JP2012108102A - Method for evaluating fatigue fracture of cylindrical metal material - Google Patents

Method for evaluating fatigue fracture of cylindrical metal material Download PDF

Info

Publication number
JP2012108102A
JP2012108102A JP2011195240A JP2011195240A JP2012108102A JP 2012108102 A JP2012108102 A JP 2012108102A JP 2011195240 A JP2011195240 A JP 2011195240A JP 2011195240 A JP2011195240 A JP 2011195240A JP 2012108102 A JP2012108102 A JP 2012108102A
Authority
JP
Japan
Prior art keywords
cylindrical
test material
cylindrical test
metal material
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011195240A
Other languages
Japanese (ja)
Other versions
JP5503608B2 (en
Inventor
Eiichi Tamura
栄一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011195240A priority Critical patent/JP5503608B2/en
Publication of JP2012108102A publication Critical patent/JP2012108102A/en
Application granted granted Critical
Publication of JP5503608B2 publication Critical patent/JP5503608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating the fatigue fracture of a cylindrical metal material that is capable of not only surely reproducing a fatigue fracture occurring on the inner surface of a cylindrical metal material but simply evaluating fatigue characteristics of the inner surface of the cylindrical metal material with high accuracy.SOLUTION: Characteristics of the fatigue fracture of a cylindrical metal material are evaluated in the following manner. First, a cylindrical test piece 1 is prepared in which the outer diameter of the center part 1b is set equal to or less than 90% of that of a restraint part 1a; the ratio of the outer to inner diameters of the center part 1b satisfies the relation of (outer diameter/inner diameter)≤2; and the thickness of the center part 1b is set equal to or greater than 1 mm. Second, a compressive residual stress equal to or greater than 25% of the tensile strength of the metal material is applied on the outer surface of the center part 1b and a compressive residual stress equal to or less than 2.5% of the tensile strength thereof is applied to a point 0.8 mm deep from the outer surface. Third, a fatigue fracture is caused on the inner surface of the cylindrical test piece 1 by applying a repeated bending or torsional load to the cylindrical test piece 1, and then the characteristics of the fatigue fracture of the cylindrical metal material are evaluated based on conditions of the repeated bending or torsional load under which the fatigue fracture occurs.

Description

本発明は、金属素材で成る円筒形試験材の両端部を拘束し、前記円筒形試験材に曲げ負荷或いはねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させ、円筒形金属素材の内面に発生する疲労破壊を再現させる円筒形金属素材の疲労破壊評価方法に関するものである。   The present invention constrains both ends of a cylindrical test material made of a metal material, and generates a fatigue failure on the inner surface of the cylindrical test material by applying a bending load or a torsion load to the cylindrical test material. The present invention relates to a fatigue fracture evaluation method for a cylindrical metal material that reproduces the fatigue fracture occurring on the inner surface of the metal material.

従来から機械構造物には多くの円筒形金属素材が用いられているが、円筒形金属素材の外面についての表面性状の品質管理は目視等で容易にできるものの、円筒形金属素材の内面については目視等で確認できず表面性状の品質管理が非常に行いにくいという問題があった。その結果、円筒形金属素材の内面の表面粗さ(表面凹凸の差)が大きすぎる場合等には、機械構造物の使用条件、使用環境によっては、円筒形金属素材の内面を起点とする破壊が発生する可能性がある。特に円筒形金属素材の曲がり形状部においては、その内面に大きな曲げ応力やねじり応力が加わり、図4に示すように、その内面を起点とする疲労破壊2が発生する可能性がより高くなる。   Conventionally, many cylindrical metal materials have been used for mechanical structures, but quality control of the surface properties of the outer surface of the cylindrical metal material can be easily performed by visual inspection, but the inner surface of the cylindrical metal material There was a problem that the quality control of the surface texture was very difficult to perform because it could not be confirmed visually. As a result, if the surface roughness of the inner surface of the cylindrical metal material (difference in surface irregularities) is too large, etc., the fracture starting from the inner surface of the cylindrical metal material depends on the use conditions and environment of the machine structure. May occur. In particular, in a bent portion of a cylindrical metal material, a large bending stress or torsional stress is applied to the inner surface, and as shown in FIG. 4, the possibility of occurrence of fatigue failure 2 starting from the inner surface becomes higher.

