JP2012109713A - Bias circuit - Google Patents

Bias circuit Download PDF

Info

Publication number
JP2012109713A
JP2012109713A JP2010255738A JP2010255738A JP2012109713A JP 2012109713 A JP2012109713 A JP 2012109713A JP 2010255738 A JP2010255738 A JP 2010255738A JP 2010255738 A JP2010255738 A JP 2010255738A JP 2012109713 A JP2012109713 A JP 2012109713A
Authority
JP
Japan
Prior art keywords
bias
resistor
voltage
circuit
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010255738A
Other languages
Japanese (ja)
Inventor
Koji Yamanaka
宏治 山中
Eigo Kuwata
英悟 桑田
Kazuhisa Yamauchi
和久 山内
Kazuhiko Nakahara
和彦 中原
Shin Chagi
伸 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010255738A priority Critical patent/JP2012109713A/en
Publication of JP2012109713A publication Critical patent/JP2012109713A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bias circuit that protects a receiving transistor against damage from excessive input in a simple configuration and shortens time for recovery to a steady state operation after the resolution of the excessive input.SOLUTION: The bias circuit for use with a receiving amplifier is so constructed that a resistor is connected in series between a drain electrode of a field effect transistor and a drain bias terminal, at least two resistors are connected in series between the drain electrode and a gate bias terminal, and a junction connecting two of the two or more series-connected resistors is connected to a gate electrode.

Description

この発明は、高周波半導体素子のバイアス回路に関し、特に受信用増幅器の過入力時における破壊防止と過入力解消後の電気特性復帰速度の改善に関するものである。   The present invention relates to a bias circuit for a high-frequency semiconductor device, and more particularly to prevention of destruction at the time of excessive input of a receiving amplifier and improvement of an electric characteristic return speed after cancellation of excessive input.

従来、FET増幅器の単位増幅器に可変バイアス回路が設けられ、可変バイアス回路は単位増幅器のゲート側バイアス電位を決めるバイアス抵抗とバイアス抵抗に組み合わせてバイアス量を制御する制御トランジスタから構成されている。そして、FET増幅器のマイクロ波信号入力レベルがFETの定格レベルを越える場合、FET増幅器の終段におけるFETのゲート側バイアス回路に接続されたゲート電流検出抵抗の電圧降下を検出し、それにともなって出力するコントロール信号が制御トランジスタに入力され、FETのゲート側バイアス電位を変化させてドレイン電流を絞り込むか、FETのドレイン電流を直接減少させることにより、過入力に対する保護を行っている(例えば、特許文献1参照)。   Conventionally, a variable bias circuit is provided in a unit amplifier of an FET amplifier, and the variable bias circuit includes a bias resistor that determines a gate side bias potential of the unit amplifier and a control transistor that controls a bias amount in combination with the bias resistor. When the microwave signal input level of the FET amplifier exceeds the rated level of the FET, the voltage drop of the gate current detection resistor connected to the gate side bias circuit of the FET at the final stage of the FET amplifier is detected, and the output is accordingly generated. The control signal is input to the control transistor, and the drain current is narrowed by changing the gate side bias potential of the FET, or the drain current of the FET is directly reduced to protect against over-input (for example, Patent Documents) 1).

特開昭64−22102号公報JP-A 64-22102

しかしながらこのような構成の可変バイアス回路は複雑であり、コストが高くなるという問題がある。   However, the variable bias circuit having such a configuration is complicated and has a problem of high cost.

この発明は、前記のような課題を解決するためになされたものであり、受信用トランジスタを過入力による破壊から防ぐ簡易な構成であるとともに過入力が解消された後定常動作に復帰するまでの時間が短縮されるバイアス回路を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and has a simple configuration for preventing the receiving transistor from being destroyed by over-input, and after the over-input has been eliminated, the operation returns to the steady operation. An object is to obtain a bias circuit whose time is shortened.

