JP2012115408A - Guide wire for medical use, manufacturing method thereof, and assembly of guide wire for medical use and microcatheter - Google Patents

Guide wire for medical use, manufacturing method thereof, and assembly of guide wire for medical use and microcatheter Download PDF

Info

Publication number
JP2012115408A
JP2012115408A JP2010266835A JP2010266835A JP2012115408A JP 2012115408 A JP2012115408 A JP 2012115408A JP 2010266835 A JP2010266835 A JP 2010266835A JP 2010266835 A JP2010266835 A JP 2010266835A JP 2012115408 A JP2012115408 A JP 2012115408A
Authority
JP
Japan
Prior art keywords
wire
core wire
leading
coil spring
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010266835A
Other languages
Japanese (ja)
Other versions
JP5481359B2 (en
Inventor
Tomihisa Kato
富久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PatentStra Co Ltd
Original Assignee
PatentStra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PatentStra Co Ltd filed Critical PatentStra Co Ltd
Priority to JP2010266835A priority Critical patent/JP5481359B2/en
Publication of JP2012115408A publication Critical patent/JP2012115408A/en
Application granted granted Critical
Publication of JP5481359B2 publication Critical patent/JP5481359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a technical problem for reducing the length and the diameter of a leading plug, while securing the detachment strength of the leading plug from a core wire, etc., in order to enable deep insertion even in a lesion, which is largely bending and meandering, since the leading plug at the distal end part of a conventional guide wire for medical use is too long in the longitudinal direction of the core wire to be inserted to a deep part in the lesion.SOLUTION: The leading plug has a structure constituted of a short and hard part and a leading part through the use of the same or the same kind of joint member, or has a structure where a film layer is formed on the outer circumference of the core wire through the use of the same or the same kind of joint member identical to that of the leading plug. Thus, while securing the detachment strength from the core wire, etc., the leading plug is reduced in length and in diameter.

Description

この発明は、接合部材を用いて細線である芯線とコイルスプリング体との接合、特に先端部の先導栓の接合における機械的強度特性を向上させた医療用ガイドワイヤとその製造方法等に関する。   The present invention relates to a medical guide wire with improved mechanical strength characteristics in the joining of a core wire, which is a thin wire, and a coil spring body using a joining member, and in particular, the joining of a leading plug at the tip, and a manufacturing method thereof.

医療用ガイドワイヤの芯線とコイルスプリング体との先端接合部の先導栓は、血管内への深部挿入容易性、及び細線でありながら機械的強度特性を考慮して人体への安全確保を満たさなければならず、この為種々の提案がなされている。   The leading plug at the tip joint between the core wire of the medical guide wire and the coil spring body must satisfy the safety of the human body in consideration of the ease of deep insertion into the blood vessel and the mechanical strength characteristics of the thin wire. For this reason, various proposals have been made.

特許文献1には、先導栓の長手方向の長さ等を数値限定して病変部の血管壁内を通過させる狭窄部治療の記載はあるが、先導栓の芯線とコイルスプリング体との機械的強度を低下させずに、むしろこれを向上させる接合構成の具体的な技術手段は何ら記載されていない。   In Patent Document 1, there is a description of stenosis treatment in which the length in the longitudinal direction of the leading plug is numerically limited and passed through the blood vessel wall of the lesioned part. However, the mechanical connection between the core wire of the leading plug and the coil spring body is described. There is no description of any specific technical means of the joining structure that does not reduce the strength but rather improves it.

特許文献2には、芯線とコイルスプリング体とを溶接の際、溶接熱によって芯線が焼鈍されて引張破断強度が低下する為、膨径補強部を形成し、芯線の横断面積を増大させて焼鈍による機械的強度低下を防ぐ為の記載、及び先導栓の芯線長手方向の長さが1.0mmの記載はあるが、前記同様先導栓の芯線とコイルスプリング体との機械的強度特性の向上、及び先導栓を短小化、径小化させる具体的な技術手段については、何ら開示されていない。   In Patent Document 2, when welding a core wire and a coil spring body, the core wire is annealed by welding heat and the tensile strength at break is reduced. Therefore, an enlarged diameter reinforcing portion is formed, and the cross-sectional area of the core wire is increased for annealing. Although there is a description for preventing the mechanical strength from being reduced by the length of the lead plug in the longitudinal direction of the core wire, the mechanical strength characteristics of the lead wire and the coil spring body are improved as described above. No specific technical means for shortening and reducing the diameter of the leading plug are disclosed.

特開2003−164530号公報JP 2003-164530 A 特開2005−6868号公報Japanese Patent Laid-Open No. 2005-6868

従来の医療用ガイドワイヤにおいて、その芯線にNi−Ti合金線を用いてコイルスプリング体と接合して先導栓を形成する際、Ni−Ti合金線の芯線の熱影響による形状記憶特性と弾性率等の機械的強度特性を考慮したロー付けやはんだ付けの際の接合部材である共晶合金を用いた接合に関する技術思想は存在せず、さらにこの接合技術から成る医療用ガイドワイヤが血管の屈曲蛇行が極めて激しい血管内での深部挿入容易性を飛躍的に向上させる短小化、径小化させた先導栓等の技術思想については、何ら先行技術は存在しない。
この発明の目的は、芯線に形状記憶処理したNi−Ti合金線を用いて、芯線への接合部材の溶融熱による熱影響の機械的強度特性と形状記憶特性等を低下させることなく、芯線とコイルスプリング体とを接合する接合部材から成る先導栓構造の接合方法を開示し、さらに強固結合可能と成して先導栓の短小化、径小化を図ることにより、血管の屈曲蛇行が極めて激しい血管内での深部挿入性を容易と成して、術者が安全に操作できる医療用ガイドワイヤを提供することにある。
In a conventional medical guidewire, when a lead plug is formed by joining a Ni-Ti alloy wire to a coil spring body as a core wire, shape memory characteristics and elastic modulus due to the thermal effect of the core wire of the Ni-Ti alloy wire There is no technical idea about joining using eutectic alloy, which is a joining member for brazing and soldering considering mechanical strength characteristics such as, and a medical guide wire consisting of this joining technology is used for bending blood vessels There is no prior art regarding a technical idea such as a shortened or diameter-reduced leading plug that dramatically improves the ease of deep insertion in a blood vessel that is extremely meandering.
The object of the present invention is to use a Ni-Ti alloy wire that has undergone shape memory treatment on the core wire, without reducing the mechanical strength characteristics and shape memory characteristics, etc. of the thermal effect due to the heat of fusion of the joining member to the core wire. Disclosed is a method for joining a leading plug structure comprising a joining member that joins a coil spring body, and further shortening the diameter and reducing the diameter of the leading plug by making it possible to make a strong connection, thereby causing extremely severe bending of the blood vessel. An object of the present invention is to provide a medical guide wire that can be easily inserted into a blood vessel and can be operated safely by an operator.

請求項1記載の発明は、可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に先導栓を形成した医療用ガイドワイヤにおいて、
前記芯線は、Ni−Ti合金線から成り、
前記先導栓は、前記コイルスプリング体の線間間隙に接合部材を溶融流入させて、前記芯線と接合、及び前記コイルスプリング体と接合した接合硬化部を形成し、
その後前記接合硬化部を先端から所定長切断して短小硬化部とし、
前記短小硬化部の接合部材と同一、又は同種の接合部材を用いて、前記短小硬化部の前端に先頭部を設けて一体化させた前記短小硬化部と前記先頭部から成る先導栓を形成し、かつ、
前記接合部材は、180℃から450℃の溶融温度をもつ共晶合金を用いたことを特徴とする医療用ガイドワイヤである。
この構成により、一定の溶融温度をもつ接合部材を用いることにより、Ni−Ti合金線の形状記憶回復特性の低下の防止、及び応力歪特性における残留歪の増大防止を図りながら、前記短小硬化部と前記先頭部から成る先導栓構造とすることにより、先導栓の芯線とコイルスプリング体との接合強度の向上、及び先導栓の短小化、径小化による屈曲蛇行が極めて激しい血管内での深部挿入容易性を図り、術者が安全に操作できる医療用ガイドワイヤの提供ができる。
According to the first aspect of the present invention, a core wire made of a flexible elongated body, and a coil spring body in which the core wire is inserted into a tip end portion of the core wire are mounted, and a tip end portion of the core wire and the coil spring body is attached. In a medical guide wire with a leading plug,
The core wire is made of a Ni-Ti alloy wire,
The leading plug melts and flows a bonding member into the gap between the coil spring bodies to form a bonded hardened portion bonded to the core wire and bonded to the coil spring body,
Thereafter, the joint cured part is cut from the tip for a predetermined length to form a short and small cured part,
Using a joining member that is the same as or similar to the joining member of the short and hardened portion, a leading plug comprising the short and hardened portion integrated with the leading portion provided at the front end of the short and hardened portion is formed. ,And,
The joining member is a medical guide wire using a eutectic alloy having a melting temperature of 180 ° C. to 450 ° C.
With this configuration, by using a joining member having a constant melting temperature, the short and small hardened portion is prevented while preventing a decrease in shape memory recovery characteristics of the Ni-Ti alloy wire and an increase in residual strain in the stress strain characteristics. And a leading plug structure consisting of the leading portion improves the bonding strength between the core wire of the leading plug and the coil spring body, shortens the leading plug, and deepens in the blood vessel where bending meanders due to diameter reduction are extremely severe It is possible to provide a medical guide wire that can be easily inserted and can be safely operated by an operator.

請求項2記載の発明は、請求項1記載の医療用ガイドワイヤにおいて、
前記芯線の先端部の少なくとも前記先導栓を形成する部位に、前記先導栓を形成する接合部材と同一、又は同種の接合部材を用いて、前記芯線の外周に所定長溶融させて前記接合部材による被膜層を形成し、
前記被膜層を介して前記芯線と、前記短小硬化部と、前記先頭部とを一体化させた先導栓から成ることを特徴とする医療用ガイドワイヤである。
この構成により、芯線にNi−Ti合金線の芯線を用いて屈曲耐疲労性が要求される先導栓接合部位の芯線の形状記憶回復特性の低下防止、及び応力歪特性における残留歪の増大防止を図りながら、かつ接合部材の芯線との濡れ性をより向上させ、短小硬化部と先頭部の一体化から成る先導栓の一体化固着の接合強度を向上させ、先導栓の短小化、径小化を図ることができる。
The invention according to claim 2 is the medical guidewire according to claim 1,
By using the same or the same kind of joining member as that for forming the leading plug at the site where the leading stopper is formed at least at the tip of the core wire, the outer circumference of the core wire is melted for a predetermined length and the joining member is used. Forming a coating layer,
A medical guide wire comprising a lead plug in which the core wire, the short and hardened portion, and the head portion are integrated with each other through the coating layer.
With this configuration, a core wire made of a Ni-Ti alloy wire is used as a core wire to prevent deterioration of the shape memory recovery characteristic of the core wire of the lead plug joint portion where bending fatigue resistance is required, and to prevent an increase in residual strain in the stress strain characteristic. While improving the wettability with the core wire of the joining member, and improving the joint strength of the integrated fixing of the leading stopper consisting of the integration of the short and hardened part and the leading part, shortening and reducing the diameter of the leading stopper Can be achieved.

請求項3記載の発明は、請求項1〜2のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記コイルスプリング体の線間間隙が前記コイルスプリング体の線直径の5%から85%とし、かつ、
前記先導栓の芯線長手方向の長さをL(mm)とし、前記コイルスプリング体の線直径をd(mm)とした場合に、前記先導栓の芯線長手方向の長さLは0.190mm以上で、かつ、
0.078+2.05d≦L≦0.800の関係式を満たすことを特徴とする医療用ガイドワイヤである。
この構成により、先導栓の芯線とコイルスプリング体との接合強度の向上を図りながら、かつ先導栓の短小化、径小化を図ることができ、屈曲蛇行が激しい血管内での深部挿入容易性を図ることができる。
Invention of Claim 3 is the medical guide wire as described in any one of Claims 1-2,
The inter-line gap of the coil spring body is 5% to 85% of the wire diameter of the coil spring body, and
When the length of the lead plug in the longitudinal direction of the core wire is L (mm) and the wire diameter of the coil spring body is d (mm), the length L of the lead plug in the longitudinal direction of the core wire is 0.190 mm or more. And
A medical guide wire characterized by satisfying a relational expression of 0.078 + 2.05d ≦ L ≦ 0.800.
With this configuration, it is possible to improve the joint strength between the core wire of the lead plug and the coil spring body, and to shorten and reduce the diameter of the lead plug, making it easy to insert deep into blood vessels with severe bending meandering. Can be achieved.

請求項4記載の発明は、請求項3記載の医療用ガイドワイヤにおいて、
前記先導栓の芯線長手方向の長さは、先端から0.190mm以上0.600mm以下であることを特徴とする医療用ガイドワイヤである。
この構成により、より短小化、径小化した先導栓をもつ医療用ガイドワイヤを用いて、屈曲蛇行が極めて激しい血管内での手技、例えば後述する逆行性アプローチの手技において、血管内での深部挿入容易性を図ることができる。
The invention according to claim 4 is the medical guidewire according to claim 3,
The length of the lead plug in the longitudinal direction of the core wire is 0.190 mm or more and 0.600 mm or less from the distal end.
With this configuration, using a medical guide wire with a shorter and smaller diameter leading stopper, a procedure in a blood vessel with extremely severe bending meandering, for example, a retrograde approach described later, is performed in a deep portion in the blood vessel. Easy insertion can be achieved.

請求項5記載の発明は、請求項1〜4のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記芯線は、焼鈍した後に総減面率が15%から65%の伸線加工を行い、300℃から450℃で形状記憶処理したNi−Ti合金線から成ることを特徴とする医療用ガイドワイヤである。
この構成により、芯線に用いるNi−Ti合金線の伸線加工の限界を考慮しながら芯線の引張破断強度を向上させて、先導栓の短小化、径小化を図ることができる。
Invention of Claim 5 is a medical guide wire as described in any one of Claims 1-4,
The core wire is composed of a Ni-Ti alloy wire which is subjected to wire drawing with a total area reduction of 15% to 65% after annealing and shape memory treatment at 300 ° C to 450 ° C. It is.
With this configuration, it is possible to improve the tensile breaking strength of the core wire while considering the limit of wire drawing of the Ni—Ti alloy wire used for the core wire, and to shorten the lead plug and reduce the diameter.

請求項6記載の発明は、請求項1〜5のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記コイルスプリング体の材質が金成分を含む組成、又は金めっきをしたコイルスプリング体から成り、かつ、前記先導栓が、金成分を含む組成の共晶合金から成る接合部材を用いて、前記コイルスプリング体と前記芯線の双方を接合して成ることを特徴とする医療用ガイドワイヤである。
この構成により、接合部材のコイルスプリング体との濡れ性をより向上させ、先導栓のコイルスプルリング体との接合強度をより向上させることができる。
The invention according to claim 6 is the medical guidewire according to any one of claims 1 to 5,
The coil spring body is made of a composition containing a gold component, or a coil spring body plated with gold, and the lead plug is made of a eutectic alloy having a composition containing a gold component. A medical guide wire characterized by joining both a spring body and the core wire.
By this structure, the wettability with the coil spring body of a joining member can be improved more, and joining strength with the coil sprue ring body of a leading plug can be improved more.

請求項7記載の発明は、請求項1〜6のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記先導栓の後端端面から中間固定部の前端までのコイルスプリング体の線間間隙が、前記コイルスプリング体の線直径の5%から30%とし、
前記中間固定部は、前記接合部材から成る前記先導栓と同一、又は同種の、溶融温度が180℃から450℃の共晶合金である接合部材を用いて、幅0.5mmから1.5mmの円盤状のドーナツ形状とし、
前記芯線と前記コイルスプリング体とを前記中間固定部で固着させ、
前記コイルスプリング体の線直径をd(mm)とし、前記コイルスプリング体の線間間隙の最小値をP0(mm)とし、前記コイルスプリング体の線間間隙の最大値(mm)をP1(mm)とし、前記先導栓の後端端面から中間固定部の前端までの長さをM(mm)とした場合に、
3.25×(d/P1 )≦M≦2.625×(d/P0)の関係式を満たすことを特徴とする医療用ガイドワイヤである。
この構成により、接合部材による先導栓と中間固定部の各接合強度を高めて、コイルスプリング体の均等化した線間間隙を得ることにより先導栓と中間固定部間の柔軟性を確保しながら、かつ病変内での操作時にコイルスプリング体が疎、密変形して、「疎変形」の場合には病変組織がコイルスプリング体内へ食い込み、「密変形」の場合には、病変組織がコイルスプリング体外へ押し出され、これにより手元操作への抵抗感により、術者の医療用ガイドワイヤの先端位置情報の把握を容易と成すことを特徴とする。
The invention according to claim 7 is the medical guidewire according to any one of claims 1 to 6,
The inter-line gap of the coil spring body from the rear end face of the leading plug to the front end of the intermediate fixing portion is 5% to 30% of the wire diameter of the coil spring body,
The intermediate fixing part has a width of 0.5 mm to 1.5 mm using a joining member that is the same or the same type as the leading plug made of the joining member and is a eutectic alloy having a melting temperature of 180 ° C. to 450 ° C. A donut shape in the shape of a disk,
Fixing the core wire and the coil spring body at the intermediate fixing portion;
The wire diameter of the coil spring body is d (mm), the minimum value of the line gap of the coil spring body is P0 (mm), and the maximum value (mm) of the line gap of the coil spring body is P1 (mm). ), And when the length from the rear end surface of the leading plug to the front end of the intermediate fixing portion is M (mm),
3. A medical guide wire characterized by satisfying a relational expression of 3.25 × (d / P1) ≦ M ≦ 2.625 × (d / P0).
With this configuration, each joint strength of the leading plug and the intermediate fixing portion by the joining member is increased, and while securing the flexibility between the leading plug and the intermediate fixing portion by obtaining an equal line gap of the coil spring body, In addition, the coil spring body is sparse and densely deformed during operation within the lesion, and in the case of “sparse deformation”, the lesion tissue bites into the coil spring body, and in the case of “dense deformation”, the lesion tissue is outside the coil spring body. Thus, the operator can easily grasp the position information of the distal end of the medical guide wire due to a sense of resistance to the hand operation.

