JP2012114050A - Solid electrolyte membrane reinforcement material - Google Patents

Solid electrolyte membrane reinforcement material Download PDF

Info

Publication number
JP2012114050A
JP2012114050A JP2010264361A JP2010264361A JP2012114050A JP 2012114050 A JP2012114050 A JP 2012114050A JP 2010264361 A JP2010264361 A JP 2010264361A JP 2010264361 A JP2010264361 A JP 2010264361A JP 2012114050 A JP2012114050 A JP 2012114050A
Authority
JP
Japan
Prior art keywords
fiber
solid electrolyte
electrolyte membrane
wet
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010264361A
Other languages
Japanese (ja)
Other versions
JP5398687B2 (en
Inventor
Yuji Katagiri
裕治 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2010264361A priority Critical patent/JP5398687B2/en
Publication of JP2012114050A publication Critical patent/JP2012114050A/en
Application granted granted Critical
Publication of JP5398687B2 publication Critical patent/JP5398687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte membrane reinforcement material that is useful for reinforcement of a solid electrolyte membrane of a solid fuel cell, has excellent impregnation workability of an electrolyte, has the strength in a wet state, and high strength and elongation in a dry state of a paper.SOLUTION: A solid electrolyte membrane reinforcement material is made up of a glass fiber, an organic fiber, and an inorganic binder. The organic fiber is made up of a non-self-adhesive organic fiber and a thermal adhesive organic fiber. In the solid electrolyte membrane reinforcement material, the glass fiber is included by 30 to 70 wt%, the organic fiber is included by 15 to 65 wt%, and the inorganic binder is included by 0.1 to 30 wt%. In the whole composition, the thermal adhesive organic fiber is included by 10 to 50 wt%.

Description

本発明は燃料電池の固体電解質膜(プロトン伝導性膜)を補強する補強材に関する。   The present invention relates to a reinforcing material for reinforcing a solid electrolyte membrane (proton conductive membrane) of a fuel cell.

例えば、固体高分子型燃料電池(PEFC)の固体電解質にはプロトン伝導性を示す有機高分子からなる膜が用いられており、現在のところ、パーフルオロアルキレンを主骨格とし一部にパーフルオロビニルエーテル側鎖の末端にスルホン酸基、カルボン酸基等のイオン交換基を有するフッ素系高分子材料(例えば、米国デュポン社のNAFION(登録商標))からなる固体電解質膜が主に用いられている。   For example, a membrane made of an organic polymer exhibiting proton conductivity is used as a solid electrolyte of a polymer electrolyte fuel cell (PEFC). At present, perfluoroalkylene is a main skeleton, and perfluorovinyl ether is partly used. A solid electrolyte membrane made of a fluorine-based polymer material having an ion exchange group such as a sulfonic acid group or a carboxylic acid group at the end of the side chain (for example, NAFION (registered trademark) of DuPont, USA) is mainly used.

このようなフッ素系高分子材料からなる固体電解質膜を用いた固体高分子型燃料電池は、フッ素系高分子材料の耐熱温度に制限されて通常70℃から90℃の比較的低い温度領域で運転される。しかし貴金属触媒の一酸化炭素による被毒の減少や、廃熱利用の効率的な利用による総合的な発電効率の向上のため、より高い温度で運転することが望ましいとされている。そのため、前記のようなフッ素系高分子材料に代わる耐熱性の優れたプロトン伝導性材料が提案されており、代表的なものとしては耐熱性の芳香族系高分子材料、例えばポリベンズイミダゾール、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエチレンオキシド等が挙げられる。   A polymer electrolyte fuel cell using a solid electrolyte membrane made of such a fluorine-based polymer material is limited to the heat-resistant temperature of the fluorine-based polymer material and is usually operated in a relatively low temperature range of 70 ° C. to 90 ° C. Is done. However, it is desirable to operate at a higher temperature in order to reduce poisoning due to carbon monoxide and to improve the overall power generation efficiency through efficient use of waste heat. For this reason, proton conductive materials having excellent heat resistance instead of the above-described fluorine-based polymer materials have been proposed. Typical examples include heat-resistant aromatic polymer materials such as polybenzimidazole, polybenzimidazole, and the like. Examples include ether sulfone, polyether ether ketone, and polyethylene oxide.

しかしこれらの高分子材料からなる固体電解質膜は、強度が充分でなく膜−電極接合体を形成する際に破損することがあり、より強度が高く取扱い易いものが望まれている。さらに、フッ素系高分子材料からなる固体電解質膜についても、それを用いた固体高分子型燃料電池がフッ素系高分子材料の含水によって膨潤して、寸法の増大、機械強度の低下、長時間運転時のクリープ発生を招くことがあり、含水した状態でも寸法、強度の安定性が優れたものが望まれている。   However, solid electrolyte membranes made of these polymer materials are insufficient in strength and may be damaged when a membrane-electrode assembly is formed. Thus, a solid electrolyte membrane having higher strength and easy handling is desired. Furthermore, for solid electrolyte membranes made of fluorinated polymer materials, solid polymer fuel cells using them swell due to the water content of the fluorinated polymer material, resulting in increased dimensions, decreased mechanical strength, and long-term operation. There is a demand for a material having excellent dimensional and strength stability even in a wet state.

そこで、安定性および強度が優れた固体電解質膜を得るために、有機・無機繊維からなる織布等の補強材を用いて補強することが提案されている(例えば、特許文献1および2)。このような補強用の繊維として、例えばアクリル、ポリエステル、ポリプロピレン、フッ素樹脂等の高分子素材の繊維、絹、綿、紙等の天然素材系の繊維、ガラス繊維等の無機素材の繊維およびそれらの織物が挙げられ、これらの中でも、補強材の強度や固体電解質膜を構成する材料との親和性が優れるため、ガラス繊維およびその織物を用いることが好ましいことが特許文献1に記載されている。   Therefore, in order to obtain a solid electrolyte membrane having excellent stability and strength, it has been proposed to reinforce with a reinforcing material such as a woven fabric made of organic / inorganic fibers (for example, Patent Documents 1 and 2). Examples of such reinforcing fibers include fibers of polymer materials such as acrylic, polyester, polypropylene, and fluororesin, fibers of natural materials such as silk, cotton, and paper, fibers of inorganic materials such as glass fibers, and the like. Among these, it is described in Patent Document 1 that it is preferable to use glass fiber and the woven fabric because the strength of the reinforcing material and the affinity with the material constituting the solid electrolyte membrane are excellent.

このようなガラス繊維からなる補強材およびそれを用いた固体電解質膜について、本出願人はこれまでガラス繊維の織布や不織布などのガラス繊維形成体にさらに無機バインダーや有機バインダーを含有させてそれらの強度を向上したものを提案している(特許文献3ないし5)。また、これらのガラス繊維からなる補強材について、燃料電池を組み立てる際の取扱い易さを向上させることや固体電解質膜との熱融着を可能にすることを目的として、有機バインダーでガラス繊維を接着させる方法やガラス繊維不織布の製造時に有機バインダーを添加する方法により得られる接着性の固化不織布を用いることも提案されている(例えば、特許文献6)。   With regard to such a reinforcing material composed of glass fiber and a solid electrolyte membrane using the same, the present applicant has so far added an inorganic binder or an organic binder to a glass fiber forming body such as a woven fabric or non-woven fabric of glass fiber. Have been proposed (Patent Documents 3 to 5). In addition, for reinforcing materials made of these glass fibers, the glass fibers are bonded with an organic binder for the purpose of improving the ease of handling when assembling the fuel cell and enabling heat fusion with the solid electrolyte membrane. It has also been proposed to use an adhesive solidified non-woven fabric obtained by a method of adding an organic binder at the time of production or a glass fiber non-woven fabric (for example, Patent Document 6).

