, the carbonyl group and Z, that is, —C (═O) —Z is succinimide, phthalic acid Active imides such as imide, N-hydroxysuccinimide, and 5-norbornene-2,3-dicarboximide; active esters such as p-nitrophenyl ester; and acid halides such as acid chloride.

原料化合物(IV)は、例えば、本発明者らによる学術論文(NEMOTO Hら,Synlett,pp.2091-2095(2007))に記載の方法または当該方法に準じた方法により、グリセロール誘導体基における2つの水酸基が1,3−ジオキサンとして保護されており、複数の当該グリセロール基がYにより結合されている化合物を合成し、常法によりXを結合させた後、脱保護することにより合成できる。   The raw material compound (IV) can be obtained by, for example, using a method described in an academic paper by the present inventors (NEMOTO H et al., Synlett, pp. 2091-2095 (2007)) or a method according to the method in the glycerol derivative group. The compound can be synthesized by synthesizing a compound in which two hydroxyl groups are protected as 1,3-dioxane, and a plurality of the glycerol groups are bonded by Y, and by combining X with a conventional method, followed by deprotection.

原料化合物(III)と原料化合物(IV)との反応条件は、主にZに応じて適宜決定すればよい。例えば、−C(=O)−Z基が活性イミド基である場合には、溶媒中、原料化合物(III)と原料化合物(IV)とを反応させるのみでパクリタキセル誘導体(I)が得られる。   What is necessary is just to determine suitably the reaction conditions of raw material compound (III) and raw material compound (IV) mainly according to Z. For example, when the —C (═O) —Z group is an active imide group, the paclitaxel derivative (I) can be obtained simply by reacting the raw material compound (III) and the raw material compound (IV) in a solvent.

本反応で用い得る溶媒は、原料化合物(III)と原料化合物(IV)を適度に溶解でき、且つ反応を阻害しないものであれば特に制限されないが、例えば、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル溶媒;メタノールやエタノールなどのアルコール溶媒;ジメチルホルムアミドやジメチルアセトアミドなどのアミド系溶媒;塩化メチレンやクロロホルムなどのハロゲン化炭化水素溶媒などを挙げることができる。   The solvent that can be used in this reaction is not particularly limited as long as it can appropriately dissolve the raw material compound (III) and the raw material compound (IV) and does not inhibit the reaction. For example, diethyl ether, tetrahydrofuran, 1,4- Examples include ether solvents such as dioxane; alcohol solvents such as methanol and ethanol; amide solvents such as dimethylformamide and dimethylacetamide; halogenated hydrocarbon solvents such as methylene chloride and chloroform.

その他、アミド結合形成反応によく用いられ、ラセミ化を抑制する1−ヒドロキシベンゾトリアゾールなどの添加剤を用いてもよい。   In addition, an additive such as 1-hydroxybenzotriazole, which is often used in an amide bond forming reaction and suppresses racemization, may be used.

反応は、アルゴンガスや窒素ガスなどの不活性ガスの雰囲気下で行うことが好ましい。   The reaction is preferably performed in an atmosphere of an inert gas such as argon gas or nitrogen gas.

反応温度や反応時間は、適宜設定すればよい。例えば、10℃以上、50℃以下で、10時間以上、60時間以下程度とすることができる。具体的な反応時間は、予備実験で決定したり、或いはTLCなどで原料化合物の消費が確認できるまでとすることができる。   What is necessary is just to set reaction temperature and reaction time suitably. For example, it can be set to 10 ° C. or more and 50 ° C. or less and about 10 hours or more and 60 hours or less. The specific reaction time can be determined by a preliminary experiment or until the consumption of the raw material compound can be confirmed by TLC or the like.

反応後は、一般的な後処理を行うことができる。例えば、反応混合液に、酢酸エチルやクロロホルムなど水と混和しない有機溶媒と、不純物などを水相に移動させることができる硫酸銅水溶液を加えて分液し、得られた有機相を洗浄し、乾燥する。溶媒を減圧留去して得られる残渣をシリカゲルカラムクロマトグラフィーなどで精製することにより、パクリタキセル誘導体(I)を得ることができる。   After the reaction, general post-treatment can be performed. For example, an organic solvent immiscible with water, such as ethyl acetate and chloroform, and an aqueous solution of copper sulfate that can move impurities to the aqueous phase are separated into the reaction mixture, and the obtained organic phase is washed. dry. The paclitaxel derivative (I) can be obtained by purifying the residue obtained by distilling off the solvent under reduced pressure by silica gel column chromatography or the like.

本発明に係るパクリタキセル誘導体は、パクリタキセルと同様の抗がん活性を示す上に、生体に対する毒性はパクリタキセルよりも弱い。従って、本発明のパクリタキセル誘導体は、抗がん剤として用いることができる。   The paclitaxel derivative according to the present invention exhibits the same anticancer activity as paclitaxel and is less toxic to the living body than paclitaxel. Therefore, the paclitaxel derivative of the present invention can be used as an anticancer agent.

治療対象となるがんとしては、非小細胞肺癌などの肺癌、卵巣癌、乳癌、胃癌、子宮体癌、頭頸部癌、カポジ肉腫を挙げることができる。   Examples of cancer to be treated include lung cancer such as non-small cell lung cancer, ovarian cancer, breast cancer, stomach cancer, endometrial cancer, head and neck cancer, and Kaposi sarcoma.

本発明の抗がん剤の剤形は特に制限されず、例えば、注射剤、錠剤、丸剤、散剤、顆粒剤、シロップ剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤とすることができる。各製剤の調製は、それぞれに応じた常法により行えばよい。なお、本発明に係るパクリタキセル誘導体は水に溶解することができるので、緩衝液などの水溶液や水自体を溶媒として使うことができるため、製剤調製はより安全で簡便である。また、有機溶媒や界面活性剤を用いる必要が無いかその使用量を低減できるため、製剤自体も安全である。   The dosage form of the anticancer agent of the present invention is not particularly limited, and for example, it may be an injection, tablet, pill, powder, granule, syrup, liquid, suspension, emulsion, granule, capsule. Can do. Preparation of each preparation may be performed by a conventional method corresponding to each preparation. In addition, since the paclitaxel derivative based on this invention can melt | dissolve in water, since aqueous solution, such as a buffer solution, or water itself can be used as a solvent, formulation preparation is safer and simple. In addition, since it is not necessary to use an organic solvent or a surfactant or the amount of use thereof can be reduced, the preparation itself is safe.

本発明に係るパクリタキセル誘導体の投与量は、疾患の重篤度、患者の性別や年齢、剤形や投与方法などにより適宜調整することができるが、通常、成人に対して1回当たり100mg以上、1000mg以下程度投与すればよい。また、投与回数も同様に調整すればよいが、通常、1日当たり1回以上、3回以下とすることができる。   The dose of the paclitaxel derivative according to the present invention can be adjusted as appropriate depending on the severity of the disease, the sex and age of the patient, the dosage form, the administration method, etc. What is necessary is just to administer about 1000 mg or less. In addition, the number of administrations may be adjusted in the same manner, but it can usually be 1 to 3 times per day.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1−1: 4−(1,3−ビス(2−フェニル−1,3−ジオキサン−5−イルオキシ)プロパン−2−イルオキシ)−4−オキソブタン酸(1)の合成   Example 1-1: Synthesis of 4- (1,3-bis (2-phenyl-1,3-dioxan-5-yloxy) propan-2-yloxy) -4-oxobutanoic acid (1)

グリセロール誘導体(2)(Nemoto,Hら,Synlett,2007,pp.2091-2095)(1.23g,2.95mmol)を塩化メチレン(10mL)に溶かし、さらにジメチルアミノピリジン(0.04g,0.29mmol)、トリエチルアミン(0.84mL,5.99mmol)および無水コハク酸(0.33g,3.29mmol)を加え、アルゴン雰囲気下、室温で撹拌した。16時間後、TLCでグリセロール誘導体(2)の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)で精製して、単離収率84%で白色固体の目的化合物(1)(1.27g)を得た。   Glycerol derivative (2) (Nemoto, H, et al., Synlett, 2007, pp. 2091-2095) (1.23 g, 2.95 mmol) was dissolved in methylene chloride (10 mL), and further dimethylaminopyridine (0.04 g, 0.04 g). 29 mmol), triethylamine (0.84 mL, 5.99 mmol) and succinic anhydride (0.33 g, 3.29 mmol) were added and stirred at room temperature under an argon atmosphere. After 16 hours, the disappearance of the glycerol derivative (2) was confirmed by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: ethyl acetate) gave the target compound (1) (1.27 g) as a white solid in an isolated yield of 84%.

FT-IR(neat):2863,1735,1453,1392,1344,1238,1215,1155,1091,1009,982,915,759,700 cm-1
1H-NMR(CDCl3,400MHz):δ=7.52-7.47(m,4H),7.39-7.31(m,6H),5.53(s,2H),5.23(quintet,J=5.0Hz,1H),4.39-4.32(m,4H),4.04-3.98(m,4H),3.86-3.74(m,4H),3.33(quintet,J=1.5Hz,2H),2.68-2.63(m,2H),2.59-2.54(m,2H);
13C-NMR(CDCl3,75MHz):δ=176.7(C),171.7(C),138.0(C×2),128.8(CH×2),128.1(CH×4),126.0(CH×4),101.0(CH×2),71.8(CH),70.9(CH×2),68.8(CH2×2),68.4(CH2×2),66.4(CH2×2),29.0(CH2),28.6(CH2);
HRMS(ESI-TOF) m/z calcd for C27H32O10Na [M+Na]+ 539.1893,found 539.1901
FT-IR (neat): 2863, 1735, 1453, 1392, 1344, 1238, 1215, 1155, 1091, 1009, 982, 915, 759, 700 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 7.52-7.47 (m, 4H), 7.39-7.31 (m, 6H), 5.53 (s, 2H), 5.23 (quintet, J = 5.0 Hz, 1H), 4.39-4.32 (m, 4H), 4.04-3.98 (m, 4H), 3.86-3.74 (m, 4H), 3.33 (quintet, J = 1.5Hz, 2H), 2.68-2.63 (m, 2H), 2.59- 2.54 (m, 2H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 176.7 (C), 171.7 (C), 138.0 (C × 2), 128.8 (CH × 2), 128.1 (CH × 4), 126.0 (CH × 4) , 101.0 (CH x 2), 71.8 (CH), 70.9 (CH x 2), 68.8 (CH 2 x 2), 68.4 (CH 2 x 2), 66.4 (CH 2 x 2), 29.0 (CH 2 ), 28.6 (CH 2 );
HRMS (ESI-TOF) m / z calcd for C 27 H 32 O 10 Na [M + Na] + 539.1893, found 539.1901

実施例1−2: 1,3−ビス(2−フェニル−1,3−ジオキサン−5−イルオキシ)プロパン−2−イル 2,5−ジオキソピロリジン−1−イル サクシネート(3)の合成   Example 1-2: Synthesis of 1,3-bis (2-phenyl-1,3-dioxan-5-yloxy) propan-2-yl 2,5-dioxopyrrolidin-1-yl succinate (3)

上記実施例1−1で得たブタン酸化合物(1)(0.10g,0.20mmol)を塩化メチレン(2mL)に溶かし、N−ヒドロキシコハク酸イミド(0.047g,0.40mmol)と1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(0.077g,0.40mmol)を加え、アルゴン雰囲気下、室温で撹拌した。16時間後、TLCでブタン酸化合物(1)の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/1)で精製して、単離収率72%で無色非晶質の目的化合物(3)(0.089g,0.14mmol)を得た。   The butanoic acid compound (1) obtained in Example 1-1 (0.10 g, 0.20 mmol) was dissolved in methylene chloride (2 mL), and N-hydroxysuccinimide (0.047 g, 0.40 mmol) and 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0.077 g, 0.40 mmol) was added, and the mixture was stirred at room temperature under an argon atmosphere. After 16 hours, the disappearance of the butanoic acid compound (1) was confirmed by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (ethyl acetate / hexane = 2/1) gave colorless amorphous target compound (3) (0.089 g, 0.14 mmol) in an isolated yield of 72%.