請求項8記載の発明は、可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に先導栓を形成した医療用ガイドワイヤの製造方法において、
前記芯線は、Ni−Ti合金線を用いて先端部を研削加工する工程と、
前記芯線を前記コイルスプリング体内に貫挿して前記コイルスプリング体を装着する工程と、
180℃から450℃の溶融温度をもつ共晶合金の接合部材を溶融させ、前記芯線の先端部と、前記コイルスプリング体の先端部とを接合させて接合硬化部を形成する工程と、 前記接合硬化部を所定長切断して短小硬化部を形成する工程と、
前記短小硬化部の接合部材と同一、又は同種の接合部材を用いて、前記短小硬化部の前端に先頭部を設けて一体化させた前記短小硬化部と前記先頭部から成る前記先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、一定の溶融温度をもつ接合部材を用いることにより、Ni−Ti合金線の形状記憶回復特性の低下の防止、及び応力歪特性の残留歪の増大防止を図りながら、先導栓の芯線とコイルスプリング体との接合強度の向上、及び先導栓の短小化、径小化による屈曲蛇行が極めて激しい血管内での深部挿入容易性を図り、術者が安全に操作できる医療用ガイドワイヤを製造することができる。
According to an eighth aspect of the present invention, there is provided a core wire made of a flexible elongated body, and a coil spring body having the core wire inserted through the distal end portion of the core wire, and attached to the distal end portion of the core wire and the coil spring body. In the manufacturing method of the medical guide wire in which the leading plug is formed,
The core wire is a step of grinding the tip using a Ni-Ti alloy wire,
Inserting the coil spring body by inserting the core wire into the coil spring body; and
Melting a eutectic alloy bonding member having a melting temperature of 180 ° C. to 450 ° C., bonding the tip of the core wire and the tip of the coil spring body, and forming a bonded hardened portion; Cutting the cured portion by a predetermined length to form a short and small cured portion;
Using the same or the same kind of joining member as the short and hardened portion, the leading plug comprising the short and hardened portion integrated with the leading portion provided at the front end of the short and hardened portion is formed. It is a manufacturing method of a medical guide wire characterized by comprising the steps of:
With this configuration, by using a joining member having a constant melting temperature, it is possible to prevent deterioration of the shape memory recovery characteristic of the Ni-Ti alloy wire and prevent increase in residual strain of the stress strain characteristic, and lead wire of the lead plug A medical guide wire that can be operated safely by the surgeon by improving the joint strength between the coil spring body and the lead plug, making it easier to insert deep into the blood vessel where bending and meandering are extremely severe due to shortening and diameter reduction. Can be manufactured.

請求項9記載の発明は、請求項8記載の医療用ガイドワイヤの製造方法において、
前記芯線の先端部の少なくとも前記先導栓を形成する部位に、前記先導栓を形成する接合部材と同一、又は同種の接合部材を用いて、前記芯線の外周に所定長溶融させて前記接合部材による被膜層を形成する工程から成り、
前記被膜層を介して前記芯線と、前記短小硬化部と、前記先頭部とを一体化させた先導栓から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、芯線にNi−Ti合金線を用いて屈曲耐疲労性が要求される先導栓接合部位の芯線の形状記憶回復特性の低下防止、及び応力歪特性における残留歪の増大防止を図りながら、かつ接合部材の芯線との濡れ性をより向上させ、短小硬化部と先頭部の一体化から成る先導栓の一体化固着の接合強度を向上させ、先導栓の短小化、径小化した医療用ガイドワイヤを製造することができる。
The invention according to claim 9 is the method for producing the medical guidewire according to claim 8,
By using the same or the same kind of joining member as that for forming the leading plug at the site where the leading stopper is formed at least at the tip of the core wire, the outer circumference of the core wire is melted for a predetermined length and the joining member is used. Comprising the step of forming a coating layer,
A medical guide wire manufacturing method comprising a leading plug in which the core wire, the short and hardened portion, and the head portion are integrated with each other through the coating layer.
With this configuration, the Ni—Ti alloy wire is used as the core wire, while preventing the deterioration of the shape memory recovery characteristic of the core wire at the lead plug joint portion where bending fatigue resistance is required, and the increase of the residual strain in the stress strain characteristic In addition, we improve the wettability with the core wire of the joining member, improve the joint strength of the integrated fixing of the leading stopper consisting of the integration of the short and hardened part and the leading part, shortening the leading stopper and reducing the diameter A guide wire can be manufactured.

請求項10記載の発明は、請求項1〜7のいずれか一つに記載の医療用ガイドワイヤと、マイクロカテーテルとの組立体において、
前記医療用ガイドワイヤの外径が、0.228mmから0.254mm(0.009インチから0.010インチ)で、
前記医療用ガイドワイヤを、内径が0.28mmから0.90mmで、太線と細線を複数本巻回成形、又は撚合構成して病変内挿入時に病変部からの圧迫・押圧作用により外周部の少なくとも先端側から300mm以内で、前記太線と前記細線による凸凹状を形成する螺旋状管体から成るマイクロカテーテル内へ挿入されていることを特徴とする医療用ガイドワイヤとマイクロカテーテルとの組立体である。
この構成により、一定の溶融温度をもつ接合部材を用いることにより、Ni−Ti合金線の形状記憶回復特性の低下防止、及び応力歪特性における残留歪の増大を防いだ医療用ガイドワイヤを得て、閉塞病変部の穿孔機能、及び医療用ガイドワイヤの前進反力を支える機能の高いマイクロカテーテルを用いた組立体とすることにより、閉塞病変部治療に大きく寄与することができる。
The invention according to claim 10 is an assembly of the medical guide wire according to any one of claims 1 to 7 and a microcatheter.
The outer diameter of the medical guidewire is 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch);
The medical guide wire has an inner diameter of 0.28 mm to 0.90 mm and is formed by winding or twisting a plurality of thick and thin wires, and when inserted into the lesion, the outer peripheral portion is pressed and pressed by the lesion. An assembly of a medical guide wire and a microcatheter, wherein the assembly is inserted into a microcatheter composed of a spiral tubular body forming an uneven shape by the thick line and the thin line at least within 300 mm from the distal end side. is there.
With this configuration, by using a joining member having a constant melting temperature, it is possible to obtain a medical guide wire that prevents a decrease in the shape memory recovery characteristic of the Ni-Ti alloy wire and prevents an increase in residual strain in the stress strain characteristic. The assembly using the microcatheter having a high function for supporting the perforation function of the occlusion lesion and the advance reaction force of the medical guide wire can greatly contribute to the treatment of the occlusion lesion.

医療用ガイドワイヤと芯線の正面図、及び芯線の要部拡大図である。It is the front view of a medical guide wire and a core wire, and the principal part enlarged view of a core wire. 医療用ガイドワイヤの芯線先端部の接合方法の工程要部拡大図である。It is a process principal part enlarged view of the joining method of the core wire front-end | tip part of a medical guide wire. 先導栓の長さと離脱強度の特性図である。It is a characteristic view of the length of a leading stopper and detachment strength. Ni−Ti合金線(広ひずみ範囲高弾性型)の応力歪特性図である。It is a stress-strain characteristic view of a Ni-Ti alloy wire (wide strain range high elasticity type). Ni−Ti合金線(加工硬化型)の応力歪特性図である。It is a stress-strain characteristic view of a Ni-Ti alloy wire (work hardening type). 病変部でのガイドワイヤ等の使用状態図である。It is a use state figure of the guide wire etc. in a lesioned part. 先端位置情報把握の為、手元操作力の変化の状態図である。It is a state figure of change of hand operation force for grasping tip position information. 病変部での医療用ガイドワイヤとバルーンカテーテルとの使用状態図、医療用ガイドワイヤの先端部付形状態図、及びマイクロカテーテル実施例図である。It is a use state figure of a medical guide wire and a balloon catheter in a lesioned part, a tip part shape state figure of a medical guide wire, and a micro catheter example figure. 特許文献2の先導栓要部拡大図である。(比較例1)FIG. 6 is an enlarged view of a main part of a leading plug of Patent Document 2. (Comparative Example 1)

この発明の最良の実施形態を図に示すとともに、以下説明する。   The best embodiment of the present invention is shown in the drawings and will be described below.

図1は、本発明の医療用ガイドワイヤ(以下ガイドワイヤという)1(1A、1B)を示し、実施例1をガイドワイヤ1Aとし、後述する芯線先端部21の外周部に被膜層44を形成した実施例2をガイドワイヤ1Bとする。
図1で、芯線2の芯線先端部21には、同軸的に外嵌めされたコイルスプリング体(以下コイル体)3を有し、前記コイル体3は、先端側が金、白金、タングステン等の放射線不透過材コイル31で、その後端側はステンレス鋼線等の放射線透過材コイル32から成る。
その芯線先端部21には、接合部材4を用いて中間固定部42、後端固定部43が芯線2とコイル体3とが部分的にそれぞれ接合されている。
そして接合部材4を用いて短小硬化部412と先頭部411から成る、先端端面が先丸形状等の先導栓41を芯線先端部21とコイル体3の先端を接合させて形成する。尚、先導栓41の先端形状は半球状、円筒状、先端側へ円錐形状等いずれでもよい。
FIG. 1 shows a medical guide wire (hereinafter referred to as a guide wire) 1 (1A, 1B) according to the present invention. Example 1 is used as a guide wire 1A, and a coating layer 44 is formed on the outer peripheral portion of a core wire tip 21 described later. The second embodiment is referred to as a guide wire 1B.
In FIG. 1, a core wire tip portion 21 of a core wire 2 has a coil spring body (hereinafter referred to as a coil body) 3 that is coaxially fitted, and the coil body 3 has radiation on the tip side such as gold, platinum, and tungsten. The rear end side of the opaque material coil 31 is formed of a radiation transparent material coil 32 such as a stainless steel wire.
An intermediate fixing portion 42 and a rear end fixing portion 43 are partially bonded to the core wire distal end portion 21 using the bonding member 4, respectively.
Then, using the joining member 4, a leading plug 41 having a tip end surface having a rounded shape or the like composed of a short and hardened portion 412 and a leading portion 411 is formed by joining the core wire tip 21 and the tip of the coil body 3. The leading end shape of the leading plug 41 may be any of a hemispherical shape, a cylindrical shape, a conical shape toward the leading end side, and the like.

そして芯線2は、後述するNi−Ti合金線を用い、芯線先端部21の先端から約300mmは、概ね0.06mmから0.200mmの細径の線で、残りの手元部22は、約1200mmから約2700mmで太径の線から成っている。
又、芯線先端部21の細径部分は、先端側へ徐変縮径し、その断面形状は円形断面(図1(ニ))、又は矩形断面(図1(ホ))、又は矩形断面形状の外周面に芯線長手方向と直交する条溝を設けた構造(符号(ヘ))としてもよい。
そして、芯線2の芯線手元側22の外周部にフッ素樹脂、又はウレタン樹脂等の樹脂被膜6が形成され、特にコイル体3の外周部にはウレタン樹脂等、芯線手元側22の外周にはフッ素樹脂(PTFE)等が被膜形成されている。又、その樹脂被膜6の外周には、湿潤時に潤滑特性を示すポリビニルピロリドン等の親水性被膜7が形成され外径は0.355mmである。
The core wire 2 uses a Ni—Ti alloy wire, which will be described later, about 300 mm from the tip of the core wire tip 21 is a thin wire of about 0.06 mm to 0.200 mm, and the remaining hand portion 22 is about 1200 mm. It consists of a thick line at about 2700mm.
In addition, the small diameter portion of the core wire tip 21 is gradually changed toward the tip, and the cross-sectional shape thereof is a circular cross-section (FIG. 1 (D)), a rectangular cross-section (FIG. 1 (E)), or a rectangular cross-sectional shape. It is good also as a structure (code | symbol (f)) which provided the groove | channel groove | channel orthogonal to a core wire longitudinal direction in the outer peripheral surface.
A resin coating 6 such as fluororesin or urethane resin is formed on the outer peripheral portion of the core wire proximal side 22 of the core wire 2. In particular, urethane resin or the like is formed on the outer peripheral portion of the coil body 3, and fluorine is applied on the outer periphery of the core wire proximal side 22. Resin (PTFE) or the like is coated. In addition, a hydrophilic coating 7 such as polyvinyl pyrrolidone that exhibits lubricating properties when wet is formed on the outer periphery of the resin coating 6 and has an outer diameter of 0.355 mm.

そして又、実施例2のガイドワイヤ1Bは、接合部材4を用いて芯線先端部21の外周に被膜層44を形成し、そして前記被膜層44を用いた接合部材4と同一、又は同種の接合部材4を用いて、短小硬化部412と先頭部411から成る先端端面が先丸形状等の先導栓41を被膜層44を介して接合し、芯線先端部21、及びコイル体3の先端部とともに接合形成する。又、その他の構造は、前記実施例1と同様である。   In addition, the guide wire 1B of Example 2 uses the bonding member 4 to form the coating layer 44 on the outer periphery of the core wire tip portion 21, and is the same as or similar to the bonding member 4 using the coating layer 44. Using the member 4, the tip end surface composed of the short and hardened portion 412 and the leading portion 411 is joined to the leading plug 41 having a rounded shape or the like via the coating layer 44, and together with the core wire tip 21 and the tip of the coil body 3 Join and form. The other structure is the same as that of the first embodiment.

次に図2は、本発明の先導栓41の製造工程を示し、図示(イ)で芯線先端部21の外周に膜厚が0.002mmから0.005mmの接合部材4による被膜層44を形成し(符号B)、先導栓41形成部のコイル体3の線間間隙Pをコイル体3の線直径の5%から85%としたコイル体3を外嵌し(符号C)、前記被膜層44を介して、コイル体3と芯線先端部21とを接合部材4を用いて接合した接合硬化部413を形成し(符号D)、その後、所定長芯線先端部21とともに切断(H寸法)して、短小硬化部412とし(符号E)、そして、前記被膜層44、短小硬化部412と同一、又は同種の接合部材4を用いて、先頭部411を前記短小硬化部412の前端に接合させ、短小硬化部412と先頭部411から成る外径が0.345mm(符号F、D4寸法)の先導栓41を形成する。尚、被膜層44の成形前にコイル体3を芯線2に外嵌め挿入して手元側へ圧縮変形した後、芯線先端部21の外周に接合部材4による被膜層44を形成してもよい(図示(ロ)符号c他)。
そして、コイル体3の先端部と接合した短小硬化部412と先頭部411から成る先導栓41は、被膜層44を形成せずに芯線先端部21と接合させてもよく、又、芯線先端部21との濡れ性をより高めて接合強度を向上させる為には、被膜層44を介して接合させてもよい。
Next, FIG. 2 shows a manufacturing process of the leading plug 41 of the present invention, and a coating layer 44 is formed by the joining member 4 having a film thickness of 0.002 mm to 0.005 mm on the outer periphery of the core wire tip 21 in FIG. (Symbol B), the coil body 3 in which the inter-line gap P of the coil body 3 in the lead plug 41 forming portion is 5% to 85% of the wire diameter of the coil body 3 is externally fitted (symbol C), and the coating layer 44, the joint hardened portion 413 is formed by joining the coil body 3 and the core wire tip 21 using the joining member 4 (reference numeral D), and then cut (H dimension) together with the predetermined long core wire tip 21. Then, the short cured portion 412 (reference numeral E) is used, and the leading portion 411 is joined to the front end of the short cured portion 412 using the same or the same kind of bonding member 4 as the coating layer 44 and the short cured portion 412. The outer diameter of the short and hardened portion 412 and the head portion 411 is 0.34. Forming the head plug 41 mm (code F, D4 dimensions). Before forming the coating layer 44, the coil body 3 may be externally fitted and inserted into the core wire 2 and compressed and deformed to the proximal side, and then the coating layer 44 of the bonding member 4 may be formed on the outer periphery of the core wire tip 21 ( As shown in FIG.
The leading plug 41 composed of the short cured portion 412 and the head portion 411 joined to the tip portion of the coil body 3 may be joined to the core wire tip portion 21 without forming the coating layer 44, or the core wire tip portion. In order to improve the wettability with 21 and improve the bonding strength, bonding may be performed via the coating layer 44.

