JP2012112374A - Exhaust gas post-treatment system - Google Patents

Exhaust gas post-treatment system Download PDF

Info

Publication number
JP2012112374A
JP2012112374A JP2011120916A JP2011120916A JP2012112374A JP 2012112374 A JP2012112374 A JP 2012112374A JP 2011120916 A JP2011120916 A JP 2011120916A JP 2011120916 A JP2011120916 A JP 2011120916A JP 2012112374 A JP2012112374 A JP 2012112374A
Authority
JP
Japan
Prior art keywords
exhaust gas
particle filter
engine
gasoline particle
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011120916A
Other languages
Japanese (ja)
Inventor
Mu Young Choe
茂 瑩 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2012112374A publication Critical patent/JP2012112374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas post-treatment system that reduces a decrease in an engine output and an increase in a fuel consumption which take place when a gasoline particle filter that removes particulates in an exhaust gas inside a discharge line of a direct injection gasoline engine is mounted.SOLUTION: The exhaust gas post-treatment system includes a discharge line through which the exhaust gas discharged from an engine passes, a gasoline particle filter provided in the discharge line, a by-pass line provided in the discharge line so as to make the exhaust gas by-pass the gasoline particle filter, a main valve that blocks the exhaust gas that is made to flow into the gasoline particle filter, a by-pass valve that blocks the exhaust gas passing through the by-pass line, and a control section that detects operating conditions of the engine, controls the exhaust gas so as to pass through the gasoline particle filter, or controls the exhaust gas so as to pass through the by-pass line without passing through the gasoline particle filter.

Description

本発明は、排気ガスの後処理システムに係り、より詳細には、直噴ガソリンエンジンの排気ガス中の粒子状物質を濾過するガソリン粒子フィルタを備える排気ガス後処理システムに関する。   The present invention relates to an exhaust gas aftertreatment system, and more particularly, to an exhaust gas aftertreatment system including a gasoline particle filter that filters particulate matter in exhaust gas of a direct injection gasoline engine.

一般に、直噴ガソリン(GDI:gasoline direct injection)エンジン(以下、単に「エンジン」と記した場合は直噴ガソリンエンジンを意味する)は、シリンダ内に空気を流入させ、シリンダ内へ燃料を直接噴射する。エンジンは、ディーゼルエンジンよりは少ないものの、一定量の粒子状物質を排気ガスと共に排出する。   Generally, a direct injection gasoline (GDI) engine (hereinafter simply referred to as “engine” means direct injection gasoline engine) flows air into a cylinder and directly injects fuel into the cylinder. To do. Although the engine is less than a diesel engine, it discharges a certain amount of particulate matter along with the exhaust gas.

このような粒子状物質を低減させるために、エンジンにおいてもガソリン粒子フィルタ(GPF:gasoline particulate filter)が装着されることもある(例えば特許文献1を参照)。しかし、ガソリン粒子フィルタを装着した場合は、ガソリン粒子フィルタの空気抵抗によって排気ラインの排圧が増加し、これによってエンジンの出力が減少し、燃料消費効率が低下するという問題点が起こることがある。   In order to reduce such particulate matter, a gasoline particle filter (GPF: gasoline particulate filter) may also be mounted in the engine (see, for example, Patent Document 1). However, when a gasoline particle filter is installed, the exhaust pressure of the exhaust line increases due to the air resistance of the gasoline particle filter, which may cause a problem that the engine output decreases and the fuel consumption efficiency decreases. .

特開2003−206725公報JP 2003-206725 A

かかる課題を解決するためになされた本発明の目的は、直噴ガソリンエンジンの排気ラインに、排気ガス中の粒子状物質を除去するガソリン粒子フィルタを装着する場合に起こる、エンジン出力の低下と燃料消費量の増大とを減少させることができるエンジンの排気ガス後処理システムを提供することである。   SUMMARY OF THE INVENTION An object of the present invention, which has been made to solve such a problem, is a reduction in engine output and fuel that occurs when a gasoline particle filter for removing particulate matter in exhaust gas is attached to an exhaust line of a direct injection gasoline engine. It is an object to provide an engine exhaust gas aftertreatment system capable of reducing an increase in consumption.

本発明による排気ガス後処理システムは、エンジンから排出される排気ガスが通過する排気ラインと、排気ラインに設けられ、排気ガス中の粒子状物質を濾過するガソリン粒子フィルタと、排気ガスがガソリン粒子フィルタをバイパスするように排気ラインに設けられるバイパスラインと、エンジンの運転条件を検知し、検知した運転条件に対応して、排気ガスがガソリン粒子フィルタを通過するようにしたり、または、ガソリン粒子フィルタを通過せずにバイパスラインを通過するように制御する制御部と、を備えることを特徴とする。   An exhaust gas aftertreatment system according to the present invention includes an exhaust line through which exhaust gas discharged from an engine passes, a gasoline particle filter that is provided in the exhaust line and filters particulate matter in the exhaust gas, and the exhaust gas is gasoline particles. The bypass line provided in the exhaust line so as to bypass the filter and the engine operating condition are detected, and the exhaust gas passes through the gasoline particle filter or the gasoline particle filter corresponding to the detected operating condition. And a control unit that controls to pass through the bypass line without passing through.