この発明に係るバイアス回路は、受信用増幅器に用いられるバイアス回路であって、電界効果型トランジスタのドレイン電極とドレインバイアス端子の間に抵抗が直列に接続され、上記ドレイン電極とゲートバイアス端子の間に少なくとも2個以上の抵抗が直列に接続され、上記直列接続された2個以上の抵抗のうち2個の抵抗が接続される接続点を上記ゲート電極に接続する。   The bias circuit according to the present invention is a bias circuit used in a receiving amplifier, wherein a resistor is connected in series between a drain electrode and a drain bias terminal of a field effect transistor, and the drain electrode and the gate bias terminal are connected. At least two or more resistors are connected in series to each other, and a connection point where two of the two or more resistors connected in series are connected to the gate electrode.

この発明に係るバイアス回路は、過入力が解消した直後にドレイン電圧が高くなることに伴ってゲート電圧が高くなり、ドレイン電流が増加することにより、過入力が解消してから定常状態に復帰するまでの時間を短縮することができるという効果を奏する。   In the bias circuit according to the present invention, the gate voltage increases as the drain voltage increases immediately after the over-input is eliminated, and the drain current increases, so that the over-input is eliminated and then returns to the steady state. There is an effect that the time until the time can be shortened.

この発明の実施の形態1に係る受信用増幅器の回路図である。1 is a circuit diagram of a receiving amplifier according to a first embodiment of the present invention. この発明の実施の形態2に係る受信用増幅器の回路図である。It is a circuit diagram of the receiving amplifier which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る受信用増幅器の回路配置図である。It is a circuit arrangement | positioning figure of the receiving amplifier which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る受信用増幅器の回路図である。It is a circuit diagram of the receiving amplifier which concerns on Embodiment 3 of this invention. 従来の受信用増幅器の回路図である。It is a circuit diagram of a conventional receiving amplifier. 図5に示す従来の受信用増幅器に抵抗を追加した回路である。6 is a circuit in which a resistor is added to the conventional receiving amplifier shown in FIG. 過入力によるドレイン電流の減少量を電圧VG_offsetで表現する計算結果である。It is a calculation result expressing the amount of decrease in drain current due to excessive input as voltage VG_offset.

以下、本発明のバイアス回路の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る受信用増幅器の回路図である。
この発明の実施の形態1に係る受信用増幅器では、バイアス回路が受信用トランジスタ2のゲート側バイアスを制御する。そして、受信用トランジスタ2は、ゲート電極が受信信号入力端子1に接続され、ドレイン電極が受信信号出力端子7に接続され、ソース電極が接地されている。また、受信用トランジスタ2は、ゲート電極に整合回路3aが接続され、ドレイン電極にも接合回路3bが接続される。
Hereinafter, preferred embodiments of a bias circuit of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a circuit diagram of a receiving amplifier according to Embodiment 1 of the present invention.
In the receiving amplifier according to the first embodiment of the present invention, the bias circuit controls the gate side bias of the receiving transistor 2. The reception transistor 2 has a gate electrode connected to the reception signal input terminal 1, a drain electrode connected to the reception signal output terminal 7, and a source electrode grounded. In the receiving transistor 2, the matching circuit 3a is connected to the gate electrode, and the junction circuit 3b is also connected to the drain electrode.

この発明の実施の形態1に係る受信用増幅器のバイアス回路は、受信用トランジスタ2のゲート電極に一端が接続される整合回路3aと兼用されるバイアス線路と、受信用トランジスタ2のドレイン電極に一端が接続される整合回路3bと兼用されるバイアス線路と、接地される整合回路3aの他端に接続される高周波短絡キャパシタ4aと、接地される整合回路3aの他端に接続される高周波短絡キャパシタ4bと、ドレインバイアス端子としてのドレイン電圧印加端子6に一端が接続されるとともに他端が整合回路3bの他端に接続される抵抗8と、一端が整合回路3bの他端に接続されるとともに他端が接続点12に接続される抵抗9と、ゲートバイアス端子としてのゲート電圧印加端子5に一端が接続されるとともに他端が接続点12に接続される抵抗10と、を備える。   The bias circuit of the receiving amplifier according to the first embodiment of the present invention includes a bias line also used as a matching circuit 3a, one end of which is connected to the gate electrode of the receiving transistor 2, and one end of the drain electrode of the receiving transistor 2. A bias line that is also used as a matching circuit 3b connected to the same, a high-frequency short-circuit capacitor 4a connected to the other end of the grounded matching circuit 3a, and a high-frequency short-circuit capacitor connected to the other end of the grounded matching circuit 3a 4b, a resistor 8 having one end connected to the drain voltage application terminal 6 as a drain bias terminal and the other end connected to the other end of the matching circuit 3b, and one end connected to the other end of the matching circuit 3b. One end is connected to the resistor 9 having the other end connected to the connection point 12 and the gate voltage application terminal 5 serving as a gate bias terminal, and the other end is connected to the connection point 1. It comprises a resistor 10, which is connected to.