そしてコイル体3の線間間隙Pをコイル体3の線直径(d)の5%から85%としたのは、5%を下回るとコイル体3の隙間からコイル体3内への接合部材4の浸透が困難となり、85%を超えると接合部材4とコイル体3の表面との接触面積を長手方向に短い長さで確保することは困難となり、先導栓41の後述する離脱強度を考慮したからである。前記接合部材4の浸透性と、接合部材4とコイル体3の接触面積を長手方向に短い長さで確保しながら先導栓41の芯線2、及びコイル体3からの離脱強度を考慮すると、より好ましくは5%から65%である。   The reason why the inter-wire gap P of the coil body 3 is set to 5% to 85% of the wire diameter (d) of the coil body 3 is that the bonding member 4 from the gap of the coil body 3 into the coil body 3 below 5%. When it exceeds 85%, it is difficult to secure the contact area between the joining member 4 and the surface of the coil body 3 with a short length in the longitudinal direction, and the detachment strength described later of the leading plug 41 is taken into consideration. Because. Considering the permeability of the joining member 4 and the separation strength of the lead plug 41 from the core wire 2 and the coil body 3 while ensuring the contact area between the joining member 4 and the coil body 3 with a short length in the longitudinal direction, Preferably, it is 5% to 65%.

次に図3は、本実施例2の先導栓41の芯線長手方向の長さを変化させたときの先導栓41の離脱強度を示した図である。ここでいう先導栓41の離脱強度とは、芯線長手方向に引張荷重を加えたとき、先導栓41が芯線先端部21、又はコイル体3(本実施例では放射線不透過材コイル31)との接合が破壊されて離脱するときの最大荷重の値のことをいう。
そして、図示符号イは、本発明の実施例2の先導栓41の芯線長手方向の長さL(図1(ハ)、図2(イ))と離脱荷重の関係を示す。又図示符号ロは、特許文献2の先導栓8と同様な構造とし、比較例1とした。(図9)
これは、線直径が0.06mmの芯線先端部21に先導栓8を溶接によって形成する際、溶接熱により芯線先端部21が焼鈍される為、膨径補強部811と栓体基部812を設けて、前記線直径の横断面積を増大させて芯線先端部21の引張破断強度を確保しようとするものであり、この場合に先導栓8の全長が1.0mm(図示L寸法)で、外径が0.345mm(図示K寸法)としたものである。
そして又、図示符号ハは、本発明の実施例1に対して、先導栓に用いる接合部材は溶融温度が605℃から800℃の銀ローを用いて、単純にコイル体3の先端端部に先導栓を形成し(本発明の実施例1、2のような短小硬化部412と先頭部411から成る先導栓41ではない構造)、かつ被膜層44を形成しない場合を示し、比較例2とした。
又比較例2は、芯線2とコイル体3の隙間内へ毛細管現象により銀ローが自然に流れて浸み込み硬化した先導栓の芯線長手方向の長さとし、先導栓の芯線長手方向の長さは、概ね0.920mmとなり、このときの離脱強度を記載した。この理由は、銀ローが自然に流れて浸み込み硬化する製造方法では、0.900mmを下回って製造することは困難であるからである。尚、図3中、各ハッチング範囲は、それぞれの離脱強度の上下限の範囲を記載した。
Next, FIG. 3 is a view showing the detachment strength of the leading plug 41 when the length of the leading plug 41 of the second embodiment is changed in the longitudinal direction of the core wire. The detachment strength of the leading plug 41 referred to here means that when a tensile load is applied in the longitudinal direction of the core wire, the leading plug 41 is connected to the core wire tip 21 or the coil body 3 (in this embodiment, the radiopaque material coil 31). It means the value of the maximum load when the joint breaks and leaves.
In addition, the illustrated symbol A indicates the relationship between the length L (FIGS. 1 (C) and 2 (A)) in the longitudinal direction of the lead plug 41 of the second embodiment of the present invention and the separation load. In addition, the symbol B shown in the figure has the same structure as the leading plug 8 of Patent Document 2 and is referred to as Comparative Example 1. (Fig. 9)
This is because when the lead plug 8 is formed by welding on the core wire tip portion 21 having a wire diameter of 0.06 mm, the core wire tip portion 21 is annealed by welding heat, so that an enlarged diameter reinforcing portion 811 and a plug base portion 812 are provided. Thus, the cross-sectional area of the wire diameter is increased to ensure the tensile breaking strength of the core wire tip 21. In this case, the total length of the leading plug 8 is 1.0 mm (L dimension in the drawing), and the outer diameter Is 0.345 mm (K dimension in the drawing).
In addition, the reference symbol C indicates that the joining member used for the lead plug is a silver solder having a melting temperature of 605 ° C. to 800 ° C., and is simply applied to the tip end portion of the coil body 3 with respect to the first embodiment of the present invention. A case where a leading plug is formed (a structure that is not the leading plug 41 including the short and hardened portion 412 and the leading portion 411 as in the first and second embodiments of the present invention) and the coating layer 44 is not formed is shown. did.
In Comparative Example 2, the length of the lead plug in the longitudinal direction of the core wire of the lead plug, in which the silver solder naturally flows into the gap between the core wire 2 and the coil body 3 by the capillary phenomenon and is hardened, is set. Is approximately 0.920 mm, and the separation strength at this time is described. The reason for this is that it is difficult to manufacture below 0.900 mm with a manufacturing method in which silver solder flows and hardens naturally. In addition, in FIG. 3, each hatching range described the range of the upper and lower limits of each detachment strength.

次に図3の先導栓に長さと離脱強度との関係について説明する。
一般に、心血管治療用具としてのガイドワイヤ1(1A、1 B)の先導栓41の離脱強度の下限保証値は、250gfに設定されていて、この下限保証値が250gfのとき、比較例1は、この下限保証値を約70gf上回る平均320gfであるが、この値を大きく超えることはできない。(図3符合ロ)
この理由は、比較例1はコイル体3のコイル線のコイル前端溶接部33での膨隆部813とのTIG溶接によるピンポイント溶接方式であり、コイル体3との離脱強度はコイル体3のコイル線1本との接合強度、及び引張破断強度に依存して、この強度と溶接熱(800℃〜900℃)の影響を大きく受けるからである。又、先導栓8の長さ(図9、L寸法)は、1.0mmとなっている。
Next, the relationship between the length of the leading plug of FIG. 3 and the separation strength will be described.
In general, the lower limit guaranteed value of the detachment strength of the guide plug 41 of the guide wire 1 (1A, 1B) as a cardiovascular treatment device is set to 250 gf, and when this lower limit guaranteed value is 250 gf, Comparative Example 1 An average of 320 gf that exceeds the guaranteed lower limit by about 70 gf is not allowed to greatly exceed this value. (Figure 3)
This is because the comparative example 1 is a pinpoint welding method by TIG welding with the bulging portion 813 at the coil front end welding portion 33 of the coil wire of the coil body 3, and the separation strength from the coil body 3 is the coil strength of the coil body 3. This is because the strength and welding heat (800 ° C. to 900 ° C.) are greatly affected by the bonding strength with one wire and the tensile strength at break. Further, the length of the leading plug 8 (FIG. 9, L dimension) is 1.0 mm.

これに対して本発明の実施例2は、図3符号イで示し、先導栓41の長さ(図1(ハ)、図2(イ)、L寸法)が0.190mmのときの離脱強度は、平均値で下限保証値を上回る320gfを示し、そして、0.250mmでは平均値で375gfであり、又0.50mmでは500gfを超え、そして0.600mmでは平均値で550gfとなり、又0.800mmでは平均値が安定して575gfとなる。この結果、比較例1と対比すると、比較例1と同一の離脱強度320gfであれば、本発明の実施例2を用いることにより、先導栓の長さを0.190mmまで、約1/5以下に大きく短小化できる。又、比較例2(図示符号ハ)は、離脱強度の平均値は下限保証値を上回ることができるが、離脱強度のバラツキが大きく、かつ下限保証値を確保しながら先導栓の芯線長手方向の長さを本発明の実施例のように短小化することはできない。   On the other hand, the second embodiment of the present invention is indicated by the symbol A in FIG. 3, and the separation strength when the length of the leading plug 41 (FIGS. 1 (C), 2 (A), L dimension) is 0.190 mm. Shows 320 gf above the guaranteed lower limit on average, and is 375 gf on average at 0.250 mm, over 500 gf at 0.50 mm, and 550 gf on average at 0.600 mm, and 0. At 800 mm, the average value is stably 575 gf. As a result, when compared with Comparative Example 1, if the same separation strength 320 gf as Comparative Example 1 is used, the length of the leading plug is reduced to about 0.15 mm or less by using Example 2 of the present invention. Can be greatly shortened. In Comparative Example 2 (reference symbol C), the average value of the detachment strength can exceed the lower limit guaranteed value, but the variation in the detachment strength is large and the lower limit value is ensured while maintaining the lower limit guaranteed value. The length cannot be shortened as in the embodiment of the present invention.

次に、本発明の実施例が、離脱強度の下限値を確保しながら先導栓の芯線長手方向の長さを短小化できる理由について、先導栓の構造、芯線と先導栓との接触構造、接合部材の熱的特性、先導栓のコイル体等への係合構造について、以下順に説明する。   Next, the reason why the embodiment of the present invention can shorten the length in the longitudinal direction of the core of the lead plug while securing the lower limit value of the separation strength, the structure of the lead plug, the contact structure between the core wire and the lead plug, the joining The thermal characteristics of the members and the engagement structure of the leading plug to the coil body will be described in the following order.

A.本発明の実施例で、先導栓41の構造が、接合部材4を用いて接合硬化部413を形成した後に所定長切断して短小硬化部412を形成し、短小硬化部412の前端に先頭部411を設け、かつ短小硬化部412と先頭部411とは接合部材4が同一、又は同種材料を用いていることである。これにより、短小硬化部412と先頭部411とは、濡れ性が向上して強固固着接合を可能とし、先導栓41を短小化させることができるからである。短小化の具体例として、図3によれば本発明の実施例2の先導栓41の離脱強度が下限保証値を70gf上回る320gfのとき、先導栓41の芯線長手方向の長さLは、0.190mmで、これは図1(ハ)において、放射線不透過材コイル31の線直径(0.055mm)の2本分の長さと、線間間隙Sがコイル体3の線直径の5%のときの長さと、先頭部411の芯線長手方向の長さ(0.078mm)を合計したときの小数点以下3桁の値の長さLである。   A. In the embodiment of the present invention, the structure of the leading plug 41 is formed by using the joining member 4 to form the joint hardened portion 413 and then cutting a predetermined length to form a short hardened portion 412, and a leading portion at the front end of the short hardened portion 412. 411 is provided, and the short and hardened part 412 and the head part 411 are that the joining member 4 is the same or uses the same kind of material. Thereby, the short hardening part 412 and the head part 411 are improved in wettability, enable a firmly fixed joining, and lead guide 41 can be shortened. As a specific example of shortening, according to FIG. 3, when the separation strength of the leading plug 41 of Example 2 of the present invention is 320 gf exceeding the guaranteed lower limit by 70 gf, the length L in the longitudinal direction of the leading plug 41 is 0. 190 mm, which corresponds to the length of two wire diameters (0.055 mm) of the radiopaque coil 31 and the inter-line gap S of 5% of the wire diameter of the coil body 3 in FIG. Is the length L of the value of three digits after the decimal point when the length of the head portion 411 and the length (0.078 mm) in the longitudinal direction of the core wire of the head portion 411 are summed.

そしてこの関係を数式で表すと、先導栓41の芯線長手方向の長さをL(mm) とし、コイル体3の線直径をd(mm)とすると、先導栓41の芯線長手方向の長さL(mm)は、先端から0.190mm以上で、かつ下記の関係式(1)を満たすこととなる。
関係式(1):0.078+2.05d≦L≦0.800
より好ましくは、0.190mm以上0.600mm以下である。ここで、先導栓41の芯線長手方向の長さの最大値を0.800mm以下としたのは、図3より比較例1、2に対して、約20%短小化しても約1.8倍の離脱強度を確保することができるからであり、又より好ましい態様として、0.600mm以下としたのは、約40%短小化しても前記同様に、約1.7倍の離脱強度を確保できるからである。そして、0.190mm以上としたのは、0.150mmの長さでは急激に離脱強度が低下する為、離脱強度の基準(250gf)を超えて安全率を考慮し、安全確保を図ることとしたからである。尚、先導栓41の短小化効果については、後述する。
When this relationship is expressed by a mathematical expression, the length of the lead plug 41 in the longitudinal direction of the core wire is L (mm), and the wire diameter of the coil body 3 is d (mm). L (mm) is 0.190 mm or more from the tip and satisfies the following relational expression (1).
Relational expression (1): 0.078 + 2.05d ≦ L ≦ 0.800
More preferably, it is 0.190 mm or more and 0.600 mm or less. Here, the maximum value of the length of the lead plug 41 in the longitudinal direction of the core wire is set to 0.800 mm or less, even if it is shortened by about 20% compared to Comparative Examples 1 and 2 from FIG. This is because, as a more preferable aspect, the reason why it is set to 0.600 mm or less can secure a separation strength of about 1.7 times as described above even if it is shortened by about 40%. Because. The reason why the length is set to 0.190 mm or more is that the separation strength suddenly decreases at a length of 0.150 mm, so that the safety factor is taken into consideration beyond the standard of separation strength (250 gf) to ensure safety. Because. The effect of shortening the leading plug 41 will be described later.

そして本発明で用いる接合部材4は、溶融温度が180℃から450℃の共晶合金を用いる。そして、ここでいう共晶合金とは、合金の成分比を変更することにより得られる最低融点(溶融温度)を有する特殊な合金のことをいい、具体的には、金又は銀を含む合金材で金錫系合金材として金80重量%、残部が錫で溶融温度が280℃、又銀錫系合金として銀3.5%、残部が錫で溶融温度が221℃、そして、金88重量%、残部がゲルマニウムで溶融温度が356℃、又銀と錫とインジウムから成り溶融温度が450℃の共晶合金であり、その代表例を表1に示す。   And the joining member 4 used by this invention uses the eutectic alloy whose melting temperature is 180 to 450 degreeC. And the eutectic alloy here means a special alloy having the lowest melting point (melting temperature) obtained by changing the component ratio of the alloy, specifically, an alloy material containing gold or silver. The gold-tin alloy material is 80% by weight of gold, the balance is tin and the melting temperature is 280 ° C, the silver-tin alloy is 3.5% silver, the remainder is tin and the melting temperature is 221 ° C, and the gold is 88% by weight. The balance is germanium, the melting temperature is 356 ° C., and the eutectic alloy is composed of silver, tin and indium and the melting temperature is 450 ° C. Table 1 shows typical examples.

Figure 2012115408
Figure 2012115408

ここで、接合部材4として金を用いる理由は、放射線透視下における視認性向上、及び耐食性、展延性向上の為であり、銀を用いる理由は、融点調整等の為であり、錫を用いる理由は、融点を低下させて芯線2、又はコイル体3との濡れ性を向上させる為であり、又インジウムを用いる理由も濡れ性向上の為であり、そしてゲルマニウムを用いる理由は、金属間化合物の結晶粒粗大化を抑止して、接合強度の低下防止を図る為である。尚、鉛、アンチモンは人体への不適合性、又加工性の難度等の観点から好ましくない。   Here, the reason why gold is used as the bonding member 4 is to improve visibility under radioscopy, corrosion resistance, and spreadability. The reason why silver is used is to adjust the melting point and the reason why tin is used. Is to improve the wettability with the core wire 2 or the coil body 3 by lowering the melting point, the reason for using indium is also for improving the wettability, and the reason for using germanium is that of the intermetallic compound This is to suppress the coarsening of the crystal grains and prevent the bonding strength from being lowered. Lead and antimony are not preferable from the viewpoints of incompatibility with the human body and difficulty in workability.