FT-IR(neat):2860,1815,1784,1740,1454,1390,1239,1206,1153,1091,1011,915,845,800,732,701,648 cm-1
1H-NMR(CDCl3,400MHz):δ=7.52-7.46(m,4H),7.39-7.31(m,6H),5.48(s,2H),5.25(quintet,J=5.2Hz,1H),4.35-4.26(m,4H),4.00-3.94(m,4H),3.86-3.76(m,4H),3.36(quintet,J=1.5Hz,2H),2.91(t,J=6.8Hz,2H),2.80(s,2H),2.76(t,J=6.6Hz,2H);
13C-NMR(CDCl3,75MHz):δ=170.5(C),168.9(C×2),167.7(C),138.1(C×2),128.8(CH×2),128.1(CH×4),126.0(CH×4),100.9(CH×2),72.0(CH),70.8(CH×2),68.8(CH2×2),68.3(CH2×2),66.3(CH2×2),28.5(CH2),25.9(CH2),25.2(CH2×2);
HRMS(ESI-TOF)m/z calcd for C31H35NO12Na [M+Na]+636.2057,found 636.2040
FT-IR (neat): 2860, 1815, 1784, 1740, 1454, 1390, 1239, 1206, 1153, 1091, 1011, 915, 845, 800, 732, 701, 648 cm −1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 7.52-7.46 (m, 4H), 7.39-7.31 (m, 6H), 5.48 (s, 2H), 5.25 (quintet, J = 5.2 Hz, 1H), 4.35-4.26 (m, 4H), 4.00-3.94 (m, 4H), 3.86-3.76 (m, 4H), 3.36 (quintet, J = 1.5Hz, 2H), 2.91 (t, J = 6.8Hz, 2H) , 2.80 (s, 2H), 2.76 (t, J = 6.6Hz, 2H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 170.5 (C), 168.9 (C × 2), 167.7 (C), 138.1 (C × 2), 128.8 (CH × 2), 128.1 (CH × 4) , 126.0 (CH x 4), 100.9 (CH x 2), 72.0 (CH), 70.8 (CH x 2), 68.8 (CH 2 x 2), 68.3 (CH 2 x 2), 66.3 (CH 2 x 2) , 28.5 (CH 2 ), 25.9 (CH 2 ), 25.2 (CH 2 × 2);
HRMS (ESI-TOF) m / z calcd for C 31 H 35 NO 12 Na [M + Na] + 636.2057, found 636.2040

実施例1−3: 1,3−ビス(1,3−ジヒドロキシプロパン−2−イルオキシ)プロパン−2−イル 2,5−ジオキソピロリジン−1−イル スクシネート(4)の合成   Example 1-3 Synthesis of 1,3-bis (1,3-dihydroxypropan-2-yloxy) propan-2-yl 2,5-dioxopyrrolidin-1-yl succinate (4)

上記実施例1−2の化合物(3)(0.040g,0.065mmol)をエタノール(2mL)に溶かし、水酸化パラジウム(0.010g,7.1μmol)を加え、水素雰囲気下、室温で撹拌した。7時間後、TLCで化合物(3)と中間体の消失を確認後、パラジウムを濾別してオイル状の目的化合物(4)(0.019g)を得た。シリカゲルカラム精製をしないまま、次の反応に用いた。   Compound (3) of Example 1-2 (0.040 g, 0.065 mmol) was dissolved in ethanol (2 mL), palladium hydroxide (0.010 g, 7.1 μmol) was added, and the mixture was stirred at room temperature in a hydrogen atmosphere. did. After 7 hours, the disappearance of the compound (3) and the intermediate was confirmed by TLC, and then palladium was filtered off to obtain an oily target compound (4) (0.019 g). It used for next reaction, without carrying out silica gel column purification.

実施例1−4   Example 1-4

パクリタキセルの脱N−ベンゾイル誘導体(既知化合物)(0.014g,0.018mmol)をテトラヒドロフラン(0.3mL)に溶かし、上記実施例1−3のグリセロール誘導体(4)(0.012g,0.027mmol)、1−ヒドロキシベンゾトリアゾール(0.0006g,0.0036mmol)およびジメチルアニリン(0.0023mL,0.018mmol)を加え、アルゴン雰囲気下、室温で撹拌した。48時間後、TLCでグリセロール誘導体(4)の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を炭酸水素ナトリウム水溶液と食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:メタノール/クロロホルム=1/8)で精製して、単離収率73%で白色固体の本発明に係るパクリタキセル誘導体を得た。   A de-N-benzoyl derivative of paclitaxel (known compound) (0.014 g, 0.018 mmol) was dissolved in tetrahydrofuran (0.3 mL), and the glycerol derivative (4) of Example 1-3 above (0.012 g, 0.027 mmol) was dissolved. ), 1-hydroxybenzotriazole (0.0006 g, 0.0036 mmol) and dimethylaniline (0.0023 mL, 0.018 mmol) were added and stirred at room temperature under an argon atmosphere. After 48 hours, the disappearance of the glycerol derivative (4) was confirmed by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with aqueous sodium hydrogen carbonate solution and brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. The product was purified by silica gel column chromatography (eluent: methanol / chloroform = 1/8) to obtain a paclitaxel derivative according to the present invention as a white solid in an isolated yield of 73%.

FT-IR(neat):3385,2926,2348,2251,1723,1662,1539,1452,1373,1243,1177,1110,1071,1026,979,909,854,776,731,647 cm-1
1H-NMR(CDCl3,400MHz):δ=8.11(d,J=7.7Hz,2H),7.67(t,J=7.4Hz,1H),7.57(t,J=7.6Hz,2H),7.46-7.37(m,4H),7.28(t,J=6.8Hz,1H),6.47(s,1H),6.16(t,J=8.9Hz,1H),5.66(d,J=7.1Hz,1H),5.45(d,J=4.1Hz,1H),5.06(t,J=4.9Hz,1H),4.99(d,J=9.4Hz,1H),4.59(q,J=4.4Hz,1H),4.32(dd,J=10.6,6.8Hz,1H),4.19(s,2H),3.82(d,J=7.0Hz,1H),3.78-3.47(m,13H),3.31(s,4H),2.61(t,J=14.0Hz,4H),2.51-2.42(m,1H),2.34(s,3H),2.25(dd,J=15.4,9.4Hz,1H),2.18(s,3H),2.04(dd,J=15.4,9.4Hz,1H),1.93(s,3H),1.85-1.76(m,1H),1.66(s,3H),1.19(s,4H),1.17(s,3H);
13C-NMR(CDCl3,75MHz):δ=205.4(C),174.6(C),174.3(C),174.2(C),172.1(C),171.5(C),167.8(C),142.3(C),140.2(C),135.0(C),134.8(CH),131.5(C),131.3(CH×2),129.9(CH×2),129.8(CH×2),129.0(CH),128.6(CH×2),85.9(CH),83.2(CH×2),82.4(C),79.1(C),77.5(CH2) 76.9(CH),76.3(CH),74.9(CH),73.9(CH),72.5(CH),72.4(CH),69.6(CH2×2),62.5(CH2×4),59.3(C),57.0(CH),47.9(CH),44.6(C),37.5(CH2),36.6(CH2),31.3(CH2),30.5(CH2),27.0(CH3),23.2(CH3),22.3(CH3),20.8(CH3),14.7(CH3),10.4(CH3);
HRMS(ESI-TOF)m/z calcd for C53H69NO22Na [M+Na]+ 1094.4209,found 1094.4219
FT-IR (neat): 3385, 2926, 2348, 2251, 1723, 1662, 1539, 1452, 1373, 1243, 1177, 1110, 1071, 1026, 979, 909, 854, 776, 731, 647 cm −1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.11 (d, J = 7.7 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.46 -7.37 (m, 4H), 7.28 (t, J = 6.8Hz, 1H), 6.47 (s, 1H), 6.16 (t, J = 8.9Hz, 1H), 5.66 (d, J = 7.1Hz, 1H) , 5.45 (d, J = 4.1Hz, 1H), 5.06 (t, J = 4.9Hz, 1H), 4.99 (d, J = 9.4Hz, 1H), 4.59 (q, J = 4.4Hz, 1H), 4.32 (Dd, J = 10.6, 6.8Hz, 1H), 4.19 (s, 2H), 3.82 (d, J = 7.0Hz, 1H), 3.78-3.47 (m, 13H), 3.31 (s, 4H), 2.61 ( t, J = 14.0Hz, 4H), 2.51-2.42 (m, 1H), 2.34 (s, 3H), 2.25 (dd, J = 15.4, 9.4Hz, 1H), 2.18 (s, 3H), 2.04 (dd , J = 15.4, 9.4Hz, 1H), 1.93 (s, 3H), 1.85-1.76 (m, 1H), 1.66 (s, 3H), 1.19 (s, 4H), 1.17 (s, 3H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 205.4 (C), 174.6 (C), 174.3 (C), 174.2 (C), 172.1 (C), 171.5 (C), 167.8 (C), 142.3 ( C), 140.2 (C), 135.0 (C), 134.8 (CH), 131.5 (C), 131.3 (CH x 2), 129.9 (CH x 2), 129.8 (CH x 2), 129.0 (CH), 128.6 (CH x 2), 85.9 (CH), 83.2 (CH x 2), 82.4 (C), 79.1 (C), 77.5 (CH 2 ) 76.9 (CH), 76.3 (CH), 74.9 (CH), 73.9 ( CH), 72.5 (CH), 72.4 (CH), 69.6 (CH 2 × 2), 62.5 (CH 2 × 4), 59.3 (C), 57.0 (CH), 47.9 (CH), 44.6 (C), 37.5 (CH 2 ), 36.6 (CH 2 ), 31.3 (CH 2 ), 30.5 (CH 2 ), 27.0 (CH 3 ), 23.2 (CH 3 ), 22.3 (CH 3 ), 20.8 (CH 3 ), 14.7 (CH 3), 10.4 (CH 3) ;
HRMS (ESI-TOF) m / z calcd for C 53 H 69 NO 22 Na [M + Na] + 1094.4209, found 1094.4219

比較例1−1   Comparative Example 1-1

パクリタキセル(0.070g,0.082mmol)を塩化メチレン(1mL)に溶かし、上記実施例1−1で得たブタン酸化合物(1)(0.051g,0.098mmol)、ジメチルアミノピリジン(0.012g,0.098mmol)および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(0.019g,0.098mmol)を加え、アルゴン雰囲気下、室温で撹拌した。TLCでパクリタキセルの消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/2)で精製して、定量的に白色固体の目的化合物(5)(0.102g,0.075mmol)を収率92%で得た。   Paclitaxel (0.070 g, 0.082 mmol) was dissolved in methylene chloride (1 mL), butanoic acid compound (1) (0.051 g, 0.098 mmol) obtained in Example 1-1 above, dimethylaminopyridine (0. 012 g, 0.098 mmol) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0.019 g, 0.098 mmol) were added and stirred at room temperature under an argon atmosphere. After confirming the disappearance of paclitaxel by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: hexane / ethyl acetate = 1/2) gave quantitatively the target compound (5) (0.102 g, 0.075 mmol) as a white solid in a yield of 92%. .