また本発明は、更にガソリン粒子フィルタに流入する排気ガスを選択的に遮断するメインバルブを、ガソリン粒子フィルタの前端部に備え、制御部がメインバルブを閉じて、排気ガスがバイパスラインを通過するように制御する。
また本発明は、バイパスラインに、バイパスラインを通過する排気ガスを選択的に遮断するバイパスバルブを更に備える。
The present invention further includes a main valve for selectively blocking the exhaust gas flowing into the gasoline particle filter at the front end of the gasoline particle filter, the control unit closes the main valve, and the exhaust gas passes through the bypass line. To control.
In the present invention, the bypass line further includes a bypass valve for selectively blocking the exhaust gas passing through the bypass line.

また本発明の制御部は、排気ラインに設けられたガソリン粒子フィルタを加熱するためのヒーティングロジックが実施されている場合は、排気ガスをガソリン粒子フィルタを通過させるよう制御する。
また、エンジンの回転数を測定し、エンジンの回転数が設定値を超えている場合は、排気ガスをガソリン粒子フィルタを通過させるよう制御する。
Moreover, the control part of this invention controls exhaust gas to pass a gasoline particle filter, when the heating logic for heating the gasoline particle filter provided in the exhaust line is implemented.
Further, the engine speed is measured, and if the engine speed exceeds the set value, the exhaust gas is controlled to pass through the gasoline particle filter.

また、エンジンの冷却水温を測定し、エンジンの冷却水温が設定値未満である場合は、排気ガスをガソリン粒子フィルタを通過させるよう制御する。
また、エンジンオイルの温度を測定し、エンジンオイルの温度が設定値未満である場合は、排気ガスをガソリン粒子フィルタを通過させるよう制御する。
また、車両の速度を測定し、車両の速度が設定値以上である場合は、排気ガスを、ガソリン粒子フィルタを通過させるよう制御する。
Further, the engine coolant temperature is measured, and if the engine coolant temperature is lower than the set value, the exhaust gas is controlled to pass through the gasoline particle filter.
Further, the temperature of the engine oil is measured, and if the temperature of the engine oil is less than a set value, the exhaust gas is controlled to pass through the gasoline particle filter.
Further, the vehicle speed is measured, and if the vehicle speed is equal to or higher than the set value, the exhaust gas is controlled to pass through the gasoline particle filter.

また本発明は、排気ラインに設けられたガソリン粒子フィルタを加熱させるためのヒーティングロジックが行われておらず、エンジンの回転数が設定値以上であり、エンジンの冷却水温が設定値以上であり、エンジンのオイル温度が設定値以上であり、車両の速度が設定値未満であるとき、制御部が、排気ガスをバイパスラインを介して排出されるよう制御する。   In the present invention, heating logic for heating the gasoline particle filter provided in the exhaust line is not performed, the engine speed is equal to or higher than the set value, and the engine coolant temperature is equal to or higher than the set value. When the engine oil temperature is equal to or higher than the set value and the vehicle speed is lower than the set value, the control unit controls the exhaust gas to be discharged through the bypass line.

本発明による直噴ガソリンエンジンの排気ガス後処理システムは、制御部が、エンジンの運転条件に対応して排気ガスがガソリン粒子フィルタを通過したりバイパスしたりするように制御することによって、排気ラインの排圧の増加によるエンジン出力の低下及び燃料消費の増大という問題を軽減することができる。   In the exhaust gas aftertreatment system for a direct injection gasoline engine according to the present invention, the control unit controls the exhaust gas to pass through or bypass the gasoline particle filter in accordance with the operating condition of the engine. The problem of a decrease in engine output and an increase in fuel consumption due to an increase in exhaust pressure can be reduced.