そして、補足すれば、溶融温度が605℃から800℃の銀ろう、溶融温度が895℃から1030℃の金ろうを用いた場合には、芯線2の脆化、又は、なまし状態となって引張破断強度が大幅に低下し、先導栓41が芯線2とコイル体3との接合が分離し離脱する危険が増大する。さらに又、形状記憶回復特性の低下、及び応力歪特性における残留歪の増大を招来する。
そして、溶融温度が約880℃の金74.5重量%から75.5重量%、銀12重量%から13重量%、その他亜鉛、鉄、鉛等0.15重量%以下の金ろうを用いた場合、又溶融温度が780℃の銀72重量%、銅28重量%の銀ろうを用いた場合にも、前記同様の問題が発生する。
In addition, if a silver solder having a melting temperature of 605 ° C. to 800 ° C. or a gold solder having a melting temperature of 895 ° C. to 1030 ° C. is used, the core wire 2 becomes embrittled or annealed. The tensile strength at break is greatly reduced, and the risk of the leading plug 41 separating from and separating from the joint between the core wire 2 and the coil body 3 increases. Furthermore, the shape memory recovery characteristic is lowered, and the residual strain in the stress strain characteristic is increased.
Then, a gold solder having a melting temperature of about 880 ° C. and having a gold content of 74.5% to 75.5% by weight, silver of 12% to 13% by weight, and other zinc, iron, lead, etc. of 0.15% by weight or less was used. In this case, the same problem as described above also occurs when a silver solder having a melting temperature of 780 ° C. of 72 wt% silver and 28 wt% copper is used.

B.次に、本発明の実施例で芯線2と先導栓41との接触構造が、芯線2の外周に被膜層44を介して先導栓41を形成しているからである。これは、先導栓41の成形前に接合部材4により、予め芯線2の芯線先端部21の外周に被膜層44を形成し、そしてこの被膜層44と同一、又は同種の共晶合金である接合部材4を用いて短小硬化部412を形成し、さらにこの短小硬化部412を形成した接合部材4と同一、又は同種の接合部材4を用いて短小硬化部412の前端に先頭部411を形成し、被膜層44を介して短小硬化部412と先頭部411から成る先導栓41を形成しているからである。尚、被膜層44を形成しない態様であっても、前記短小硬化部412と前記先頭部411から成る先導栓41が同一、又は同種の接合部材を用いて形成されていれば、離脱強度向上効果を得ることができる。より好ましい態様は、被膜層44を形成することである。
ここでいう同種の共晶合金である接合部材4とは、一つ、又は二つの同一組成成分の合計が50重量%以上のものをいい、例えば表1で符号A1とA2は同種で、又A1とB1とは異種である。
B. Next, in the embodiment of the present invention, the contact structure between the core wire 2 and the leading plug 41 is that the leading plug 41 is formed on the outer periphery of the core wire 2 via the coating layer 44. This is because a coating layer 44 is formed on the outer periphery of the core wire tip 21 of the core wire 2 in advance by the bonding member 4 before the lead plug 41 is formed, and the same or the same kind of eutectic alloy as the coating layer 44 is bonded. The short curing portion 412 is formed using the member 4, and the leading portion 411 is formed at the front end of the short curing portion 412 using the same or the same type of bonding member 4 as the bonding member 4 that forms the short curing portion 412. This is because the leading plug 41 including the short and hardened portion 412 and the leading portion 411 is formed through the coating layer 44. Even if the coating layer 44 is not formed, if the leading plug 41 composed of the short and hardened portion 412 and the leading portion 411 is formed using the same or the same kind of joining member, the effect of improving the separation strength is achieved. Can be obtained. A more preferred embodiment is to form the coating layer 44.
Here, the joining member 4 which is the same kind of eutectic alloy means that the total of one or two identical composition components is 50% by weight or more. For example, in Table 1, the symbols A1 and A2 are the same, A1 and B1 are different.

そして、より好ましい態様として芯線先端部21上に予め被膜層44を形成する理由は、被膜層44により短小硬化部412、及び先頭部411が形成される各接合部材4との接触角を小さくして濡れ性を向上させ、芯線先端部21との接合強度を高めることができるからであり、そして被膜層44と同一、又は同種の接合部材4を用いて短小硬化部412を形成する理由、及び短小硬化部412と同一、又は同種の接合部材4を用いて先頭部411を形成する理由は、前記同様濡れ性を向上させて相互間の接合強度を高める為であり、その結果相互間接合強度の高い先導栓41を形成することができるからである。尚、被膜層44の長さN0は1mmから8mmが望ましいが、後述する先導栓41の短小化による屈曲柔軟性を高める為には、先導栓41内の芯線2の長さを含んで、かつ前記先導栓41の後端端面から手元側への長さN1が2mm以下で、より好ましくは0.5mmから1mm以下で、最も好ましくは0mmで、先導栓41内の芯線2の長さのみの被膜層44の長さのときである。
そして、接合硬化部413を芯線2、及びコイル体3とともに切断して短小硬化部412を形成し、先導栓41の芯線長手方向の長さを短小化した作用効果については、後述する。
As a more preferable aspect, the reason why the coating layer 44 is formed on the core wire tip 21 in advance is that the contact angle between the coating layer 44 and each of the joining members 4 on which the short cured portion 412 and the leading portion 411 are formed is reduced. This is because the wettability can be improved and the bonding strength with the core wire tip 21 can be increased, and the reason why the short cured portion 412 is formed using the same or the same type of bonding member 4 as the coating layer 44, and The reason why the head portion 411 is formed using the same or the same kind of joining member 4 as the short and small cured portion 412 is to improve the wettability and increase the joint strength between them as described above. This is because a high leading plug 41 can be formed. The length N0 of the coating layer 44 is preferably 1 mm to 8 mm, but in order to increase the bending flexibility due to the shortening of the leading plug 41 described later, the length of the core wire 2 in the leading plug 41 is included, and The length N1 from the rear end surface of the leading plug 41 to the proximal side is 2 mm or less, more preferably 0.5 mm to 1 mm or less, most preferably 0 mm, and only the length of the core wire 2 in the leading plug 41 is obtained. This is when the length of the coating layer 44 is reached.
And the effect of shortening the length of the lead plug 41 in the longitudinal direction of the core wire by cutting the joint hardening portion 413 together with the core wire 2 and the coil body 3 to form the short hardening portion 412 will be described later.

そして補足すれば、芯線2の先端部領域(N0)の先導栓41形成部位で、180℃から450℃の部分熱処理を施すことにより、前記被膜層44形成と同様に、芯線2と接合部材4との濡れ性が向上して、芯線2と先導栓41との接合強度を高めることができる。 より具体的には、180℃から450℃で1秒から60分、好ましくは280℃から450℃で1秒から60分、芯線先端から手元側へ1mmから30mm(図1符号N0)部分熱処理をする。尚、部分熱処理手段は、加熱ヒーターを内蔵した熱処理炉による熱風を媒体とした雰囲気加熱でもよく、ハンダごてを媒体とした伝導熱による部分加熱でもよく、又窒素ガス雰囲気中での熱風による先導栓41の接合部位で幅約1mmから2mm程度の長さのピンポイント加熱であってもよく、又高周波を用いた加熱であってもよい。   If supplemented, the core wire 2 and the joining member 4 are formed in the same manner as in the formation of the coating layer 44 by performing a partial heat treatment at 180 ° C. to 450 ° C. at the lead plug 41 forming portion of the tip end region (N0) of the core wire 2. The joint strength between the core wire 2 and the leading plug 41 can be increased. More specifically, a partial heat treatment is performed from 180 ° C. to 450 ° C. for 1 second to 60 minutes, preferably from 280 ° C. to 450 ° C. for 1 second to 60 minutes, and from 1 mm to 30 mm (N0 in FIG. 1) from the core wire tip to the hand side. To do. The partial heat treatment means may be an atmosphere heating using hot air as a medium by a heat treatment furnace with a built-in heater, or may be partial heating using conductive heat using a soldering iron as a medium, or may be led by hot air in a nitrogen gas atmosphere. Pinpoint heating with a width of about 1 mm to 2 mm at the joint portion of the stopper 41 may be used, or heating using a high frequency may be used.

C.本発明の実施例で、Ni−Ti合金線の芯線2に対する熱的特性を考慮した接合部材4を用いているからである。
具体的には、本発明の実施例に用いる芯線2は、焼鈍材を用いて総減面率が15%から65%の伸線加工を行い、300℃から450℃で形状記憶処理を行なったNi−Ti合金線を用い、接合部材は溶融温度が180℃から450℃の共晶合金を用いる。
ここで、総減面率が15%から65%の伸線加工としたのは、15%を下回ると所定の引張破断強度を得ることはできず、又Ni−Ti合金線は65%を超える伸線加工をすることは困難であり、この範囲であれば125kgf/mm2 から260kgf/mm2 の引張破断強度特性をもつNi−Ti合金線から成る芯線2を得ることができるからである。
C. This is because in the embodiment of the present invention, the joining member 4 is used in consideration of the thermal characteristics of the Ni—Ti alloy wire with respect to the core wire 2.
Specifically, the core wire 2 used in the examples of the present invention was subjected to a wire drawing process with a total area reduction of 15% to 65% using an annealed material, and a shape memory process was performed at 300 ° C. to 450 ° C. A Ni—Ti alloy wire is used, and a eutectic alloy having a melting temperature of 180 ° C. to 450 ° C. is used as the joining member.
Here, the reason why the total area reduction ratio is 15% to 65% is that the wire drawing process is less than 15%, the predetermined tensile breaking strength cannot be obtained, and the Ni-Ti alloy wire exceeds 65%. This is because it is difficult to perform wire drawing, and within this range, a core wire 2 made of a Ni—Ti alloy wire having a tensile breaking strength characteristic of 125 kgf / mm 2 to 260 kgf / mm 2 can be obtained.

そして、接合部材4が180℃から450℃の溶融温度をもつ共晶合金としたのは、例えば広ひずみ範囲高弾性Ni−Ti合金線(特許3547366)を用いて先導栓41を形成する際に、かかるNi−Ti合金線は応力―ひずみ特性図において残留歪Z(図4)を有する為に形状回復特性が劣り、特に先導栓41の後端端面の芯線2との接合部位においては、耐屈曲曲げ疲労特性が要求される。
かかる場合において、本発明の実施例は、前記所定の溶融温度を有する接合部材4を用いている為、この残留歪Zの増大を抑止して、前記先導栓41の接合部位の芯線2の形状回復特性を維持・向上させることができる。
特にこの先導栓41の芯線2との接合部位は、後述する屈曲蛇行血管内挿入時に高い耐屈曲曲げ疲労特性が要求される。尚、図4、5中符号Hは、応力ヒステリシスを示し、符号Fは降伏点を示す。
そして、残留歪Zの増大を抑止し、形状回復特性を維持・向上させるより詳しい理由は、芯線先端部21の線直径が0.060mm、又はこの芯線2を押圧加工して板幅0.094mm、板厚0.030mmの矩形断面とすると、それぞれ細線により熱容量が小さくて熱影響を受け易くなり、そして予め芯線先端部21に一定範囲で接合部材4を溶融させて被膜層44の形成による芯線2への加熱、及び接合部材4を溶融させて先導栓41の形成による芯線2への加熱により、接合部材4の溶融時の熱を利用して芯線先端部21へ低温熱処理したことと同様の作用効果を生じたもの、と考えることができるからである。
The reason why the eutectic alloy having a melting temperature of 180 ° C. to 450 ° C. is used when the lead plug 41 is formed using, for example, a wide strain range high elasticity Ni—Ti alloy wire (Japanese Patent No. 3547366). The Ni—Ti alloy wire has a residual strain Z (FIG. 4) in the stress-strain characteristic diagram, so that the shape recovery characteristic is inferior. Flexural bending fatigue characteristics are required.
In such a case, since the embodiment of the present invention uses the joining member 4 having the predetermined melting temperature, the increase of the residual strain Z is suppressed, and the shape of the core wire 2 at the joining portion of the leading plug 41 is suppressed. Recovery characteristics can be maintained and improved.
In particular, the joint portion of the lead plug 41 with the core wire 2 is required to have high bending bending fatigue resistance when inserted into a bending meandering blood vessel described later. In FIGS. 4 and 5, symbol H indicates stress hysteresis, and symbol F indicates a yield point.
A more detailed reason for suppressing the increase in the residual strain Z and maintaining / improving the shape recovery characteristic is that the wire diameter of the core wire tip 21 is 0.060 mm, or the core wire 2 is pressed to have a plate width of 0.094 mm. When the rectangular cross section has a plate thickness of 0.030 mm, the heat capacity is small due to the thin wire, and it is easy to be affected by heat, and the core wire is formed by previously forming the coating layer 44 by melting the joining member 4 to the core wire tip 21 in a certain range. 2 and the heating of the bonding member 4 by melting the bonding member 4 and heating the core wire 2 by the formation of the leading plug 41, the same as the low temperature heat treatment to the core wire tip 21 using the heat at the time of melting of the bonding member 4 This is because it can be considered to have produced the effect.

さらに、接合部材4は、180℃から450℃の溶融温度をもつ共晶合金が望ましく、例えば溶融熱が280℃の金錫合金(表1符合A−1)、溶融温度が450℃の銀、錫、インジウム合金(表1符合B−2)が望ましく、この範囲のものは共晶合金の溶融時の熱を利用した芯線への低温熱処理効果が高く、応力誘起マルテンサイト変態を助長し、かつ、450℃を超える温度での熱処理でみられる降伏点の出現と弾性率の低下現象を抑止する作用効果がある。尚、Ni−Ti合金材としては、Niを50.2at%〜51.5at%、残部がTiから成るNi−Ti系合金、Niを49.8at%〜51.5at%含有し、さらにCr、Fe、V、Al、Cu、Co、Moの中から1種、又は2種以上を0.1at%〜2.0at%含有し、残部がTiから成るNi−Ti系合金、Tiを49.0at%〜51.0at%、Cuを5at%〜12at%含有し、残部がNiから成るNi−Ti系合金等である。   Further, the joining member 4 is preferably a eutectic alloy having a melting temperature of 180 ° C. to 450 ° C., for example, a gold-tin alloy having a melting heat of 280 ° C. (Table 1, reference A-1), silver having a melting temperature of 450 ° C., Tin and indium alloys (table B-2 in Table 1) are desirable, and those in this range have a high low-temperature heat treatment effect on the core wire using the heat at the time of melting of the eutectic alloy, promote stress-induced martensitic transformation, and There is an effect of suppressing the appearance of the yield point and the lowering of the elastic modulus, which are observed in the heat treatment at a temperature exceeding 450 ° C. In addition, as a Ni-Ti alloy material, Ni contains 50.2 at% to 51.5 at%, the balance is Ni-Ti alloy composed of Ti, Ni contains 49.8 at% to 51.5 at%, and Cr, A Ni-Ti alloy containing 0.1 at% to 2.0 at% of one or more of Fe, V, Al, Cu, Co, and Mo, with the balance being Ti, and 49.0 at Ti. Ni—Ti alloy or the like containing 5% to 51.0 at%, 5 at% to 12 at% of Cu, and the balance being Ni.

そして又、前記接合部材4による被膜層44、及び先導栓41を形成接合する芯線2に加工硬化型Ni−Ti合金線(特公平6−83726号公報)を用いた場合(図5)においても、前記同様残留歪の増大と弾性率の低下を抑止し、又接合部材4の溶融時の芯線2への加熱により形状回復特性を低下させることはない。この理由は、例えば総減面率が35%から50%の加工硬化型Ni−Ti合金線を用いた直線状の記憶処理は、350℃から450℃で10秒間から30秒間であり、これに対して接合部材4の溶融温度は180℃から450℃であり、前記直線状記憶処理温度の上限を超えれば降伏点が低下して弾性率が大きく変化し、形状回復特性を低下させるが、本発明の実施例で用いる接合部材4の溶融温度はこの温度範囲を超えていないからである。より好ましくは、280℃から450℃の溶融温度をもつ接合部材4である共晶合金を用いることである。   Also in the case where a work hardening type Ni—Ti alloy wire (Japanese Patent Publication No. 6-83726) is used for the core wire 2 that forms and joins the coating layer 44 and the leading plug 41 by the joining member 4 (FIG. 5). In the same manner as described above, an increase in residual strain and a decrease in elastic modulus are suppressed, and the shape recovery characteristics are not deteriorated by heating the core wire 2 when the joining member 4 is melted. The reason for this is that, for example, a linear memory treatment using a work-hardening Ni—Ti alloy wire with a total area reduction of 35% to 50% is from 350 ° C. to 450 ° C. for 10 seconds to 30 seconds. On the other hand, the melting temperature of the joining member 4 is 180 ° C. to 450 ° C., and if the upper limit of the linear memory processing temperature is exceeded, the yield point decreases and the elastic modulus changes greatly, and the shape recovery characteristic decreases. This is because the melting temperature of the joining member 4 used in the embodiment of the invention does not exceed this temperature range. More preferably, the eutectic alloy which is the joining member 4 having a melting temperature of 280 ° C. to 450 ° C. is used.