FT-IR(neat):3502,3065,2975,2250,1732,1660,1603,1580,1522,1488,1453,1372,1240,1153,1093,1016,948,912,846,799,731,648 cm-1
1H-NMR(CDCl3,400MHz):δ=8.15(d,J=7.4Hz,2H),7.81(d,J=7.4Hz,2H),7.63(t,J=7.2Hz,1H),7.56-7.31(dd,J=9.6,5.9Hz,20H),7.17(q,J=9.1Hz,1H),6.31(s,1H),6.23(t,J=8.8Hz,1H),5.98(dd,J=9.0,3.2Hz,1H),5.69(d,J=7.0Hz,1H),5.51(s,1H),5.48(s,2H),5.15(quintet,J=4.9Hz,1H),4.97(d,J=8.7Hz,1H),4.45(m,1H),4.35-4.19(m,6H),4.00-3.86(m,5H),3.85-3.68(m,6H),3.32(s,1H),3.27(s,1H),2.73(m,2H),2.65(m,2H),2.56(m,1H),2.45(s,3H),2.34(dd,J=15.3,9.3Hz,1H),2.22(s,3H),2.19-2.11(m,1H),1.94(s,3H),1.91(m,1H),1.69(s,3H),1.24(s,3H),1.14(s,3H);
13C-NMR(CDCl3,75MHz):δ=203.6(C),171.6(C),171.0(C),170.9(C),169.7(C),167.8(C),167.0(C),166.8(C),142.6(C),138.0(C),137.9(C),136.8(C),133.5(CH),133.4(C),132.6(C),131.8(CH),130.1(CH×2),129.0(C),128.9(CH×2),128.7(CH×2),128.6(CH),128.5(CH×2),128.3(CH),128.0(CH×5),127.1(CH×2),126.5(CH×2),125.9(CH×4),100.9(CH×2),84.3(CH),80.8(C),78.9(C),76.2(CH2),75.4(CH),74.9(CH),74.2(CH),71.9(CH×2),71.6(CH),71.0(CH),70.8(CH),68.9(CH2),68.8(CH2),68.4(CH2),68.3(CH2),66.3(CH2),66.1(CH2),58.3(C),52.7(CH),45.4(CH),43.0(C),35.4(CH2×2),29.1(CH2),28.9(CH2),26.6(CH3),22.5(CH3),22.0(CH3),20.7(CH3),14.6(CH3),9.4(CH3);
HRMS(ESI-TOF)m/z calcd for C74H81NO23Na [M+Na]+1374.5097,found 1374.5150
FT-IR (neat): 3502, 3065, 2975, 2250, 1732, 1660, 1603, 1580, 1522, 1488, 1453, 1372, 1240, 1153, 1093, 1016, 948, 912, 846, 799, 731, 648 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.15 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.56 -7.31 (dd, J = 9.6, 5.9Hz, 20H), 7.17 (q, J = 9.1Hz, 1H), 6.31 (s, 1H), 6.23 (t, J = 8.8Hz, 1H), 5.98 (dd, J = 9.0, 3.2Hz, 1H), 5.69 (d, J = 7.0Hz, 1H), 5.51 (s, 1H), 5.48 (s, 2H), 5.15 (quintet, J = 4.9Hz, 1H), 4.97 ( d, J = 8.7Hz, 1H), 4.45 (m, 1H), 4.35-4.19 (m, 6H), 4.00-3.86 (m, 5H), 3.85-3.68 (m, 6H), 3.32 (s, 1H) , 3.27 (s, 1H), 2.73 (m, 2H), 2.65 (m, 2H), 2.56 (m, 1H), 2.45 (s, 3H), 2.34 (dd, J = 15.3, 9.3Hz, 1H), 2.22 (s, 3H), 2.19-2.11 (m, 1H), 1.94 (s, 3H), 1.91 (m, 1H), 1.69 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H) ;
13 C-NMR (CDCl 3 , 75 MHz): δ = 203.6 (C), 171.6 (C), 171.0 (C), 170.9 (C), 169.7 (C), 167.8 (C), 167.0 (C), 166.8 ( C), 142.6 (C), 138.0 (C), 137.9 (C), 136.8 (C), 133.5 (CH), 133.4 (C), 132.6 (C), 131.8 (CH), 130.1 (CH x 2), 129.0 (C), 128.9 (CH x 2), 128.7 (CH x 2), 128.6 (CH), 128.5 (CH x 2), 128.3 (CH), 128.0 (CH x 5), 127.1 (CH x 2), 126.5 (CH x 2), 125.9 (CH x 4), 100.9 (CH x 2), 84.3 (CH), 80.8 (C), 78.9 (C), 76.2 (CH 2 ), 75.4 (CH), 74.9 (CH ), 74.2 (CH), 71.9 (CH × 2), 71.6 (CH), 71.0 (CH), 70.8 (CH), 68.9 (CH 2 ), 68.8 (CH 2 ), 68.4 (CH 2 ), 68.3 (CH 2 ), 66.3 (CH 2 ), 66.1 (CH 2 ), 58.3 (C), 52.7 (CH), 45.4 (CH), 43.0 (C), 35.4 (CH 2 × 2), 29.1 (CH 2 ), 28.9 (CH 2 ), 26.6 (CH 3 ), 22.5 (CH 3 ), 22.0 (CH 3 ), 20.7 (CH 3 ), 14.6 (CH 3 ), 9.4 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 74 H 81 NO 23 Na [M + Na] + 1374.5097, found 1374.5150

比較例1−2   Comparative Example 1-2

上記比較例1−1で得た化合物(5)(0.10g,0.075mmol)をメタノール(1mL)に溶かし、水酸化パラジウム(0.020g,0.014mmol)を加えて水素雰囲気下、室温で撹拌した。15時間後、TLCで化合物(3)と中間体の消失を確認後、パラジウムを濾別した。溶媒を除去後、シリカゲルカラムクロマトグラフィー(溶離液:メタノール/クロロホルム=1/9)で精製し、目的化合物を収率82%で得た。   The compound (5) (0.10 g, 0.075 mmol) obtained in Comparative Example 1-1 was dissolved in methanol (1 mL), palladium hydroxide (0.020 g, 0.014 mmol) was added, and room temperature was obtained under a hydrogen atmosphere. Stir with. After 15 hours, the disappearance of compound (3) and the intermediate was confirmed by TLC, and then palladium was filtered off. After removing the solvent, the residue was purified by silica gel column chromatography (eluent: methanol / chloroform = 1/9) to obtain the target compound in a yield of 82%.

FT-IR(neat):3447,2937,1734,1647,1540,1490,1373,1243,1153,1070,909,731 cm-1
1H-NMR(CDCl3,400MHz):δ=8.16(d,J=8.6Hz,2H),7.80(d,J=7.4Hz,2H),7.61(t,J=7.4Hz,1H),7.54-7.49(m,J=9.6,5.9Hz,3H),7.45-7.38(m,J=3.0Hz,6H),7.37-7.32(m,1H),6.32(s,1H),6.21(t,J=8.9Hz,1H),5.96(dd,J=9.2,3.4Hz,1H),5.69(d,J=6.6Hz,1H),5.49(d,J=3.6Hz,1H),5.04(quint,J=5.2Hz,1H),4.97(dd,J=9.6,1.5Hz,1H),4.43-4.41(m,1H),4.31(d,J=8.4Hz,1H),4.21(d,J=8.6Hz,1H),3.81-3.56(m,14H),3.49-3.41(m,2H),2.86-2.61(m,6H),2.57-2.50(m,1H),2.45(s,3H),2.35(dd,J=15.5,9.4Hz,1H),2.23(s,3H),2.17-2.11(m,1H),1.93(s,3H),1.91-1.89(m,1H),1.69(s,3H),1.26(s,1H),1.23(s,4H),1.15(s,3H);.
13C-NMR(CDCl3,75 MHz):δ=203(C),171.6(C),171.4(C),171.0(C),169.9(C),168.1(C),167.3(C),166.7(C),142.0(C),136.7(C),133.5(C),132.8(C),131.8(CH),130.1(CH×2),129.1(C),128.9(CH×2),128.6(CH×2),128.5(CH×3),128.4(CH),127.2(CH×2),126.6(CH×2),84.3(CH),81.0(CH×2,C),78.8(C),76.3(CH2),75.5(CH),74.8(CH),74.4(CH),72.1(CH),71.9(CH),71.6(CH),67.8(CH2),67.7(CH2),61.9(CH2),61.8(CH2×2),61.7(CH2),58.2(C),52.8(CH),45.7(CH),43.1(C),35.7(CH2),35.3(CH2),29.1(CH2),28.8(CH2),26.5(CH3),22.5(CH3),21.9(CH3),20.8(CH3),14.6(CH3),9.6(CH3);
HRMS(ESI-TOF)m/z calcd for C60H73NO23Na [M+Na] + 1198.4471,found 1198.4474
FT-IR (neat): 3447, 2937, 1734, 1647, 1540, 1490, 1373, 1243, 1153, 1070, 909, 731 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.16 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.54 -7.49 (m, J = 9.6, 5.9Hz, 3H), 7.45-7.38 (m, J = 3.0Hz, 6H), 7.37-7.32 (m, 1H), 6.32 (s, 1H), 6.21 (t, J = 8.9Hz, 1H), 5.96 (dd, J = 9.2, 3.4Hz, 1H), 5.69 (d, J = 6.6Hz, 1H), 5.49 (d, J = 3.6Hz, 1H), 5.04 (quint, J = 5.2Hz, 1H), 4.97 (dd, J = 9.6, 1.5Hz, 1H), 4.43-4.41 (m, 1H), 4.31 (d, J = 8.4Hz, 1H), 4.21 (d, J = 8.6Hz , 1H), 3.81-3.56 (m, 14H), 3.49-3.41 (m, 2H), 2.86-2.61 (m, 6H), 2.57-2.50 (m, 1H), 2.45 (s, 3H), 2.35 (dd , J = 15.5, 9.4Hz, 1H), 2.23 (s, 3H), 2.17-2.11 (m, 1H), 1.93 (s, 3H), 1.91-1.89 (m, 1H), 1.69 (s, 3H), 1.26 (s, 1H), 1.23 (s, 4H), 1.15 (s, 3H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 203 (C), 171.6 (C), 171.4 (C), 171.0 (C), 169.9 (C), 168.1 (C), 167.3 (C), 166.7 (C), 142.0 (C), 136.7 (C), 133.5 (C), 132.8 (C), 131.8 (CH), 130.1 (CH x 2), 129.1 (C), 128.9 (CH x 2), 128.6 ( CH × 2), 128.5 (CH × 3), 128.4 (CH), 127.2 (CH × 2), 126.6 (CH × 2), 84.3 (CH), 81.0 (CH × 2, C), 78.8 (C), 76.3 (CH 2 ), 75.5 (CH), 74.8 (CH), 74.4 (CH), 72.1 (CH), 71.9 (CH), 71.6 (CH), 67.8 (CH 2 ), 67.7 (CH 2 ), 61.9 ( CH 2 ), 61.8 (CH 2 × 2), 61.7 (CH 2 ), 58.2 (C), 52.8 (CH), 45.7 (CH), 43.1 (C), 35.7 (CH 2 ), 35.3 (CH 2 ), 29.1 (CH 2 ), 28.8 (CH 2 ), 26.5 (CH 3 ), 22.5 (CH 3 ), 21.9 (CH 3 ), 20.8 (CH 3 ), 14.6 (CH 3 ), 9.6 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 60 H 73 NO 23 Na [M + Na] + 1198.4471, found 1198.4474

比較例2−1   Comparative Example 2-1

パクリタキセルのシリルエーテル誘導体(既知化合物;Pharmaceutical Research,2008,25,pp.194-206)(0.054g,0.055mmol)を塩化メチレン(2mL)に溶かし、上記実施例1−1で得たブタン酸化合物(1)(0.043g,0.083mmol)、ジメチルアミノピリジニウムパラトルエンスルホン酸塩(0.033g,0.11mmol)およびジイソプロピルカルボジイミド(0.035mL,0.22mmol)を加え、アルゴン雰囲気下、室温で撹拌した。TLCでパクリタキセル誘導体の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を炭酸水素ナトリウム水溶液と食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/1)で精製して、単離収率81%で白色固体の目的化合物(6)(0.076g,0.051mmol)を収率93%で得た。   A silyl ether derivative of paclitaxel (known compound; Pharmaceutical Research, 2008, 25, pp.194-206) (0.054 g, 0.055 mmol) was dissolved in methylene chloride (2 mL), and the butane obtained in Example 1-1 above was dissolved. Acid compound (1) (0.043 g, 0.083 mmol), dimethylaminopyridinium paratoluenesulfonate (0.033 g, 0.11 mmol) and diisopropylcarbodiimide (0.035 mL, 0.22 mmol) were added, and an argon atmosphere was added. And stirred at room temperature. After confirming the disappearance of the paclitaxel derivative by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with aqueous sodium hydrogen carbonate solution and brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: hexane / ethyl acetate = 1/1) yielded 93% of the desired compound (6) (0.076 g, 0.051 mmol) as a white solid in an isolated yield of 81%. %.