抵抗8、9、10の抵抗値R、R、R10は、受信用トランジスタ2に適当なバイアスが与えられるように予め設定しておく。すなわち、受信用トランジスタ2の動作ドレイン電流をI、動作ドレイン電圧をV、動作ゲート電圧をV、ゲート電圧印加端子5に入力する電圧をVgg、ドレイン電圧印加端子6に入力する電圧をVddとすると、式(1)、(2)の関係が成り立つので、この関係式を用いて抵抗値を定める。 The resistance values R 8 , R 9 and R 10 of the resistors 8 , 9 and 10 are set in advance so that an appropriate bias is applied to the receiving transistor 2. That is, the operating drain current of the receiving transistor 2 is I d , the operating drain voltage is V d , the operating gate voltage is V g , the voltage input to the gate voltage application terminal 5 is V gg , and the voltage input to the drain voltage application terminal 6 When V dd is V dd , the relations of the expressions (1) and (2) are established, and the resistance value is determined using this relational expression.

=Vdd−R×I (1)
(V−V):(V−Vgg)=R:R10 (2)
V d = V dd −R 8 × I d (1)
(V d −V g ) :( V g −V gg ) = R 9 : R 10 (2)

次に、この発明の実施の形態1に係るバイアス回路の動作を説明する。
過入力時には受信用トランジスタ2のドレイン電流Iが増加する.このとき式(1)に従い受信用トランジスタ2に加えられるドレイン電圧Vは低下するので、受信用トランジスタ2が破壊することを防ぐことができる。
ところで、過入力が解消された直後においては過入力による発熱の影響や過入力時にトランジスタ内部で発生した高電界によって引き起こされたチャージング効果によりドレイン電流Iが定常時よりも減少することが知られている。これにより受信増幅器の利得が低下する問題がある。
Next, the operation of the bias circuit according to the first embodiment of the present invention will be described.
The drain current I d of the receiving transistor 2 is increased at the time of excessive input. Since the drain voltage V d applied to the receiving transistor 2 according this case equation (1) decreases, the receiving transistor 2 can be prevented from being destroyed.
By the way, it is known that immediately after the over-input is eliminated, the drain current Id is reduced from that in the steady state due to the influence of heat generated by the over-input and the charging effect caused by the high electric field generated inside the transistor at the time of the over-input. It has been. As a result, there is a problem that the gain of the receiving amplifier is lowered.

ところが、過入力が解消した直後でドレイン電流Iが小さいときにはドレイン電圧Vが高くなる。受信用トランジスタ2に加えられるゲート電圧Vはドレイン電圧Vとゲート電圧印加電圧Vggを抵抗値Rと抵抗値R10で分圧した電圧となるので、ドレイン電圧Vが高くなるとゲート電圧Vも高くなる。
そしてゲート電圧Vが高くなると、ドレイン電流Iを増加させるように作用するので、従来のバイアス回路に比べて、過入力が解消してから定常状態に復帰するまでの時間を短縮することができる。
However, the drain voltage Vd increases when the drain current Id is small immediately after the over-input is eliminated. Since the gate voltage V g applied to the receiving transistor 2 is a voltage obtained by dividing the drain voltage V d and the gate voltage applied voltage V gg by the resistance value R 9 and the resistance value R 10 , the gate voltage V g increases when the drain voltage V d increases. The voltage Vg also increases.
When the gate voltage Vg is increased, the drain current Id is increased. Therefore, compared with the conventional bias circuit, it is possible to shorten the time from the cancellation of the excessive input to the return to the steady state. it can.