従って、円筒形金属素材の内面を起点とする疲労特性を事前に把握することが機械構造物の安全性を高める上で重要になる。しかしながら、図3に示すように、単に円筒形金属素材を模した円筒形試験材1の両端部を試験機治具3で拘束し、その円筒形試験材1に対して曲げ負荷或いはねじり負荷を加えただけでは、円筒形試験材1の内面よりも先に外面から疲労破壊2が発生することになり、機械構造物の円筒形金属素材の内面に発生する疲労破壊を再現することはできなかった。   Therefore, it is important for grasping the fatigue characteristics starting from the inner surface of the cylindrical metal material in advance to enhance the safety of the mechanical structure. However, as shown in FIG. 3, both ends of a cylindrical test material 1 simulating a cylindrical metal material are restrained by a testing machine jig 3, and a bending load or a torsion load is applied to the cylindrical test material 1. If only the addition is made, fatigue fracture 2 will occur from the outer surface before the inner surface of the cylindrical test material 1, and the fatigue fracture occurring on the inner surface of the cylindrical metal material of the machine structure cannot be reproduced. It was.

以上説明したような実情から、簡便且つ精度良く円筒形金属素材の内面の疲労特性を評価できる試験手法を開発することが従来からの課題となっていた。   From the situation as described above, it has been a conventional problem to develop a test method capable of evaluating the fatigue characteristics of the inner surface of a cylindrical metal material simply and accurately.

円筒形金属素材の疲労特性を評価する試験手法としては、特許文献1記載のパイプ等の曲げ疲労試験方法が提案されているが、この試験方法は、供試材であるパイプ等の棒材の端部に外嵌する部分を有し、且つその外嵌部の肉厚が棒材の中央部に向かって薄くなるように外周にテーパーを施した短柱状の曲げ治具を棒材の両端に嵌着し、該曲げ治具における外嵌部以外の部分に繰り返し曲げモーメントをかける試験方法である。   As a test method for evaluating the fatigue characteristics of a cylindrical metal material, a bending fatigue test method for a pipe or the like described in Patent Document 1 has been proposed. This test method is used for a bar material such as a pipe as a test material. A short column-shaped bending jig with a taper on the outer periphery is provided at both ends of the bar so that the outer part has a part that fits outward and the thickness of the outer part becomes thinner toward the center of the bar. This is a test method in which a bending moment is repeatedly applied to portions other than the outer fitting portion of the bending jig.

しかしながらこの提案は、供試材であるパイプ等の棒材の端部を曲げ治具で拘束して曲げ疲労試験を行った場合、その拘束部等に先に破壊が発生することを防止しようとした提案であって、機械構造物の円筒形金属素材の内面に発生する疲労破壊を再現することを目的とした提案ではない。   However, this proposal is intended to prevent the occurrence of breakage in the restraint part etc. first when the end part of a bar material such as a pipe as a test material is restrained with a bending jig and a bending fatigue test is performed. This is not a proposal intended to reproduce the fatigue fracture that occurs on the inner surface of the cylindrical metal material of the mechanical structure.

また、特許文献2により、実管回転曲げ疲労試験機の実管試験片取りつけ用装置に関する提案がなされているが、この提案も特許文献1と同様に、回転曲げ疲労試験の際に実管の拘束部に破壊が発生することを防止しようとした提案に過ぎない。   In addition, Patent Document 2 proposes a device for mounting an actual tube test piece of an actual tube rotating bending fatigue tester. This proposal, too, is similar to Patent Document 1, in the case of a rotating bending fatigue test. This is just a proposal to prevent the restraint from being broken.

特開昭62−174630号公報Japanese Patent Laid-Open No. 62-174630 実開平2−135846号公報Japanese Utility Model Publication No.2-135846

本発明は、上記従来の実情に鑑みてなされたもので、機械構造物の円筒形金属素材の内面に発生する疲労破壊を確実に再現させることができ、簡便且つ精度良く円筒形金属素材の内面の疲労特性を評価することができる円筒形金属素材の疲労破壊評価方法を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional situation, and can reliably reproduce the fatigue failure occurring on the inner surface of the cylindrical metal material of the mechanical structure, and can easily and accurately perform the inner surface of the cylindrical metal material. It is an object of the present invention to provide a method for evaluating fatigue fracture of a cylindrical metal material capable of evaluating the fatigue characteristics of steel.