FT-IR(neat):3440,2930,1735,1662,1484,1452,1372,1240,1154,1094,1018,982,838,757,699 cm-1
1H-NMR(CDCl3,400MHz):δ=8.14(d,J=7.2Hz,2H),7.75(d,J=7.4Hz,2H),7.62(t,J=7.4Hz,1H),7.55-7.30(m,20H),7.09(d,J=8.9Hz,1H),6.29-6.21(m,2H),5.77-5.69(m,2H),5.61(dd,J=10.6,7.1Hz,1H),5.49(s,2H),5.21(quintet,J=5.0Hz,1H),4.97(d,J=9.0Hz,1H),4.67(d,J=2.0,1H),4.35-4.28(m,5H),4.21(d,J=8.5Hz,1H),3.99-3.95(m,5H),3.84-3.77(m,4H),3.40-3.36(m,2H),2.77-2.55(m,8H),2.46-2.37(m,1H),2.20-2.11(m,4H),1.97(s,3H),1.90-1.85(m,1H),1.81(s,3H),1.20(s,3H),1.16(s,3H);
13C-NMR(CDCl3,75MHz):δ=201.9(C),172.1(C),171. 4(C×2),169.8(C),169.0(C),167.0(C),166.8(C),140.5(C),138.1(C×3),134.0(C),133.6(CH),132.6(CH),131.7(CH),130.1(CH×2),129.0(C),128.7(CH×2),128.6(CH×4),128.0(CH×5),127.9(CH),126.9(CH×2),126.3(CH×2),126.0(CH×5),100.9(CH×2) 83.8(CH),80.8(C),78.4(C),76.1(CH2),75.0(CH),74.9(CH),74.3(CH),71.7(CH),71.3(CH),71.1(CH),70.9(CH),70.8(CH),68.9(CH2×2),68.4(CH2),68.3(CH2),66.3(CH2×2),55.7(C),55.4(CH),46.6(CH),43.1(C),35.3(CH2),33.0(CH2),28.8(CH2),28.7(CH2),26.1(CH3),25.2(CH3×3),22.7(CH3),21.1(CH3),20.4(CH3),17.8(C),14.3(CH3),10.6(CH3),-5.53(CH3),-6.16(CH3);
HRMS(ESI-TOF)m/z calcd for C80H95NO23SiNa([M+Na]+):1488.5962. found: 1488.5955
FT-IR (neat): 3440, 2930, 1735, 1662, 1484, 1452, 1372, 1240, 1154, 1094, 1018, 982, 838, 757, 699 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.14 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 -7.30 (m, 20H), 7.09 (d, J = 8.9Hz, 1H), 6.29-6.21 (m, 2H), 5.77-5.69 (m, 2H), 5.61 (dd, J = 10.6, 7.1Hz, 1H ), 5.49 (s, 2H), 5.21 (quintet, J = 5.0Hz, 1H), 4.97 (d, J = 9.0Hz, 1H), 4.67 (d, J = 2.0, 1H), 4.35-4.28 (m, 5H), 4.21 (d, J = 8.5Hz, 1H), 3.99-3.95 (m, 5H), 3.84-3.77 (m, 4H), 3.40-3.36 (m, 2H), 2.77-2.55 (m, 8H) , 2.46-2.37 (m, 1H), 2.20-2.11 (m, 4H), 1.97 (s, 3H), 1.90-1.85 (m, 1H), 1.81 (s, 3H), 1.20 (s, 3H), 1.16 (S, 3H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 201.9 (C), 172.1 (C), 171.4 (C × 2), 169.8 (C), 169.0 (C), 167.0 (C), 166.8 (C ), 140.5 (C), 138.1 (C x 3), 134.0 (C), 133.6 (CH), 132.6 (CH), 131.7 (CH), 130.1 (CH x 2), 129.0 (C), 128.7 (CH x 2), 128.6 (CH x 4), 128.0 (CH x 5), 127.9 (CH), 126.9 (CH x 2), 126.3 (CH x 2), 126.0 (CH x 5), 100.9 (CH x 2) 83.8 (CH), 80.8 (C), 78.4 (C), 76.1 (CH 2 ), 75.0 (CH), 74.9 (CH), 74.3 (CH), 71.7 (CH), 71.3 (CH), 71.1 (CH), 70.9 (CH), 70.8 (CH), 68.9 (CH 2 × 2), 68.4 (CH 2 ), 68.3 (CH 2 ), 66.3 (CH 2 × 2), 55.7 (C), 55.4 (CH), 46.6 ( CH), 43.1 (C), 35.3 (CH 2 ), 33.0 (CH 2 ), 28.8 (CH 2 ), 28.7 (CH 2 ), 26.1 (CH 3 ), 25.2 (CH 3 × 3), 22.7 (CH 3 ), 21.1 (CH 3 ), 20.4 (CH 3 ), 17.8 (C), 14.3 (CH 3 ), 10.6 (CH 3 ), -5.53 (CH 3 ), -6.16 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 80 H 95 NO 23 SiNa ([M + Na] + ): 1488.5962. Found: 1488.5955

比較例2−2   Comparative Example 2-2

上記比較例2−1で得た化合物(6)(0.076g,0.051mmol)をテトラヒドロフラン(1mL)に溶かし、フッ化水素ピリジン(0.5mL)とピリジン(1.5mL)を加え、アルゴン雰囲気下、室温で撹拌した。TLCで化合物(6)の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/3)で精製して、白色固体の目的化合物(7)(0.066g,0.049mmol)を収率95%で得た。   Compound (6) (0.076 g, 0.051 mmol) obtained in Comparative Example 2-1 was dissolved in tetrahydrofuran (1 mL), hydrogen fluoride pyridine (0.5 mL) and pyridine (1.5 mL) were added, and argon was added. Stir at room temperature under atmosphere. After confirming the disappearance of compound (6) by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: hexane / ethyl acetate = 1/3) gave the target compound (7) (0.066 g, 0.049 mmol) as a white solid in a yield of 95%.

FT-IR(neat):3438,3014,1733,1652,1602,1581,1486,1452,1238,845,755,667 cm-1
1H-NMR(CDCl3,400MHz):δ=8.12(d,J=7.4Hz,2H),7.76(d,J=7.4Hz,2H),7.63(t,J=7.2Hz,1H),7.53-7.31(m,20H),7.07(d,J=8.9Hz,1H),6.20-6.13(m,2H),5.80(dd,J=9.0,3.2Hz,1H),5.67(d,J=6.9Hz,1H),5.56(dd,J=10.4,7.3Hz,1H),5.50(s,1H),5.49(s,1H),5.19(quintet,J=5.0Hz,1H),4.92(d,J=9.0Hz,1H),4.79(dd,J=4.7,2.5Hz,1H),4.35-4.26(m,6H),4.18(d,J=8.5Hz,1H),4.00-3.93(m,4H),3.91(d,J=6.8Hz,1H),3.85-3.76(m,4H),3.62(d,J=4.8Hz,1H),3.41-3.36(m,2H),2.74-2.53(m,5H),2.37(s,3H),2.32(dd,J=8.9,3.3Hz,1H),2.15(s,3H),1.86-1.78(m,7H),1.20(s,3H),1.16(s,3H);
13C-NMR(CDCl3,75 MHz):δ=201.8(C),172.4(C),172.2(C),171.4(C),170.3(C),169.0(C),167.1(C),166.8(C),140.3(C),138.1(C×2),138.0(C),133.7(CH),133.6(C),132.8(C),131.8(CH),130.1(CH×2),129.0(C),128.8(CH×2),128.7(CH×2),128.6(CH×3),128.1(CH×5),127.0(CH×4),126.0(CH×5),100.9(CH×2) 83.7(CH),80.8(C),78.2(C),76.2(CH2),75.1(CH),74.1(CH),73.0(CH),71.8(CH),71.7(CH),71.4(CH),70.9(CH×2),68.9(CH2×2),68.4(CH2×2),66.3(CH2×2),55.9(C),54.7(CH),46.7(CH),43.0(C),35.3(CH2),33.0(CH2),28.8(CH2×2) 26.2(CH3),22.3(CH3),20.6(CH3),20.5(CH3),14.3(CH3),10.5(CH3);
HRMS(ESI-TOF)m/z calcd for C74H81NO23Na [M+Na]+1374.5097,found 1374.5088
FT-IR (neat): 3438, 3014, 1733, 1652, 1602, 1581, 1486, 1452, 1238, 845, 755, 667 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.12 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.53 -7.31 (m, 20H), 7.07 (d, J = 8.9Hz, 1H), 6.20-6.13 (m, 2H), 5.80 (dd, J = 9.0, 3.2Hz, 1H), 5.67 (d, J = 6.9 Hz, 1H), 5.56 (dd, J = 10.4, 7.3Hz, 1H), 5.50 (s, 1H), 5.49 (s, 1H), 5.19 (quintet, J = 5.0Hz, 1H), 4.92 (d, J = 9.0Hz, 1H), 4.79 (dd, J = 4.7, 2.5Hz, 1H), 4.35-4.26 (m, 6H), 4.18 (d, J = 8.5Hz, 1H), 4.00-3.93 (m, 4H) , 3.91 (d, J = 6.8Hz, 1H), 3.85-3.76 (m, 4H), 3.62 (d, J = 4.8Hz, 1H), 3.41-3.36 (m, 2H), 2.74-2.53 (m, 5H ), 2.37 (s, 3H), 2.32 (dd, J = 8.9, 3.3Hz, 1H), 2.15 (s, 3H), 1.86-1.78 (m, 7H), 1.20 (s, 3H), 1.16 (s, 3H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 201.8 (C), 172.4 (C), 172.2 (C), 171.4 (C), 170.3 (C), 169.0 (C), 167.1 (C), 166.8 (C), 140.3 (C), 138.1 (C x 2), 138.0 (C), 133.7 (CH), 133.6 (C), 132.8 (C), 131.8 (CH), 130.1 (CH x 2), 129.0 ( C), 128.8 (CH x 2), 128.7 (CH x 2), 128.6 (CH x 3), 128.1 (CH x 5), 127.0 (CH x 4), 126.0 (CH x 5), 100.9 (CH x 2) ) 83.7 (CH), 80.8 (C), 78.2 (C), 76.2 (CH 2 ), 75.1 (CH), 74.1 (CH), 73.0 (CH), 71.8 (CH), 71.7 (CH), 71.4 (CH ), 70.9 (CH x 2), 68.9 (CH 2 x 2), 68.4 (CH 2 x 2), 66.3 (CH 2 x 2), 55.9 (C), 54.7 (CH), 46.7 (CH), 43.0 ( C), 35.3 (CH 2 ), 33.0 (CH 2 ), 28.8 (CH 2 × 2) 26.2 (CH 3 ), 22.3 (CH 3 ), 20.6 (CH 3 ), 20.5 (CH 3 ), 14.3 (CH 3 ), 10.5 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 74 H 81 NO 23 Na [M + Na] + 1374.5097, found 1374.5088

比較例2−3   Comparative Example 2-3

上記比較例2−2で得た化合物(7)(0.21g,0.15mmol)をメタノール(2mL)に溶かし、水酸化パラジウム(0.010g,0.071mmol)を加えて水素雰囲気下、室温で撹拌した。7時間後、TLCで化合物(7)と中間体の消失を確認後、パラジウムを濾別した。溶媒を除去後、シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=8/1)で精製して白色固体の目的化合物(0.16g,0.13mmol)を単離収率88%で得た。   Compound (7) (0.21 g, 0.15 mmol) obtained in Comparative Example 2-2 was dissolved in methanol (2 mL), palladium hydroxide (0.010 g, 0.071 mmol) was added, and the mixture was added at room temperature under a hydrogen atmosphere. Stir with. After 7 hours, the disappearance of compound (7) and the intermediate was confirmed by TLC, and then palladium was filtered off. After removing the solvent, the residue was purified by silica gel column chromatography (eluent: chloroform / methanol = 8/1) to obtain the target compound (0.16 g, 0.13 mmol) as a white solid in an isolated yield of 88%.