D.本発明の実施例で、先導栓のコイル体等への係合構造が、コイル体3の線間間隙Pへ食い込む短小硬化部412の形成、そして芯線先端部21の偏平形状(図1(ホ)(へ))としたときの先導栓41との接触面積増大によるアンカー効果によるからである。
具体的には、先導栓41内のコイル体3の線間間隙P(図1(ハ)、図2(イ))は、線直径の5%から85%として隙間を設け、かつ、短小硬化部412の外径D3がコイル体3のコイル平均径D0より大きく、かつ、コイル体3の外径D2以下として、コイル体3のコイル線が短小硬化部412内に埋没、又は埋設されていることを特徴とする。(図1(ハ))
そして、短小硬化部412のコイル体3のコイル線との接触形態は、スパイラル状の接触形態となっていて長手方向に短い距離でコイル体3のコイル線表面との接触面積増大を図り、そしてアンカー効果により先導栓41の離脱強度を高めることができるからである。
D. In the embodiment of the present invention, the engagement structure of the leading plug to the coil body or the like forms the short and hardened portion 412 that bites into the inter-line gap P of the coil body 3, and the flat shape of the core wire tip 21 (FIG. This is because of the anchor effect due to an increase in the contact area with the leading plug 41 when () (f)).
Specifically, the gap P between the wires 3 of the coil body 3 in the leading plug 41 (FIGS. 1 (C) and 2 (A)) is provided as a gap between 5% and 85% of the wire diameter, and short and small curing is achieved. The outer diameter D3 of the portion 412 is larger than the coil average diameter D0 of the coil body 3 and is equal to or smaller than the outer diameter D2 of the coil body 3, and the coil wire of the coil body 3 is embedded or embedded in the short and hardened portion 412. It is characterized by that. (Figure 1 (c))
And the contact form with the coil wire of the coil body 3 of the short and small cured portion 412 is a spiral contact form, the contact area with the coil wire surface of the coil body 3 is increased at a short distance in the longitudinal direction, and This is because the detachment strength of the leading plug 41 can be increased by the anchor effect.

そして、芯線先端部21は押圧加工による芯線偏平部23の形成、又は芯線偏平部23の片面、又は両面に条溝5を設定することにより短小硬化部412との接触面積の増大を図り、アンカー効果により先導栓41の芯線2との離脱強度を高めることができる。
具体的には、芯線先端部21の線直径が0.060mmを押圧加工して、例えば板幅0.094mm、板厚0.030mmの矩形断面形状とすることにより、円形断面よりも接合部材との接触面積を約1.32倍増大させることができる。
そして、芯線偏平部23の表面に深さ0.003mmから0.005mm程度の複数の条溝5を形成することにより、よりアンカー効果を発揮する。望ましくは、芯線長手方向に対して直交方向に条溝5を入れることであり、又条溝5が格子状であってもよく、被膜層44と、前記芯線偏平部23の各形状との接合力向上の相乗効果により、より高いアンカー効果を発揮させることができる。(図1(ホ)(へ))
Then, the core wire tip 21 increases the contact area with the short and hardened portion 412 by forming the core flat portion 23 by pressing, or by setting the groove 5 on one or both sides of the core flat portion 23, The separation strength between the lead plug 41 and the core wire 2 can be increased due to the effect.
Specifically, the wire diameter of the core wire tip portion 21 is pressed to 0.060 mm to form a rectangular cross-sectional shape having a plate width of 0.094 mm and a plate thickness of 0.030 mm, for example. Can be increased by about 1.32 times.
Then, by forming a plurality of grooves 5 having a depth of about 0.003 mm to 0.005 mm on the surface of the flat core portion 23, the anchor effect is further exhibited. Desirably, the groove 5 is formed in a direction orthogonal to the longitudinal direction of the core wire, and the groove 5 may have a lattice shape, and the coating layer 44 is bonded to each shape of the core flat portion 23. Due to the synergistic effect of improving power, a higher anchor effect can be exhibited. (Fig. 1 (e) (f))

そして補足すれば、コイル体3の先導栓41と接合する放射線不透過材コイル31の材質が、前記先導栓41を形成する接合部材4と同一の組成成分を含む構成から成ることがより望ましい。具体的には、放射線不透過材コイル31の材質が金成分を含む材質、又は金めっきをしたコイル体3のときには、接合部材4は金成分を含む共晶合金(表1符合A−1〜A−4)を用いることである。
この理由は、接合部での接合部材4のコイル体3との濡れ性を向上させる為であり、かつ、接合部材4とコイル体3との接合部材間の熱膨張差を少なくして、より安定した接合強度の向上を図る為である。
In addition, it is more preferable that the material of the radiopaque material coil 31 to be joined to the lead plug 41 of the coil body 3 includes the same composition component as that of the joining member 4 forming the lead plug 41. Specifically, when the material of the radiopaque material coil 31 is a material containing a gold component or a coil body 3 plated with gold, the bonding member 4 is a eutectic alloy containing a gold component (see Tables 1 to 1). A-4).
The reason for this is to improve the wettability of the bonding member 4 with the coil body 3 at the bonding portion, and to reduce the difference in thermal expansion between the bonding members between the bonding member 4 and the coil body 3. This is to improve the stable bonding strength.

次に、芯線長手方向の長さを短小化させ、かつ、離脱強度の高い先導栓41を備えたガイドワイヤ1を得ることによる作用効果について、以下説明する。   Next, the effect of obtaining the guide wire 1 provided with the leading plug 41 having a reduced length in the longitudinal direction of the core wire and having a high separation strength will be described below.

先導栓41の芯線長手方向の長さを短小化させ、かつ離脱強度の高い先導栓41を備えたガイドワイヤ1を用いることにより、屈曲蛇行の激しい慢性完全閉塞病変での治療の成功率を飛躍的に向上させることができる。
図6(ロ)は、特許文献1で示すように従来の完全閉塞病変部治療の一例を示し、冠状動脈内の完全閉塞病変部10の大動脈に近い側の閉塞手元端端部10Aは、大動脈に遠い側の閉塞先端端部10Bよりも硬い組織(fibrous cap)で構成され、ガイドワイヤ1を押し進めようとすると先端部が屈曲変形するのみで完全閉塞病変部10を穿孔させることは困難であった。(図示符号1a)
この為、ガイドワイヤ1を2mmから3mm前進と後退を繰り返して血管壁内の内膜91のザラザラ感と外膜93の内側の中膜92の粘りつくような抵抗感との差を手元部での感触として術者が探知しながら、図示符号1bから内膜91と中膜92の境界部の図示符号1c、そして図示符号1dへと完全閉塞病変部10の閉塞部を迂回する形態にして、ガイドワイヤ1を用いて完全閉塞病変部10を貫通させて、その後バルーンカテーテル等を用いて拡張治療を行っていた。
しかし、この手技は術者の極めて高度な熟練された技能を必要とし、その技能習得には多大な時間等を要していた。
By reducing the length of the leading plug 41 in the longitudinal direction of the core wire and using the guide wire 1 provided with the leading plug 41 having high detachment strength, the success rate of treatment for chronic complete obstruction lesions with severe bending meandering has been greatly increased. Can be improved.
FIG. 6 (b) shows an example of conventional completely-occluded lesion treatment as shown in Patent Document 1, and the proximal end 10A on the side close to the aorta of the completely-occluded lesion 10 in the coronary artery is the aorta. It is composed of a harder tissue (fibrous cap) than the closed distal end portion 10B on the far side, and when the guide wire 1 is pushed forward, it is difficult to perforate the completely closed lesioned portion 10 only by bending the distal end portion. It was. (Indicator 1a)
For this reason, the guide wire 1 is repeatedly advanced and retracted from 2 mm to 3 mm, and the difference between the rough feeling of the inner membrane 91 in the blood vessel wall and the resistance feeling of the inner membrane 92 inside the outer membrane 93 sticking is determined at the hand portion. While detecting by the surgeon, the form of the occluded portion of the completely occluded lesion 10 is bypassed from the illustrated code 1b to the illustrated code 1c at the boundary between the intima 91 and the media 92, and to the illustrated code 1d. A completely occluded lesion 10 is penetrated using the guide wire 1 and then dilatation treatment is performed using a balloon catheter or the like.
However, this technique requires an extremely high skill of the surgeon, and it takes a lot of time to acquire the skill.

そして、近年では、大動脈から直接血流を受ける閉塞手元端端部10Aが硬化状態であっても、この反対側の閉塞先端端部10Bは軟質状態であることが判明し、完全閉塞病変部10の閉塞先端端部10B側から閉塞手元端端部10A側へ向けてガイドワイヤ1を穿孔させる手技(以下逆行性アプローチという)が試みられ、治療成果を飛躍的に向上させてきている。この逆行性アプローチを行なう為には、発達している閉塞部抹梢を栄食する血行の血管である側副血行(以下コラテラールという)をみつけることが重要で、これは中隔(以下セプタールという)11において発達していることが判明している。
しかし、この中隔側副血行(以下セプタールコラテラールという)11Aは、閉塞病変発生前から存在していた血管とは異なり、閉塞部の存在により自己防衛機能として発達した血管の為、細く、かつスパイラル状の丁度コルクの栓抜きのようなコークスクリューと呼ばれる屈曲蛇行の極めて激しい血管状態となっている。(図6(イ)符号11B)例えば、このコークスクリュー部11Bは、直線距離約50mmの間で、曲率半径が約3mm〜4mmで交互にUターンする部位が6〜8箇所以上存在する。
In recent years, it has been found that even if the closed proximal end portion 10A that directly receives blood flow from the aorta is in a hardened state, the opposite closed distal end portion 10B is in a soft state. A technique of drilling the guide wire 1 from the closed distal end portion 10B side to the closed proximal end portion 10A side (hereinafter referred to as a retrograde approach) has been attempted, and therapeutic results have been dramatically improved. In order to carry out this retrograde approach, it is important to find collateral blood circulation (hereinafter referred to as colateral), which is a blood vessel that devours the developed occluded peripheral tree, and this is referred to as septal (hereinafter referred to as septal). ) It has been found that 11 has developed.
However, this septal collateral blood circulation (hereinafter referred to as septal collateral) 11A is different from the blood vessel that existed before the occurrence of the obstructed lesion, and is thin because it has developed as a self-defense function due to the presence of the obstructed portion. In addition, the blood vessel is in an extremely intense blood vessel with a meandering shape called a corkscrew, just like a corkscrew in a spiral shape. (FIG. 6 (A) code 11B) For example, the cork screw portion 11B has 6 to 8 or more portions that alternately make U-turns with a radius of curvature of about 3 mm to 4 mm within a linear distance of about 50 mm.

そしてこのセプタールコラテラール11Aの血管直径は、冠状動脈の血管直径3mm〜4mmとは大きく異なり約0.4mm以下が全体の50%から60%を占め、この状況下でガイドワイヤ1を押し進めていく為には、ガイドワイヤ1の先端外径は0.4mm以下であり、さらに屈曲蛇行の極めて激しいコークスクリュー部11Bの状態であっても、この屈曲蛇行に追従できる小回り可能な、先端の硬化部の長さが短い先導栓をもつガイドワイヤ1が要求される。
この為、特許文献2の先導栓長Lが概ね1.0mmであるのに対して、本発明の実施例1、2の先導栓長Lは、最も短い好ましい短小化した態様として0.190mmから0.60mmで芯線2、又はコイル体3との離脱強度を向上させながら、かつ、短小化を図ることができる。
The septal collateral 11A has a blood vessel diameter that is greatly different from the coronary artery blood vessel diameter of 3 mm to 4 mm, and is approximately 0.4 mm or less, accounting for 50% to 60% of the whole. Under this condition, the guide wire 1 is pushed forward. In order to proceed, the outer diameter of the tip of the guide wire 1 is 0.4 mm or less, and even in the state of the corkscrew portion 11B that is extremely bent and meandering, a hardened portion at the tip that can follow the bending and meandering is possible. A guide wire 1 having a leading plug with a short length is required.
For this reason, the leading plug length L of Patent Document 2 is approximately 1.0 mm, whereas the leading plug length L of Examples 1 and 2 of the present invention is from 0.190 mm as the shortest preferable shortened mode. It is possible to reduce the length while improving the separation strength from the core wire 2 or the coil body 3 at 0.60 mm.

そして、コイル体3の外径D2と先導栓の外径D4は、ともに0.345mmで特にこのセプタールコラテラール11Aを利用する場合には、前記外径は0.345mm以下が望ましく、より好ましくは0.305mm以下で、さらに好ましくは0.254mm以下である。この理由は、セプタールコラテラール11Aの血管径は約0.4mm以下が全体の50%〜60%を占めていること、及び、屈曲蛇行の極めて激しい血管形状に追従できる小回り可能とする為には、図8(ロ)に示すようにガイドワイヤ1の先端部を予め曲がり癖を付けておき、この曲がり形状の中心軸の長さRが長手方向に対して充分に短く、かつ、曲率半径rが充分に小さい形状ほど小回りができ、本発明の実施例は、高強度の離脱強度を維持しながら、これを短小化することができ、この用途に好適である。尚、この曲がり癖形状の付形は、先端部の弾性変形を超えた強加工による曲げ変形により放射線不透過材コイル31とともに塑性変形し、芯線2がNi−Ti合金線である為、前記強加工の他に、予め曲げ形状の状態で形状記憶処理を施してもよい。
そして補足すれば、被膜層44の先導栓41の手元端面からの長さN1は、短い程芯線の柔軟性を確保できて小回りを助長し、より好ましくは0.5mmから1.0mm以下で、最も好ましくは0mmである。
The outer diameter D2 of the coil body 3 and the outer diameter D4 of the leading plug are both 0.345 mm, and particularly when this septal collateral 11A is used, the outer diameter is desirably 0.345 mm or less, more preferably. Is 0.305 mm or less, more preferably 0.254 mm or less. The reason for this is that septal collateral 11A has a blood vessel diameter of about 0.4 mm or less occupying 50% to 60% of the whole, and in order to enable a small turn that can follow a blood vessel shape that is extremely bent and meandering. As shown in FIG. 8 (b), the distal end portion of the guide wire 1 is bent in advance, the length R of the central axis of the bent shape is sufficiently short with respect to the longitudinal direction, and the radius of curvature is A shape with a sufficiently small r can make a small turn, and the embodiment of the present invention can be shortened while maintaining a high separation strength, which is suitable for this application. In addition, the bent hook-shaped shape is plastically deformed together with the radiopaque material coil 31 by bending deformation due to strong processing exceeding the elastic deformation of the tip portion, and the core wire 2 is a Ni-Ti alloy wire. In addition to processing, shape memory processing may be performed in a bent shape in advance.
And if supplemented, the length N1 from the proximal end face of the leading plug 41 of the coating layer 44 can secure the flexibility of the core wire as it is shorter, and promotes a small turn, more preferably 0.5 mm to 1.0 mm, Most preferably, it is 0 mm.

そして、ガイドワイヤ1をコークスクリュー部11Bに通過させる為には、前記した芯線長手方向の短小化、又は外径を径小化したガイドワイヤ1と、ガイドワイヤ1を押し進めることのできる反力を支える為、内径1.59mmから2.00mmのガイディングカテーテル14内へ貫挿した内径0.28mmから0.90mmのマイクロカテーテル12を挿入し、マイクロカテーテル12と、又はマイクロカテーテル12とガイディングカテーテル14とを併用する。
そして、特許文献1で示すような閉塞部の血管壁内を通過(図6(ロ))させることなく、コークスクリュー部11Bを通過したガイドワイヤ1は、軟質から成る閉塞先端端部10Bから完全閉塞病変部10へ容易に穿孔させることができる。(図6(イ)符号1e)
尚、図中符号19は、従来の閉塞手元端端部10A側からガイドワイヤ101を穿孔させる手技(順行性アプローチ)の状態を示し、符号91は右冠状動脈、符号92は左冠状動脈、符号20は大動脈を示す。
In order to allow the guide wire 1 to pass through the cork screw portion 11B, the guide wire 1 having a shortened length in the longitudinal direction of the core wire or a reduced outer diameter and a reaction force that can push the guide wire 1 are supported. Therefore, the microcatheter 12 having an inner diameter of 0.28 mm to 0.90 mm inserted into the guiding catheter 14 having an inner diameter of 1.59 mm to 2.00 mm is inserted, and the microcatheter 12 or the microcatheter 12 and the guiding catheter 14 are inserted. And in combination.
And the guide wire 1 which passed the corkscrew part 11B, without passing the inside of the blood vessel wall of an obstruction | occlusion part as shown in patent document 1 is completely obstruct | occluded from the obstruction | occlusion tip end part 10B which consists of soft. The lesioned part 10 can be easily perforated. (FIG. 6 (a) 1e)
Reference numeral 19 in the figure indicates the state of a conventional procedure (an antegrade approach) for perforating the guide wire 101 from the closed proximal end portion 10A side, reference numeral 91 indicates the right coronary artery, reference numeral 92 indicates the left coronary artery, Reference numeral 20 denotes the aorta.