本発明の1実施形態に係る排気ガス後処理システムの概略的な構成図である。1 is a schematic configuration diagram of an exhaust gas aftertreatment system according to an embodiment of the present invention. 本発明の1実施形態に係る排気ガス後処理システム制御のフローチャートである。It is a flowchart of exhaust gas aftertreatment system control concerning one embodiment of the present invention. 本発明の1実施形態に係る排気ガス後処理システムのエンジンの運転条件と排気ガス粒子の量との関係を示すグラフである。It is a graph which shows the relationship between the operating condition of the engine of the exhaust-gas aftertreatment system which concerns on one Embodiment of this invention, and the quantity of exhaust-gas particle | grains. 本発明の1実施形態に係る排気ガス後処理システムのエンジンの運転条件とガソリン粒子フィルタとの関係を示すグラフである。It is a graph which shows the relationship between the engine operating condition of the exhaust-gas aftertreatment system which concerns on one Embodiment of this invention, and a gasoline particle filter. 本発明の1実施形態に係る排気ガス後処理システムのガソリン粒子フィルタと燃料消費量との関係を示すグラフである。It is a graph which shows the relationship between the gasoline particle filter and fuel consumption of the exhaust-gas aftertreatment system which concerns on one Embodiment of this invention. 本発明の1実施形態に係る排気ガス後処理システムのエンジン冷却水温と排気ガスに含まれている粒子量との関係を示すグラフである。It is a graph which shows the relationship between the engine coolant temperature of the exhaust-gas aftertreatment system which concerns on one Embodiment of this invention, and the amount of particles contained in exhaust gas.

以下、添付した図面を参照して、本発明に係る排気ガス後処理システムの好ましい実施形態を詳細に説明する。
図1は、本発明の1実施形態に係る排気ガス後処理システムの概略的な構成図である。
図1に示すように、排気ガス後処理システムは、エンジン100、排気ライン110、ガソリン粒子フィルタ130、バイパスライン140、メインバルブ120、バイパスバルブ150、及び制御部160を備える。
Hereinafter, a preferred embodiment of an exhaust gas aftertreatment system according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an exhaust gas aftertreatment system according to an embodiment of the present invention.
As shown in FIG. 1, the exhaust gas aftertreatment system includes an engine 100, an exhaust line 110, a gasoline particle filter 130, a bypass line 140, a main valve 120, a bypass valve 150, and a control unit 160.

エンジン100は、直噴ガソリンエンジンであって、シリンダ内へ燃料を直接噴射する構造を有する。
ガソリン粒子フィルタ130は、エンジン100から排出され排気ライン110を流れる排気ガスに含まれる粒子状物質を濾過する。
Engine 100 is a direct injection gasoline engine and has a structure in which fuel is directly injected into a cylinder.
The gasoline particle filter 130 filters particulate matter contained in the exhaust gas discharged from the engine 100 and flowing through the exhaust line 110.

排気ライン110には、ガソリン粒子フィルタ130をバイパスするバイパスライン140が設けられ、バイパスライン140には、バイパスライン140を開閉するバイパスバルブ150が設けられる。また、排気ライン110のガソリン粒子フィルタ130の前端部には、ガソリン粒子フィルタ130に流入する排気ガスを遮断するメインバルブ120が設けられる。   The exhaust line 110 is provided with a bypass line 140 that bypasses the gasoline particle filter 130, and the bypass line 140 is provided with a bypass valve 150 that opens and closes the bypass line 140. A main valve 120 that shuts off exhaust gas flowing into the gasoline particle filter 130 is provided at the front end of the gasoline particle filter 130 in the exhaust line 110.

従って、制御部160の指令によって、メインバルブ120が閉じられ、バイパスバルブ150が開かれると、排気ライン110を通過する排気ガスは、ガソリン粒子フィルタ130を通過せずに、バイパスライン140にバイパスされる。
また、制御部160の指令によって、メインバルブ120が開かれバイパスバルブ150が閉じられると、排気ガスは、ガソリン粒子フィルタ130を通過し、バイパスライン140は通過しない。
Therefore, when the main valve 120 is closed and the bypass valve 150 is opened according to a command from the control unit 160, the exhaust gas passing through the exhaust line 110 is bypassed to the bypass line 140 without passing through the gasoline particle filter 130. The
Further, when the main valve 120 is opened and the bypass valve 150 is closed by a command from the control unit 160, the exhaust gas passes through the gasoline particle filter 130 and does not pass through the bypass line 140.

排気ガスがガソリン粒子フィルタ130を通過する場合、ガソリン粒子フィルタ130の抵抗によって排気ライン110の排圧が上昇して、エンジン出力が低下し、燃料消費が増大するという問題点がある。
本発明の実施形態では、エンジンの運転条件に対応して、制御部160が排気ガスをバイパスライン140を介してバイパスさせるよう制御することによって燃料消費を低減させ、出力低下を防止する。
When the exhaust gas passes through the gasoline particle filter 130, there is a problem that the exhaust pressure of the exhaust line 110 increases due to the resistance of the gasoline particle filter 130, the engine output decreases, and the fuel consumption increases.
In the embodiment of the present invention, the control unit 160 controls the exhaust gas to bypass the bypass line 140 in accordance with the operating condition of the engine, thereby reducing fuel consumption and preventing a decrease in output.

制御部160は、エンジン100を効率的に運転するために、触媒(酸化触媒、ガソリン粒子フィルタ130等)を加熱するロジックの実行と、エンジン100の回転数、冷却水温、オイル温度、及び車速の測定を行う。   The control unit 160 executes logic for heating a catalyst (oxidation catalyst, gasoline particle filter 130, etc.), and controls the rotation speed, cooling water temperature, oil temperature, and vehicle speed of the engine 100 in order to efficiently operate the engine 100. Measure.