しかしながら、強度向上や変形(膨潤や収縮)防止のため、ガラス繊維と有機繊維を複合して作成した織布、不織布等を燃料電池の固体電解質膜の補強材として用いる前記従来技術には次のような問題点があった。
すなわち、ガラス繊維と有機繊維からなる織布、不織布等に、電解質液を含浸させることで、繊維で補強された固体電解質膜を製造する検討を行う過程において、従来提案されていたような補強材は、電解質液の含浸時に引張強度が著しく低下する場合があることがわかった。このように、電解質液の含浸時に引張強度が低下すると、ロールで巻き取りながら処理するような方法による加工が難しくなり、製造が困難になるという問題がある。
また、補強材である不織布等の配合によって、特に有機繊維の配合比が小さいときに、電解質液の含浸時の引張強度が低下する傾向が見られた。
また、補強材の乾燥時においても、非常に薄い厚みの補強材においては、引張強度が低くなりやすい傾向が見られた。たとえば、50μm厚程度になると、有機繊維の配合比が小さいときに、引張強度が2〜5N/25mm幅程度と著しく低くなることがあることがわかった。
However, in order to improve the strength and prevent deformation (swelling and shrinkage), the above-mentioned conventional technique using a woven fabric, a nonwoven fabric or the like prepared by combining glass fibers and organic fibers as a reinforcing material for a solid electrolyte membrane of a fuel cell is as follows. There was a problem like this.
That is, in the process of studying the production of a solid electrolyte membrane reinforced with fibers by impregnating an electrolyte solution into a woven or non-woven fabric made of glass fibers and organic fibers, a reinforcing material as conventionally proposed It has been found that the tensile strength may be significantly reduced during the impregnation of the electrolyte solution. Thus, when tensile strength falls at the time of impregnation of electrolyte solution, there exists a problem that the process by the method of processing while winding with a roll will become difficult and manufacture will become difficult.
In addition, there was a tendency that the tensile strength at the time of impregnation with the electrolyte solution decreased due to the blending of the nonwoven fabric as the reinforcing material, particularly when the blending ratio of the organic fibers was small.
Further, even when the reinforcing material was dried, the reinforcing material having a very thin thickness tended to have a low tensile strength. For example, it has been found that when the thickness is about 50 μm, the tensile strength may be remarkably reduced to about 2 to 5 N / 25 mm width when the blending ratio of the organic fibers is small.

特開2001−307545号公報JP 2001-307545 A 特開2007−018995号公報JP 2007-018995 A 特開2004−319421号公報JP 2004-319421 A 国際公開第2005/086265号International Publication No. 2005/086265 国際公開第2006/057239号International Publication No. 2006/057239 特表2009−545841号公報JP 2009-545841 A

本発明は、このような従来の問題点に着目してなされたもので、その目的は、ガラス繊維と、非自己接着性の有機繊維に加え、熱接着性のある有機繊維を含む不織布で、電解質液含浸時(湿潤時)にも優れた引張強度を有する補強材を提供することである。   The present invention has been made paying attention to such conventional problems, the purpose of which is a nonwoven fabric containing glass fibers and non-self-adhesive organic fibers, and heat-adhesive organic fibers, An object of the present invention is to provide a reinforcing material having an excellent tensile strength even when impregnated with an electrolyte solution (when wet).

本発明の固体電解質膜補強材は請求項1記載の通り、ガラス繊維と有機繊維と無機バインダーからなる固体電解質膜補強材であって、前記有機繊維は非自己接着性有機繊維と熱接着性有機繊維とからなり、前記ガラス繊維が30〜70wt%、前記有機繊維が15〜65wt%及び前記無機バインダーが0.1〜30wt%含有し、全組成中において前記熱接着性有機繊維を10〜50wt%含有していることを特徴とする。
また、請求項2記載の固体電解質膜補強材は、請求項1記載の固体電解質膜補強材に
おいて、前記ガラス繊維を35〜60wt、前記有機繊維を20〜60wt%、及び前記無機バインダーを5〜20wt%、且つ、全組成中において前記熱接着性有機繊維を15〜45wt%含有していることを特徴とする。
また、請求項3記載の固体電解質膜補強材は、請求項2記載の固体電解質膜補強材において、前記ガラス繊維を40〜50wt%、前記有機繊維を30〜55wt%、及び前記無機バインダーを5〜10wt%、且つ、全組成中において前記熱接着性有機繊維を20〜40wt%含有していることを特徴とする。
また、請求項4記載の固体電解質膜補強材は、請求項1乃至3の何れかに記載の固体電解質膜補強材において、前記非自己接着性有機繊維の配合量よりも前記熱接着性有機繊維の配合量を過剰にしたことを特徴とする。
また、請求項5記載の固体電解質膜補強材は、請求項1乃至4の何れかに記載の固体電解質膜補強材において、前記ガラス繊維の平均繊維径を0.1〜5μm、前記非自己接着性有機繊維の平均繊維径を1〜20μm、及び、前記熱接着性有機繊維の平均繊維径を1〜20μmとしたことを特徴とする。
また、請求項6記載の固体電解質膜補強材は、請求項1乃至5の何れかに記載の固体電解質膜補強材において、前記無機バインダーの平均粒径を0.01〜2μmとしたことを特徴とする。
The solid electrolyte membrane reinforcing material of the present invention is a solid electrolyte membrane reinforcing material comprising glass fibers, organic fibers, and an inorganic binder as claimed in claim 1, wherein the organic fibers are non-self-adhesive organic fibers and heat-adhesive organic materials. The glass fiber is 30 to 70 wt%, the organic fiber is 15 to 65 wt% and the inorganic binder is 0.1 to 30 wt%, and the thermoadhesive organic fiber is 10 to 50 wt% in the total composition. % Content.
The solid electrolyte membrane reinforcing material according to claim 2 is the solid electrolyte membrane reinforcing material according to claim 1, wherein the glass fiber is 35 to 60 wt%, the organic fiber is 20 to 60 wt%, and the inorganic binder is 5 to 5 wt%. 20 wt%, and 15 to 45 wt% of the thermoadhesive organic fiber in the total composition.
Further, the solid electrolyte membrane reinforcing material according to claim 3 is the solid electrolyte membrane reinforcing material according to claim 2, wherein the glass fiber is 40 to 50 wt%, the organic fiber is 30 to 55 wt%, and the inorganic binder is 5 10 to 10 wt%, and 20 to 40 wt% of the thermoadhesive organic fiber in the total composition.
Further, the solid electrolyte membrane reinforcing material according to claim 4 is the solid electrolyte membrane reinforcing material according to any one of claims 1 to 3, wherein the thermal adhesive organic fiber is more than the blending amount of the non-self-adhesive organic fiber. It is characterized in that the blending amount of is excessive.
The solid electrolyte membrane reinforcing material according to claim 5 is the solid electrolyte membrane reinforcing material according to any one of claims 1 to 4, wherein the glass fiber has an average fiber diameter of 0.1 to 5 µm and the non-self-adhesive material. The average fiber diameter of the conductive organic fiber is 1 to 20 μm, and the average fiber diameter of the thermoadhesive organic fiber is 1 to 20 μm.
The solid electrolyte membrane reinforcing material according to claim 6 is characterized in that, in the solid electrolyte membrane reinforcing material according to any one of claims 1 to 5, the average particle size of the inorganic binder is 0.01 to 2 µm. And

ガラス繊維と有機繊維と無機バインダーからなる固体電解質膜補強材において、有機繊維として、ポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン−ビニルアルコール共重合樹脂、エチレン酢酸ビニル共重合樹脂等の熱接着性を有する熱接着性有機繊維を配合したため、電解質液の含浸加工時の引張強度が付与される。これは、熱接着性のある有機繊維同士の接着点は、電解質液含浸時(湿潤時)、すなわち水に濡れた場合でも剥がれないので、強度を維持できるものである。また、繊維状ではない有機バインダー樹脂でガラス繊維を接着すると、繊維間の空隙に膜を張り、面接着して、イオン伝導性が悪くなるが、繊維状バインダーならば点接着となり、イオン伝導を阻害しない。このように、本願発明によれば、電解質液の含浸時に引張強度が著しく低下することがなく、しかも、イオン伝導性を阻害しない固体電解質膜補強材が得られる。   Thermal adhesion of polyester, polyethylene, polypropylene, polymethylpentene, ethylene-vinyl alcohol copolymer resin, ethylene vinyl acetate copolymer resin, etc. as organic fibers in solid electrolyte membrane reinforcing material consisting of glass fiber, organic fiber and inorganic binder Therefore, the tensile strength at the time of the impregnation processing of the electrolyte solution is imparted. This is because the adhesion point between the heat-adhesive organic fibers does not peel off even when the electrolyte solution is impregnated (when wet), that is, when wet with water, so that the strength can be maintained. In addition, when glass fibers are bonded with an organic binder resin that is not fibrous, a film is stretched between the fibers and the surfaces are bonded, resulting in poor ionic conductivity. Does not interfere. As described above, according to the present invention, a solid electrolyte membrane reinforcing material that does not significantly reduce the tensile strength when impregnated with an electrolyte solution and that does not inhibit ion conductivity can be obtained.

