JP2012109063A5 - - Google Patents

Download PDF

Info

Publication number
JP2012109063A5
JP2012109063A5 JP2010255475A JP2010255475A JP2012109063A5 JP 2012109063 A5 JP2012109063 A5 JP 2012109063A5 JP 2010255475 A JP2010255475 A JP 2010255475A JP 2010255475 A JP2010255475 A JP 2010255475A JP 2012109063 A5 JP2012109063 A5 JP 2012109063A5
Authority
JP
Japan
Prior art keywords
coating
film
conductive substrate
surface side
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010255475A
Other languages
Japanese (ja)
Other versions
JP2012109063A (en
JP5387988B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010255475A priority Critical patent/JP5387988B2/en
Priority claimed from JP2010255475A external-priority patent/JP5387988B2/en
Publication of JP2012109063A publication Critical patent/JP2012109063A/en
Publication of JP2012109063A5 publication Critical patent/JP2012109063A5/ja
Application granted granted Critical
Publication of JP5387988B2 publication Critical patent/JP5387988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

(態様3) 前記第2加熱工程が、前記導電性基板を当該導電性基板のガラス転移温度以下で、塗膜裏面側又は塗膜裏面側と塗膜面側の両面のいずれかから加熱処理すると同時に、過熱水蒸気を塗膜面に接触させて塗膜面側を加熱処理する態様1または2のいずれかに記載した金属ナノ粒子焼結体薄膜層の形成方法である。
(Aspect 3) When the second heating step heat-treats the conductive substrate from either the coating film back surface side or the coating film back surface side and the coating film surface side at a glass transition temperature or lower of the conductive substrate. At the same time, the method for forming a metal nanoparticle sintered body thin film layer according to any one of aspects 1 and 2, wherein superheated steam is brought into contact with the coating surface to heat-treat the coating surface.

[3] 金属ナノ粒子焼結体層の形成
本発明の金属ナノ粒子焼結体層は、基本的に、金属ナノ粒子を導電性基板に塗布する工程、導電性基板を当該導電性基板のガラス転移温度以下で、加熱処理する第1加熱工程、導電性基板を当該導電性基板のガラス転移温度以下で、塗膜裏面側又は塗膜裏面側と塗膜面側の両面のいずれかから加熱処理すると同時に、過熱水蒸気を塗膜面に接触させて塗膜面側を加熱処理する第2加熱工程からなり、必要に応じて、第2加熱工程後に、導電性基板を当該導電性基板のガラス転移温度以下で、加熱処理する第3加熱工程を加えることにより形成される。以下に各工程について説明する。
[3] Formation of Metal Nanoparticle Sintered Body Layer The metal nanoparticle sintered body layer of the present invention basically includes a step of applying metal nanoparticles to a conductive substrate, and the conductive substrate is made of glass of the conductive substrate. 1st heating process which heat-processes below a transition temperature, and heat-treats a conductive substrate from the coating-film back side or both surfaces of a coating-film back side and a coating-film surface side below the glass transition temperature of the said conductive substrate At the same time, it comprises a second heating step in which superheated steam is brought into contact with the coating surface to heat-treat the coating surface, and if necessary, the conductive substrate is transferred to the glass transition of the conductive substrate after the second heating step. It forms by adding the 3rd heating process of heat-processing below temperature. Each step will be described below.