図2は、本発明の1実施形態に係る排気ガス後処理システム制御のフローチャートである。
図2に示すように、制御部160は、S200で制御を開始し、S210でエンジン100の始動を指令する。
FIG. 2 is a flowchart of exhaust gas aftertreatment system control according to an embodiment of the present invention.
As shown in FIG. 2, control unit 160 starts control in S <b> 200 and commands start of engine 100 in S <b> 210.

制御部160は、S220で、触媒(酸化触媒、ガソリン粒子フィルタ等)を加熱するヒーティングロジックが実行されているか否かを判断する。ここで触媒は、ガソリン粒子フィルタを含む排気ラインに設けられている全ての触媒を含む。S220で触媒を加熱するためのヒーティングロジックが実行されている場合(S220、Yes)、制御部160はS280で排気ガスがガソリン粒子フィルタ130を通過するよう制御する。   In S220, control unit 160 determines whether or not a heating logic for heating the catalyst (oxidation catalyst, gasoline particle filter, etc.) is being executed. Here, the catalyst includes all catalysts provided in an exhaust line including a gasoline particle filter. When the heating logic for heating the catalyst is executed in S220 (S220, Yes), the control unit 160 controls the exhaust gas to pass through the gasoline particle filter 130 in S280.

S220で触媒を加熱するためのヒーティングロジックが実行されていない場合(S220、No)、制御部160は、S230でエンジン100の回転数(RPM:rotation per minute)が設定数値「A」を超えているか否かを判断する。エンジン100の回転数が設定数値「A」を超えている場合(S230、Yes)、制御部160は、S280で排気ガスがガソリン粒子フィルタ130を通過するよう制御する。   When the heating logic for heating the catalyst is not executed in S220 (S220, No), the control unit 160 causes the rotation number of the engine 100 (RPM: rotation per minute) to exceed the set numerical value “A” in S230. Judge whether or not. When the rotational speed of the engine 100 exceeds the set numerical value “A” (S230, Yes), the control unit 160 controls the exhaust gas to pass through the gasoline particle filter 130 in S280.

S230でエンジン100の回転数が設定数値「A」を超えていない場合(S230、No)、制御部160は、S240でエンジン100の冷却水温が設定温度「B」未満であるか否かを判断する。冷却水温が設定温度「B」未満である場合(S240、Yes)、制御部160は、S280で排気ガスがガソリン粒子フィルタ130を通過するよう制御する。   When the rotation speed of the engine 100 does not exceed the set numerical value “A” in S230 (S230, No), the control unit 160 determines whether or not the cooling water temperature of the engine 100 is lower than the set temperature “B” in S240. To do. When the cooling water temperature is lower than the set temperature “B” (S240, Yes), the control unit 160 controls the exhaust gas to pass through the gasoline particle filter 130 in S280.

S240で冷却水温が設定温度「B」を超えている場合(S240、No)、制御部160は、S250で、エンジン100のオイル温度が設定温度「C」未満であるか否かを判断する。オイル温度が設定温度「C」未満である場合(S250、Yes)、制御部160は、S280で排気ガスがガソリン粒子フィルタ130を通過するよう制御する。   When the cooling water temperature exceeds the set temperature “B” in S240 (S240, No), the control unit 160 determines whether or not the oil temperature of the engine 100 is lower than the set temperature “C” in S250. When the oil temperature is lower than the set temperature “C” (S250, Yes), the control unit 160 controls the exhaust gas to pass through the gasoline particle filter 130 in S280.

S250で、エンジン100のオイル温度が設定温度「C」を超えている場合(S250、No)、制御部160は、S260で、車両の速度が設定速度「D」を超えるか否かを判断する。車速が設定速度「D」を超えている場合(S260、Yes)、制御部160はS280で、排気ガスがガソリン粒子フィルタ130を通過するよう制御する。   If the oil temperature of engine 100 exceeds set temperature “C” in S250 (S250, No), control unit 160 determines in S260 whether the vehicle speed exceeds set speed “D”. . When the vehicle speed exceeds the set speed “D” (S260, Yes), the control unit 160 controls the exhaust gas to pass through the gasoline particle filter 130 in S280.