請求項1記載の発明は、金属素材で成る円筒形試験材の両端部を拘束し、前記円筒形試験材に繰り返し曲げ負荷或いはねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させ、円筒形金属素材の内面に発生する疲労破壊を再現させる円筒形金属素材の疲労破壊評価方法であって、前記円筒形試験材の中央部の外径を両端の拘束部の外径の90%以下とすると共に、前記中央部の外径と内径の比を(外径/内径)≦2とし、且つ、前記中央部の素材厚さを1mm以上とし、前記円筒形試験材の中央部の外表面に前記金属素材の引張強度の25%以上、その外表面より0.8mm深さの位置に前記金属素材の引張強度の2.5%以下の圧縮残留応力を負荷した状態とし、前記円筒形試験材に、繰り返し曲げ負荷或いはねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させ、その疲労破壊が生じた繰り返し曲げ負荷の条件或いはねじり負荷の条件を基に円筒形金属素材の疲労破壊特性を評価することを特徴とする円筒形金属素材の疲労破壊評価方法である。   According to the first aspect of the present invention, both ends of a cylindrical test material made of a metal material are restrained, and repeated bending load or torsion load is applied to the cylindrical test material to cause fatigue fracture on the inner surface of the cylindrical test material. A fatigue fracture evaluation method for a cylindrical metal material that reproduces the fatigue fracture that occurs on the inner surface of the cylindrical metal material, wherein the outer diameter of the central portion of the cylindrical test material is equal to the outer diameter of the restraint portions at both ends. 90% or less, the ratio of the outer diameter to the inner diameter of the central portion is (outer diameter / inner diameter) ≦ 2, the material thickness of the central portion is 1 mm or more, and the central portion of the cylindrical test material The outer surface of the metal material is loaded with a compressive residual stress of 25% or more of the tensile strength of the metal material and at a depth of 0.8 mm from the outer surface of 2.5% or less of the tensile strength of the metal material, Cylindrical test material, repeated bending load or torsion load In addition, fatigue failure occurs on the inner surface of the cylindrical test material, and the fatigue failure characteristics of the cylindrical metal material are evaluated based on the repeated bending load condition or torsional load condition that caused the fatigue failure. This is a fatigue fracture evaluation method for a cylindrical metal material.

請求項2記載の発明は、前記円筒形試験材に繰り返し曲げ負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させるときに、前記円筒形試験材の両端の拘束部の外面曲げ応力振幅が前記金属素材の引張強度の25%以上、且つ、前記拘束部の素材厚さが2.5mm以下である場合には、前記拘束部の空洞内部に変形抑制治具を嵌入した状態で、前記円筒形試験材に繰り返し曲げ負荷を加えて前記円筒形試験材の内面に疲労破壊を発生させることを特徴とする請求項1記載の円筒形金属素材の疲労破壊評価方法である。   According to the second aspect of the present invention, when a fatigue failure is generated on the inner surface of the cylindrical test material by repeatedly applying a bending load to the cylindrical test material, the outer surface bending of the constraining portions at both ends of the cylindrical test material is performed. When the stress amplitude is 25% or more of the tensile strength of the metal material and the material thickness of the restraint portion is 2.5 mm or less, a deformation suppression jig is fitted inside the cavity of the restraint portion. 2. The fatigue failure evaluation method for a cylindrical metal material according to claim 1, wherein a bending load is repeatedly applied to the cylindrical test material to cause fatigue failure on the inner surface of the cylindrical test material.