(3)第2加熱工程
本発明の第2加熱工程は、主として金属ナノ粒子表面に形成されている被覆剤分子層を金属ナノ粒子表面から離脱させることを目的に行われる。被覆分子層が消失することにより、金属ナノ粒子相互が接触して金属ナノ粒子の融着が進行し、焼結体層が形成されるからである。本発明では、過熱水蒸気を連続的に塗膜面に接触させることによりその被覆分子層を迅速に金属ナノ粒子層から離脱させている。水の熱容量の大きさに着目したものである。さらに、被覆分子が離脱した瞬間に塗膜裏面側と塗膜面側から均一に熱が加えられることにより、金属ナノ粒子の低温融着反応が塗膜全体で効率よく進行する。加熱温度は、導電性基板のガラス転移温度以下で行われる。本発明は、前記被覆剤の沸点が導電性基板のガラス転移温度より高い場合に、金属ナノ粒子表面に形成されている被覆剤分子層を金属ナノ粒子表面から迅速に離脱させて、導電性基板上に金属ナノ粒子焼結体層を形成する方法だからである。
(3) Second Heating Step The second heating step of the present invention is performed mainly for the purpose of releasing the coating agent molecular layer formed on the surface of the metal nanoparticles from the surface of the metal nanoparticles. This is because the disappearance of the covering molecular layer brings the metal nanoparticles into contact with each other, so that the fusion of the metal nanoparticles proceeds and a sintered body layer is formed. In the present invention, the coated molecular layer is rapidly detached from the metal nanoparticle layer by continuously contacting superheated steam with the coating surface. It focuses on the heat capacity of water. Furthermore, the heat is uniformly applied from the coating film back side and the coating film surface side at the moment when the coating molecules are detached, whereby the low-temperature fusion reaction of the metal nanoparticles proceeds efficiently throughout the coating film. The heating temperature is not higher than the glass transition temperature of the conductive substrate. In the present invention, when the boiling point of the coating agent is higher than the glass transition temperature of the conductive substrate, the coating agent molecular layer formed on the surface of the metal nanoparticle is quickly separated from the surface of the metal nanoparticle, This is because the metal nanoparticle sintered body layer is formed thereon.

(1)金属ナノ粒子焼結体層を担持した導電性基板の作製
(実施例1)
透明導電性フィルム(ITO/PEN 帝人デュポン製、膜厚200μm、サイズ5cm×5cm)にデシルアミンを被覆剤分子として用いた白金コロイド溶液(以下、PtDAコロイドトルエン溶液;Pt 5wt%、田中貴金属工業製)250μLをスピンコーター(ミカサ製 1H−7D型)を用いてITO/PENフィルム上に塗布した。塗膜形成したITO/PENフィルムを塗膜面を上にして(裏面側)、デジタルホトスターラー(アズワン製 DP2S型)の上に載せ、25℃から150℃まで毎分25℃の速度で150℃まで昇温し、150℃で5min加熱した。塗布面側も裏面側と同様の加熱を行った。その後、裏面側を150℃で5min加熱したまま、塗膜面側からスチームアイロンを塗布面から2cm離して過熱水蒸気を塗布面に5min吹き付けた。
(1) Production of conductive substrate carrying metal nanoparticle sintered body layer (Example 1)
Platinum colloid solution using transparent conductive film (ITO / PEN made by Teijin DuPont, film thickness 200μm, size 5cm × 5cm) as decylamine as coating molecule (hereinafter referred to as PtDA colloid toluene solution; Pt 5wt%, manufactured by Tanaka Kikinzoku Kogyo) 250 μL was applied onto the ITO / PEN film using a spin coater (Mikasa 1H-7D type). The coated ITO / PEN film is placed on a digital photo stirrer (DP2S model made by ASONE) with the coating surface facing up (back side), and a temperature of 150 ° C. at a rate of 25 ° C. per minute from 25 ° C. to 150 ° C. And heated at 150 ° C. for 5 min. The application surface side was heated similarly to the back surface side. Thereafter, with the back surface heated at 150 ° C. for 5 min, the steam iron was separated from the coating surface by 2 cm from the coating surface side, and superheated steam was sprayed on the coating surface for 5 min.

(実施例2)
実施例1と同様に過熱水蒸気に用いた加熱処理をした後、さらに塗膜形成したITO/PENフィルムを塗膜面を上にして(裏面側)、150℃に設定したデジタルホトスターラー(アズワン製 DP2S型)の上に載せ、150℃で5min加熱した。塗布面側も裏面側と同様の加熱を行った。
(Example 2)
After heat treatment using superheated steam in the same manner as in Example 1, the ITO / PEN film on which the coating film was formed was coated with the coating surface up (back side), and a digital photo stirrer set at 150 ° C. (manufactured by ASONE) DP2S type) and heated at 150 ° C. for 5 minutes. The application surface side was heated similarly to the back surface side.