S220で触媒のヒーティングロジックが行われず、S230でエンジン100の回転数が設定値「A」以下であり、S240で冷却水温が設定値「B」以上であり、S250でオイル温度が設定値「C」以上であり、且つ、S260で車両の速度が設定値「D」以下である場合、制御部160は、S270で排気ガスがバイパスライン140を通過し、ガソリン粒子フィルタ130を通過しないように制御する。
これによって、排気ガスの排圧が減少し、出力低下及び燃料消費量の増加を未然に防止することができる。
In S220, the catalyst heating logic is not performed. In S230, the rotational speed of the engine 100 is equal to or lower than the set value “A”. In S240, the cooling water temperature is equal to or higher than the set value “B”. When the vehicle speed is equal to or higher than “C” and the vehicle speed is equal to or lower than the set value “D” in S260, the control unit 160 prevents the exhaust gas from passing through the bypass line 140 and not passing through the gasoline particle filter 130 in S270. Control.
As a result, the exhaust gas exhaust pressure decreases, and it is possible to prevent a decrease in output and an increase in fuel consumption.

図3は、本発明の1実施形態に係る排気ガス後処理システムのエンジンの運転条件と排気ガス粒子の量との関係を示すグラフである。
図3は、横軸が時間を示し、縦軸が排気ガスに含まれている粒子状物質(PM:particulate matters)、冷却水温、オイル温度、触媒温度(ガソリン粒子フィルタの温度)、及び排気温度を示す。
FIG. 3 is a graph showing the relationship between the engine operating conditions and the amount of exhaust gas particles of the exhaust gas aftertreatment system according to one embodiment of the present invention.
In FIG. 3, the horizontal axis represents time, and the vertical axis represents particulate matter (PM) contained in the exhaust gas, the cooling water temperature, the oil temperature, the catalyst temperature (the temperature of the gasoline particle filter), and the exhaust temperature. Indicates.

図3に示すように、排気ガスに含まれている粒子状物質の量は、エンジンの冷却水温、オイル温度、触媒温度、及び排気ガス温度と相関関係を有する。特に、冷却水温が低いほど、粒子状物質の排出量が多く、オイル温度が低いほど、粒子状物質の排出量が多い。
また、触媒温度及び排気ガス温度が低いほど、粒子状物質の排出量が多い。図示されていないが、エンジン100の回転数と車速との両方との相関的な関連性があり、回転数が高く、且つ車速が高いと、粒子状物質の排出量が多くなる。
As shown in FIG. 3, the amount of particulate matter contained in the exhaust gas has a correlation with the engine coolant temperature, the oil temperature, the catalyst temperature, and the exhaust gas temperature. In particular, the lower the cooling water temperature, the greater the amount of particulate matter discharged, and the lower the oil temperature, the greater the amount of particulate matter discharged.
Further, the lower the catalyst temperature and the exhaust gas temperature, the larger the amount of particulate matter discharged. Although not shown in the figure, there is a correlation between both the rotational speed of engine 100 and the vehicle speed. When the rotational speed is high and the vehicle speed is high, the amount of particulate matter discharged increases.

図4は、本発明の1実施形態に係る排気ガス後処理システムのエンジンの運転条件とガソリン粒子フィルタとの関係を示すグラフである。
図4は、横軸がエンジン100の回転数を示し、縦軸が出力(power)及びトルク(torque)を示す。図4において、「TWC」は三元触媒を示し、「GPF」はガソリン粒子フィルタ130を示し、「bare」は触媒がないことを示し、「2X」及び「3X」は触媒の量を示す。
図4は、触媒がコーティングされたガソリン粒子フィルタ130を排気ガスが通過すると、エンジン100の出力及びトルクが減少することを示している。
FIG. 4 is a graph showing the relationship between the engine operating conditions and the gasoline particle filter of the exhaust gas aftertreatment system according to one embodiment of the present invention.
In FIG. 4, the horizontal axis indicates the rotation speed of the engine 100, and the vertical axis indicates the output (power) and torque (torque). In FIG. 4, “TWC” indicates a three-way catalyst, “GPF” indicates a gasoline particle filter 130, “bare” indicates no catalyst, and “2X” and “3X” indicate the amount of catalyst.
FIG. 4 shows that the output and torque of the engine 100 decreases when the exhaust gas passes through the gasoline particle filter 130 coated with the catalyst.

図5は、本発明の1実施形態に係る排気ガス後処理システムのガソリン粒子フィルタと燃料消費量との関係を示すグラフである。
図5は、横軸が三元触媒(TWC)とガソリン粒子フィルタ(GPF)との組み合わせを示し、縦軸が単位燃料消費量を示す。ここで「bare」は触媒がないことを示し、「2X」及び「3X」は触媒の量を示す。
図5は、ガソリン粒子フィルタ130が装着されたり、または、触媒の量が増えるほど、単位燃料消費量が増加することを示している。
FIG. 5 is a graph showing the relationship between a gasoline particle filter and fuel consumption in an exhaust gas aftertreatment system according to an embodiment of the present invention.
In FIG. 5, the horizontal axis represents a combination of a three-way catalyst (TWC) and a gasoline particle filter (GPF), and the vertical axis represents unit fuel consumption. Here, “bare” indicates that there is no catalyst, and “2X” and “3X” indicate the amount of catalyst.
FIG. 5 shows that the unit fuel consumption increases as the gasoline particle filter 130 is attached or the amount of the catalyst increases.