本発明の固体電解質膜補強材は、ガラス繊維と有機繊維と無機バインダーからなる固体電解質膜補強材であって、前記有機繊維は非自己接着性有機繊維と熱接着性有機繊維とからなり、前記ガラス繊維が30〜70wt%、前記有機繊維が15〜65wt%及び前記無機バインダーが0.1〜30wt%含有し、全組成中において前記熱接着性有機繊維を10〜50wt%含有されてなるものである。   The solid electrolyte membrane reinforcing material of the present invention is a solid electrolyte membrane reinforcing material comprising glass fibers, organic fibers, and an inorganic binder, wherein the organic fibers comprise non-self-adhesive organic fibers and heat-adhesive organic fibers, Glass fiber is 30 to 70 wt%, organic fiber is 15 to 65 wt%, inorganic binder is 0.1 to 30 wt%, and thermal adhesive organic fiber is contained in 10 to 50 wt% in the whole composition It is.

前記ガラス繊維は、補強材の骨格形成と、耐熱性の確保に寄与するもので、Cガラス繊維、Eガラス繊維、Bガラス繊維、シリカ繊維、ARガラス繊維、Tガラス繊維等のガラス繊維が用いられ、平均繊維径0.1〜5μm、平均繊維長1〜15mm程度のものが用いられる。比較的に安価に入手できることから平均繊維径は0.4〜1.0μmが好ましい。また、水への分散が容易であることから平均繊維長1〜5mm程度が好ましい。尚、電解質膜を作製する電解液が酸性であるため、Cガラス繊維、シリカ繊維が好ましく、より安価なCガラス繊維がより好ましい。
また、前記ガラス繊維の配合量は、30wt%未満であると補強材(抄紙)の収縮が発生し、また、70wt%を超えると引張強度不足で脆くなるので、30〜70wt%、好ましくは、35〜60wt%、より好ましくは、40〜50wt%の配合量とする。
The glass fiber contributes to the formation of the skeleton of the reinforcing material and the securing of heat resistance, and glass fibers such as C glass fiber, E glass fiber, B glass fiber, silica fiber, AR glass fiber, and T glass fiber are used. A fiber having an average fiber diameter of 0.1 to 5 μm and an average fiber length of 1 to 15 mm is used. The average fiber diameter is preferably 0.4 to 1.0 μm because it can be obtained relatively inexpensively. Moreover, since the dispersion | distribution to water is easy, about 1-5 mm of average fiber length is preferable. In addition, since the electrolyte solution which produces an electrolyte membrane is acidic, C glass fiber and a silica fiber are preferable, and cheaper C glass fiber is more preferable.
Further, if the glass fiber content is less than 30 wt%, shrinkage of the reinforcing material (papermaking) occurs, and if it exceeds 70 wt%, it becomes brittle due to insufficient tensile strength, preferably 30 to 70 wt%, The blending amount is 35 to 60 wt%, more preferably 40 to 50 wt%.

前記有機繊維は、有機繊維同士での接着の際の骨格形成に寄与するもので、ポリエステル、ポリプロピレン、ナイロン、ポリアクリロニトリル、芳香族ポリアミド等の有機繊維が用いられ、繊維径1〜20μm、繊維長1〜10mm程度のものが用いられる。尚、種類が多く生産量も多く比較的安価に入手しやすいことからポリエステル繊維、ポリプロピレン繊維が好ましい。また、前記非自己接着性有機繊維の配合量は、5wt%未満であると引張強度不足となり、柔軟性が低下し、また、65wt%を超えると収縮が発生するので、5〜65wt%、好ましくは20〜60wt%、より好ましくは30〜55wt%の配合量とする。   The organic fiber contributes to skeleton formation when the organic fibers are bonded to each other. Organic fibers such as polyester, polypropylene, nylon, polyacrylonitrile, and aromatic polyamide are used, and the fiber diameter is 1 to 20 μm, the fiber length. The thing of about 1-10 mm is used. Polyester fibers and polypropylene fibers are preferred because of their large variety, high production volume, and availability at a relatively low cost. Further, if the blending amount of the non-self-adhesive organic fiber is less than 5 wt%, the tensile strength is insufficient, the flexibility is lowered, and if it exceeds 65 wt%, shrinkage occurs. Is 20 to 60 wt%, more preferably 30 to 55 wt%.

前記熱接着性有機繊維は、前記ガラス繊維と前記非自己接着性有機繊維、さらには、熱接着性有機繊維間の空隙に膜形成することなく、これら繊維の点接着に寄与するもので、ポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等の有機繊維が用いられ、繊維径1〜20μm、繊維長1〜10mm程度のものが用いられる。特に、前記熱接着性有機繊維の融着温度が160℃以下であると前記非自己接着性有機繊維の強度劣化がないため好ましい。
引張強度を高くすることおよび容易に入手できることから繊維径は1〜10μmが好ましい。また、水に分散し再凝集しにくいことから、繊維長は3〜5mmが好ましい。
尚、種類が多く生産量も多く比較的安価に入手しやすいことからポリエステルの中でもポリエチレンテレフタレート繊維、ポリエチレン繊維、ポリプロピレン繊維が好ましい。
また、前記熱接着性有機繊維の配合量は、10wt%未満であると、湿潤引張強度が不足し、また、50wt%を超えると収縮が発生するので、10〜50wt%、好ましくは15〜45wt%、より好ましくは20〜40wt%の配合量とする。
また、引張強度を高くするため、熱接着性有機繊維の方を非自己接着性有機繊維よりも多く配合するのが好ましい。具体的には、非自己接着性有機繊維1に対して、熱接着性有機繊維の配合割合を1〜3とするのが好ましく、非自己接着性有機繊維1に対して、熱接着性有機繊維の配合割合を2とするのが最適である。
また、接着点を増やすため、より細い繊維が入手できることから、非自己接着性有機繊維としてはより細いものを使用するのが好ましい。具体的には、ポリエチレンテレフタレート繊維として帝人ファイバー製テピルス0.11dtex(3μm)、ポリプロピレン繊維としてダイワボウ製PZ0.6dtex(10μm)、芳香族ポリイミド繊維として、ダイセル化学工業製ティアラ(0.2μm)がある。
また、接着力が高くなり、補強材の引張強度が上がることから、非自己接着性繊維と熱接着性繊維は同材質系のもの同士を使用するとよい。
The heat-adhesive organic fiber contributes to point bonding of these fibers without forming a film in the gap between the glass fiber and the non-self-adhesive organic fiber, or the heat-adhesive organic fiber. Organic fibers such as polyethylene, polypropylene and polymethylpentene are used, and those having a fiber diameter of about 1 to 20 μm and a fiber length of about 1 to 10 mm are used. In particular, it is preferable that the heat bonding temperature of the heat-adhesive organic fiber is 160 ° C. or lower because the strength of the non-self-adhesive organic fiber does not deteriorate.
The fiber diameter is preferably 1 to 10 μm because the tensile strength is increased and it can be easily obtained. Further, the fiber length is preferably 3 to 5 mm because it is dispersed in water and hardly re-aggregates.
Among polyesters, polyethylene terephthalate fiber, polyethylene fiber, and polypropylene fiber are preferable because they are many kinds and are produced in a large amount and are easily available at a relatively low cost.
Further, if the blending amount of the heat-adhesive organic fiber is less than 10 wt%, the wet tensile strength is insufficient, and if it exceeds 50 wt%, shrinkage occurs, so 10 to 50 wt%, preferably 15 to 45 wt%. %, More preferably 20-40 wt%.
In order to increase the tensile strength, it is preferable to add more heat-adhesive organic fibers than non-self-adhesive organic fibers. Specifically, the blending ratio of the heat-adhesive organic fiber to the non-self-adhesive organic fiber 1 is preferably 1 to 3, and the heat-adhesive organic fiber to the non-self-adhesive organic fiber 1 The blending ratio of 2 is optimally 2.
Moreover, in order to increase an adhesion point, since a thinner fiber can be obtained, it is preferable to use a thinner non-self-adhesive organic fiber. Specifically, Teijin Fiber Tepyrus 0.11 dtex (3 μm) as polyethylene terephthalate fiber, Daiwabo PZ0.6 dtex (10 μm) as polypropylene fiber, and Daicel Chemical Industries' tiara (0.2 μm) as aromatic polyimide fiber. .
Further, since the adhesive strength is increased and the tensile strength of the reinforcing material is increased, it is preferable to use non-self-adhesive fibers and heat-adhesive fibers of the same material type.