FT-IR(neat):3420,2942,2250,1734,1647,1603,1579,1522,1487,1452,1372,1240,1158,1108,1067,979,913,846,729 cm-1
1H-NMR(CDCl3,400MHz):δ=8.11(d,J=7.3Hz,2H),7.79-7.76(m,2H),7.62(t,J=7.4Hz,1H),7.53-7.46(m,5H),7.43-7.30(m,5H),6.19-6.13(m,2H),5.78(dd,J=8.7,2.3Hz,1H),5.66(d,J=6.9Hz,1H),5.56(dd,J=10.4,7.2Hz,1H),5.11(quint,J=4.8Hz,1H),4.94(d,J=9.0Hz,1H),4.80(dd,J=5.3,2.7Hz,1H),4.31(d,J=8.5Hz,1H),4.18(d,J=8.5Hz,1H),4.10(d,J=1.2Hz,1H),3.88(d,J=6.8Hz,1H),3.84-3.60(m,12H),3.53-3.46(m,2H),3.03-2.77(m,3H) 2.73-2.52(m,5H),2.37(s,3H),2.31(d,J=9.0Hz,2H),2.16(s,3H),1.87-1.78(m,9H),1.20(s,3H),1.15(s,3H);
13C-NMR(CDCl3,75MHz):δ=201.7(C),172.5(C×2),172.3(C),171.7(C),170.5(C),169.1(C),167.4(C),166.5(C),140.5(C),138.0(C),133.6(C,CH),132.5(C),131.7(CH),130.0(CH×2),128.9(C),128.7(CH×3),128.6(CH),128.5(CH×2),127.9(CH),127.0(CH×2),126.9(CH×2),83.7(CH),81.0(CH×2),80.8(C),78.2(C),76.2(CH2),75.2(CH),74.1(CH),72.9(CH),71.8(CH),71.6(CH),71.5(CH),67.9(CH2×2),61.7(CH2),61.6(CH2×2),61.5(CH2),55.8(C),55.0(CH),46.9(CH),43.0(C),35.3(CH2),33.0(CH2),28.9(CH2×2),26.3(CH3),22.4(CH3),20.7(CH3),20.6(CH3),14.3(CH3),10.7(CH3);
HRMS(ESI-TOF) m/z calcd for C60H73NO23Na [M+Na]+ 1198.4471,found 1198.4467
FT-IR (neat): 3420, 2942, 2250, 1734, 1647, 1603, 1579, 1522, 1487, 1452, 1372, 1240, 1158, 1108, 1067, 979, 913, 846, 729 cm −1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.11 (d, J = 7.3 Hz, 2H), 7.79-7.76 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.53-7.46 ( m, 5H), 7.43-7.30 (m, 5H), 6.19-6.13 (m, 2H), 5.78 (dd, J = 8.7, 2.3Hz, 1H), 5.66 (d, J = 6.9Hz, 1H), 5.56 (Dd, J = 10.4, 7.2Hz, 1H), 5.11 (quint, J = 4.8Hz, 1H), 4.94 (d, J = 9.0Hz, 1H), 4.80 (dd, J = 5.3, 2.7Hz, 1H) , 4.31 (d, J = 8.5Hz, 1H), 4.18 (d, J = 8.5Hz, 1H), 4.10 (d, J = 1.2Hz, 1H), 3.88 (d, J = 6.8Hz, 1H), 3.84 -3.60 (m, 12H), 3.53-3.46 (m, 2H), 3.03-2.77 (m, 3H) 2.73-2.52 (m, 5H), 2.37 (s, 3H), 2.31 (d, J = 9.0Hz, 2H), 2.16 (s, 3H), 1.87-1.78 (m, 9H), 1.20 (s, 3H), 1.15 (s, 3H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 201.7 (C), 172.5 (C × 2), 172.3 (C), 171.7 (C), 170.5 (C), 169.1 (C), 167.4 (C), 166.5 (C), 140.5 (C), 138.0 (C), 133.6 (C, CH), 132.5 (C), 131.7 (CH), 130.0 (CH x 2), 128.9 (C), 128.7 (CH x 3) , 128.6 (CH), 128.5 (CH x 2), 127.9 (CH), 127.0 (CH x 2), 126.9 (CH x 2), 83.7 (CH), 81.0 (CH x 2), 80.8 (C), 78.2 (C), 76.2 (CH 2 ), 75.2 (CH), 74.1 (CH), 72.9 (CH), 71.8 (CH), 71.6 (CH), 71.5 (CH), 67.9 (CH 2 × 2), 61.7 ( CH 2 ), 61.6 (CH 2 × 2), 61.5 (CH 2 ), 55.8 (C), 55.0 (CH), 46.9 (CH), 43.0 (C), 35.3 (CH 2 ), 33.0 (CH 2 ), 28.9 (CH 2 × 2), 26.3 (CH 3 ), 22.4 (CH 3 ), 20.7 (CH 3 ), 20.6 (CH 3 ), 14.3 (CH 3 ), 10.7 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 60 H 73 NO 23 Na [M + Na] + 1198.4471, found 1198.4467

実施例2−1: 5,5’−(2−アジドプロパン−1,3−ジイル)ビス(オキシ)ビス(2−フェニル−1,3−ジオキサン)(8)の合成   Example 2-1 Synthesis of 5,5 '-(2-azidopropane-1,3-diyl) bis (oxy) bis (2-phenyl-1,3-dioxane) (8)

グリセロール誘導体(2)(Nemoto,Hら,Synlett,2007,pp.2091-2095)(1.0g,2.4mmol)をピリジン(6mL)に溶かし、トシル塩化物(0.69g,3.6mmol)とジメチルアミノピリジン(0.029g,0.24mmol)を加え、アルゴン雰囲気下、室温で撹拌した。12時間後、TLCでグリセロール誘導体(2)の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を炭酸水素ナトリウム水溶液および食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去してオイルを得た。得られたオイルは、さらなる精製をしないまま、次の反応に用いた。   Glycerol derivative (2) (Nemoto, H, et al., Synlett, 2007, pp. 2091-2095) (1.0 g, 2.4 mmol) was dissolved in pyridine (6 mL) and tosyl chloride (0.69 g, 3.6 mmol) was dissolved. And dimethylaminopyridine (0.029 g, 0.24 mmol) were added, and the mixture was stirred at room temperature under an argon atmosphere. After 12 hours, the disappearance of the glycerol derivative (2) was confirmed by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with aqueous sodium hydrogen carbonate solution and brine, and the organic layer was dried over anhydrous sodium sulfate. After sodium sulfate was filtered off, the solvent was removed to obtain an oil. The resulting oil was used in the next reaction without further purification.

上記オイルをN,N−ジメチルホルムアミド(20mL)に溶かし、アジ化ナトリウム(0.46g,7.2mmol)を加え、アルゴン雰囲気下、100℃で撹拌した。2時間後、TLCで原料の消失を確認後、炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/1)で精製して、単離収率84%で目的化合物(8)(0.89g,2.0mmol)を得た。   The oil was dissolved in N, N-dimethylformamide (20 mL), sodium azide (0.46 g, 7.2 mmol) was added, and the mixture was stirred at 100 ° C. under an argon atmosphere. Two hours later, the disappearance of the raw material was confirmed by TLC, an aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: hexane / ethyl acetate = 1/1) gave the target compound (8) (0.89 g, 2.0 mmol) in an isolated yield of 84%.

FT-IR(neat):2099,1154,1092,1010,699 cm-1
1H-NMR(CDCl3,400MHz):δ=7.52-7.47(m,4H),7.39-7.31(m,6H),5.52(s,2H),4.38-4.31(m,4H),4.04-3.98(m,4H),3.85-3.75(m,5H),5.15(quintet,J=1.6Hz,2H);
13C-NMR(CDCl3,75MHz):δ=138.0(C×2),128.7(CH×2),128.0(CH×4),125.9(CH×4),100.9(CH×2),71.1(CH×2),68.5(CH2×2),68.3(CH2×2),67.5(CH2×2),60.0(CH);
HRMS(ESI-TOF)m/z calcd for C23H27N3O6Na [M+Na]+ 464.1798,found 464.1797
FT-IR (neat): 2099, 1154, 1092, 1010, 699 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 7.52-7.47 (m, 4H), 7.39-7.31 (m, 6H), 5.52 (s, 2H), 4.38-4.31 (m, 4H), 4.04-3.98 (M, 4H), 3.85-3.75 (m, 5H), 5.15 (quintet, J = 1.6Hz, 2H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 138.0 (C × 2), 128.7 (CH × 2), 128.0 (CH × 4), 125.9 (CH × 4), 100.9 (CH × 2), 71.1 ( CH × 2), 68.5 (CH 2 × 2), 68.3 (CH 2 × 2), 67.5 (CH 2 × 2), 60.0 (CH);
HRMS (ESI-TOF) m / z calcd for C 23 H 27 N 3 O 6 Na [M + Na] + 464.1798, found 464.1797

実施例2−2: 2,5−ジオキソピロリジン−1−イル 5−(1,3−ビス(2−フェニル−1,3−ジオキサン−5−イルオキシ)プロパン−2−イルアミノ)−5−オキソペンタノエート(9)の合成   Example 2-2: 2,5-dioxopyrrolidin-1-yl 5- (1,3-bis (2-phenyl-1,3-dioxan-5-yloxy) propan-2-ylamino) -5-oxo Synthesis of pentanoate (9)

上記実施例2−1で得たアジド化合物(8)(1.0g,2.3mmol)をテトラヒドロフラン(20mL)に溶かし、水素化リチウムアルミニウム(0.27g,7.0mmol)を加えて撹拌した。TLCで原料の消失を確認後、酢酸エチルと水を加えて試薬を不活性化させた後に濾過した。濾液を無水硫酸ナトリウムで乾燥し、溶媒を除去した。   The azide compound (8) (1.0 g, 2.3 mmol) obtained in Example 2-1 was dissolved in tetrahydrofuran (20 mL), and lithium aluminum hydride (0.27 g, 7.0 mmol) was added and stirred. After confirming disappearance of the raw material by TLC, ethyl acetate and water were added to inactivate the reagent, followed by filtration. The filtrate was dried over anhydrous sodium sulfate and the solvent was removed.