図6は、本発明の1実施形態に係る排気ガス後処理システムのエンジン冷却水温と排気ガスに含まれている粒子量との関係を示すグラフである。
図6は、横軸が時間を示し、縦軸が冷却水温及び燃料の噴射条件に応じた粒子の量を示す。
FIG. 6 is a graph showing the relationship between the engine coolant temperature and the amount of particles contained in the exhaust gas in the exhaust gas aftertreatment system according to one embodiment of the present invention.
In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the amount of particles according to the cooling water temperature and the fuel injection conditions.

図6に示すように、冷却水温と燃料の噴射条件に対応して排気ガスに含まれて排出される粒子状物質の量が異なって分布される。特に、冷却水温が上昇するほど、排気ガスに含まれて排出される粒子状物質の量は少なくなる。
以上、本発明に関する好ましい実施形態を説明したが、本発明は前記実施形態に限定されず、本発明の属する技術範囲を逸脱しない範囲での全ての変更が含まれる。
As shown in FIG. 6, the amount of particulate matter contained and discharged in the exhaust gas is distributed differently according to the cooling water temperature and the fuel injection conditions. In particular, as the cooling water temperature rises, the amount of particulate matter contained and discharged in the exhaust gas decreases.
As mentioned above, although preferred embodiment regarding this invention was described, this invention is not limited to the said embodiment, All the changes in the range which does not deviate from the technical scope to which this invention belongs are included.

100 エンジン
110 排気ライン
120 メインバルブ
130 ガソリン粒子フィルタ(GPFフィルタ)
140 バイパスライン
150 バイパスバルブ
160 制御部
100 Engine 110 Exhaust line 120 Main valve 130 Gasoline particle filter (GPF filter)
140 Bypass line 150 Bypass valve 160 Control unit

Claims (9)

直噴ガソリンエンジン(以下、単にエンジンと記す)から排出される排気ガスが通過する排気ラインと、
前記排気ラインに設けられ、前記排気ガス中の粒子状物質を濾過するガソリン粒子フィルタと、
前記排気ガスが前記ガソリン粒子フィルタをバイパスするように前記排気ラインに設けられるバイパスラインと、
前記エンジンの運転条件を検知し、検知した運転条件に対応して、前記排気ガスが前記ガソリン粒子フィルタを通過するようにしたり、または、前記ガソリン粒子フィルタを通過せずに、前記バイパスラインを通過するようにする制御部と、
を備えることを特徴とする排気ガス後処理システム。
An exhaust line through which exhaust gas discharged from a direct injection gasoline engine (hereinafter simply referred to as an engine) passes,
A gasoline particle filter provided in the exhaust line for filtering particulate matter in the exhaust gas;
A bypass line provided in the exhaust line so that the exhaust gas bypasses the gasoline particle filter;
The engine operating condition is detected, and the exhaust gas passes through the gasoline particle filter or passes through the bypass line without passing through the gasoline particle filter in accordance with the detected operating condition. A control unit to do,
An exhaust gas aftertreatment system comprising:
前記ガソリン粒子フィルタに流入する排気ガスを選択的に遮断するメインバルブを、前記ガソリン粒子フィルタの前端部に更に備え、前記制御部が、前記メインバルブを閉じて、前記排気ガスを前記バイパスラインを通過するように制御することを特徴とする請求項1に記載の排気ガス後処理システム。   A main valve for selectively blocking exhaust gas flowing into the gasoline particle filter is further provided at a front end portion of the gasoline particle filter, and the control unit closes the main valve so that the exhaust gas passes through the bypass line. The exhaust gas aftertreatment system according to claim 1, wherein the exhaust gas aftertreatment system is controlled to pass through. 