実施の形態2.
図2は、この発明の実施の形態2に係る受信用増幅器の回路図である。
この発明の実施の形態2に係る受信用増幅器は、この発明の実施の形態1に係る受信用増幅器の受信用トランジスタ2のソース電極に抵抗11を直列に接続されることが異なり、それ以外は同様であるので、同じ部分に符号を付記し説明は省略する。
尚、ゲート側バイアスを制御するバイアス回路の構成は実施の形態1において説明したバイアス回路の構成と同様であり、動作も同様である。従って、過入力が解消した直後にドレイン電圧Vが高くなることに伴ってゲート電圧Vが高くなり、ドレイン電流Iが増加することにより、過入力が解消してから定常状態に復帰するまでの時間を短縮することができる。
Embodiment 2. FIG.
FIG. 2 is a circuit diagram of a receiving amplifier according to Embodiment 2 of the present invention.
The receiving amplifier according to the second embodiment of the present invention is different in that a resistor 11 is connected in series to the source electrode of the receiving transistor 2 of the receiving amplifier according to the first embodiment of the present invention. Since they are the same, the same parts are denoted by reference numerals and description thereof is omitted.
The configuration of the bias circuit for controlling the gate side bias is the same as the configuration of the bias circuit described in the first embodiment, and the operation is also the same. Thus, the higher the gate voltage V g with that drain voltage V d immediately after the excessive input is eliminated is increased, by the drain current I d increases, returning from excessive input is solved in a steady state Can be shortened.

ディプリーション型の電界効果型トランジスタでは、通常ゲート電極には負電圧、ドレイン電極には正電圧の2種類の電圧源が必要とするが、ソース電極に直列に抵抗11を接続する自己バイアス回路構成をとることでゲート電圧印加端子5に入力する電圧Vggをゼロまたは正電圧に設定して単電源で動作させることが可能となる。 In a depletion type field effect transistor, two types of voltage sources are usually required, ie, a negative voltage for the gate electrode and a positive voltage for the drain electrode, but a self-bias circuit in which a resistor 11 is connected in series to the source electrode. By adopting the configuration, the voltage V gg input to the gate voltage application terminal 5 can be set to zero or a positive voltage to operate with a single power source.

実施の形態3.
図3は、この発明の実施の形態3に係る受信用増幅器の回路配置図である。
この発明の実施の形態3に係る受信用増幅器は、この発明の実施の形態1に係る受信用増幅器をモノリシック集積回路に構成したものであり、構成部品には同じ符号を付記した。
抵抗8の抵抗値は、電界効果型トランジスタからなる受信用トランジスタ2の出力インピーダンスと同程度であり、それほど大きな値とする必要はない。また、ドレイン電圧を精度よく設定するために比較的高精度な抵抗値が必要とされる。このように比較的低抵抗で抵抗値の絶対精度が必要とされる抵抗には不純物イオン原子をイオンインプランテーション技術により基板に注入することで抵抗を構成する注入抵抗が適する。
Embodiment 3 FIG.
FIG. 3 is a circuit layout diagram of a receiving amplifier according to Embodiment 3 of the present invention.
The receiving amplifier according to the third embodiment of the present invention is obtained by configuring the receiving amplifier according to the first embodiment of the present invention in a monolithic integrated circuit, and the same reference numerals are given to the components.
The resistance value of the resistor 8 is about the same as the output impedance of the receiving transistor 2 made of a field effect transistor, and need not be so large. Also, a relatively high resistance value is required to set the drain voltage with high accuracy. As such a resistance requiring a relatively low resistance and an absolute accuracy of the resistance value, an implantation resistance that constitutes the resistance by injecting impurity ion atoms into the substrate by an ion implantation technique is suitable.