(実施例3)
透明導電性フィルム(ITO/PEN 帝人デュポン製、膜厚200μm、サイズ5cm×5cm)にPtDAコロイドトルエン溶液(Pt 5wt%、田中貴金属工業製)250μLをスピンコーター(ミカサ製 1H−7D型)を用いてITO/PENフィルム上に塗布した。塗膜形成したITO/PENフィルムを塗膜面を上にして(裏面側)、デジタルホトスターラー(アズワン製 DP2S型)の上に載せ、25℃から150℃まで毎分25℃の速度で150℃まで昇温し、150℃で5min加熱した。塗布面側も裏面側と同様の加熱を行った。その後、裏面側を150℃で5min加熱したまま、塗膜面側から表面温度を150℃としたスチームアイロンを塗布面にほぼ接触させた状態で過熱水 蒸気を塗布面に5min吹き付けた。その後、さらに塗膜形成したITO/PENフィルムを塗膜面を上にして(裏面側)、150℃に設定したデジタルホトスターラー(アズワン製 DP2S型)の上に載せ、150℃で5min加熱した。塗布面側も裏面側と同様の加熱を行った。
(Example 3)
Using a spin coater (Mikasa 1H-7D type) 250 μL of PtDA colloidal toluene solution (Pt 5 wt%, Tanaka Kikinzoku Kogyo) on transparent conductive film (ITO / PEN Teijin DuPont, film thickness 200 μm, size 5 cm × 5 cm) And coated on an ITO / PEN film. The coated ITO / PEN film is placed on a digital photo stirrer (DP2S model made by ASONE) with the coating surface facing up (back side), and a temperature of 150 ° C. at a rate of 25 ° C. per minute from 25 ° C. to 150 ° C. And heated at 150 ° C. for 5 min. The application surface side was heated similarly to the back surface side. Thereafter, while 5min heated backside at 0.99 ° C., was sprayed 5min superheated water vapor to the coated surface in a state of being almost contacted with steam iron with a 0.99 ° C. The surface temperature from the coated film surface side to the coating surface. Thereafter, the ITO / PEN film on which the coating film was further formed was placed on a digital photo stirrer (DP2S type manufactured by ASONE) with the coating film face up (back side) and heated at 150 ° C. for 5 minutes. The application surface side was heated similarly to the back surface side.

(比較例1)
過熱水蒸気加熱をホットプレート加熱に替えたほかは、実施例1と同様とした。
(比較例2)
裏面加熱を行わない他は、比較例1と同様とした。
(比較例3)
塗布面加熱を行わない他は、比較例1と同様とした。
(Comparative Example 1)
The procedure was the same as Example 1 except that the superheated steam heating was replaced with hot plate heating.
(Comparative Example 2)
It was the same as Comparative Example 1 except that backside heating was not performed.
(Comparative Example 3)
It was the same as Comparative Example 1 except that the coated surface was not heated.

(7)白金対極の作製
透明導電性フィルム(ITO/PEN 帝人デュポン製、膜厚200μm、サイズ5cm×5cm)に、PtDAコロイドトルエン溶液(Pt 5wt%、田中貴金属工業製)250μLをスピンコーター(ミカサ製 1H−7D型)を用いてITO/PENフィルム上に塗布した。塗膜形成したITO/PENフィルムを塗膜面を上にしてデジタルホトスターラー(アズワン製 DP2S型)の上に載せ、25℃から150℃まで毎分25℃の速度で150℃まで昇温し、150℃で5min加熱した。塗布面側も裏面側と同様の加熱を行った。その後、裏面側を150℃で5min加熱したまま、塗膜面側から表面温度を150℃としたスチームアイロンを塗布面にほぼ接触させた状態で過熱水蒸気を塗布面に5min吹き付けた。
(7) Preparation of platinum counter electrode A transparent conductive film (ITO / PEN made by Teijin DuPont, film thickness 200 μm, size 5 cm × 5 cm), 250 μL of PtDA colloidal toluene solution (Pt 5 wt%, Tanaka Kikinzoku Kogyo) spin coater (Mikasa) 1H-7D type) was applied on the ITO / PEN film. The coated ITO / PEN film was placed on a digital photo stirrer (DP2S model made by ASONE) with the coating surface facing up, and the temperature was raised from 25 ° C. to 150 ° C. at a rate of 25 ° C. per minute to 150 ° C., Heated at 150 ° C. for 5 min. The application surface side was heated similarly to the back surface side. Thereafter, while the back surface side was heated at 150 ° C. for 5 minutes, superheated steam was sprayed onto the coated surface for 5 minutes with a steam iron having a surface temperature of 150 ° C. being almost in contact with the coated surface.