前記無機バインダーは、補強材(抄紙)の収縮防止、引張強度の向上に寄与するもので、シリカゾル、アルミナゾル、チタニアゾルのような合成無機系ゾル(微粒子として水に分散しており、乾燥固化後にゲルとなり硬化するもの)、カオリン、クレー、セピオライト、アタパルジャイト、ベントナイトのような天然系鉱物粉体(水に分散後、乾燥時に固結するもの)、マイカ、スメクタイトのような鉱物系鱗片状物、シリカフレーク、シリカ−チタニアフレーク、アルミナフレークのような合成鱗片状物(水に分散しており、乾燥時に固結して自己膜を形成するもの)等の無機バインダーが用いられ、不純物の少ない合成物の無機バインダーが好ましく、平均粒径0.01〜2μm、好ましくは0.1〜1μm、より好ましくは0.2〜0.6μmのものが用いられる。
尚、少量の添加で高いバインダー効果が得られ、湿式抄造時の歩留まりが良好であることからシリカフレークが好ましい。
また、前記無機バインダーの配合量は、0.1wt%未満であると補強材が収縮して、収縮抑制の効果が出ず、また、30wt%を超えると目詰め効果が高くなり、電解質の液含浸を阻害し、また、イオン伝導も阻害するので、0.1〜30wt%、好ましくは5〜20wt%、より好ましくは5〜10wt%の配合量とする。
この無機バインダーは抄紙するには必須の成分であるが、導電膜にした後は、配合量は少ない方が空隙率が高くて好都合である。
The inorganic binder contributes to the prevention of shrinkage of the reinforcing material (papermaking) and the improvement of the tensile strength. Synthetic inorganic sols such as silica sol, alumina sol, titania sol (dispersed in water as fine particles, and after drying and solidifying the gel) And hardened), natural mineral powders such as kaolin, clay, sepiolite, attapulgite, bentonite (dispersed in water and solidified upon drying), mineral scales such as mica and smectite, silica Synthetic products with few impurities such as flakes, synthetic flakes such as silica-titania flakes and alumina flakes (dispersed in water and solidified upon drying to form a self-film). Inorganic binders having an average particle size of 0.01 to 2 μm, preferably 0.1 to 1 μm, more preferably 0.2 to 0. 6 μm is used.
Silica flakes are preferred because a high binder effect can be obtained with a small amount of addition, and the yield during wet papermaking is good.
Further, if the blending amount of the inorganic binder is less than 0.1 wt%, the reinforcing material shrinks and the effect of suppressing shrinkage does not appear, and if it exceeds 30 wt%, the clogging effect increases, and the electrolyte solution Since impregnation is inhibited and ion conduction is also inhibited, the blending amount is 0.1 to 30 wt%, preferably 5 to 20 wt%, more preferably 5 to 10 wt%.
This inorganic binder is an essential component for papermaking, but after forming a conductive film, it is advantageous to use a smaller amount in order to increase the porosity.

以下実施例によって本発明をさらに詳細に説明するが、本発明は実施例の記載された発明に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the inventions described in the examples.