残渣(1.14g)を塩化メチレン(15mL)に溶かし、トリエチルアミン(0.65mL,4.7mmol)とグルタル酸無水物(0.32g,2.8mmol)を加えて室温で撹拌した。TLCで原料の消失を確認後、硫酸銅水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。   The residue (1.14 g) was dissolved in methylene chloride (15 mL), triethylamine (0.65 mL, 4.7 mmol) and glutaric anhydride (0.32 g, 2.8 mmol) were added, and the mixture was stirred at room temperature. After confirming disappearance of the raw material by TLC, an aqueous copper sulfate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed.

残渣(1.31g)を塩化メチレン(15mL)に溶かし、N−ヒドロキシコハク酸イミド(0.54g,4.7mmol)と1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(0.89g,4.7mmol)を加えて40℃で撹拌した。TLCで原料の消失を確認後、塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/3)で精製して、単離収率69%で白色非晶質の目的化合物(9)(1.0g,1.6mmol)を得た。   The residue (1.31 g) was dissolved in methylene chloride (15 mL) and N-hydroxysuccinimide (0.54 g, 4.7 mmol) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0. 89 g, 4.7 mmol) was added and stirred at 40 ° C. After confirming disappearance of the raw material by TLC, an aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: hexane / ethyl acetate = 1/3) afforded the white amorphous target compound (9) (1.0 g, 1.6 mmol) in an isolated yield of 69%. It was.

FT-IR(neat):2866,1783,1738,1661,1530,1454,1388,1209,1154,1091,1010,755,701cm-1
1H-NMR(CDCl3,400 MHz):δ=7.50-7.44(m,4H),7.39-7.32(m,6H),6.79(d,J=8.4,2H),5.50(s,2H),4.37-4.27(m,5H),4.00-3.93(m,4H),3.80-3.75(m,2H),3.71-3.65(m,2H),3.35(s,2H),2.60(t,J=6.8,2H),2.53(s,4H),2.28(t,J=6.8,2H),2.06(t,J=6.8,2H);
13C-NMR(CDCl3,75MHz): δ = 171.4(C),169.4(C×2),168.2(C),138.1(C×2),128.7(C×2),128.0(C×4),125.8(C×2),100.9(CH×2),70.6(CH×2),68.9(CH2×2),68.3(CH2×2),65.8(CH2×2),48.6(CH),34.1(CH2),29.6(CH2),25.2(CH2×2),20.9(CH2);
HRMS(ESI-TOF)m/z calcd for C32H38N2O11Na [M+Na]+ 649.2373,found 649.2350
FT-IR (neat): 2866, 1783, 1738, 1661, 1530, 1454, 1388, 1209, 1154, 1091, 1010, 755, 701 cm -1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 7.50-7.44 (m, 4H), 7.39-7.32 (m, 6H), 6.79 (d, J = 8.4, 2H), 5.50 (s, 2H), 4.37-4.27 (m, 5H), 4.00-3.93 (m, 4H), 3.80-3.75 (m, 2H), 3.71-3.65 (m, 2H), 3.35 (s, 2H), 2.60 (t, J = 6.8 , 2H), 2.53 (s, 4H), 2.28 (t, J = 6.8, 2H), 2.06 (t, J = 6.8, 2H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 171.4 (C), 169.4 (C × 2), 168.2 (C), 138.1 (C × 2), 128.7 (C × 2), 128.0 (C × 4) , 125.8 (C x 2), 100.9 (CH x 2), 70.6 (CH x 2), 68.9 (CH 2 x 2), 68.3 (CH 2 x 2), 65.8 (CH 2 x 2), 48.6 (CH) , 34.1 (CH 2 ), 29.6 (CH 2 ), 25.2 (CH 2 × 2), 20.9 (CH 2 );
HRMS (ESI-TOF) m / z calcd for C32H38N2O11Na [M + Na] + 649.2373, found 649.2350

実施例2−3: 2,5−ジオキソピロリジン−1−イル 5−(1,3−ビス(1,3−ジヒドロキシプロパン−2−イルオキシ)プロパン−2−イルアミノ)−5−オキソペンタノエート(10)の合成   Example 2-3: 2,5-Dioxopyrrolidin-1-yl 5- (1,3-bis (1,3-dihydroxypropan-2-yloxy) propan-2-ylamino) -5-oxopentanoate Synthesis of (10)

上記実施例2−2で得たグリセロール誘導体(9)(0.097g,0.16mmol)をテトラヒドロフラン(1mL)に溶かし、水酸化パラジウム(0.040g,0.28mmol)を加え、水素雰囲気下、室温で撹拌した。2時間後、TLCでグリセロール誘導体(9)と中間体の消失を確認後、パラジウムを濾別した。シリカゲルカラム精製をしないまま、次の反応に用いた。   Glycerol derivative (9) obtained in Example 2-2 (0.097 g, 0.16 mmol) was dissolved in tetrahydrofuran (1 mL), palladium hydroxide (0.040 g, 0.28 mmol) was added, and under a hydrogen atmosphere, Stir at room temperature. Two hours later, after confirming disappearance of the glycerol derivative (9) and the intermediate by TLC, palladium was filtered off. It used for next reaction, without carrying out silica gel column purification.

実施例2−4   Example 2-4

パクリタキセルの脱N−ベンゾイル誘導体(既知化合物)(0.014g,0.019mmol)をN,N−ジメチルホルムアミド(0.2mL)に溶かし、上記実施例2−3で得たグリセロール誘導体(10)(0.077mmol)を加え、アルゴン雰囲気下、室温で撹拌した。48時間後TLCでグリセロール誘導体(10)の消失を確認後、炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄後、有機層を無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別後、溶媒を除去した。シリカゲルカラムクロマトグラフィー(溶離液:メタノール/クロロホルム=1/7)で精製して、単離収率68%で無色透明オイルである本発明に係るパクリタキセル誘導体(0.014g,0.013mmol)を得た。   De-N-benzoyl derivative of paclitaxel (known compound) (0.014 g, 0.019 mmol) was dissolved in N, N-dimethylformamide (0.2 mL), and the glycerol derivative (10) obtained in Example 2-3 above (10) ( 0.077 mmol) was added, and the mixture was stirred at room temperature under an argon atmosphere. After 48 hours, the disappearance of the glycerol derivative (10) was confirmed by TLC, an aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with brine, and the organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by filtration, the solvent was removed. Purification by silica gel column chromatography (eluent: methanol / chloroform = 1/7) gave a paclitaxel derivative (0.014 g, 0.013 mmol) according to the present invention which is a colorless transparent oil with an isolated yield of 68%. It was.

FT-IR(neat):3365,2924,2853,1721,1648,1542,1458,1374,1276,1121,1072,977,748,708 cm-1
1H-NMR(CDCl3,400MHz):δ=8.13(d,J=7.3Hz,2H),7.68(t,J=7.4Hz,1H),7.58(t,J=7.6Hz,2H),7.48-7.39(m,4H),7.30(t,J=7.0Hz,1H),6.48(s,1H),6.17(t,J=8.8Hz,1H),5.68(d,J=7.1Hz,1H),5.48(d,J=4.5Hz,1H),5.01(d,J=9.4Hz,1H),4.61(d,J=4.6Hz,1H),4.35(dd,J=10.8,6.65Hz,1H),4.21(s,2H),4.15(dt,J=10.3,5.2Hz,1H),3.85(d,J=7.1Hz,1H),3.79-3.71(m,2H),3.69-3.52(m,10H),3.46-3.38(m,2H),3.34-3.31(m,1H),2.53-2.42(m,1H),2.37-2.21(m,8H),2.20(s,3H),2.08(dd,J=15.5,9.0Hz,1H),1.95(s,3H),1.91-1.77(m,3H),1.68(s,3H),1.22-1.16(m,6H);
13C-NMR(CDCl3,75MHz):δ=205.1(C),175.4(C),175.2(C),174.5(C),171.8(C),171.3(C),167.6(C),142.1(C),140.0(C),135.0(C),134.6(CH),131.3(C),131.1(CH×2),129.7(CH×4),128.9(CH),128.5(CH×2),85.8(CH),83.1(CH),83.0(CH),82.3(C),79.0(C),77.5(CH2) 76.8(CH),76.2(CH),74.7(CH),72.4(CH),72.3(CH),69.8(CH2×2),62.6(CH2),62.5(CH2),62.4(CH2×2),59.3(C),56.8(CH),51.0(CH),47.9(CH),44.6(C),37.5(CH2),36.6(CH2),36.1(CH2),35.0(CH2),27.0(CH3),23.3(CH2),23.2(CH3),22.4(CH3),20.8(CH3),14.7(CH3),10.5(CH3);
HRMS(ESI-TOF)m/z calcd for C54H72N2O21Na [M+Na]+ 1107.4525,found 1107.4520
FT-IR (neat): 3365, 2924, 2853, 1721, 1648, 1542, 1458, 1374, 1276, 1121, 1072, 977, 748, 708 cm −1 ;
1 H-NMR (CDCl 3 , 400 MHz): δ = 8.13 (d, J = 7.3 Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 -7.39 (m, 4H), 7.30 (t, J = 7.0Hz, 1H), 6.48 (s, 1H), 6.17 (t, J = 8.8Hz, 1H), 5.68 (d, J = 7.1Hz, 1H) , 5.48 (d, J = 4.5Hz, 1H), 5.01 (d, J = 9.4Hz, 1H), 4.61 (d, J = 4.6Hz, 1H), 4.35 (dd, J = 10.8, 6.65Hz, 1H) , 4.21 (s, 2H), 4.15 (dt, J = 10.3, 5.2Hz, 1H), 3.85 (d, J = 7.1Hz, 1H), 3.79-3.71 (m, 2H), 3.69-3.52 (m, 10H ), 3.46-3.38 (m, 2H), 3.34-3.31 (m, 1H), 2.53-2.42 (m, 1H), 2.37-2.21 (m, 8H), 2.20 (s, 3H), 2.08 (dd, J = 15.5, 9.0Hz, 1H), 1.95 (s, 3H), 1.91-1.77 (m, 3H), 1.68 (s, 3H), 1.22-1.16 (m, 6H);
13 C-NMR (CDCl 3 , 75 MHz): δ = 205.1 (C), 175.4 (C), 175.2 (C), 174.5 (C), 171.8 (C), 171.3 (C), 167.6 (C), 142.1 ( C), 140.0 (C), 135.0 (C), 134.6 (CH), 131.3 (C), 131.1 (CH x 2), 129.7 (CH x 4), 128.9 (CH), 128.5 (CH x 2), 85.8 (CH), 83.1 (CH), 83.0 (CH), 82.3 (C), 79.0 (C), 77.5 (CH 2 ) 76.8 (CH), 76.2 (CH), 74.7 (CH), 72.4 (CH), 72.3 (CH), 69.8 (CH 2 × 2), 62.6 (CH 2 ), 62.5 (CH 2 ), 62.4 (CH 2 × 2), 59.3 (C), 56.8 (CH), 51.0 (CH), 47.9 (CH ), 44.6 (C), 37.5 (CH 2 ), 36.6 (CH 2 ), 36.1 (CH 2 ), 35.0 (CH 2 ), 27.0 (CH 3 ), 23.3 (CH 2 ), 23.2 (CH 3 ), 22.4 (CH 3 ), 20.8 (CH 3 ), 14.7 (CH 3 ), 10.5 (CH 3 );
HRMS (ESI-TOF) m / z calcd for C 54 H 72 N 2 O 21 Na [M + Na] + 1107.4525, found 1107.4520

実施例3−1: 2,5−ジオキソピロリジン−1−イル 5−(5,11−ビス((1,3−ジヒドロキシプロパン−2−イルオキシ)メチル)−1,15−ジヒドロキシ−2,14−ビス(ヒドロキシメチル)−3,6,10,13−テトラオキサペンタデカン−8−イルアミノ)−5−オキソペンタノエート(11)の合成   Example 3-1: 2,5-Dioxopyrrolidin-1-yl 5- (5,11-bis ((1,3-dihydroxypropan-2-yloxy) methyl) -1,15-dihydroxy-2,14 Synthesis of bis (hydroxymethyl) -3,6,10,13-tetraoxapentadecan-8-ylamino) -5-oxopentanoate (11)

グリセロール誘導体(既知化合物;SYNLETT,2007,13,pp.2091-2095)(0.028g,0.025mmol)をエタノール(2.5mL)に溶かし、水酸化パラジウム(0.010g,0.071mmol)を加え、水素雰囲気下、室温で撹拌した。2時間後、TLCでグリセロール誘導体と中間体の消失を確認後、パラジウムを濾別して無色透明オイルである目的化合物(11)(0.017g)を得た。シリカゲルカラム精製をしないまま、次の反応に用いた。   Glycerol derivative (known compound; SYNLETT, 2007, 13, pp.2091-2095) (0.028 g, 0.025 mmol) was dissolved in ethanol (2.5 mL), and palladium hydroxide (0.010 g, 0.071 mmol) was dissolved. In addition, the mixture was stirred at room temperature under a hydrogen atmosphere. Two hours later, the disappearance of the glycerol derivative and the intermediate was confirmed by TLC, and then palladium was filtered off to obtain the objective compound (11) (0.017 g) as a colorless transparent oil. It used for next reaction, without carrying out silica gel column purification.