請求項3記載の発明は、前記円筒形試験材に繰り返しねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させるときに、前記円筒形試験材の両端の拘束部の外面せん断応力振幅が前記金属素材の引張強度の50%以上、且つ、前記拘束部の素材厚さが2.5mm以下である場合には、前記拘束部の空洞内部に変形抑制治具を嵌入した状態で、前記円筒形試験材に繰り返しねじり負荷を加えて前記円筒形試験材の内面に疲労破壊を発生させることを特徴とする請求項1記載の円筒形金属素材の疲労破壊評価方法である。   According to a third aspect of the present invention, when fatigue damage is generated on the inner surface of the cylindrical test material by repeatedly applying a torsional load to the cylindrical test material, the outer surface shearing of the restraining portions at both ends of the cylindrical test material is performed. When the stress amplitude is 50% or more of the tensile strength of the metal material and the material thickness of the restraint portion is 2.5 mm or less, a deformation suppression jig is fitted inside the cavity of the restraint portion. 2. The fatigue failure evaluation method for a cylindrical metal material according to claim 1, wherein a torsional load is repeatedly applied to the cylindrical test material to cause fatigue failure on the inner surface of the cylindrical test material.

本発明の円筒形金属素材の疲労破壊評価方法によると、機械構造物の円筒形金属素材の内面に発生する疲労破壊を、先に外面から疲労破壊が発生してしまうことなく、確実に再現させることができ、簡便且つ精度良く円筒形金属素材の内面の疲労特性を評価することができる。   According to the fatigue fracture evaluation method for a cylindrical metal material of the present invention, the fatigue fracture occurring on the inner surface of the cylindrical metal material of the machine structure is reliably reproduced without causing the fatigue fracture from the outer surface first. It is possible to evaluate the fatigue characteristics of the inner surface of the cylindrical metal material easily and accurately.

本発明の円筒形金属素材の疲労破壊評価方法により回転曲げ疲労試験を実施している状態を示し、(a)は正面図、(b)は円筒形試験材の端面を示す側面図である。The state which is implementing the rotation bending fatigue test by the fatigue fracture evaluation method of the cylindrical metal raw material of this invention is shown, (a) is a front view, (b) is a side view which shows the end surface of a cylindrical test material. 請求項2または3記載の円筒形金属素材の疲労破壊評価方法により回転曲げ疲労試験を実施している状態を示し、(a)は変形抑制治具を透視して示す正面図、(b)は(a)のX−X線断面図である。The state which is performing the rotation bending fatigue test by the fatigue fracture evaluation method of the cylindrical metal raw material of Claim 2 or 3 is shown, (a) is a front view which shows a deformation | transformation suppression jig | tool through, (b) is shown. It is XX sectional drawing of (a). 従来からの円筒形金属素材の疲労破壊評価方法により回転曲げ疲労試験を実施している状態を示す正面図である。It is a front view which shows the state which is implementing the rotation bending fatigue test by the fatigue fracture evaluation method of the conventional cylindrical metal raw material. 円筒形金属素材の曲がり形状部においてその内面を起点とする疲労破壊が発生する位置を示すための円筒形金属素材の断面図である。It is sectional drawing of the cylindrical metal raw material for showing the position where the fatigue fracture which starts the inner surface in the bending shape part of a cylindrical metal raw material generate | occur | produces.

以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.

本発明の円筒形金属素材の疲労破壊評価方法は、例えば、図1に示すように、鉄、銅、アルミニウム等の金属素材で成る円筒形試験材1の両端部を、試験機治具3で拘束し、その円筒形試験材1に繰り返し曲げ負荷或いはねじり負荷を加えることで、その円筒形試験材1の内面に、図4に示すような位置を起点とする疲労破壊2を発生させ、機械構造物の円筒形金属素材1Aの内面に発生する疲労破壊2を再現させる方法である。   For example, as shown in FIG. 1, the fatigue fracture evaluation method for a cylindrical metal material according to the present invention uses a testing machine jig 3 to attach both ends of a cylindrical test material 1 made of a metal material such as iron, copper, or aluminum. By restraining and repeatedly applying a bending load or a torsion load to the cylindrical test material 1, a fatigue failure 2 starting from the position shown in FIG. 4 is generated on the inner surface of the cylindrical test material 1. This is a method for reproducing the fatigue fracture 2 occurring on the inner surface of the cylindrical metal material 1A of the structure.