[実施例1]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)45wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)10wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)15wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 1]
45 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 10 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders The fine fiber has a fineness of 0.11 dtex (average fiber diameter of 3 μm), a fiber length of 3 mm polyester fiber (Tepyrus Tepyrus) 15 wt%, and the heat-adhesive fiber has a fineness of 1.1 dtex (average fiber diameter of 10 μm) and fiber length. Disperse and mix 5mm core-sheath type PET-PET fiber (Casven, manufactured by Unitika) in water, add an appropriate amount of polymer flocculant, and wet form with a square sheet machine for hand-making. After applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g. m 2, and to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度9.2N/25mm幅、引張伸び8.8%、湿潤引張強度6.6N/25mm幅、湿潤引張伸び10.9%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 9.2 N / 25 mm width, the tensile elongation was 8.8%, and the wet tensile strength was 6.6 N. / 25 mm width and wet tensile elongation of 10.9% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例2]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)50wt%と平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)20wt%、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)15wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)5wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス)10wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて2MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量20.5g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 2]
50 wt% of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fiber, 20 wt% of C glass short fiber (# 100 manufactured by Jones Manville Co., Ltd.) having an average fiber diameter of 0.3 μm, and inorganic binder Silica flake with an average particle size of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech), polyester fiber with a fineness of 0.11 dtex (average fiber diameter of 3 μm) and a fiber length of 3 mm as an ultrafine organic fiber (Tepyrus Tepyrus) Disperse and mix 5 wt% and 10 wt% of core-sheath type PET-PET fiber (Tepyrus Co., Ltd. Tepyrus) with a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm as a heat-adhesive fiber. After adding an appropriate amount of molecular flocculant, wet papermaking with a square sheet machine for handmaking, and applying a pressure of 2 MPa with a press machine A solid electrolyte membrane reinforcing material comprising a base material of an inorganic / organic fiber sheet having a basis weight of 20.5 g / m 2 and a thickness of 0.1 mm is dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes. Obtained.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度8.1N/25mm幅、引張伸び1.7%、湿潤引張強度5.5N/25mm幅、湿潤引張伸び5.8%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 8.1 N / 25 mm width, the tensile elongation was 1.7%, and the wet tensile strength was 5.5 N. / 25 mm width and wet tensile elongation of 5.8% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例3]
無機繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)30wt%、無機バインダーとして平均粒径0.2μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)15wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス)50wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3.5MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量20.3g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 3]
30 wt% of C glass short fiber (# 100, manufactured by Jones Manville) having an average fiber diameter of 0.3 μm as an inorganic fiber, and 5 wt% of silica flake (Sun Lovely LFS, manufactured by AGC S-Tech) as an inorganic binder. And a fine fiber of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 15 wt% of a polyester fiber (Tepyrus Tepyrus) having a fiber length of 3 mm, and a fineness of 1.1 dtex (average fiber diameter of 7 μm) as a heat-adhesive fiber Disperse and mix 50 wt% of core-sheath type PET-PET fiber (Tepyrus manufactured by Teijin Ltd.) with a length of 5 mm in water, add an appropriate amount of polymer flocculant, and wet paper making with a square sheet machine for hand-making Then, after applying a pressure of 3.5 MPa with a press machine, the film was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 20.3 g / m 2. A solid electrolyte membrane reinforcing material made of an inorganic / organic fiber sheet substrate having a thickness of 0.1 mm was obtained.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度10.1N/25mm幅、引張伸び16.5%、湿潤引張強度7.5N/25mm幅、湿潤引張伸び18.4%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 10.1 N / 25 mm width, the tensile elongation was 16.5%, and the wet tensile strength was 7.5 N. / 25 mm width and wet tensile elongation of 18.4% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例4]
無機繊維として平均繊維径0.3μmのCガラス短繊維(ジョーンズマンビル社製#100)69wt%、無機バインダーとして平均粒径0.1μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)1wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)10wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス)20wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて2MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量20.4g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 4]
69 wt% of C glass short fibers (# 100 manufactured by Jones Manville) having an average fiber diameter of 0.3 μm as inorganic fibers, and 1 wt% of silica flakes having an average particle diameter of 0.1 μm (Sun Lovely LFS manufactured by AGC S-Tech) as inorganic binders. And a fine fiber of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 10 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), and a thermal adhesive fiber of 0.5 dtex (average fiber diameter of 7 μm) and fiber Disperse and mix 20 wt% of core-sheath type PET-PET fiber (Tepyrus manufactured by Teijin Ltd.) with a length of 5 mm in water, add an appropriate amount of a polymer flocculant, and wet papermaking with a square sheet machine for handmaking Then, after applying a pressure of 2 MPa with a press machine, the film was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 20.4 g / m 2 , a thickness. A solid electrolyte membrane reinforcing material consisting of a 0.1 mm thick inorganic / organic fiber sheet substrate was obtained.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度6.1N/25mm幅、引張伸び9.1%、湿潤引張強度4.8N/25mm幅、湿潤引張伸び13.4%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 6.1 N / 25 mm width, the tensile elongation was 9.1%, and the wet tensile strength was 4.8 N. / 25 mm width and wet tensile elongation of 13.4% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例5]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)30wt%、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)1wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)10wt%と、熱接着性繊維として繊度0.5dtex(平均繊維径7μm)、繊維長5mmの芯鞘型PET−PET繊維(帝人社製テピルス)25wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて1MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量23.3g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 5]
30 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 1 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC SIT TECH) as inorganic binders, Ultrafine organic fiber with a fineness of 0.11 dtex (average fiber diameter of 3 μm), a polyester fiber with a fiber length of 3 mm (Tepyrus Tepyrus) 10 wt%, and a thermal adhesive fiber with a fineness of 0.5 dtex (average fiber diameter of 7 μm) and a fiber length of 5 mm Core-sheath type PET-PET fiber (Tepyrus Tepyrus Co., Ltd.) 25 wt% is dispersed and mixed in water, and an appropriate amount of a polymer flocculant is added, followed by wet papermaking with a hand-made square sheet machine. After applying a pressure of 1 MPa with a press machine, the film was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 23.3 g / m 2 and a thickness. A solid electrolyte membrane reinforcing material comprising a 0.1 mm inorganic / organic fiber sheet substrate was obtained.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度9.5N/25mm幅、引張伸び1.3%、湿潤引張強度4.8N/25mm幅、湿潤引張伸び4.6%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 9.5 N / 25 mm width, the tensile elongation was 1.3%, and the wet tensile strength was 4.8 N. / 25 mm width and wet tensile elongation of 4.6% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例6]
無機繊維として平均繊維径0.45μmのCガラス短繊維(ジョーンズマンビル社製#104)35wt%、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)25wt%と、非自己接着性繊維として繊度0.6dtex(平均繊維径10μm)、繊維長5mmのポリプロピレン繊維(ダイワボウ製)10wt%と、熱接着性繊維として繊度1.2dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PE−PET繊維(帝人社製テピルス)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて1MPaの圧力を掛けた後、110℃にて乾燥し、160℃にて3分間加熱処理して、坪量21.5g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 6]
35 wt% of C glass short fibers (# 104 manufactured by Jones Manville) having an average fiber diameter of 0.45 μm as inorganic fibers, and 25 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech) as inorganic binders. And a non-self-adhesive fiber having a fineness of 0.6 dtex (average fiber diameter of 10 μm), a fiber length of 5 mm of polypropylene fiber (manufactured by Daiwabo), and a thermal adhesive fiber having a fineness of 1.2 dtex (average fiber diameter of 10 μm), fiber Disperse and mix 30 wt% of core-sheath type PE-PET fiber (Tepyrus manufactured by Teijin Ltd.) with a length of 5 mm in water, add an appropriate amount of polymer flocculant, and wet paper making with a square sheet machine for hand-making and, after applying a pressure of 1MPa at a press machine and dried at 110 ° C., and heated for 3 minutes at 160 ° C., a basis weight of 21.5 g / m To obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度7.3N/25mm幅、引張伸び1.4%、湿潤引張強度4.5N/25mm幅、湿潤引張伸び2.4%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 7.3 N / 25 mm width, the tensile elongation was 1.4%, and the wet tensile strength was 4.5 N. / 25 mm width and wet tensile elongation of 2.4% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例7]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)50wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)30wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)15wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 7]
50 wt% of C glass short fibers (CMLF 306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sunlably LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Fine fiber 0.11 dtex (average fiber diameter 3 μm), fiber length 3 mm polyester fiber (Tepyrus Tepyrus) 30 wt%, thermal adhesive fiber fineness 1.1 dtex (average fiber diameter 10 μm), fiber length Disperse and mix 5 wt. Core-sheath type PET-PET fiber (Casven, manufactured by Unitika Co., Ltd.) in water, add a suitable amount of polymer flocculant, and wet form with a square sheet machine for hand-making. Then, after applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g / 2, to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度7.2N/25mm幅、引張伸び6.5%、湿潤引張強度5.3N/25mm幅、湿潤引張伸び3.8%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 7.2 N / 25 mm width, the tensile elongation was 6.5%, and the wet tensile strength was 5.3 N. / 25 mm width and wet tensile elongation of 3.8% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例8]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)30wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)55wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)10wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 8]
30 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC SIT TECH) as inorganic binders Further, a fine fiber of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 55 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), a fineness of 1.1 dtex (average fiber diameter of 10 μm) as a heat-adhesive fiber, and a fiber length Disperse and mix 5mm core-sheath type PET-PET fiber (Unitika's Casbane) 10wt% in water, add an appropriate amount of polymer flocculant, and wet paper making with hand-made square sheet machine. Then, after applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g / 2, to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度6.8N/25mm幅、引張伸び8.2%、湿潤引張強度4.2N/25mm幅、湿潤引張伸び7.5%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 6.8 N / 25 mm width, the tensile elongation was 8.2%, and the wet tensile strength was 4.2 N. / 25 mm width and wet tensile elongation of 7.5% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[実施例9]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)35wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)20wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)40wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Example 9]
35 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Further, a fine fiber of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 20 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), a fineness of 1.1 dtex (average fiber diameter of 10 μm) as a thermal adhesive fiber, and a fiber length Disperse and mix 5mm core-sheath type PET-PET fiber (Casven, manufactured by Unitika) in water, add an appropriate amount of polymer flocculant, and wet form with a square sheet machine for hand-making. Then, after applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g / 2, to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度8.5N/25mm幅、引張伸び7.9%、湿潤引張強度6.8N/25mm幅、湿潤引張伸び8.6%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維主体のガラスペーパーに比べて、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであった。
When the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material were measured, the tensile strength was 8.5 N / 25 mm width, the tensile elongation was 7.9%, and the wet tensile strength was 6.8 N. / 25 mm width and wet tensile elongation of 8.6% were obtained.
As is clear from the above measurement results, the strength and elongation during dry paper are higher than that of glass paper mainly composed of glass fiber, the strength when wet is sufficiently large, and the electrolyte impregnation workability is excellent.

[比較例1]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)100wt%を水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて2MPaの圧力を掛けた後、150℃にて乾燥し、坪量16.2g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
[Comparative Example 1]
Square sheet machine for hand-making by dispersing and mixing 100 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as inorganic fibers in water and adding an appropriate amount of polymer flocculant. Wet paper making, applying a pressure of 2 MPa with a press machine, and then drying at 150 ° C. to obtain a base material of an inorganic / organic fiber sheet having a basis weight of 16.2 g / m 2 and a thickness of 0.1 mm. It was.

得られた基材は柔らかくてコシのない状態であった。引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度3.6N/25mm幅、引張伸び2.8%、湿潤引張強度2.1N/25mm幅、湿潤引張伸び2.5%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維のみからなる基材は、乾紙時の強度が低く、柔らかくて取り扱いにくい。さらに、濡れた時の強度は極端に低いため、取り扱いが難しく、電解質の含浸加工には不向きとなるものであった。
The obtained base material was soft and free of stiffness. Tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation were measured. The tensile strength was 3.6 N / 25 mm width, the tensile elongation was 2.8%, the wet tensile strength was 2.1 N / 25 mm width, and the wet tensile elongation was 2.5. % Results were obtained.
As is apparent from the above measurement results, a base material made only of glass fibers has a low strength during dry paper and is soft and difficult to handle. Further, since the strength when wet is extremely low, it is difficult to handle, and is unsuitable for electrolyte impregnation.