実施例3−2   Example 3-2

パクリタキセルの脱N−ベンゾイル誘導体(既知化合物)(0.8mg,1μmol)をN,N−ジメチルホルムアミド(0.1mL)に溶かし、上記実施例3−1で得たグリセロール誘導体(11)(17mg)を加え、アルゴン雰囲気下、室温で撹拌した。40時間後にTLCでグリセロール誘導体(11)の消失を確認した。下記条件のHPLCで精製を行い、凍結乾燥して単離収率81%で白色固体の本発明に係るパクリタキセル誘導体(1.2mg,0.9μmol)を得た。
HPLC条件
カラム: Tosoh ODS80Ts 4.6mm×15cm
溶離液: アセトニトリル/水=1/9(0分)→6/4(20分)の直線変化
流速: 0.8mL/分
保持時間: 18分
HRMS(ESI-TOF)m/z calcd for C66H96N2O29Na [M+Na]+ 1403.5996,found 1403.5996
De-N-benzoyl derivative of paclitaxel (known compound) (0.8 mg, 1 μmol) dissolved in N, N-dimethylformamide (0.1 mL), and glycerol derivative (11) (17 mg) obtained in Example 3-1 above. And stirred at room temperature under an argon atmosphere. After 40 hours, the disappearance of the glycerol derivative (11) was confirmed by TLC. Purification was performed by HPLC under the following conditions, and lyophilization was performed to obtain a paclitaxel derivative (1.2 mg, 0.9 μmol) according to the present invention as a white solid in an isolated yield of 81%.
HPLC conditions Column: Tosoh ODS80Ts 4.6 mm × 15 cm
Eluent: Acetonitrile / water = 1/9 (0 min) → 6/4 (20 min) linear change Flow rate: 0.8 mL / min Retention time: 18 min
HRMS (ESI-TOF) m / z calcd for C 66 H 96 N 2 O 29 Na [M + Na] + 1403.5996, found 1403.5996

試験例1 水溶性の測定
(1) 検量線の作成
検量線を作成するため、パクリタキセルに加え、上記実施例1および比較例1〜2のパクリタキセル誘導体をエタノールに溶解し、濃度10μM、20μM、40μMおよび80μMの溶液を得た。各溶液に内部標準物質として20μMアセチルサリチル酸溶液を等容量加えた上で、メンブランフィルター(Millipore社製,Millex(登録商標)−FG 0.2μm)で濾過し、HPLCシステムに10μLずつ注入して測定を行った。HPLCの測定条件は、以下のとおりである。
カラム: ナカライテスク社製,5C18−AR−II,4.6mm×100mm i.d.
ポンプ: JASCO社製,880−PU型
検出器: 日立製作所社製,L−7400型
データ処理機: キーエンス社製,NR−2000型
移動相: アセトニトリル/2mMリン酸緩衝液(pH6.5)=55/45
流速: 1.1mL/min
測定波長: 227nm
Test Example 1 Measurement of water solubility (1) Preparation of calibration curve In addition to paclitaxel, the paclitaxel derivatives of Example 1 and Comparative Examples 1 and 2 were dissolved in ethanol in order to prepare a calibration curve, and the concentrations were 10 μM, 20 μM, and 40 μM. And an 80 μM solution was obtained. After adding an equal volume of 20 μM acetylsalicylic acid solution as an internal standard substance to each solution, the solution was filtered through a membrane filter (Millipore, Millex (registered trademark) -FG 0.2 μm), and 10 μL was injected into the HPLC system and measured. Went. The measurement conditions of HPLC are as follows.
Column: Nacalai Tesque, 5C 18 -AR-II, 4.6mm × 100mm i. d.
Pump: JASCO, 880-PU type Detector: Hitachi, L-7400 type Data processor: Keyence, NR-2000 type Mobile phase: Acetonitrile / 2 mM phosphate buffer (pH 6.5) = 55/45
Flow rate: 1.1 mL / min
Measurement wavelength: 227nm

上記HPLC条件によって、パクリタキセルは3分13秒後に、実施例1のパクリタキセル誘導体は1分21秒後に、比較例1は1分58秒後に、比較例2は2分11秒後にピークが認められた。検量線は、各パクリタキセルのピーク高さを内部標準物質のピーク高さで除した値を縦軸に、各パクリタキセルの濃度を横軸にプロットして作成した。いずれの検量線も、ほぼ直線となった。パクリタキセル、実施例1、比較例1、比較例2の近似式は、それぞれy=0.1771x、y=0.0835x、y=0.1667x、y=0.2086xであり、相関係数は、それぞれ0.991、0.9971、0.9934、0.9979であった。   Under the above HPLC conditions, paclitaxel was observed after 3 minutes and 13 seconds, the paclitaxel derivative of Example 1 was observed after 1 minute and 21 seconds, Comparative Example 1 was observed after 1 minute and 58 seconds, and Comparative Example 2 was observed after 2 minutes and 11 seconds. . The calibration curve was prepared by plotting the value obtained by dividing the peak height of each paclitaxel by the peak height of the internal standard on the vertical axis and the concentration of each paclitaxel on the horizontal axis. Both calibration curves were almost straight. The approximate expressions of paclitaxel, Example 1, Comparative Example 1, and Comparative Example 2 are y = 0.1771x, y = 0.0835x, y = 0.1667x, and y = 0.2086x, respectively, and the correlation coefficient is They were 0.991, 0.9971, 0.9934, and 0.9979, respectively.

(2) 分配係数の測定
分配係数を求める実験は、NITE(National Institute of Technology and Evaluation)に従って行った。具体的には、パクリタキセルを1−オクタノールに溶解し、100μMの溶液を得た。各溶液へ、蒸留水を1:1の容量比で加えた。振盪機(IWAKI社製)を用い、回転数:20回/minで各溶液を5分間振盪した後、2900rpmで20分間遠心分離した。2層が完全に分離していることを確認した後、各溶液の1−オクタノール層と水層からサンプルを150μLずつ採取した。得られたサンプルを遠心濃縮することにより溶媒を除去した後、エタノール(150μL)に溶解した。得られた溶液に、内部標準物質として、アセチルサリチル酸の40μMエタノール溶液(150μL)を加えた。得られた溶液をメンブランフィルター(Millipore社製,Millex(登録商標)−FG 0.2μm)で濾過した後、上記(1)に示すHPLCで分析した。また、実施例1および比較例1〜2のパクリタキセル誘導体についても同様に分析した。測定は4回または5回行った。上記(1)で作成した検量線を用い、得られた測定値から各溶液におけるパクリタキセルまたはパクリタキセル誘導体の濃度を求めた。また、Turkeyテストにより、パクリタキセルを用いた場合に対する実施例1および比較例1〜2のパクリタキセル誘導体の各層における濃度に関する有意差検定を行った。さらに、下記の式により、分配係数を求めた。
分配係数P=log10Pow
Pow: Co/Cw
Co: 1−オクタノール層中の被検物質濃度(mol/L)
Cw: 水層中の被検物質濃度(mol/L)
(2) Measurement of distribution coefficient The experiment for determining the distribution coefficient was performed according to NITE (National Institute of Technology and Evaluation). Specifically, paclitaxel was dissolved in 1-octanol to obtain a 100 μM solution. To each solution, distilled water was added at a volume ratio of 1: 1. Each solution was shaken for 5 minutes at a rotation speed of 20 times / min using a shaker (manufactured by IWAKI), and then centrifuged at 2900 rpm for 20 minutes. After confirming that the two layers were completely separated, 150 μL samples were taken from the 1-octanol layer and the aqueous layer of each solution. The obtained sample was centrifuged to remove the solvent, and then dissolved in ethanol (150 μL). To the obtained solution, a 40 μM ethanol solution (150 μL) of acetylsalicylic acid was added as an internal standard substance. The obtained solution was filtered with a membrane filter (Millipore, Millex (registered trademark) -FG 0.2 μm), and then analyzed by HPLC shown in (1) above. Moreover, it analyzed similarly about the paclitaxel derivative of Example 1 and Comparative Examples 1-2. The measurement was performed 4 times or 5 times. Using the calibration curve prepared in (1) above, the concentration of paclitaxel or paclitaxel derivative in each solution was determined from the obtained measured values. Moreover, the significant difference test regarding the density | concentration in each layer of the paclitaxel derivative of Example 1 and the comparative examples 1-2 with respect to the case where a paclitaxel was used was performed by the Turkey test. Furthermore, the distribution coefficient was calculated | required by the following formula.
Distribution coefficient P = log 10 Pow
Pow: Co / Cw
Co: Test substance concentration in 1-octanol layer (mol / L)
Cw: Test substance concentration in the water layer (mol / L)

水層におけるパクリタキセルまたは各パクリタキセル誘導体の濃度を図1に、1−オクタノール層における同濃度を図2に示す。なお、図中、「*」は危険率p<0.001で有意差がある場合を示す。また、分配係数と、パクリタキセルまたは各パクリタキセル誘導体の水層および1−オクタノール層における濃度の比を表1に示す。   The concentration of paclitaxel or each paclitaxel derivative in the aqueous layer is shown in FIG. 1, and the same concentration in the 1-octanol layer is shown in FIG. In the figure, “*” indicates a case where there is a significant difference with a risk factor p <0.001. Table 1 shows the ratio of the partition coefficient to the concentration of paclitaxel or each paclitaxel derivative in the aqueous layer and 1-octanol layer.

表1と図1に示す結果のとおり、比較例のパクリタキセル誘導体の水溶性は、パクリタキセルに対してほぼ変化しないかそれほど変わらなかった。一方、本発明に係るパクリタキセル誘導体は、他の化合物に対して有意に水溶性が高かった。また、図2のとおり、本発明のパクリタキセル誘導体は、有機溶媒に溶解し易い性質も維持している。以上の結果から、本発明に係るパクリタキセル誘導体は、有機溶媒に溶解され易い性質は残しつつ、水溶性をも獲得した化合物であることが実証された。   As shown in Table 1 and FIG. 1, the water-solubility of the paclitaxel derivative of the comparative example was hardly changed or not much changed with respect to paclitaxel. On the other hand, the paclitaxel derivative according to the present invention was significantly more soluble in water than other compounds. Further, as shown in FIG. 2, the paclitaxel derivative of the present invention maintains the property of being easily dissolved in an organic solvent. From the above results, it was demonstrated that the paclitaxel derivative according to the present invention is a compound that has acquired water solubility while retaining the property of being easily dissolved in an organic solvent.