これに対して、抵抗9、10の抵抗値は、受信用トランジスタ2のゲート電圧を設定するときその比のみ正確であれば絶対値は正確でなくても構わない。また、抵抗9、10で消費される電力を低減するためにはなるべく高抵抗であることが望ましい。このように絶対精度は必要としないが高抵抗を小型に実現したい場合には基板内の2次元電子ガスをそのまま抵抗体として使用するエピ抵抗が適する。
このように用途に応じて注入抵抗とエピ抵抗を使い分けることで必要な機能を満たしつつ、小型に回路を構成することができる。
On the other hand, the absolute values of the resistance values of the resistors 9 and 10 may not be accurate if only the ratio is accurate when the gate voltage of the receiving transistor 2 is set. Moreover, in order to reduce the power consumed by the resistors 9, 10, it is desirable that the resistance is as high as possible. As described above, epi resistance using the two-dimensional electron gas in the substrate as it is as a resistor is suitable when high resistance is desired to be realized in a small size although absolute accuracy is not required.
In this way, a circuit can be configured in a small size while satisfying a necessary function by properly using an injection resistor and an epi resistor according to the application.

実施の形態4.
この発明の実施の形態4においては、この発明の実施の形態1に係る受信用増幅器の過入力解消直後のドレイン電流の計算結果を説明する。
図4にこの発明の実施の形態3に係る受信用増幅器の回路図を示し、図5には比較のために合わせて過入力解消直後のドレイン電流を計算した従来の受信用増幅器の回路図である。また、図6には図5に示す従来の受信用増幅器に抵抗8を追加した回路である。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, the calculation result of the drain current immediately after elimination of the excessive input of the receiving amplifier according to the first embodiment of the present invention will be described.
FIG. 4 shows a circuit diagram of a receiving amplifier according to Embodiment 3 of the present invention, and FIG. 5 is a circuit diagram of a conventional receiving amplifier in which the drain current immediately after elimination of excessive input is calculated for comparison. is there. FIG. 6 shows a circuit in which a resistor 8 is added to the conventional receiving amplifier shown in FIG.

以下の計算では簡単のために直流等価回路で行っている。
過入力によって生じるドレイン電流の減少はゲート電極に直列に接続されている電圧源DCVSの電圧VG_offsetによってピンオフ電圧の変化として表現されている。 電圧VG_offsetを大きくすることで過入力によるドレイン電流の減少を大きくすることができる。
図7には、計算結果として過入力によるドレイン電流の減少量を電圧VG_offsetで表現している。
従来の受信用増幅器や従来の受信用増幅器に抵抗8を追加した回路では、電圧VG_offsetが−1Vのときには定常状態で50mAのドレイン電流が4mA以下に大きく減少する。
一方、この発明の実施の形態1に係る受信用増幅器では、電圧VG_offsetが−1Vのときにドレイン電流42mA以上流れており、過入力が解消してから定常状態に復帰するまでの時間を短縮することができることが認められる。
In the following calculation, a DC equivalent circuit is used for simplicity.
The decrease in the drain current caused by the excessive input is expressed as a change in the pin-off voltage by the voltage VG_offset of the voltage source DCVS connected in series with the gate electrode. By increasing the voltage VG_offset, it is possible to increase the decrease in drain current due to excessive input.
In FIG. 7, the amount of decrease in drain current due to excessive input is expressed as a voltage VG_offset as a calculation result.
In a conventional receiving amplifier or a circuit in which a resistor 8 is added to the conventional receiving amplifier, when the voltage VG_offset is −1V, the drain current of 50 mA is greatly reduced to 4 mA or less in a steady state.
On the other hand, in the receiving amplifier according to the first embodiment of the present invention, when the voltage VG_offset is −1V, the drain current is flowing at 42 mA or more, and the time until the return to the steady state after the excessive input is eliminated is shortened. It is recognized that it can.

1 受信信号入力端子、2 受信用トランジスタ、3a、3b 整合回路、4a、4b 高周波短絡キャパシタ、5 ゲート電圧印加端子、6 ドレイン電圧印加端子、7 受信信号出力端子、8、9、10、11 抵抗、12 接続点。   DESCRIPTION OF SYMBOLS 1 Reception signal input terminal, 2 Reception transistor, 3a, 3b Matching circuit, 4a, 4b High frequency short circuit capacitor, 5 Gate voltage application terminal, 6 Drain voltage application terminal, 7 Reception signal output terminal, 8, 9, 10, 11 Resistance , 12 connection point.