この疲労破壊評価方法に用いる円筒形試験材1は、両端の拘束部1a,1aとその中間に位置する中央部1bとより構成される。両端の拘束部1a,1aと中央部1bの長さは、図1に示す実施形態の場合は、略1:1:1の比率であり、円筒形試験材1の全長や直径によっても異なるが、中央部1bの長さは20〜30mmとすることが好ましい。   A cylindrical test material 1 used for this fatigue fracture evaluation method is composed of constraining portions 1a and 1a at both ends and a central portion 1b located in the middle thereof. In the embodiment shown in FIG. 1, the lengths of the restraining portions 1 a and 1 a and the central portion 1 b at both ends are approximately 1: 1: 1, and the length varies depending on the overall length and diameter of the cylindrical test material 1. The length of the central portion 1b is preferably 20 to 30 mm.

また、円筒形試験材1の中央部1bの外径を、両端の拘束部1a,1aの外径の90%以下とする。更には、中央部1bの外径と内径の比を、(外径/内径)≦2とし、且つ、中央部1bの素材厚さを1mm以上とする。   In addition, the outer diameter of the central portion 1b of the cylindrical test material 1 is 90% or less of the outer diameter of the restraining portions 1a and 1a at both ends. Furthermore, the ratio of the outer diameter to the inner diameter of the central portion 1b is set to (outer diameter / inner diameter) ≦ 2, and the material thickness of the central portion 1b is set to 1 mm or more.

本発明の円筒形金属素材の疲労破壊評価方法では、このような形状の円筒形試験材1に対し、事前に中央部の外表面に金属素材の引張強度の25%以上、その外表面より0.8mm深さの位置に金属素材の引張強度の2.5%以下の圧縮残留応力を負荷した状態とした上で、円筒形試験材1に、繰り返し曲げ負荷或いはねじり負荷を加えることで円筒形試験材1の内面に疲労破壊2を発生させ、機械構造物の円筒形金属素材の内面に発生する疲労破壊2を再現させる。   In the method for evaluating fatigue fracture of a cylindrical metal material according to the present invention, the cylindrical test material 1 having such a shape is previously subjected to 25% or more of the tensile strength of the metal material on the outer surface of the central portion in advance from its outer surface. After applying a compressive residual stress of 2.5% or less of the tensile strength of the metal material at a depth of 8 mm, a cylindrical shape is obtained by repeatedly applying a bending load or a torsion load to the cylindrical test material 1. A fatigue failure 2 is generated on the inner surface of the test material 1 to reproduce the fatigue failure 2 generated on the inner surface of the cylindrical metal material of the mechanical structure.

次に、円筒形試験材1の中央部1bの外径等の数値限定理由について説明する。   Next, the reason for limiting the numerical values such as the outer diameter of the central portion 1b of the cylindrical test material 1 will be described.

(円筒形試験材の中央部の外径が両端の拘束部の外径の90%以下)
円筒形試験材1の両端の拘束部1a,1aには応力集中が発生するため、図3に示すような従来からの円筒形金属素材の疲労破壊評価方法では、曲げ負荷或いはねじり負荷を加えると、試験機治具3で拘束した位置を起点とする疲労破壊2が発生する。このように、試験機治具3で拘束した位置を起点とする疲労破壊2が発生した場合、機械構造物の円筒形金属素材1Aの内面に発生する疲労破壊2を再現することができなくなる。
(The outer diameter of the central part of the cylindrical test material is 90% or less of the outer diameter of the restraining part at both ends)
Since stress concentration occurs in the restraining portions 1a and 1a at both ends of the cylindrical test material 1, in the conventional fatigue fracture evaluation method for a cylindrical metal material as shown in FIG. 3, if a bending load or a torsion load is applied, The fatigue fracture 2 starting from the position restrained by the testing machine jig 3 occurs. As described above, when the fatigue failure 2 starting from the position constrained by the testing machine jig 3 occurs, the fatigue failure 2 generated on the inner surface of the cylindrical metal material 1A of the mechanical structure cannot be reproduced.

そこで、円筒形試験材1の中央部1bの外径を、両端の拘束部1a,1aの外径より小さくすることで、円筒形試験材1の中央部1bの発生応力を拘束部1aの発生応力より大きくすることができ、円筒形試験材1の中央部1bにおいて疲労破壊2を発生させることが可能となる。   Therefore, by making the outer diameter of the central portion 1b of the cylindrical test material 1 smaller than the outer diameters of the restraining portions 1a and 1a at both ends, the generated stress of the central portion 1b of the cylindrical test material 1 is generated in the restraining portion 1a. The stress can be made larger than the stress, and the fatigue failure 2 can be generated in the central portion 1b of the cylindrical test material 1.