前記バイパスラインに、前記バイパスラインを通過する排気ガスを選択的に遮断するバイパスバルブを更に備えることを特徴とする請求項2に記載の排気ガス後処理システム。   The exhaust gas aftertreatment system according to claim 2, further comprising a bypass valve that selectively blocks exhaust gas passing through the bypass line in the bypass line. 前記制御部は、排気ラインに設けられた前記ガソリン粒子フィルタを加熱するためのヒーティングロジックが実行されている場合は、前記排気ガスを、前記ガソリン粒子フィルタを通過させることを特徴とする請求項2に記載の排気ガス後処理システム。   The said control part makes the said exhaust gas pass the said gasoline particle filter, when the heating logic for heating the said gasoline particle filter provided in the exhaust line is performed. The exhaust gas aftertreatment system according to 2. 前記制御部は、エンジンの回転数を測定し、前記エンジンの回転数が設定値を超えている場合は、前記排気ガスを、前記ガソリン粒子フィルタを通過させよう制御することを特徴とする請求項2に記載の排気ガス後処理システム。   The said control part measures the rotation speed of an engine, and when the rotation speed of the said engine exceeds the setting value, it controls so that the said exhaust gas may pass through the said gasoline particle filter. The exhaust gas aftertreatment system according to 2. 前記制御部は、エンジンの冷却水温を測定し、前記エンジンの冷却水温が設定値未満である場合は、前記排気ガスを、前記ガソリン粒子フィルタを通過させるよう制御することを特徴とする請求項2に記載の排気ガス後処理システム。   The said control part measures the cooling water temperature of an engine, and when the cooling water temperature of the said engine is less than a preset value, it controls so that the said exhaust gas may pass through the said gasoline particle filter. An exhaust gas aftertreatment system as described in 1. 前記制御部は、エンジンオイルの温度を測定し、前記エンジンオイルの温度が設定値未満である場合は、前記排気ガスを、前記ガソリン粒子フィルタを通過させるよう制御することを特徴とする請求項2に記載の排気ガス後処理システム。   The control unit measures the temperature of the engine oil, and controls the exhaust gas to pass through the gasoline particle filter when the temperature of the engine oil is lower than a set value. An exhaust gas aftertreatment system as described in 1. 前記制御部は、車両の速度を測定し、前記車両の速度が設定値以上である場合は、排気ガスを、前記ガソリン粒子フィルタを通過させるよう制御することを特徴とする請求項2に記載の排気ガス後処理システム。   The said control part measures the speed of a vehicle, and when the speed of the said vehicle is more than a setting value, it controls to make exhaust gas pass the said gasoline particle filter. Exhaust gas aftertreatment system. 前記制御部は、排気ラインに設けられた前記ガソリン粒子フィルタを加熱させるためのヒーティングロジックが実行されておらず、前記エンジンの回転数が設定値未満であり、前記エンジンの冷却水温が設定値以上であり、前記エンジンのオイル温度が設定値以上であり、車両の速度が設定値未満であるとき、前記排気ガスを、前記バイパスラインを介して排出するように制御することを特徴とする請求項2に記載の排気ガス後処理システム。   The controller does not execute a heating logic for heating the gasoline particle filter provided in the exhaust line, the engine speed is less than a set value, and the engine coolant temperature is a set value. When the engine oil temperature is equal to or higher than a set value and the vehicle speed is lower than the set value, the exhaust gas is controlled to be discharged through the bypass line. Item 3. An exhaust gas aftertreatment system according to Item 2.
JP2011120916A 2010-11-19 2011-05-30 Exhaust gas post-treatment system Pending JP2012112374A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0115634 2010-11-19
KR1020100115634A KR20120054314A (en) 2010-11-19 2010-11-19 Exhaust gas post processing system