[比較例2]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)55wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)15wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて6MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量14.6g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
[Comparative Example 2]
55 wt% of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an inorganic fiber, polyester fiber with a fineness of 0.11 dtex (average fiber diameter of 3 μm), and a fiber length of 3 mm (manufactured by Teijin Ltd.) Tepyrus) 15 wt%, and heat-adhesive fiber with a fineness of 1.1 dtex (average fiber diameter 10 μm), a core-sheath type PET-PET fiber (Casvene manufactured by Unitika Ltd.) 30 wt% with a fiber length of 5 mm is dispersed and mixed in water. Further, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 6 MPa is applied with a press machine, and then dried at 110 ° C. and then at 200 ° C. for 3 minutes. Heat treatment was performed to obtain an inorganic / organic fiber sheet substrate having a basis weight of 14.6 g / m 2 and a thickness of 0.1 mm.

得られた基材は、乾燥時に収縮し、波打ちが発生し、柔らかくてコシのない状態であった。引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度3.9N/25mm幅、引張伸び18.7%、湿潤引張強度3.1N/25mm幅、湿潤引張伸び16.8%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維と有機繊維からなる基材は、乾紙時の強度や伸びが高いが、柔らかくて取り扱いにくい、濡れた時の強度も低く、電解質の含浸加工には不向きとなるものであった。
The obtained base material was shrunk when dried, wavy, soft and free of stiffness. The tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation were measured. The tensile strength was 3.9 N / 25 mm width, the tensile elongation was 18.7%, the wet tensile strength was 3.1 N / 25 mm width, and the wet tensile elongation was 16.8. % Results were obtained.
As is clear from the above measurement results, the substrate made of glass fiber and organic fiber has high strength and elongation when dry paper is soft, difficult to handle, low strength when wet, and unsuitable for electrolyte impregnation processing It was to become.

[比較例3]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)70wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて2MPaの圧力を掛けた後、150℃にて乾燥し、坪量22.4g/m、厚さ0.1mmの無機・有機繊維シートの基材を得た。
[Comparative Example 3]
70 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 30 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Is dispersed and mixed in water, an appropriate amount of a polymer flocculant is added, wet papermaking is performed with a square sheet machine for handmaking, a pressure of 2 MPa is applied with a press machine, and then dried at 150 ° C. Thus, a base material of an inorganic / organic fiber sheet having a basis weight of 22.4 g / m 2 and a thickness of 0.1 mm was obtained.

得られた基材は、硬いが曲げられる程度の柔軟性がある状態であった。引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度6.2N/25mm幅、引張伸び0.6%、湿潤引張強度2.1N/25mm幅、湿潤引張伸び0.5%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維と無機バインダーからなる基材は、乾紙時の強度は高いが伸びが低く、濡れた時の強度も低く伸びも低く、電解質の含浸加工には不向きとなるものであった。
The obtained base material was in a state of being hard but flexible enough to be bent. Tensile strength, tensile elongation, wet tensile strength, wet tensile elongation were measured. Tensile strength 6.2 N / 25 mm width, tensile elongation 0.6%, wet tensile strength 2.1 N / 25 mm width, wet tensile elongation 0.5 % Results were obtained.
As is apparent from the above measurement results, the substrate made of glass fiber and inorganic binder has high strength when dry paper is low, but low elongation, low strength when wet, low elongation, and is not suitable for electrolyte impregnation processing. It was.

[比較例4]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)77wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)10wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)5wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)8wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 4]
77 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 10 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Further, a fineness of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 5 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), a fineness of 1.1 dtex (average fiber diameter of 10 μm) as a thermal adhesive fiber, and a fiber length Disperse and mix 5 wt. Core-sheath type PET-PET fiber (Casven, manufactured by Unitika Co., Ltd.) in water, add a suitable amount of polymer flocculant, and wet form with a square sheet machine for hand-making. after applying a pressure of 3MPa at a press, and dried at 110 ° C., and heated for 3 minutes at 200 ° C., a basis weight of 19.9 g / m To obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた基材は柔らかくてコシのない状態であった。引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度3.8N/25mm幅、引張伸び3.6%、湿潤引張強度2.4N/25mm幅、湿潤引張伸び2.8%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維のみからなる基材は、乾紙時の強度が低く、柔らかくて取り扱いにくい。さらに、濡れた時の強度は極端に低いため、取り扱いが難しく、電解質の含浸加工には不向きとなるものであった。
The obtained base material was soft and free of stiffness. The tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation were measured. The tensile strength was 3.8 N / 25 mm width, the tensile elongation was 3.6%, the wet tensile strength was 2.4 N / 25 mm width, and the wet tensile elongation was 2.8. % Results were obtained.
As is apparent from the above measurement results, a base material made only of glass fibers has a low strength during dry paper and is soft and difficult to handle. Further, since the strength when wet is extremely low, it is difficult to handle, and is unsuitable for electrolyte impregnation.

[比較例5]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)27wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)5wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)63wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 5]
27 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Further, a fineness of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 5 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), a fineness of 1.1 dtex (average fiber diameter of 10 μm) as a thermal adhesive fiber, and a fiber length Disperse and mix 5mm core-sheath type PET-PET fiber (Casven, manufactured by Unitika Co., Ltd.) in water, add an appropriate amount of polymer flocculant, and wet form with a square sheet machine for hand-making. after applying a pressure of 3MPa at a press, and dried at 110 ° C., and heated for 3 minutes at 200 ° C., a basis weight of 19.9 g / m To obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定しようとしたが、乾燥から加熱処理を行う過程において基材が収縮してしわが発生し、測定ができなかった。   I tried to measure the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcement, but the substrate contracted during the heat treatment from drying and wrinkles were generated. I could not.

[比較例6]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)25wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)65wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)5wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 6]
25 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders The fine fiber has a fineness of 0.11 dtex (average fiber diameter of 3 μm), a fiber length of 3 mm polyester fiber (Tepyrus Tepyrus) 65 wt%, and the thermal adhesive fiber has a fineness of 1.1 dtex (average fiber diameter of 10 μm) and fiber length. Disperse and mix 5 wt% of 5mm% core-sheath type PET-PET fiber (Cassben manufactured by Unitika Co.) in water, add an appropriate amount of polymer flocculant, and wet paper-making with a square sheet machine for hand-making. after applying a pressure of 3MPa at a press, and dried at 110 ° C., and heated for 3 minutes at 200 ° C., a basis weight of 19.9 g / m To obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定しようとしたが、乾燥から加熱処理を行う過程において基材が収縮してしわが発生し、測定ができなかった。   I tried to measure the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material. I could not.

[比較例7]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)25wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)15wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)55wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 7]
25 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders The fine fiber has a fineness of 0.11 dtex (average fiber diameter of 3 μm), a fiber length of 3 mm polyester fiber (Tepyrus Tepyrus) 15 wt%, and the heat-adhesive fiber has a fineness of 1.1 dtex (average fiber diameter of 10 μm) and fiber length. Disperse and mix 5% core-sheath type PET-PET fiber (Cassben manufactured by Unitika Co., Ltd.) in water, add an appropriate amount of a polymer flocculant, and wet form with a square sheet machine for hand-making. Then, after applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g / 2, to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定しようとしたが、乾燥から加熱処理を行う過程において基材が収縮してしわが発生し、測定ができなかった。   I tried to measure the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcement, but the substrate contracted during the heat treatment from drying and wrinkles were generated. I could not.