円筒形試験材1の中央部1bの発生応力を両端の拘束部1a,1aの発生応力より大きくするためには、円筒形試験材1の中央部1bの外径を両端の拘束部1a,1aの外径より十分に小さくする必要があり、実験検討により、円筒形試験材1の中央部1bの発生応力を両端の拘束部1a,1aの発生応力より大きくするためには、円筒形試験材1の中央部1bの外径を拘束部1aの外径の90%以下とする必要があることを見出した。円筒形試験材1の中央部1bの外径を拘束部1aの外径の90%以下とすることで、筒形試験材1の中央部1bで疲労破壊2を発生させることが可能となる。   In order to make the generated stress of the central portion 1b of the cylindrical test material 1 larger than the generated stress of the constraining portions 1a and 1a at both ends, the outer diameter of the central portion 1b of the cylindrical test material 1 is set to the constraining portions 1a and 1a at both ends. In order to make the generated stress of the central portion 1b of the cylindrical test material 1 larger than the generated stress of the restraining portions 1a and 1a at both ends, it is necessary to make it sufficiently smaller than the outer diameter of the cylindrical test material 1 It has been found that the outer diameter of the central portion 1b of 1 needs to be 90% or less of the outer diameter of the restraining portion 1a. By setting the outer diameter of the central portion 1b of the cylindrical test material 1 to 90% or less of the outer diameter of the restraining portion 1a, the fatigue failure 2 can be generated in the central portion 1b of the cylindrical test material 1.

(円筒形試験材の中央部の外径と内径の比を(外径/内径)≦2、円筒形試験材の中央部の外表面に金属素材の引張強度の25%以上の圧縮残留応力を負荷)
一般に、円筒形試験材1に対し曲げ変形或いはねじり変形を加えると、円筒形試験材1の中央部1bの内面の応力よりも外面の応力の方が大きくなり、円筒形試験材1の中央部1bの外表面を起点とする疲労破壊2が発生することが考えられる。
(The ratio of the outer diameter to the inner diameter of the central part of the cylindrical test material is (outer diameter / inner diameter) ≦ 2, and the outer surface of the central part of the cylindrical test material has a compressive residual stress of 25% or more of the tensile strength of the metal material. load)
In general, when bending deformation or torsional deformation is applied to the cylindrical test material 1, the stress on the outer surface becomes larger than the stress on the inner surface of the central portion 1 b of the cylindrical test material 1. It is conceivable that the fatigue fracture 2 starting from the outer surface of 1b occurs.

このように、円筒形試験材1の中央部1bの外表面を起点とする疲労破壊2が発生することを防止する策として、円筒形試験材1の中央部1bの外表面を起点とする亀裂発生に対する抵抗を高める手法と、円筒形試験材1の中央部1bの外面応力と内面応力の差を低減させる手法を採用することが考えられる。前の手法を採用する場合は、円筒形試験材1の外面に圧縮応力を加えることが有効であり、後の手法を採用する場合は、円筒形試験材1の外径と内径の差を低減させることが有効である。   Thus, as a measure for preventing the occurrence of fatigue failure 2 starting from the outer surface of the central portion 1b of the cylindrical test material 1, a crack starting from the outer surface of the central portion 1b of the cylindrical test material 1 is used. It is conceivable to employ a technique for increasing resistance to generation and a technique for reducing the difference between the outer surface stress and the inner surface stress of the central portion 1 b of the cylindrical test material 1. When the previous method is adopted, it is effective to apply compressive stress to the outer surface of the cylindrical test material 1, and when the later method is adopted, the difference between the outer diameter and the inner diameter of the cylindrical test material 1 is reduced. It is effective to make it.