Publications (1)

Publication Number Publication Date
JP2012112374A true JP2012112374A (en) 2012-06-14

Family

ID=46021436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120916A Pending JP2012112374A (en) 2010-11-19 2011-05-30 Exhaust gas post-treatment system

Country Status (5)

Country Link
US (1) US20120124977A1 (en)
JP (1) JP2012112374A (en)
KR (1) KR20120054314A (en)
CN (1) CN102477893A (en)
DE (1) DE102011051987A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074233A (en) * 2013-10-04 2015-04-20 トヨタ自動車株式会社 Hybrid vehicle

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082305A1 (en) * 2014-03-17 2017-03-23 Sui Chun Law An Air Purification Device
DE102014118813A1 (en) 2014-12-17 2016-06-23 Tenneco Gmbh EGR system with particle filter for gasoline engine
US9739223B2 (en) 2015-11-18 2017-08-22 Ford Global Technologies, Llc System and method for bypassing a particulate filter
KR101786233B1 (en) 2015-12-07 2017-10-17 현대자동차주식회사 Force regeneration method of GPF
US9920679B2 (en) 2016-02-11 2018-03-20 Ford Global Technologies, Llc Method and system for reducing particulate emissions
US20180128145A1 (en) * 2016-11-09 2018-05-10 Ford Global Technologies, Llc Method and system for an exhaust diverter valve
KR102395282B1 (en) * 2016-12-12 2022-05-09 현대자동차주식회사 Exhaust gas reduction apparatus and method for vehicles
US10371028B2 (en) 2017-07-14 2019-08-06 Ford Global Technologies, Llc Method and system for a particulate filter having a bypass
CN112761758B (en) * 2021-01-13 2022-09-06 联合汽车电子有限公司 Gasoline engine particle trap fuel saving device and regeneration control strategy
CN116335809B (en) * 2023-03-01 2024-06-07 重庆赛力斯新能源汽车设计院有限公司 Range-extending type automobile exhaust system and range-extending type automobile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018020A (en) * 1998-04-30 2000-01-18 Nippon Soken Inc Discharged black smoke reducing system for internal combustion engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618054A (en) * 1979-07-20 1981-02-20 Toyota Motor Corp Opening regulator for throttle valve
JPS5928009A (en) * 1982-08-06 1984-02-14 Toyota Motor Corp Fine particles purifying device for exhaust gas from diesel engine
US4665690A (en) * 1985-01-14 1987-05-19 Mazda Motor Corporation Exhaust gas cleaning system for vehicle
JPS62291414A (en) * 1986-06-11 1987-12-18 Toyota Motor Corp Exhaust emission control device for diesel engine
DE3816233C1 (en) * 1988-05-11 1989-07-06 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH02252914A (en) * 1989-03-27 1990-10-11 Hino Motors Ltd Reducing device for white smoke in exhaust gas
JPH03202609A (en) * 1989-12-28 1991-09-04 Nissan Motor Co Ltd Engine exhaust emission control device
JPH03294613A (en) * 1990-04-10 1991-12-25 Hino Motors Ltd Exhaust emission control device for engine
JPH0441914A (en) * 1990-06-01 1992-02-12 Nissan Motor Co Ltd Exhaust gas processor for internal combustion engine
JP3456348B2 (en) * 1996-09-19 2003-10-14 トヨタ自動車株式会社 Diesel engine exhaust purification system
JP3840923B2 (en) * 2001-06-20 2006-11-01 いすゞ自動車株式会社 Diesel engine exhaust purification system
JP3876705B2 (en) * 2001-12-13 2007-02-07 いすゞ自動車株式会社 Diesel engine exhaust gas purification system
JP4131219B2 (en) * 2003-09-18 2008-08-13 日産自動車株式会社 Diesel engine exhaust aftertreatment system
GB2408470B (en) * 2003-11-25 2007-06-13 Arvin Internat An internal combustion engine exhaust system
FR2880914B1 (en) * 2005-01-14 2007-04-06 Peugeot Citroen Automobiles Sa EXHAUST LINE FOR MOTOR VEHICLE AUTOMOBILE
US7631489B2 (en) * 2005-02-22 2009-12-15 International Engine Intellectual Property Company Llc Strategy for selectively bypassing a DPF in a hybrid HCCI combustion engine
JP4361889B2 (en) * 2005-04-11 2009-11-11 株式会社デンソー Leak inspection device and fuel vapor processing device
DE102005061876A1 (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Method and device for controlling an exhaust aftertreatment system
JP4969225B2 (en) * 2006-11-30 2012-07-04 三菱重工業株式会社 Engine exhaust system with DPF device
JP2008190463A (en) * 2007-02-06 2008-08-21 Yanmar Co Ltd Soot removing device for diesel engine
JP4844467B2 (en) * 2007-05-07 2011-12-28 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102008042767B4 (en) * 2008-10-13 2012-03-01 Ford Global Technologies, Llc emission control system
US9482125B2 (en) * 2010-09-14 2016-11-01 GM Global Technology Operations LLC Particulate filter and hydrocarbon adsorber bypass systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018020A (en) * 1998-04-30 2000-01-18 Nippon Soken Inc Discharged black smoke reducing system for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074233A (en) * 2013-10-04 2015-04-20 トヨタ自動車株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
US20120124977A1 (en) 2012-05-24
CN102477893A (en) 2012-05-30
KR20120054314A (en) 2012-05-30
DE102011051987A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP2012112374A (en) Exhaust gas post-treatment system
JP5859638B2 (en) Driving method of automobile diesel engine
JP4900002B2 (en) Exhaust gas purification system for internal combustion engine
JP5708584B2 (en) Control device for internal combustion engine
WO2013183153A1 (en) Engine system
CN209687581U (en) A kind of 6 discharge post-treatment system of automobile state
US20170204763A1 (en) Exhaust purification system of internal combustion engine
WO2011108024A1 (en) Exhaust emission control device for internal combustion engine
EP3073083B1 (en) Exhaust gas control apparatus
KR20120064341A (en) Exhaust gas post processing system
JP6028397B2 (en) Vehicle heating system
EP2143919B1 (en) Particulate filter regeneration system
JP5310166B2 (en) Engine exhaust purification system
JP2013029064A (en) Exhaust emission control system of internal combustion engine
EP2894310A1 (en) Additive supply device for internal combustion engines
JP2014224510A (en) Exhaust emission control device of internal combustion engine
JP2015143507A (en) Exhaust emission control device of internal combustion engine
JP2011099372A (en) Control device for internal combustion engine
JP2017044120A (en) Exhaust emission control device
JP6090347B2 (en) Exhaust purification device
JP2020070743A (en) On-vehicle control device
JP2008240630A (en) Exhaust emission control device of diesel engine
JP2010261330A (en) Exhaust purification device
JP6477230B2 (en) Exhaust purification equipment
JP2013185475A (en) Dpf regeneration device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929