[比較例8]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)60wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)10wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 8]
60 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 10 wt% of silica flakes (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) having an average particle diameter of 0.5 μm as inorganic binders In addition, 30 wt% of core-sheath type PET-PET fiber (Cassven manufactured by Unitika) having a fineness of 1.1 dtex (average fiber diameter of 10 μm) and a fiber length of 5 mm is dispersed and mixed in water as a heat-adhesive fiber, and a polymer flocculant Is added in an appropriate amount, wet-made with a square sheet machine for hand-making, and after applying a pressure of 3 MPa with a press machine, dried at 110 ° C., and heat-treated at 200 ° C. for 3 minutes, A solid electrolyte membrane reinforcing material comprising an inorganic / organic fiber sheet substrate having a basis weight of 19.9 g / m 2 and a thickness of 0.1 mm was obtained.

得られた基材は柔らかくてコシのない状態であった。引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定したところ、引張強度3.7N/25mm幅、引張伸び15.1%、湿潤引張強度2.9N/25mm幅、湿潤引張伸び13.7%の結果が得られた。
上記測定結果から明らかな通り、ガラス繊維のみからなる基材は、乾紙時の強度が低く、柔らかくて取り扱いにくい。さらに、濡れた時の強度は極端に低いため、取り扱いが難しく、電解質の含浸加工には不向きとなるものであった。
The obtained base material was soft and free of stiffness. Tensile strength, tensile elongation, wet tensile strength and wet tensile elongation were measured. The tensile strength was 3.7 N / 25 mm width, the tensile elongation was 15.1%, the wet tensile strength was 2.9 N / 25 mm width, and the wet tensile elongation was 13.7. % Results were obtained.
As is apparent from the above measurement results, a base material made only of glass fibers has a low strength during dry paper and is soft and difficult to handle. Furthermore, since the strength when wet is extremely low, it is difficult to handle and unsuitable for electrolyte impregnation.

[比較例9]
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)25wt%と、無機バインダーとして平均粒径0.5μmのシリカフレーク(AGCエスアイテック社製サンラブリーLFS)5wt%と、極細有機繊維として繊度0.11dtex(平均繊維径3μm)、繊維長3mmのポリエステル繊維(帝人社製テピルス)40wt%と、熱接着性繊維として繊度1.1dtex(平均繊維径10μm)、繊維長5mmの芯鞘型PET−PET繊維(ユニチカ社製キャスベン)30wt%とを水中で分散・混合し、更に高分子凝集剤を適量添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて3MPaの圧力を掛けた後、110℃にて乾燥し、200℃にて3分間加熱処理して、坪量19.9g/m、厚さ0.1mmの無機・有機繊維シートの基材からなる固体電解質膜補強材を得た。
[Comparative Example 9]
25 wt% of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5 wt% of silica flakes having an average particle diameter of 0.5 μm (Sun Lovely LFS manufactured by AGC S-Tech Co., Ltd.) as inorganic binders Further, a fine fiber of 0.11 dtex (average fiber diameter of 3 μm) as an ultrafine organic fiber, 40 wt% of a polyester fiber having a fiber length of 3 mm (Tepyrus Tepyrus), a fineness of 1.1 dtex (average fiber diameter of 10 μm) as a thermal adhesive fiber, and a fiber length Disperse and mix 5mm core-sheath type PET-PET fiber (Casven, manufactured by Unitika) in water, add an appropriate amount of polymer flocculant, and wet form with a square sheet machine for hand-making. Then, after applying a pressure of 3 MPa with a press machine, it was dried at 110 ° C. and heat-treated at 200 ° C. for 3 minutes to obtain a basis weight of 19.9 g / 2, to obtain a solid electrolyte membrane reinforcing material made of inorganic or organic fiber sheet substrate having a thickness of 0.1 mm.

得られた固体電解質膜補強材の、引張強度、引張伸び、湿潤引張強度、湿潤引張伸びを測定しようとしたが、乾燥から加熱処理を行う過程において基材が収縮してしわが発生し、測定ができなかった。   I tried to measure the tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation of the obtained solid electrolyte membrane reinforcing material. I could not.

尚、前記引張強度、引張伸び、湿潤引張強度、湿潤引張伸びの測定は次のように行った。なお、引張強度および引張伸びの測定方法はJIS P8113「紙及び板紙−引張特性の試験方法−第2部:定速伸張法」に、湿潤引張強度および湿潤引張伸びの測定方法はJIS P8135「紙及び板紙−湿潤引張強さ試験方法」に準じるものである。
引張強度:等速度引張試験機により常温での引張強度を測定した。サンプル寸法は25mm幅×100mm長、測定条件は、引張速度10mm/分、チャック間距離50mmとして行った。
引張伸び:等速度引張試験機により常温での引張強度を測定時に、破断した時の距離を測定する。その破断時の距離からチャック間を引いた値をチャック間で割り、100を掛けて、引張伸びとした。
湿潤引張強度:引張強度と同様に常温にて測定した。ただし、測定用サンプルは水に30秒間浸して濡らしてから、市販のワイパー(ふき取り紙)であるキムタオルの上に置いて水切りをした後に測定した。
湿潤引張伸び:引張伸びと同様に、湿潤引張強度を測定時に、破断した時の距離を測定する。その破断時の距離からチャック間を引いた値をチャック間で割り、100を掛けて、湿潤引張伸びとした。
The tensile strength, tensile elongation, wet tensile strength, and wet tensile elongation were measured as follows. The measuring method of tensile strength and tensile elongation is JIS P8113 “Paper and paperboard—Testing method of tensile properties—Part 2: Constant speed stretching method”, and the measuring method of wet tensile strength and wet tensile elongation is JIS P8135 “Paper. And paperboard-wet tensile strength test method ".
Tensile strength: Tensile strength at room temperature was measured with a constant velocity tensile tester. The sample dimensions were 25 mm width × 100 mm length, and the measurement conditions were a tensile speed of 10 mm / min and a distance between chucks of 50 mm.
Tensile elongation: When measuring the tensile strength at room temperature with a constant-speed tensile tester, the distance at the time of fracture is measured. The value obtained by subtracting the distance between the chucks from the distance at the time of breaking was divided by the distance between the chucks and multiplied by 100 to obtain the tensile elongation.
Wet tensile strength: measured at room temperature in the same way as tensile strength. However, the measurement sample was soaked in water for 30 seconds, wetted, placed on a Kim towel, which is a commercially available wiper (wiping paper), and then drained.
Wet tensile elongation: Similarly to tensile elongation, when measuring the wet tensile strength, the distance at break is measured. The value obtained by subtracting the distance between the chucks from the distance at the time of breaking was divided by the distance between the chucks and multiplied by 100 to obtain the wet tensile elongation.

実施例1−9及び比較例1−9の配合及び評価をまとめ、表1とした。

Figure 2012114050
Table 1 summarizes the formulations and evaluations of Example 1-9 and Comparative Example 1-9.
Figure 2012114050

上記表1に示した強度および伸び量について、以下の値以上であれば製造時・加工時の取り扱いに不具合がない。引張強度は、6N(25mm幅あたり)以上であれば、取り扱う上で十分な強度を有する。引張伸びが1%以上であれば、取り扱い時に少し伸びるため、突然断紙することがない。湿潤引張強度が4N(25mm幅あたり)以上であれば、濡れた状態でも十分に取り扱いできる強度を有する。湿潤引張伸びが2%以上であれば、濡れた状態で取り扱う際に伸びるため、突然断紙することがない。
このため、実施例1−9は、引張強度、引張伸び及び湿潤引張伸びの評価項目全てを満足しており、比較例1−9に対して優れたものとなることがわかった。
About the intensity | strength and elongation amount shown in the said Table 1, if it is more than the following values, there will be no malfunction in the handling at the time of manufacture and processing. If the tensile strength is 6N (per 25 mm width) or more, it has sufficient strength for handling. If the tensile elongation is 1% or more, the paper will be stretched a little at the time of handling, so there is no sudden paper break. If the wet tensile strength is 4N (per 25 mm width) or more, the wet tensile strength is sufficient to handle even in a wet state. If the wet tensile elongation is 2% or more, the paper is stretched when handled in a wet state, so that there is no sudden paper break.
For this reason, Example 1-9 satisfied all the evaluation items of tensile strength, tensile elongation, and wet tensile elongation, and was found to be superior to Comparative Example 1-9.