次に、本発明の実施例の先導栓41と中間固定部42を設けることによる作用効果について、以下説明する。   Next, the effect by providing the leading stopper 41 and the intermediate | middle fixing | fixed part 42 of the Example of this invention is demonstrated below.

先導栓41と中間固定部42を設けることにより、閉塞病変部内のガイドワイヤ1の先端部の位置情報の把握が容易となる。
本発明の実施例1、2の中間固定部42は、接合部材4から成る先導栓41と同一、又は同種の接合部材の溶融温度を持つ共晶合金を用いて、幅(W)0.5mmから1.5mmで外径がコイル体3の外径D2と概ね同一とした円盤状のドーナツ形状で、芯線先端部21とコイル体3との接合とし、その中間固定部42の位置は、先導栓41の後端端面から中間固定部42の前端までの寸法Mは後述する寸法とし(図1(ハ)符号M)、かつ、この間の線間間隙(図1(ハ)、符号P)は、コイル体3の線直径(図1(ハ)、符号d)の5%から30%とし、又コイル体3の線直径を0.06mmとする。
By providing the leading plug 41 and the intermediate fixing portion 42, it becomes easy to grasp the position information of the distal end portion of the guide wire 1 in the obstructed lesion portion.
The intermediate fixing portion 42 according to the first and second embodiments of the present invention uses a eutectic alloy having a melting temperature of the same or the same kind of joining member 41 as the joining member 4 and having a width (W) of 0.5 mm. To 1.5 mm and the outer diameter of the disk body 3 is substantially the same as the outer diameter D2 of the coil body 3, and the core wire tip 21 and the coil body 3 are joined to each other. The dimension M from the rear end face of the stopper 41 to the front end of the intermediate fixing portion 42 is a dimension described later (FIG. 1 (C) symbol M), and the gap between the lines (FIG. 1 (C), symbol P) is The wire diameter of the coil body 3 (FIG. 1 (c), symbol d) is 5% to 30%, and the wire diameter of the coil body 3 is 0.06 mm.

そして、中間固定部42が先導栓41の接合部材4と同一、又は同種の接合部材を用いるとしたのは、中間固定部42と先導栓41の熱膨張、及び芯線への加熱温度を概ね同一として接合部材4の溶融熱による中間固定部42までの位置Mの変動を最小限とし、この間(位置M)偏りのない均等化したコイル体の線間間隙を得る為であり、又被膜層44と同一、又は同種の接合部材を用いるとしたのは、被膜層44を介して、芯線と接合する場合の濡れ性を考慮して接合強度向上を図る為である。尚、補足すれば、コイル体3の放射線不透過材コイル31の材質が金成分を含む組成、又は金めっきをしたコイル体から成るときに用いる先導栓41、又は中間固定部42を形成する接合部材4は、金成分を含む組成の共晶合金から成る接合部材を用いることが望ましい。具体的には、前記表1符号A1〜A4の接合部材を用いる。
この理由は、接合部材4のコイル体3との濡れ性を向上させて、かつ接合部での熱膨張差を少なくして、コイル体3と先導栓41 、又は中間固定部42との接合強度をより向上させる為である。
The intermediate fixing portion 42 is the same as the joining member 4 of the leading plug 41 or the same kind of joining member is used because the thermal expansion of the intermediate fixing portion 42 and the leading plug 41 and the heating temperature to the core wire are substantially the same. In order to minimize the variation of the position M up to the intermediate fixing portion 42 due to the heat of fusion of the joining member 4, and to obtain a uniform inter-line gap between the coil bodies during this time (position M), and the coating layer 44. The reason why the same or the same kind of bonding member is used is to improve the bonding strength in consideration of wettability when bonding to the core wire via the coating layer 44. In addition, if it supplements, joining which forms the leading plug 41 used when the material of the radiopaque material coil 31 of the coil body 3 consists of a composition containing a gold component, or a coil body plated with gold, or an intermediate fixing portion 42 The member 4 is preferably a joining member made of a eutectic alloy having a composition containing a gold component. Specifically, the joining members shown in Table 1 with reference signs A1 to A4 are used.
The reason for this is that the bonding strength between the coil body 3 and the leading plug 41 or the intermediate fixing part 42 is improved by improving the wettability of the bonding member 4 with the coil body 3 and reducing the thermal expansion difference at the joint. This is to further improve the quality.

この構成により、閉塞病変部内のガイドワイヤ1の先端部の位置情報の把握が術者にとって容易となる。つまり、閉塞病変部内で先端位置を把握しながらの術者のガイドワイヤ1の進退操作は、特許文献1にみられるように、コイル体3の線間間隙に病変組織を食い込ませながら探知している。つまり図1(ハ)と図7を参照して、芯線先端部21とコイル体3とを固着した中間固定部42の存在により、押し操作の場合には、コイル体3の外周部病変組織との摩擦により線間間隙Pを予め設けているコイル体3の中間固定部42側のコイル体3の素線間隙Pは狭くなって密着(密変形)し、その一方で先導栓41側のコイル体3は線間間隙Pが拡大(疎変形)して、この中に病変組織が入り込むことになる。 一方、引き操作の場合には、これとは逆に先導栓41側のコイル体3の素線間隙Pは狭くなって密着し、その一方で中間固定部42側のコイル体3の線間間隙Pが拡大して、今度はこの中に病変組織が入り込むこととなり、この押しと引きの操作により先導栓41側と中間固定部42側へ交互に病変組織が入り込む。この押し操作力をa、引き操作力をbとすると図7(ロ)のようになる。そして、押しと引きの操作力の反転作用の抵抗感の差Uにより、術者は閉塞病変部内でのガイドワイヤ1の先端位置情報を把握することができる。尚、図7(イ)は、反転作用の抵抗感Uの差がほとんどない。例えば線間間隙がコイル体3の素線直径の5%を下回るような場合の押し操作と引きの操作の状態図である。   With this configuration, it is easy for the operator to grasp the position information of the distal end portion of the guide wire 1 in the obstructed lesion. That is, the operator's advance / retreat operation of the guide wire 1 while grasping the distal end position within the obstructed lesion is detected while causing the lesion tissue to bite into the inter-line gap of the coil body 3 as seen in Patent Document 1. Yes. That is, with reference to FIGS. 1C and 7, due to the presence of the intermediate fixing portion 42 to which the core wire tip 21 and the coil body 3 are fixed, in the case of a pushing operation, The wire gap P of the coil body 3 on the side of the intermediate fixing portion 42 of the coil body 3 in which the inter-line gap P is provided in advance due to the friction of the coil body 3 becomes narrow and closely adheres (tightly deformed), while the coil on the lead plug 41 side In the body 3, the inter-line gap P is enlarged (sparsely deformed), and the diseased tissue enters therein. On the other hand, in the pulling operation, on the contrary, the wire gap P of the coil body 3 on the leading plug 41 side is narrowed and closely attached, while the inter-line gap of the coil body 3 on the intermediate fixing portion 42 side. P expands, and this time, the lesion tissue enters this, and the pushing and pulling operation alternately causes the lesion tissue to enter the leading plug 41 side and the intermediate fixing portion 42 side. If the pushing operation force is a and the pulling operation force is b, the result is as shown in FIG. Then, the operator can grasp the tip position information of the guide wire 1 in the obstructed lesion by the difference U in resistance feeling of the reversal action of the pushing and pulling operation force. In FIG. 7A, there is almost no difference in resistance U of the reversal action. For example, it is a state diagram of a pushing operation and a pulling operation when the gap between the wires is less than 5% of the wire diameter of the coil body 3.

そして、このガイドワイヤ1の閉塞病変部内での進退操作は、概ね2mmから3mmで平均2.5mmである。かかる場合において、コイル体3の線直径が0.06mmでコイル線間間隙がコイル体3の線直径の5%から30%のとき、コイル線間間隙の合計で進退操作させる2.5mmの距離を確保する為には、中間固定部42の位置Mは、コイル体3の線直径とコイル線間間隙を含めた1巻分の長さに、進退操作の長さ(2.5mm)に相当する線間間隙の最大値、又は最小値に応じた巻き数分を乗じた値である約11mm{(0.06+0.06×0.30)×2.5÷(0.06×0.30)}から約53mm{(0.06+0.06×0.05)×2.5÷(0.06×0.05)}が好ましく、より好ましい線間間隙がコイル体3の線直径の8%から30%の場合は、この中間固定部42までの位置Mは、約11mmから約34mmであり、そしてコークスクリュー部11Bでの通過性を併せ考慮して、さらに好ましい線間間隙がコイル体3の線直径の8%から20%の場合、その中間固定部42までの位置Mは約15mmから約34mmである。
この先導栓41の後端端面から中間固定部42の前端までの長さMは、コイル体3の線間間隙がコイル体3の線直径の5%から30%とすると前記計算方法を一般化してコイル体の線直径とコイル線間間隙との次の関係式(1)を満たすこととなる。
関係式(1):3.25×(d/P1)≦M≦2.625×(d/P0)
M:先導栓の後端端面から中間固定部42の前端までの長さ(mm)
d:コイル体の線直径(mm) P0:コイル線間間隙の最小値(mm)
P1:コイル線間間隙の最大値(mm)
ここで、コイル線間間隙を5%から30%として、さらに好ましくは8%から20%としたのは、この範囲であれば術者が前記反転作用の抵抗感の差を認識でき、又屈曲蛇行激しいコークスクリュー部11Bの通過性を考慮した為である。尚、前記関係式において中間固定部までの位置Mの最小値は、
(d+d×0.30)×2.5/P1=3.25×(d/P1)として算出し、又最大値においても前記同様に算出して一般化した。
The advance / retreat operation of the guide wire 1 in the obstructed lesion is approximately 2 mm to 3 mm and an average of 2.5 mm. In such a case, when the wire diameter of the coil body 3 is 0.06 mm and the gap between the coil wires is 5% to 30% of the wire diameter of the coil body 3, the distance of 2.5 mm to be advanced and retracted by the total gap between the coil wires. In order to ensure the position, the position M of the intermediate fixing portion 42 corresponds to the length of one turn including the wire diameter of the coil body 3 and the gap between the coil wires, and the length of the forward / backward operation (2.5 mm). About 11 mm {(0.06 + 0.06 × 0.30) × 2.5 ÷ (0.06 × 0.30) which is a value obtained by multiplying the maximum value or the minimum value of the gap between lines to be wound )} To about 53 mm {(0.06 + 0.06 × 0.05) × 2.5 ÷ (0.06 × 0.05)}, and a more preferable gap between wires is 8% of the wire diameter of the coil body 3 30% to 30%, the position M to the intermediate fixing portion 42 is about 11 mm to about 34 mm. In consideration of the passage through the corkscrew portion 11B, when the preferable inter-line gap is 8% to 20% of the wire diameter of the coil body 3, the position M to the intermediate fixing portion 42 is about 15 mm to about 34 mm. It is.
The length M from the rear end face of the leading plug 41 to the front end of the intermediate fixing portion 42 is obtained by generalizing the above calculation method when the inter-wire gap of the coil body 3 is 5% to 30% of the wire diameter of the coil body 3. Thus, the following relational expression (1) between the wire diameter of the coil body and the gap between the coil wires is satisfied.
Relational expression (1): 3.25 × (d / P1) ≦ M ≦ 2.625 × (d / P0)
M: Length from the rear end surface of the leading plug to the front end of the intermediate fixing portion 42 (mm)
d: Wire diameter of coil body (mm) P0: Minimum value of gap between coil wires (mm)
P1: Maximum value of gap between coil wires (mm)
Here, the gap between the coil wires is set to 5% to 30%, and more preferably 8% to 20%. In this range, the surgeon can recognize the difference in resistance feeling of the reversal action and bend This is because the passability of the meandering corkscrew portion 11B is taken into consideration. In the above relational expression, the minimum value of the position M to the intermediate fixed part is
The calculation was performed as (d + d × 0.30) × 2.5 / P1 = 3.25 × (d / P1), and the maximum value was calculated and generalized in the same manner as described above.

そして先導栓41の形成に用いる接合部材4は腐食進行による接合強度低下の防止、及び黒色化の防止、さらにセプタールコラテラール11Aを利用する細径化による放射線透視下での視認性低下防止の観点から金成分を含む共晶合金を用いることが望ましい。
この理由は、ガイドワイヤ1は、手技前に生理食塩水に浸漬させる為、例えば先導栓41に銀系共晶合金による接合部材4を用いた場合には、浸漬約1時間以内で硫化銀等の形成、又は塩化銀を形成して銀化合物の感光性により黒色化が始まり、時間の経過とともに黒色化がさらに進んで腐食が増大して接合強度が低下する。そして又、前記コークスクリュー部11Bを通過させるガイドワイヤ1は細径化され、これによる視認性低下防止を図る必要があるからである。
The joining member 4 used for forming the lead plug 41 prevents the joining strength from being lowered due to the progress of corrosion, prevents blackening, and further prevents the visibility from being lowered under radioscopy by reducing the diameter using the septal collateral 11A. From the viewpoint, it is desirable to use a eutectic alloy containing a gold component.
This is because the guide wire 1 is immersed in physiological saline before the procedure. For example, when the joining member 4 made of a silver-based eutectic alloy is used for the lead plug 41, silver sulfide or the like is immersed within about 1 hour. Or the formation of silver chloride, and the blackening of the silver compound begins due to the photosensitivity of the silver compound, and the blackening further progresses with the passage of time, increasing the corrosion and lowering the bonding strength. In addition, the guide wire 1 that allows the corkscrew portion 11B to pass therethrough has a reduced diameter, and thus it is necessary to prevent the visibility from being lowered.

次に、本発明のガイドワイヤの製造方法について、以下説明する。   Next, the method for manufacturing the guide wire of the present invention will be described below.

本発明のガイドワイヤの製造方法は、
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に先導栓を形成した医療用ガイドワイヤの製造方法において、
前記芯線は、Ni−Ti合金線を用いて先端部を研削加工する工程と、
前記芯線を前記コイルスプリング体内に貫挿して前記コイルスプリング体を装着する工程と、
180℃から450℃の溶融温度をもつ共晶合金の接合部材を溶融させ、前記芯線の先端部と、前記コイルスプリング体の先端部とを接合させて接合硬化部を形成する工程と、 前記接合硬化部を所定長切断して短小硬化部を形成する工程と、
前記短小硬化部の接合部材と同一、又は同種の接合部材を用いて、前記短小硬化部の前端に先頭部を設けて一体化させた前記短小硬化部と前記先頭部から成る前記先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、一定の溶融温度をもつ接合部材を用いることにより、Ni−Ti合金線の形状記憶回復特性の低下の防止、及び応力歪特性における残留歪の増大防止を図りながら、先導栓41の芯線2とコイル体3との接合強度の向上、及び先導栓41の短小化、径小化による屈曲蛇行が極めて激しい血管内での深部挿入容易性を図り、術者が安全に操作できる医療用ガイドワイヤを製造することができる。
The guide wire manufacturing method of the present invention includes:
A medical guide comprising a core wire composed of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug formed at the distal end portion of the core wire and the coil spring body. In the wire manufacturing method,
The core wire is a step of grinding the tip using a Ni-Ti alloy wire,
Inserting the coil spring body by inserting the core wire into the coil spring body; and
Melting a eutectic alloy bonding member having a melting temperature of 180 ° C. to 450 ° C., bonding the tip of the core wire and the tip of the coil spring body, and forming a bonded hardened portion; Cutting the cured portion by a predetermined length to form a short and small cured portion;
Using the same or the same kind of joining member as the short and hardened portion, the leading plug comprising the short and hardened portion integrated with the leading portion provided at the front end of the short and hardened portion is formed. It is a manufacturing method of a medical guide wire characterized by comprising the steps of:
With this configuration, by using a joining member having a constant melting temperature, it is possible to prevent the deterioration of the shape memory recovery characteristic of the Ni—Ti alloy wire and to prevent the residual strain from being increased in the stress strain characteristic. Medical use that improves the joint strength between the core wire 2 and the coil body 3 and facilitates deep insertion in a blood vessel where bending meanders are extremely severe due to shortening and diameter reduction of the leading plug 41, allowing the operator to operate safely. A guide wire can be manufactured.

そして、前記本発明のガイドワイヤの他の製造方法は、前記ガイドワイヤの製造方法において、前記芯線先端部を研削加工する工程の後に、前記芯線先端部の少なくとも前記先導栓を形成する部位に180℃から450℃で、1秒から60分の部分熱処理工程から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、強加工の伸線加工による芯線の引張破断強度を向上させ、かつ接合部材4の芯線2との濡れ性を向上させて接合強度を高めたガイドワイヤ1を製造することができる。
According to another method of manufacturing the guide wire of the present invention, in the guide wire manufacturing method, after the step of grinding the core wire tip portion, at least a portion of the core wire tip portion where the leading plug is formed is 180. A medical guide wire manufacturing method comprising a partial heat treatment step at 1 to 60 minutes at a temperature of from 450C to 450C.
With this configuration, it is possible to manufacture the guide wire 1 that improves the tensile strength at break of the core wire by the strong wire drawing and improves the wettability of the bonding member 4 with the core wire 2 to increase the bonding strength.