Claims (3)

受信用増幅器に用いられるバイアス回路であって、
電界効果型トランジスタのドレイン電極とドレインバイアス端子の間に抵抗が直列に接続され、
上記ドレイン電極とゲートバイアス端子の間に少なくとも2個以上の抵抗が直列に接続され、
上記直列接続された2個以上の抵抗のうち2個の抵抗が接続される接続点を上記ゲート電極に接続することを特徴とするバイアス回路。
A bias circuit used in a receiving amplifier,
A resistor is connected in series between the drain electrode and the drain bias terminal of the field effect transistor,
At least two resistors are connected in series between the drain electrode and the gate bias terminal,
A bias circuit, wherein a connection point to which two of the two or more resistors connected in series are connected is connected to the gate electrode.
上記電界効果型トランジスタのソース電極に自己バイアス用の抵抗を接続することを特徴とする請求項1に記載のバイアス回路。   2. The bias circuit according to claim 1, wherein a self-bias resistor is connected to a source electrode of the field effect transistor. モノリシック集積回路であって、低抵抗の上記抵抗は注入抵抗で構成し、高抵抗の抵抗はエピ抵抗で構成することを特徴とする請求項1または2に記載のバイアス回路。   3. The bias circuit according to claim 1, wherein the low-resistance resistor is an injection resistor, and the high-resistance resistor is an epi resistor.
JP2010255738A 2010-11-16 2010-11-16 Bias circuit Pending JP2012109713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255738A JP2012109713A (en) 2010-11-16 2010-11-16 Bias circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255738A JP2012109713A (en) 2010-11-16 2010-11-16 Bias circuit

Publications (1)

Publication Number Publication Date
JP2012109713A true JP2012109713A (en) 2012-06-07

Family

ID=46494884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255738A Pending JP2012109713A (en) 2010-11-16 2010-11-16 Bias circuit

Country Status (1)

Country Link
JP (1) JP2012109713A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529842A (en) * 1991-07-23 1993-02-05 Mitsubishi Electric Corp Electric field effect transistor amplifier
JPH11195936A (en) * 1998-01-06 1999-07-21 Mitsubishi Electric Corp Microwave amplifier circuit
JP2007060458A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Cascode connection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529842A (en) * 1991-07-23 1993-02-05 Mitsubishi Electric Corp Electric field effect transistor amplifier
JPH11195936A (en) * 1998-01-06 1999-07-21 Mitsubishi Electric Corp Microwave amplifier circuit
JP2007060458A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Cascode connection circuit

Similar Documents

Publication Publication Date Title
US7339402B2 (en) Differential amplifier with over-voltage protection and method
TWI498703B (en) Voltage regulator
JP2004062374A (en) Voltage regulator
US8975947B1 (en) Shunt switch
US20110012682A1 (en) Electronic circuit with cascode amplifier
TW201512803A (en) Voltage regulator
US9525937B2 (en) Circuit for suppressing audio output noise and audio output circuit
US7948329B2 (en) Oscillator gain circuit and method
JP2009189006A (en) Optical receiving circuit
TW201541220A (en) Voltage regulator and semiconductor device
US9837973B2 (en) High voltage input circuit for a differential amplifier
US9136796B2 (en) Negative audio signal voltage protection circuit and method for audio ground circuits
US20170047901A1 (en) Protection circuit for power amplifier
KR101618971B1 (en) Power amplifier of the inverter form
TWI555329B (en) Cascode switch device and voltage proetection method
US9939835B2 (en) Reference potential generation circuit
US20160070288A1 (en) Voltage generation circuit
US11336191B1 (en) Power supply device with low loss
JP2012109713A (en) Bias circuit
US11264955B2 (en) Semiconductor amplifier circuit and semiconductor circuit
TWI643051B (en) Voltage regulator
KR102001754B1 (en) I-v conversion module
JP2007315836A (en) Overheat detecting device
JP2004282959A (en) Drive device of voltage-control type drive element
JP5820176B2 (en) Electronic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805