本発明の固体電解質膜補強材は、乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れるものであり、固体高分子型燃料電池(PEFC)の固体電解質膜の補強材として有用である。   The solid electrolyte membrane reinforcing material of the present invention has high strength and elongation at the time of dry paper, sufficiently high strength when wet, and excellent in electrolyte impregnation workability. The solid polymer fuel cell (PEFC) It is useful as a reinforcing material for solid electrolyte membranes.

Claims (6)

ガラス繊維と有機繊維と無機バインダーからなる固体電解質膜補強材であって、前記有機繊維は非自己接着性有機繊維と熱接着性有機繊維とからなり、前記ガラス繊維が30〜70wt%、前記有機繊維が15〜65wt%及び前記無機バインダーが0.1〜30wt%含有し、全組成中において前記熱接着性有機繊維を10〜50wt%含有していることを特徴とする固体電解質膜補強材。   A solid electrolyte membrane reinforcing material comprising glass fiber, organic fiber, and inorganic binder, wherein the organic fiber is composed of non-self-adhesive organic fiber and heat-adhesive organic fiber, and the glass fiber is 30-70 wt%, the organic A solid electrolyte membrane reinforcing material comprising 15 to 65 wt% of fibers and 0.1 to 30 wt% of the inorganic binder, and 10 to 50 wt% of the thermoadhesive organic fibers in the total composition. 前記ガラス繊維を35〜60wt、前記有機繊維を20〜60wt%、及び前記無機バインダーを5〜20wt%、且つ、全組成中において前記熱接着性有機繊維を15〜45wt%含有していることを特徴とする請求項1記載の固体電解質膜補強材。   35 to 60 wt% of the glass fiber, 20 to 60 wt% of the organic fiber, 5 to 20 wt% of the inorganic binder, and 15 to 45 wt% of the thermoadhesive organic fiber in the whole composition. 2. The solid electrolyte membrane reinforcing material according to claim 1, wherein 前記ガラス繊維を40〜50wt%、前記有機繊維を30〜55wt%、及び前記無機バインダーを5〜10wt%、且つ、全組成中において前記熱接着性有機繊維を20〜40wt%含有していることを特徴とする請求項2記載の固体電解質膜補強材。   40-50 wt% of the glass fiber, 30-55 wt% of the organic fiber, 5-10 wt% of the inorganic binder, and 20-40 wt% of the thermoadhesive organic fiber in the entire composition. The solid electrolyte membrane reinforcing material according to claim 2. 前記非自己接着性有機繊維の配合量よりも前記熱接着性有機繊維の配合量を過剰にしたことを特徴とする請求項1乃至3の何れかに記載の固体電解質膜補強材。   The solid electrolyte membrane reinforcing material according to any one of claims 1 to 3, wherein the blending amount of the heat-adhesive organic fiber is made larger than the blending amount of the non-self-adhesive organic fiber. 前記ガラス繊維の平均繊維径を0.1〜5μm、前記非自己接着性有機繊維の平均繊維径を1〜20μm、及び、前記熱接着性有機繊維の平均繊維径を1〜20μmとしたことを特徴とする請求項1乃至4の何れかに記載の固体電解質膜補強材。   The average fiber diameter of the glass fiber is 0.1 to 5 μm, the average fiber diameter of the non-self-adhesive organic fiber is 1 to 20 μm, and the average fiber diameter of the thermoadhesive organic fiber is 1 to 20 μm. The solid electrolyte membrane reinforcing material according to any one of claims 1 to 4, wherein the reinforcing material is a solid electrolyte membrane reinforcing material. 前記無機バインダーの平均粒径を0.01〜2μmとしたことを特徴とする請求項1乃至5の何れかに記載の固体電解質膜補強材。   The solid electrolyte membrane reinforcing material according to any one of claims 1 to 5, wherein the inorganic binder has an average particle size of 0.01 to 2 µm.
JP2010264361A 2010-11-26 2010-11-26 Solid electrolyte membrane reinforcement Active JP5398687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264361A JP5398687B2 (en) 2010-11-26 2010-11-26 Solid electrolyte membrane reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264361A JP5398687B2 (en) 2010-11-26 2010-11-26 Solid electrolyte membrane reinforcement

Publications (2)

Publication Number Publication Date
JP2012114050A true JP2012114050A (en) 2012-06-14
JP5398687B2 JP5398687B2 (en) 2014-01-29

Family

ID=46498015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264361A Active JP5398687B2 (en) 2010-11-26 2010-11-26 Solid electrolyte membrane reinforcement

Country Status (1)

Country Link
JP (1) JP5398687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001707A1 (en) * 2013-07-01 2015-01-08 日本板硝子株式会社 Reinforcing material for proton-conducting film, proton-conducting film comprising same, and solid polymer fuel cell
JP2017199464A (en) * 2016-04-25 2017-11-02 国立大学法人山梨大学 Polymer electrolyte membrane and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2005011724A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
WO2005086265A1 (en) * 2004-03-04 2005-09-15 Nippon Sheet Glass Company, Limited Reinforcing material for proton conductive membrane, proton conductive membrane using same and fuel cell
WO2007004588A1 (en) * 2005-07-01 2007-01-11 Nippon Sheet Glass Company, Limited Reinforcing material for proton-conductive film, proton-conductive film manufactured using the same, and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2005011724A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
WO2005086265A1 (en) * 2004-03-04 2005-09-15 Nippon Sheet Glass Company, Limited Reinforcing material for proton conductive membrane, proton conductive membrane using same and fuel cell
JP2011236429A (en) * 2004-03-04 2011-11-24 Nippon Sheet Glass Co Ltd Reinforcing material for proton conductive membrane, and proton conductive membrane using the same and fuel cell
WO2007004588A1 (en) * 2005-07-01 2007-01-11 Nippon Sheet Glass Company, Limited Reinforcing material for proton-conductive film, proton-conductive film manufactured using the same, and fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001707A1 (en) * 2013-07-01 2015-01-08 日本板硝子株式会社 Reinforcing material for proton-conducting film, proton-conducting film comprising same, and solid polymer fuel cell
CN105264135A (en) * 2013-07-01 2016-01-20 日本板硝子株式会社 Reinforcing material for proton-conducting film, proton-conducting film comprising same, and solid polymer fuel cell
JPWO2015001707A1 (en) * 2013-07-01 2017-02-23 日本板硝子株式会社 PROTON CONDUCTIVE MEMBRANE REINFORCEMENT AND PROTON CONDUCTIVE MEMBRANE AND SOLID POLYMER FUEL CELL CONTAINING THE SAME
JP2017199464A (en) * 2016-04-25 2017-11-02 国立大学法人山梨大学 Polymer electrolyte membrane and its use

Also Published As

Publication number Publication date
JP5398687B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
KR100821027B1 (en) Reinforcing material for proton conductive membrane, proton conductive membrane using same and fuel cell
JP5585450B2 (en) Porous electrode substrate and method for producing the same
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
KR20130098309A (en) Conductive sheet and production method for same
JP2001216973A (en) Electrode and its production as well as fuel cell using the same
CN102318110B (en) Gas diffusion substrate
JP2013016476A (en) Gas diffusion electrode base material and production method therefor
JP2021100004A (en) Electrode for redox flow battery and redox flow battery
JP2001283878A (en) Conductive sheet and fuel cell electrode equipped with the sheet
Yarar Kaplan et al. Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells
JP2009283259A (en) Porous carbon electrode base material
JP6251737B2 (en) Base material for gas diffusion electrode
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP6209515B2 (en) Base material for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5398687B2 (en) Solid electrolyte membrane reinforcement
JP6594032B2 (en) Fuel cell
JP2009087614A (en) Diffusion layer of fuel cell, manufacturing method for diffusion layer of fuel cell, and fuel cell
KR20210092199A (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, membrane electrode assembly, fuel cell
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP5164569B2 (en) Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell
JP5464136B2 (en) Method for producing gas diffusion electrode substrate
JP5543322B2 (en) Current collector substrate for solid fuel cell
JP2004319421A (en) Proton conductive membrane reinforcing material, proton conductive membrane, and fuel cell using it
JP4974700B2 (en) Carbon fiber sheet and manufacturing method thereof
JP2005011724A (en) Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130515

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113