そして又、前記本発明のガイドワイヤの他の製造方法は、前記ガイドワイヤの製造方法において、
前記芯線の先端部の少なくとも前記先導栓を形成する部位に、前記先導栓を形成する接合部材と同一、又は同種の接合部材を用いて、前記芯線の外周に所定長溶融させて前記接合部材による被膜層を形成する工程から成り、
前記被膜層を介して前記芯線と、前記短小硬化部と、前記先頭部とを一体化させた先導栓から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、芯線2にNi−Ti合金線を用いて屈曲耐疲労性が要求される先導栓41接合部位の芯線2の形状記憶回復特性の低下防止、及び応力歪特性における残留歪の増大防止を図りながら、かつ接合部材4の芯線2との濡れ性をより向上させ、短小硬化部412と先頭部411の一体化から成る先導栓41の一体化固着の接合強度を向上させ、先導栓41の短小化、径小化したガイドワイヤ1を製造することができる。尚、補足すれば、前記芯線2の外周に接合部材4による被膜層44を形成する工程は、前記1秒から60秒の部分熱処理工程の一実施態様として考えられる。
And, another method for manufacturing the guide wire of the present invention is the method for manufacturing the guide wire,
By using the same or the same kind of joining member as that for forming the leading plug at the site where the leading stopper is formed at least at the tip of the core wire, the outer circumference of the core wire is melted for a predetermined length and the joining member is used. Comprising the step of forming a coating layer,
A medical guide wire manufacturing method comprising a leading plug in which the core wire, the short and hardened portion, and the head portion are integrated with each other through the coating layer.
With this configuration, a Ni-Ti alloy wire is used for the core wire 2 to prevent deterioration of the shape memory recovery characteristic of the core wire 2 at the joint portion of the lead plug 41 where bending fatigue resistance is required, and to prevent an increase in residual strain in the stress strain characteristic. In addition, the wettability of the joining member 4 with the core wire 2 is further improved, and the joining strength of the integrated fixing of the leading plug 41 formed by integrating the short and hardened portion 412 and the leading portion 411 is improved. It is possible to manufacture a guide wire 1 with a shorter and smaller diameter. In addition, if supplementarily, the process of forming the coating layer 44 by the joining member 4 in the outer periphery of the said core wire 2 can be considered as one embodiment of the partial heat treatment process for 1 second to 60 seconds.

そして補足すれば、前記部分熱処理工程以外にNi−Ti合金線の芯線2と接合部材4との濡れ性を向上させる他の方法としては、電解研磨、又は紙やすり等を用いて酸化被膜を除去して接合部材4による接合性を向上させることができる。又、紙やすり等を用いた場合、前記効果以外に芯線先端部21の長軸方向に研磨することにより、芯なし研削加工による長軸直交方向の加工傷を平坦化させて、加工傷を起点とする切損を防いで繰り返し屈曲耐疲労特性を向上させる別の作用効果を併せもつものである。   In addition, in addition to the partial heat treatment step, another method for improving the wettability between the core wire 2 of the Ni—Ti alloy wire and the bonding member 4 is to remove the oxide film using electrolytic polishing or sandpaper. As a result, the bondability of the bonding member 4 can be improved. In addition, when sandpaper or the like is used, in addition to the above effects, polishing in the major axis direction of the core wire tip 21 flattens the machining flaw in the direction perpendicular to the major axis due to the coreless grinding process, and starts the processing flaw. It also has another function and effect of preventing repeated cutting and improving repeated bending fatigue resistance.

次に、本発明の先導栓41の構造を持つガイドワイヤ1を用いることにより、ガイドワイヤ1の細径化を図ることができる。
例えば、ガイドワイヤ1の手元部22、及びコイル体3の外径が0.355mmから0.254mm(0.014インチから0.010インチ)へ、さらに接合部材4による芯線2とコイル体3との強固接合を可能にした先導栓41の構造を用いることにより、先導栓41を形成する外径(D4)とコイル体3の外径(D2)が0.228mm(0.009インチ)へ細径化できる。
そしてガイドワイヤ1をマイクロカテーテル12内へ挿入し、かつ、ガイディングカテーテル14内へ前記ガイドワイワイヤ1と前記マイクロカテーテル12とを挿入する。かかる場合において、ガイドワイヤ1の細径化に追従してガイディングカテーテル14は7F〜8Fから5F〜6F(内径2.3mm〜2.7mmから内径1.59mm〜2.00mm)となり、この中に挿入するマイクロカテーテル12(内径0.28mmから内径0.90mm)とともに細径化することができる。
これにより、セプタールコラテラール11Aを利用する逆行性アプローチの手技を極めて容易にして慢性の完全閉塞病変部10での治療の成功率を飛躍的に向上させることができ、そして低侵襲化の要請に応えることができ、その結果患者負担軽減に大きく寄与することができる。尚補足すれば、図6(イ)に示すように、前記マイクロカテーテル12はガイドワイヤ1とともに導入してガイドワイヤ1の前方へ押す力の反力を前記マイクロカテーテル12で支えることにより、ガイドワイヤ1の前方への推進力を発揮させることができる。
Next, by using the guide wire 1 having the structure of the leading plug 41 of the present invention, the guide wire 1 can be reduced in diameter.
For example, the outer diameter of the proximal portion 22 of the guide wire 1 and the coil body 3 is changed from 0.355 mm to 0.254 mm (0.014 inch to 0.010 inch), and the core wire 2 and the coil body 3 by the joining member 4 By using the structure of the leading plug 41 that enables strong bonding, the outer diameter (D4) forming the leading plug 41 and the outer diameter (D2) of the coil body 3 are reduced to 0.228 mm (0.009 inch). Diameter can be increased.
Then, the guide wire 1 is inserted into the microcatheter 12, and the guide wire 1 and the microcatheter 12 are inserted into the guiding catheter 14. In such a case, the guiding catheter 14 changes from 7F to 8F to 5F to 6F (inner diameter 2.3 mm to 2.7 mm to inner diameter 1.59 mm to 2.00 mm) following the narrowing of the guide wire 1. The diameter can be reduced together with the microcatheter 12 (the inner diameter is 0.28 mm to 0.90 mm) inserted into the catheter.
As a result, the retrograde approach procedure using Septal Collatellal 11A can be made extremely easy, and the success rate of treatment in the chronic total occlusion lesion 10 can be drastically improved, and a request for minimally invasiveness is required. As a result, the burden on the patient can be greatly reduced. In addition, as shown in FIG. 6 (a), the microcatheter 12 is introduced together with the guidewire 1 and supported by the microcatheter 12 so as to support the reaction force of the force pushing the guidewire 1 forward. The forward driving force of 1 can be exhibited.

そしてガイドワイヤ1を強く押し込んでいく前進力を支える反力を受けるマイクロカテーテル12としては、多層樹脂管(内層PTFE,外層ポリアミド等)構造、又前記多層樹脂管体内に金属線の編組を介在させた構造の他、特に先端部が金属、又は合成樹脂製の略円錐形状の先端チップ17が固着されて、複数の金属線の丸線を多条コイル体に成形した螺旋条管体からなり、病変内の穿孔を可能とした金属性先端チップ、又は屈曲蛇行病変部への高い侵入性を有する先細円錐形状の樹脂製先端チップを備えた螺旋状管体15から成る可とう性中空管体が望ましい。
特に、セプタールコラテラール11Aを利用する逆行性アプローチの手技においては、血管径が小さく、かつ、屈曲蛇行が激しい場合には、外周部が丸線の凸凹状を形成する多条コイル体の螺旋条管体が望ましく、さらに望ましいのは、図8(ハ)に示すように、多条線のうち、例えば線直径が0.11mmから0.18mmの太線16Aが1〜2本と、線直径が0.06mmから0.10mmの細線16Bが2〜8本を巻回、又は撚合構成し、若しくは太線1本に対して細線を2本から4本を一組として二組以上設けて各金属線を隣接接触させて巻回成形、又は撚合構成して中空状で外周部が凸凹状の螺旋状管体15の構造である。
この理由は、血管壁と多条線の外周部の凸凹部が接触して滑り移動を防いで、推し進めようとするガイドワイヤ1の反力を支える力が高いからであり、又、病変内での穿孔能力を併せもち、かつ、太線のほうが早く血管壁と接触し、その状態で一回転させると太線の撚りピッチのみで移動し、一回転での進行距離は長くなり、その結果ガイドワイヤ1を含む組立体としての進退操作が早くなるからである。尚、外周部の先端部、又は全体に前記凸凹状を形成する構造、又は狭窄部血管内挿入時に血管壁からの圧迫・押圧作用により外周部の少なくとも一部(先端から300mm)に前記凸凹状を形成する構造であれば、外周部に薄膜の樹脂チューブ体18A、又内側に同様の樹脂チューブ体18Bを設けた構造であってもよい。
The microcatheter 12 that receives a reaction force that supports the advancing force that strongly pushes the guide wire 1 is a multilayer resin tube (inner layer PTFE, outer layer polyamide, etc.) structure, or a metal wire braid is interposed in the multilayer resin tube body. In addition to the above structure, the tip portion 17 is made of a spiral tube body in which a tip portion 17 of a substantially conical shape made of metal or synthetic resin is fixed, and a plurality of metal wire round wires are formed into a multi-row coil body, A flexible hollow tube comprising a helical tube 15 having a metallic tip that allows perforation in a lesion or a tapered cone-shaped resin tip having high penetration into a bent meandering lesion. Is desirable.
In particular, in a retrograde approach procedure using Septal Collateral 11A, when the blood vessel diameter is small and bending meandering is severe, the spiral of a multi-strand coil body in which the outer peripheral portion forms a rounded uneven shape. As shown in FIG. 8 (c), the tubular body is desirable, and among the multi-strands, for example, one or two thick lines 16A having a line diameter of 0.11 mm to 0.18 mm, and a line diameter Is formed by winding or twisting two to eight fine wires 16B of 0.06 mm to 0.10 mm, or by providing two or more pairs of two to four fine wires for one thick wire. It is the structure of the spiral tubular body 15 in which the metal wire is adjacently contacted and wound or formed by twisting to form a hollow shape with a hollow outer periphery.
This is because the blood vessel wall and the convex and concave portions of the outer peripheral portion of the multi-strip line are in contact with each other to prevent sliding movement, and the force that supports the reaction force of the guide wire 1 to be pushed forward is high. In addition, the thick wire contacts the blood vessel wall earlier, and if it is rotated once in that state, it moves only with the twisted pitch of the thick wire, and the travel distance in one rotation becomes longer. As a result, the guide wire 1 This is because the advancing / retreating operation as an assembly including the is accelerated. In addition, the structure which forms the said unevenness in the front-end | tip part of the outer peripheral part, or the whole, or the said unevenness in at least one part (300 mm from the front-end | tip) of an outer peripheral part by the compression / pressing action from a blood vessel wall at the time of insertion in a stenosis part May be a structure in which a thin resin tube body 18A is provided on the outer peripheral portion and a similar resin tube body 18B is provided on the inner side.

そして次に、本発明の先導栓41の構造を持つガイドワイヤ1を用いることにより、前記同様細径化を図ることができる。そして細径化したガイドワイヤ1をバルーンカテーテル13内へ挿入し、ガイディングカテーテル14内へ前記ガイドワイヤ1とバルーンカテーテル13とを挿入する。かかる場合において、ガイドワイヤ1の細径化に追従して、ガイディングカテーテル14は7F〜8Fから5F〜6F(内径2.3mm〜2.7mmから内径1.59mm〜2.00mm)となり、この中へ挿入するバルーンカテーテル13(内径0.28mmから内径0.90mm)とともに細径化することができる。
これにより、前記同様セプタールコラテラール11Aを利用する逆行性アプローチの手技の場合において、慢性完全閉塞病変の治療の成功率を飛躍的に向上させ、さらに低侵襲化の要請に応え、そして患者負担軽減に大きく寄与できる。尚補足すれば、セプタールコラテラール11Aのコークスクリュー部11Bに入ったガイドワイヤ1の前方への押し力を増す為、ガイドワイヤ1とともに導入したバルーンカテーテル13をコークスクリュー部11Bの手前でバルーン部を拡張させて血管壁へ当接させ、前進しようとするガイドワイヤ1の反力を支えることにより、ガイドワイヤ1の前方への推進力を発揮させることができる。かかる場合において前記バルーンカテーテル13のバルーン部13Aの拡張後の外径13Bは、1.2mmから1.8mmが望ましい。(図8(イ))
Then, by using the guide wire 1 having the structure of the leading plug 41 of the present invention, the diameter can be reduced as described above. Then, the guide wire 1 having a reduced diameter is inserted into the balloon catheter 13, and the guide wire 1 and the balloon catheter 13 are inserted into the guiding catheter 14. In such a case, following the narrowing of the guide wire 1, the guiding catheter 14 is changed from 7F to 8F to 5F to 6F (inner diameter 2.3 mm to 2.7 mm to inner diameter 1.59 mm to 2.00 mm). The diameter can be reduced along with the balloon catheter 13 (inner diameter 0.28 mm to 0.90 mm) inserted therein.
As a result, in the case of the retrograde approach procedure using Septal Collateral 11A, as described above, the success rate of treatment of chronic total occlusion lesions is dramatically improved, and further, the demand for minimally invasiveness is met. Can greatly contribute to mitigation. If supplemented, the balloon catheter 13 introduced together with the guide wire 1 is expanded in front of the cork screw portion 11B in order to increase the forward pushing force of the guide wire 1 entering the cork screw portion 11B of the septal collatellal 11A. Thus, the propulsion force of the guide wire 1 can be exerted by supporting the reaction force of the guide wire 1 that is about to move forward and contact the blood vessel wall. In such a case, the expanded outer diameter 13B of the balloon portion 13A of the balloon catheter 13 is desirably 1.2 mm to 1.8 mm. (Fig. 8 (A))

さらに補足すれば、細径化することにより、ガイドワイヤ1とバルーンカテーテル13とを一組として二組前記ガイディングカテーテル14内へ挿入してキッシング手技を容易に行なうことができる。尚、ここでいうキッシング手技とは、ガイドワイヤとバルーンカテーテルとを一組として二組ガイディングカテーテル14内へ挿入して血管の分岐病変部における二本のバルーンカテーテルのバルーン部を同時拡張させ、分岐している二箇所の狭窄病変部の血管内径を同時拡張させる手技のことをいう。   In addition, if the diameter is reduced, the guide wire 1 and the balloon catheter 13 can be inserted into the guiding catheter 14 as a pair to facilitate the kissing procedure. The kissing technique here refers to a guide wire and a balloon catheter that are inserted into two sets of guiding catheters 14 as a set to simultaneously expand the balloon portions of the two balloon catheters in the bifurcation lesion of the blood vessel, This refers to a technique that simultaneously expands the blood vessel inner diameter of two branching stenotic lesions.

(発明の効果)
以上説明のとおり、本発明の医療用ガイドワイヤは、同一、又は同種材料から成る接合部材を用いて、短小硬化部と先頭部から成る先導栓の構造から成り、これにより先導栓の芯線長手方向の長さを短小化させ、さらに外径を径小化させて全体として細径化させることができる。
さらに又、芯線の外周に前記先導栓と同一、又は同種材料から成る接合部材を用いて被膜層を形成した先導栓構造から成り、先導栓を形成する接合部材と芯線との濡れ性を向上させて、芯線とコイル体との強固結合をより向上させることができる。
(The invention's effect)
As described above, the medical guide wire according to the present invention has the structure of a leading plug composed of a short hardened portion and a leading portion using a joining member made of the same or the same material, and thereby the longitudinal direction of the core of the leading plug. The overall length can be reduced by shortening the length and further reducing the outer diameter.
Furthermore, it comprises a leading plug structure in which a coating layer is formed on the outer periphery of the core wire using a bonding member made of the same or the same material as the leading plug, and improves the wettability between the bonding member forming the leading plug and the core wire. Thus, the firm coupling between the core wire and the coil body can be further improved.