試験例2 抗がん活性試験
6週齢の雄性ヌードマウス(日本クレア社製,BALB/cAJc1−nu/nuマウス)37匹に、PBSに懸濁した肺腺癌細胞(ヒトA549肺細胞)3×106cell/200μLを皮下投与した。当該マウスをコントロール群7匹と、6匹ずつの薬剤投与群4群に分けた。別途、パクリタキセル、並びに実施例1および比較例1〜2のパクリタキセル誘導体を、生理食塩水/ポリオキシエチル化ヒマシ油(Cremophor EL)/エタノール=7.5/12.5/12.5の混合溶媒に溶解した。癌細胞摂取の1週間後に、薬剤投与群にはパクリタキセルまたはパクリタキセル誘導体の割合が体重当たり3.51nmol/kgとなるように、各溶液200μLを1回腹腔内投与した。マウスは、22±2℃、12時間の明暗サイクル下で飼育し、飲水は自由摂取とした。コントロール群には同量の生理食塩水を同様に投与した。投与開始から0日後、4日後、29日後、35日後および42日後に、venier caliperを用いて腫瘍径を測定し、下記式により腫瘍容積と増殖阻害率を算出した。
腫瘍容積(mm3)=ab2/2 [a:腫瘍の長さ,b:腫瘍の幅]
増殖阻害率(%)=[(1−薬剤投与群の平均腫瘍容積)/(コントロール群の平均腫瘍容積)]×100
Test Example 2 Anticancer Activity Test Lung adenocarcinoma cells (human A549 lung cells) 3 suspended in PBS in 37 6-week-old male nude mice (CLEA Japan, BALB / cAJc1-nu / nu mice) × 10 6 cell / 200 μL was subcutaneously administered. The mice were divided into 7 control groups and 4 drug administration groups of 6 mice each. Separately, paclitaxel and the paclitaxel derivatives of Example 1 and Comparative Examples 1 and 2 were mixed with saline / polyoxyethylated castor oil (Cremophor EL) /ethanol=7.5/12.5/12.5. Dissolved in. One week after cancer cell ingestion, 200 μL of each solution was intraperitoneally administered to the drug administration group once so that the ratio of paclitaxel or paclitaxel derivative was 3.51 nmol / kg body weight. Mice were bred under a light / dark cycle of 22 ± 2 ° C. and 12 hours. The same amount of physiological saline was similarly administered to the control group. After 0 days, 4 days, 29 days, 35 days and 42 days after the start of administration, the tumor diameter was measured using a venier caliper, and the tumor volume and growth inhibition rate were calculated by the following formula.
Tumor volume (mm 3) = ab 2/ 2 [a: Tumor length, b: width of tumor]
Growth inhibition rate (%) = [(1−average tumor volume in drug administration group) / (average tumor volume in control group)] × 100

得られた値から平均値±標準偏差(SD)を求め、両側ANOVAで分析し、また、各群の有意差はTurkey testで判定した。結果を図3に示す。なお、図中の「**」は危険率p<0.05で有意差がある場合を示す。   The mean value ± standard deviation (SD) was obtained from the obtained values, analyzed by two-sided ANOVA, and the significant difference of each group was determined by the Turkey test. The results are shown in FIG. Note that “**” in the figure indicates a case where there is a significant difference at a risk rate p <0.05.

図3の結果のとおり、本発明に係るパクリタキセル誘導体を投与した場合、薬剤投与から35日後以降において、他の薬剤には有意な効果が認められなかったのに比して、コントロール群に対して腫瘍容積が有意に減少していた。また、本発明に係るパクリタキセル誘導体を投与した場合の42日後における肺腺癌細胞の増殖阻害率は51%であり、コントロール群に対して有意であった。このように、本発明に係るパクリタキセル誘導体の抗がん活性が、in vivoの実験で証明された。   As shown in the results of FIG. 3, when the paclitaxel derivative according to the present invention was administered, after 35 days from the administration of the drug, no significant effect was observed with other drugs, compared to the control group. Tumor volume was significantly reduced. Moreover, the growth inhibition rate of lung adenocarcinoma cells after 42 days when the paclitaxel derivative according to the present invention was administered was 51%, which was significant with respect to the control group. Thus, the anticancer activity of the paclitaxel derivative according to the present invention has been proved by in vivo experiments.

なお、本発明に係るパクリタキセル誘導体投与群では、実験を通じて死亡例が無かったのに対して、パクリタキセル投与群では投与開始から4日後に生存マウス数が1となり、また、比較例1のパクリタキセル誘導体投与群では7日後に生存マウス数が2となり、以降の観察の継続が不可能となった。その理由は明らかではないが、臨床試験においてパクリタキセルの投与との因果関係が否定できない死亡例として脳出血や敗血症などがあり、これらはパクリタキセルの骨髄抑制に起因するとの記載がインタビューフォームにあることから、パクリタキセル投与群と比較例1の誘導体投与群の死亡例は、同様の原因によることが考えられる。   In the paclitaxel derivative administration group according to the present invention, there were no deaths throughout the experiment, whereas in the paclitaxel administration group, the number of surviving mice was 1 after 4 days from the start of administration, and the paclitaxel derivative administration of Comparative Example 1 was performed. In the group, the number of surviving mice became 2 after 7 days, making it impossible to continue the observation. The reason for this is not clear, but there are cerebral hemorrhages and sepsis, etc. that cannot be denied the causal relationship with the administration of paclitaxel in clinical trials. The death cases of the paclitaxel administration group and the derivative administration group of Comparative Example 1 are considered to be caused by the same cause.

Claims (6)

下記一般式(I)で表されるものであることを特徴とするパクリタキセル誘導体。
[式中
Xは、C1-6アルキレン基;アミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される1以上の基を内部に含むC2-6アルキレン基;アミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される1の基を一方の末端に有するC1-6アルキレン基;または、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される2の基を両末端に有するC1-6アルキレン基を示し;
Yは、2n-1個のグリセロール誘導体基をXに結合させるための結合基を示し;
nは1以上の整数を示す]
A paclitaxel derivative represented by the following general formula (I):
[Wherein X is a C 1-6 alkylene group; one or more groups selected from the group consisting of an amino group, an ether group, a thioether group, a carbonyl group, a thionyl group, an ester group, an amide group, a urea group, and a thiourea group. A C 2-6 alkylene group containing an amino group, an ether group, a thioether group, a carbonyl group, a thionyl group, an ester group, an amide group, a urea group, and a thiourea group. A C 1-6 alkylene group having a terminal; or a C 1-6 alkylene group having two groups selected from the group consisting of a carbonyl group, a thionyl group, an ester group, an amide group, a urea group and a thiourea group at both ends Indicates;
Y represents a linking group for linking 2 n-1 glycerol derivative groups to X;
n represents an integer of 1 or more]
Xが、カルボニル基、チオニル基、エステル基、アミド基、ウレア基およびチオウレア基からなる群から選択される2の基を両末端に有するC2-4アルキレン基である請求項1に記載のパクリタキセル誘導体。 The paclitaxel according to claim 1, wherein X is a C 2-4 alkylene group having two groups at both ends selected from the group consisting of a carbonyl group, a thionyl group, an ester group, an amide group, a urea group and a thiourea group. Derivative. Yが、下記構造(II)または複数の構造(II)が結合した末広がりの分岐構造を有する請求項1または2に記載のパクリタキセル誘導体。
[式中、Y1は、単結合、C1-6アルキレン基、アミノ基、エーテル基、チオエーテル基、カルボニル基、エステル基またはアミド基を示し;Y2は−CH<または−N<を示し;Y3およびY4は、互いに独立して、単結合、C1-6アルキレン基、アミノ基、エーテル基、チオエーテル基、カルボニル基、エステル基またはアミド基を示す]
The paclitaxel derivative according to claim 1 or 2, wherein Y has a divergent branched structure in which the following structure (II) or a plurality of structures (II) are bonded.
[Wherein Y 1 represents a single bond, a C 1-6 alkylene group, an amino group, an ether group, a thioether group, a carbonyl group, an ester group or an amide group; Y 2 represents —CH <or —N <. And Y 3 and Y 4 each independently represent a single bond, a C 1-6 alkylene group, an amino group, an ether group, a thioether group, a carbonyl group, an ester group or an amide group]
nが2または3である請求項1〜3のいずれかに記載のパクリタキセル誘導体。   The paclitaxel derivative according to any one of claims 1 to 3, wherein n is 2 or 3. 請求項1〜4のいずれかに記載のパクリタキセル誘導体からなることを特徴とする医薬。   A pharmaceutical comprising the paclitaxel derivative according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載のパクリタキセル誘導体を含むことを特徴とする抗がん剤。   An anticancer agent comprising the paclitaxel derivative according to any one of claims 1 to 4.
JP2010270797A 2010-12-03 2010-12-03 Paclitaxel derivative Withdrawn JP2012116821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270797A JP2012116821A (en) 2010-12-03 2010-12-03 Paclitaxel derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270797A JP2012116821A (en) 2010-12-03 2010-12-03 Paclitaxel derivative

Publications (1)

Publication Number Publication Date
JP2012116821A true JP2012116821A (en) 2012-06-21

Family

ID=46500102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270797A Withdrawn JP2012116821A (en) 2010-12-03 2010-12-03 Paclitaxel derivative

Country Status (1)

Country Link
JP (1) JP2012116821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228650A4 (en) * 2014-12-04 2018-10-17 Delta-Fly Pharma, Inc. Novel peg derivative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228650A4 (en) * 2014-12-04 2018-10-17 Delta-Fly Pharma, Inc. Novel peg derivative

Similar Documents

Publication Publication Date Title
CN105315294B (en) 7-Ethyl-10-hydroxycamptothecin prodrug and its preparation method and application
US7786164B2 (en) Lipophilic di(anticancer drug) compounds, compositions, and related methods
CN111494640B (en) Redox double-sensitive trithio bond bridged dimer prodrug and self-assembled nanoparticles thereof
JP6762094B2 (en) Disulfide compounds for drug delivery
KR20020082458A (en) Taxane prodrugs
KR19990044409A (en) Hydrophobic Taxane Derivatives Promoting Hydrolysis
CN101935336B (en) Method for preparing water-soluble taxane medicament and application thereof
JPH10509461A (en) New taxoid
JP6196616B2 (en) 10-methoxycamptothecin derivative, process for its production and use
Arpicco et al. Preparation and characterization of novel poly (ethylene glycol) paclitaxel derivatives
ES2959891T3 (en) Production of trans-[tetrachlorobis(1H-indazole)ruthenate (III)] and compositions thereof
EP2355800A1 (en) Nanoparticles of beta-lactam derivatives
US9650390B2 (en) Water-soluble taxane derivatives and uses thereof
EP2499150B1 (en) Novel mannopyranoside derivatives with anticancer activity
JP3781877B2 (en) Ascorbic acid derivatives or salts thereof, and pharmaceuticals
JP2012116821A (en) Paclitaxel derivative
CN114848585B (en) Improved low-toxicity high-efficiency orthoester miscible medicinal adjuvant, preparation method and local sustained-release drug delivery preparation containing adjuvant
JPWO2008093655A1 (en) Polyalcohol compounds and medicines
EP3378495B1 (en) Composition comprising novel glutamic acid derivative and block copolymer, and use thereof
RU2259363C2 (en) Semi-synthetic taxanes and pharmaceutical compositions based on thereof
JP2020528891A (en) Compositions and Methods for Treating Conditions Related to Altered TCA Cycle Metabolism
KR20170091610A (en) Novel peg derivative
KR101093787B1 (en) Pharmaceutical composition for treating cancer comprising new derivatives of nucleosides
CN105777769A (en) 7-ethyl-10-hydroxycamptothecin derivatives, and preparation and application thereof
CN106699699B (en) The paclitaxel derivatives replaced containing trifluoro isopropyl and its application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204