(1)表1は、実施例1〜3、及び比較例1〜3の方法により導電性基板上に形成した白金薄膜層の塗膜物性(密着性と塗膜強度)について評価結果を対比してまとめたものである。
第2加熱工程において過熱水蒸気を用いた加熱処理を行うことで、導電性基板上に形成した白金薄膜層の塗膜物性(密着性と塗膜強度)が改善した。特に、パネルヒーターによる加熱と過熱水蒸気を用いた加熱処理とを併せて行うことで前記塗膜物性はより改善される。
(1) Table 1 compares the evaluation results for the coating film properties (adhesion and coating strength) of the platinum thin film layer formed on the conductive substrate by the methods of Examples 1 to 3 and Comparative Examples 1 to 3. Are summarized.
By performing the heat treatment using superheated steam in the second heating step, the coating film properties (adhesion and coating film strength) of the platinum thin film layer formed on the conductive substrate were improved. In particular, the physical properties of the coating film are further improved by performing heating with a panel heater and heat treatment using superheated steam .

Claims (1)

前記第2加熱工程が、前記導電性基板を当該導電性基板のガラス転移温度以下で、塗膜裏面側又は塗膜裏面側と塗膜面側の両面のいずれかから加熱処理すると同時に、過熱水蒸 を塗膜面に接触させて塗膜面側を加熱処理することを特徴とする請求項1または2のいずれかに記載の金属ナノ粒子焼結体薄膜層の形成方法。
The second heating step, the conductive substrate below the glass transition temperature of the conductive substrate, and at the same time heated from either both sides of the coating the back side or the coated film back surface side and the coating side, superheated water method of forming a metal nanoparticle sintered thin film layer according to any one of claims 1 or 2, characterized in that the gas-steam in contact with the coated surface to heat treatment the coated film surface side.
JP2010255475A 2010-11-16 2010-11-16 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell Expired - Fee Related JP5387988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255475A JP5387988B2 (en) 2010-11-16 2010-11-16 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255475A JP5387988B2 (en) 2010-11-16 2010-11-16 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell

Publications (3)

Publication Number Publication Date
JP2012109063A JP2012109063A (en) 2012-06-07
JP2012109063A5 true JP2012109063A5 (en) 2013-06-13
JP5387988B2 JP5387988B2 (en) 2014-01-15

Family

ID=46494483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255475A Expired - Fee Related JP5387988B2 (en) 2010-11-16 2010-11-16 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell

Country Status (1)

Country Link
JP (1) JP5387988B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189870B2 (en) * 2008-03-21 2013-04-24 株式会社豊田中央研究所 Electrolytic solution and dye-sensitized solar cell
JP2010080316A (en) * 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd Transparent conductive substrate, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2013529173A5 (en)
CN104882223A (en) Oxidized graphene/silver nanowire composite transparent conducting thin film and preparation method thereof
CN105752965B (en) CVD method prepares the lithographic method that multi-layer graphene film is directly formed in graphene
JP2008544555A5 (en)
CN105405492A (en) Preparation method for flexible transparent conductive thin film with high thermal stability and product thereof
JP2018504749A (en) Transparent sheet heating element
CN105070352A (en) Flexible super-flat transparent conductive film and preparing method thereof
JP2014130853A5 (en)
WO2018040954A1 (en) Preparation of pet/nano silver wire transparent conductive film by illumination sintering
JP2008270746A5 (en)
JP2007508416A5 (en)
JP2016507460A5 (en)
JP2014129431A5 (en)
WO2018040955A1 (en) Preparation of chemical grafting-modified pet/nano silver wire transparent conductive film
CN109423614A (en) Target material assembly manufacturing method
JP2011107359A5 (en) Optical article and method of manufacturing optical article
JP2017524045A5 (en)
JP2021509527A (en) Manufacturing method of transparent electrode
JP2012109063A5 (en)
CN107381558B (en) A kind of preparation method and high-electroconductivity graphene film of high-electroconductivity graphene film
CN113242616B (en) Method for preparing graphene high-temperature electrothermal film based on LIG method
JP2014221877A (en) Heat-resistant pasting sheet
KR101826149B1 (en) Transparent surface heating device
CN106624371A (en) Method for forming patterned graphene on target device
CN109171709A (en) A kind of dry electrode and preparation method thereof