そしてさらに、短小化、径小化でありながら芯線とコイル体との強固結合を可能にした先導栓構造をもつガイドワイヤを得ることにより、屈曲蛇行の激しい病変内においても前方への進行を容易とし、さらに又、ガイドワイヤの前方への前進力を強く支えることのできる螺旋状管体から成るマイクロカテーテルとの組立体として用いることにより、逆行性アプローチ等の新たな病変部治療の手技を可能と成して、慢性完全閉塞病変部治療の成功率を飛躍的に向上させることができる新たな技術思想を提供するものである。以上の諸効果がある。   In addition, a guide wire with a leading plug structure that enables the core wire and the coil body to be tightly coupled while being shortened and reduced in diameter can be easily advanced forward even in severely meandering lesions. In addition, by using it as an assembly with a microcatheter consisting of a spiral tube that can strongly support the forward force of the guide wire forward, a new lesion treatment technique such as a retrograde approach is possible. Thus, it provides a new technical idea that can dramatically improve the success rate of chronic complete obstruction lesion treatment. There are the above various effects.

1 ガイドワイヤ(医療用ガイドワイヤ)
2 芯線
21 芯線先端部(芯線) 3 コイルスプリング体(コイル体)
31 放射線不透過材コイル
32 放射線透過材コイル
4 接合部材
41 先導栓
411 先頭部
412 短小硬化部
413 接合硬化部
42 中間固定部
43 後端固定部
44 被膜層
5 条溝
6 樹脂被膜
7 親水性被膜
8 先導栓(特許文献2)
1 Guide wire (medical guide wire)
2 core wire
21 Core wire tip (core wire) 3 Coil spring body (coil body)
31 Radiopaque coil
32 Radiation transparent material coil
4 Joining members
41 Leading stopper 411 Top
412 Short cured part
413 Hardened joint
42 Intermediate fixing part
43 Rear end fixing part
44 Coating layer
5 groove
6 Resin coating
7 Hydrophilic coating
8 Leading plug (Patent Document 2)

Claims (10)

可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に先導栓を形成した医療用ガイドワイヤにおいて、
前記芯線は、Ni−Ti合金線から成り、
前記先導栓は、前記コイルスプリング体の線間間隙に接合部材を溶融流入させて、前記芯線と接合、及び前記コイルスプリング体と接合した接合硬化部を形成し、
その後前記接合硬化部を先端から所定長切断して短小硬化部とし、
前記短小硬化部の接合部材と同一、又は同種の接合部材を用いて、前記短小硬化部の前端に先頭部を設けて一体化させた前記短小硬化部と前記先頭部から成る先導栓を形成し、かつ、
前記接合部材は、180℃から450℃の溶融温度をもつ共晶合金を用いたことを特徴とする医療用ガイドワイヤ。
A medical guide comprising a core wire composed of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug formed at the distal end portion of the core wire and the coil spring body. In the wire
The core wire is made of a Ni-Ti alloy wire,
The leading plug melts and flows a bonding member into the gap between the coil spring bodies to form a bonded hardened portion bonded to the core wire and bonded to the coil spring body,
Thereafter, the joint cured part is cut from the tip for a predetermined length to form a short and small cured part,
Using a joining member that is the same as or similar to the joining member of the short and hardened portion, a leading plug comprising the short and hardened portion integrated with the leading portion provided at the front end of the short and hardened portion is formed. ,And,
A medical guide wire, wherein the joining member is made of a eutectic alloy having a melting temperature of 180 ° C to 450 ° C.
請求項1記載の医療用ガイドワイヤにおいて、
前記芯線の先端部の少なくとも前記先導栓を形成する部位に、前記先導栓を形成する接合部材と同一、又は同種の接合部材を用いて、前記芯線の外周に所定長溶融させて前記接合部材による被膜層を形成し、
前記被膜層を介して前記芯線と、前記短小硬化部と、前記先頭部とを一体化させた先導栓から成ることを特徴とする医療用ガイドワイヤ。
The medical guidewire according to claim 1, wherein
By using the same or the same kind of joining member as that for forming the leading plug at the site where the leading stopper is formed at least at the tip of the core wire, the outer circumference of the core wire is melted for a predetermined length and the joining member is used. Forming a coating layer,
A medical guide wire comprising a leading plug in which the core wire, the short and hardened portion, and the head portion are integrated with each other through the coating layer.
請求項1〜2のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記コイルスプリング体の線間間隙が前記コイルスプリング体の線直径の5%から85%とし、かつ、
前記先導栓の芯線長手方向の長さをL(mm)とし、前記コイルスプリング体の線直径をd(mm)とした場合に、前記先導栓の芯線長手方向の長さLは0.190mm以上で、かつ
0.078+2.05d≦L≦0.800の関係式を満たすことを特徴とする医療用ガイドワイヤ。
The medical guidewire according to any one of claims 1 to 2,
The inter-line gap of the coil spring body is 5% to 85% of the wire diameter of the coil spring body, and
When the length of the lead plug in the longitudinal direction of the core wire is L (mm) and the wire diameter of the coil spring body is d (mm), the length L of the lead plug in the longitudinal direction of the core wire is 0.190 mm or more. And satisfying a relational expression of 0.078 + 2.05d ≦ L ≦ 0.800.
請求項3記載の医療用ガイドワイヤにおいて、
前記先導栓の芯線長手方向の長さは、先端から0.190mm以上0.600mm以下であることを特徴とする医療用ガイドワイヤ。
The medical guidewire according to claim 3,
The length of the lead plug in the longitudinal direction of the core wire is 0.190 mm or more and 0.600 mm or less from the distal end.
請求項1〜4のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記芯線は、焼鈍した後に総減面率が15%から65%の伸線加工を行い、300℃から450℃で形状記憶処理したNi−Ti合金線から成ることを特徴とする医療用ガイドワイヤ。
The medical guidewire according to any one of claims 1 to 4,
The core wire is composed of a Ni-Ti alloy wire which is subjected to wire drawing with a total area reduction of 15% to 65% after annealing and shape memory treatment at 300 ° C to 450 ° C. .
請求項1〜5のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記コイルスプリング体の材質が金成分を含む組成、又は金めっきをしたコイルスプリング体から成り、かつ、前記先導栓が、金成分を含む組成の共晶合金から成る接合部材を用いて、前記コイルスプリング体と前記芯線の双方を接合して成ることを特徴とする医療用ガイドワイヤ。
The medical guide wire according to any one of claims 1 to 5,
The coil spring body is made of a composition containing a gold component, or a coil spring body plated with gold, and the lead plug is made of a eutectic alloy having a composition containing a gold component. A medical guide wire characterized by joining both a spring body and the core wire.
請求項1〜6のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記先導栓の後端端面から中間固定部の前端までのコイルスプリング体の線間間隙が、前記コイルスプリング体の線直径の5%から30%とし、
前記中間固定部は、前記接合部材から成る前記先導栓と同一、又は同種の、溶融温度が180℃から450℃の共晶合金である接合部材を用いて、幅0.5mmから1.5mmの円盤状のドーナツ形状とし、
前記芯線と前記コイルスプリング体とを前記中間固定部で固着させ、
前記コイルスプリング体の線直径をd(mm)とし、前記コイルスプリング体の線間間隙の最小値をP0(mm)とし、前記コイルスプリング体の線間間隙の最大値(mm)をP1(mm)とし、前記先導栓の後端端面から中間固定部の前端までの長さをM(mm)とした場合に、
3.25×(d/P1 )≦M≦2.625×(d/P0)の関係式を満たすことを特徴とする医療用ガイドワイヤ。
The medical guide wire according to any one of claims 1 to 6,
The inter-line gap of the coil spring body from the rear end face of the leading plug to the front end of the intermediate fixing portion is 5% to 30% of the wire diameter of the coil spring body,
The intermediate fixing part has a width of 0.5 mm to 1.5 mm using a joining member that is the same or the same type as the leading plug made of the joining member and is a eutectic alloy having a melting temperature of 180 ° C. to 450 ° C. A donut shape in the shape of a disk,
Fixing the core wire and the coil spring body at the intermediate fixing portion;
The wire diameter of the coil spring body is d (mm), the minimum value of the line gap of the coil spring body is P0 (mm), and the maximum value (mm) of the line gap of the coil spring body is P1 (mm). ), And when the length from the rear end surface of the leading plug to the front end of the intermediate fixing portion is M (mm),
3. A medical guide wire characterized by satisfying a relational expression of 3.25 × (d / P1) ≦ M ≦ 2.625 × (d / P0).
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に先導栓を形成した医療用ガイドワイヤの製造方法において、
前記芯線は、Ni−Ti合金線を用いて先端部を研削加工する工程と、
前記芯線を前記コイルスプリング体内に貫挿して前記コイルスプリング体を装着する工程と、
180℃から450℃の溶融温度をもつ共晶合金の接合部材を溶融させ、前記芯線の先端部と、前記コイルスプリング体の先端部とを接合させて接合硬化部を形成する工程と、 前記接合硬化部を所定長切断して短小硬化部を形成する工程と、
前記短小硬化部の接合部材と同一、又は同種の接合部材を用いて、前記短小硬化部の前端に先頭部を設けて一体化させた前記短小硬化部と前記先頭部から成る前記先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法。
A medical guide comprising a core wire composed of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug formed at the distal end portion of the core wire and the coil spring body. In the wire manufacturing method,
The core wire is a step of grinding the tip using a Ni-Ti alloy wire,
Inserting the coil spring body by inserting the core wire into the coil spring body; and
Melting a eutectic alloy bonding member having a melting temperature of 180 ° C. to 450 ° C., bonding the tip of the core wire and the tip of the coil spring body, and forming a bonded hardened portion; Cutting the cured portion by a predetermined length to form a short and small cured portion;
Using the same or the same kind of joining member as the short and hardened portion, the leading plug comprising the short and hardened portion integrated with the leading portion provided at the front end of the short and hardened portion is formed. The manufacturing method of the medical guide wire characterized by comprising the process to do.
請求項8記載の医療用ガイドワイヤの製造方法において、
前記芯線の先端部の少なくとも前記先導栓を形成する部位に、前記先導栓を形成する接合部材と同一、又は同種の接合部材を用いて、前記芯線の外周に所定長溶融させて前記接合部材による被膜層を形成する工程から成り、
前記被膜層を介して前記芯線と、前記短小硬化部と、前記先頭部とを一体化させた先導栓から成ることを特徴とする医療用ガイドワイヤの製造方法。
In the manufacturing method of the medical guide wire of Claim 8,
By using the same or the same kind of joining member as that for forming the leading plug at the site where the leading stopper is formed at least at the tip of the core wire, the outer circumference of the core wire is melted for a predetermined length and the joining member is used. Comprising the step of forming a coating layer,
A medical guide wire manufacturing method comprising: a leading plug in which the core wire, the short and hardened portion, and the head portion are integrated with each other through the coating layer.
請求項1〜7のいずれか一つに記載の医療用ガイドワイヤと、マイクロカテーテルとの組立体において、
前記医療用ガイドワイヤの外径が、0.228mmから0.254mm(0.009インチから0.010インチ)で、
前記医療用ガイドワイヤを、内径が0.28mmから0.90mmで、太線と細線を複数本巻回成形、又は撚合構成して病変内挿入時に病変部からの圧迫・押圧作用により外周部の少なくとも先端側から300mm以内で、前記太線と前記細線による凸凹状を形成する螺旋状管体から成るマイクロカテーテル内へ挿入されていることを特徴とする医療用ガイドワイヤとマイクロカテーテルとの組立体。
In the assembly of the medical guide wire according to any one of claims 1 to 7 and a microcatheter,
The outer diameter of the medical guidewire is 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch);
The medical guide wire has an inner diameter of 0.28 mm to 0.90 mm and is formed by winding or twisting a plurality of thick and thin wires, and when inserted into the lesion, the outer peripheral portion is pressed and pressed by the lesion. An assembly of a medical guide wire and a microcatheter, wherein the assembly is inserted into a microcatheter formed of a spiral tube forming at least 300 mm from the distal end side and forming an uneven shape by the thick line and the thin line.
JP2010266835A 2010-11-30 2010-11-30 Medical guidewire Active JP5481359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266835A JP5481359B2 (en) 2010-11-30 2010-11-30 Medical guidewire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266835A JP5481359B2 (en) 2010-11-30 2010-11-30 Medical guidewire

Publications (2)

Publication Number Publication Date
JP2012115408A true JP2012115408A (en) 2012-06-21
JP5481359B2 JP5481359B2 (en) 2014-04-23

Family

ID=46499018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266835A Active JP5481359B2 (en) 2010-11-30 2010-11-30 Medical guidewire

Country Status (1)

Country Link
JP (1) JP5481359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212673A (en) * 2017-10-12 2020-05-29 朝日英达科株式会社 Guide wire
CN111225708A (en) * 2017-10-12 2020-06-02 朝日英达科株式会社 Guide wire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185216A (en) * 1991-05-21 1993-07-27 Cook Inc Method of seaming nickel/ titanium alloy
JPH08173547A (en) * 1994-12-22 1996-07-09 Piolax Inc Guide wire for medical care
JP2002233574A (en) * 2001-02-09 2002-08-20 Hanako Medical Kk Guide wire with marker at end portion
JP2003135603A (en) * 2001-11-01 2003-05-13 Daimetsuku Kk Guide wire, and manufacturing method for guide wire
JP2006181140A (en) * 2004-12-28 2006-07-13 Nachi Fujikoshi Corp Guide wire and catheter
JP2008168004A (en) * 2007-01-12 2008-07-24 Terumo Corp Intermediate member and guide wire
JP2009507560A (en) * 2005-09-09 2009-02-26 ボストン サイエンティフィック リミテッド Coil shaft
JP2009077779A (en) * 2007-09-25 2009-04-16 Toshiba Corp Clad wire
JP4354525B1 (en) * 2009-05-20 2009-10-28 日本ライフライン株式会社 Medical guidewire
JP4354523B1 (en) * 2009-03-19 2009-10-28 日本ライフライン株式会社 Medical guidewire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185216A (en) * 1991-05-21 1993-07-27 Cook Inc Method of seaming nickel/ titanium alloy
JPH08173547A (en) * 1994-12-22 1996-07-09 Piolax Inc Guide wire for medical care
JP2002233574A (en) * 2001-02-09 2002-08-20 Hanako Medical Kk Guide wire with marker at end portion
JP2003135603A (en) * 2001-11-01 2003-05-13 Daimetsuku Kk Guide wire, and manufacturing method for guide wire
JP2006181140A (en) * 2004-12-28 2006-07-13 Nachi Fujikoshi Corp Guide wire and catheter
JP2009507560A (en) * 2005-09-09 2009-02-26 ボストン サイエンティフィック リミテッド Coil shaft
JP2008168004A (en) * 2007-01-12 2008-07-24 Terumo Corp Intermediate member and guide wire
JP2009077779A (en) * 2007-09-25 2009-04-16 Toshiba Corp Clad wire
JP4354523B1 (en) * 2009-03-19 2009-10-28 日本ライフライン株式会社 Medical guidewire
JP4354525B1 (en) * 2009-05-20 2009-10-28 日本ライフライン株式会社 Medical guidewire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212673A (en) * 2017-10-12 2020-05-29 朝日英达科株式会社 Guide wire
CN111225708A (en) * 2017-10-12 2020-06-02 朝日英达科株式会社 Guide wire
CN111225708B (en) * 2017-10-12 2022-04-12 朝日英达科株式会社 Guide wire
CN111212673B (en) * 2017-10-12 2022-04-15 朝日英达科株式会社 Guide wire
CN114668955A (en) * 2017-10-12 2022-06-28 朝日英达科株式会社 Guide wire
CN114668955B (en) * 2017-10-12 2023-07-14 朝日英达科株式会社 Guide wire

Also Published As

Publication number Publication date
JP5481359B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP4913198B2 (en) Medical guide wire, method for manufacturing medical guide wire, assembly of medical guide wire, microcatheter and guiding catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
US8845551B2 (en) Medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire, and an assembly of ballooncatheter and guiding catheter combined with the medical guide wire
KR101180518B1 (en) Guide wire
JP4203358B2 (en) Guide wire
JP4917900B2 (en) Intermediate member for guide wire and guide wire
JP4913180B2 (en) Medical guide wire, method for manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP5436266B2 (en) Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter
JP2018514259A (en) Mechanism to improve stiffness transition across dissimilar metal weld joints
US20210379341A1 (en) Method For Making A Guidewire From A Drawn-Filled Tube Of A Stainless Steel Sheath Jacketing A Nitinol Core Wire
JP5436304B2 (en) Medical guide wire, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter
JP2011110384A (en) Medical guide wire, method of manufacturing the same, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter
JP5481359B2 (en) Medical guidewire
JP5473677B2 (en) Guide wire
JP4783343B2 (en) Guide wire
JP6344732B1 (en) Medical guidewire
JP5497604B2 (en) Manufacturing method of medical guide wire
JP4376078B2 (en) Guide wire
JP5328835B2 (en) Guide wire manufacturing method
JP4913249B2 (en) Medical guide wire and manufacturing method thereof
JP2023104105A (en) Conjugate and manufacturing method thereof
JP4913252B1 (en) Medical guide wire and manufacturing method thereof
JP2007307423A (en) Guide wire

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250