以上のような見解をもとに、円筒形試験材1の中央部1bの内表面を起点とする疲労破壊2が発生する条件について、実験検討を行った結果、円筒形試験材1の中央部1bの外表面に金属素材の引張強度の25%以上の圧縮残留応力を負荷させた状態とし、それに加え、円筒形試験材1の中央部1bの外径と内径の比を、(外径/内径)≦2とすることで、円筒形試験材1の中央部1bの内表面を起点とする疲労破壊2が安定して発生することを見出した。   Based on the above view, as a result of conducting an experimental study on the conditions under which fatigue failure 2 occurs starting from the inner surface of the central portion 1b of the cylindrical test material 1, the central portion of the cylindrical test material 1 is obtained. The outer surface of 1b was loaded with a compressive residual stress of 25% or more of the tensile strength of the metal material. In addition, the ratio of the outer diameter to the inner diameter of the central portion 1b of the cylindrical test material 1 was expressed as (outer diameter / It was found that the fatigue fracture 2 starting from the inner surface of the central portion 1b of the cylindrical test material 1 occurs stably by setting the inner diameter) ≦ 2.

(円筒形試験材の外表面より0.8mm深さ位置に金属素材の引張強度の2.5%以下の圧縮残留応力を負荷、円筒形試験材の中央部の板厚を1mm以上)
円筒形試験材1の中央部1bの外表面に圧縮残留応力を加える手法としてショットピーニングなどの手法を採用することが考えられるが、円筒形試験材1の中央部1bの外表面に圧縮残留応力を負荷すると、その圧縮残留応力が外表面だけでなく円筒形試験材1の中央部1bのより深い位置まで影響を及ぼすことになる。しかしながら、この圧縮残留応力が円筒形試験材1の中央部1bの一定の深さ以上にまで影響を及ぼした場合、円筒形試験材1の中央部1bの内表面を起点とする疲労破壊2が発生しにくい状況となる。また、円筒形試験材1の中央部1bの板厚が薄すぎた場合、円筒形試験材1の中央部1bの内表面にまで圧縮残留応力の影響を及ぼすことになり、このような場合は、材料の疲労特性を評価することができなくなる。
(A compressive residual stress of 2.5% or less of the tensile strength of the metal material is loaded at a depth of 0.8 mm from the outer surface of the cylindrical test material, and the thickness of the central part of the cylindrical test material is 1 mm or more)
As a technique for applying compressive residual stress to the outer surface of the central part 1 b of the cylindrical test material 1, it is conceivable to employ a technique such as shot peening, but the compressive residual stress is applied to the outer surface of the central part 1 b of the cylindrical test specimen 1. , The compressive residual stress affects not only the outer surface but also a deeper position of the central portion 1b of the cylindrical test material 1. However, when this compressive residual stress affects more than a certain depth of the central portion 1b of the cylindrical test material 1, the fatigue fracture 2 starting from the inner surface of the central portion 1b of the cylindrical test material 1 is caused. The situation is unlikely to occur. Moreover, when the plate | board thickness of the center part 1b of the cylindrical test material 1 is too thin, it will have an influence of a compressive residual stress to the inner surface of the center part 1b of the cylindrical test material 1, In such a case, The fatigue characteristics of the material cannot be evaluated.

ここでは、ショットピーニングによる圧縮残留応力の板厚方向の分布調査を行い、円筒形試験材1の中央部1bの板厚を1mm以上とし、且つ、円筒形試験材1の中央部1bの外表面より0.8mm深さの位置の圧縮残留応力を金属素材の引張強度の2.5%以下とすることで、円筒形試験材1の中央部1bの外表面に加えた圧縮残留応力の影響を回避できることを見出した。   Here, the distribution of compressive residual stress by shot peening is investigated in the thickness direction, the thickness of the central portion 1b of the cylindrical test material 1 is set to 1 mm or more, and the outer surface of the central portion 1b of the cylindrical test material 1 is measured. By setting the compressive residual stress at a depth of 0.8 mm to 2.5% or less of the tensile strength of the metal material, the effect of the compressive residual stress applied to the outer surface of the central portion 1b of the cylindrical test material 1 can be reduced. I found that it can be avoided.

尚、実験検討により、円筒形試験材1の中央部1bの外表面に金属素材の引張強度の25%以上、その外表面より0.8mm深さの位置に金属素材の引張強度の2.5%以下の圧縮残留応力を負荷した状態とするためのショットピーニングの条件を検討したところ、ショットピーニングを1段目と2段目に分け、且つ、1段目と2段目のショットピーニングを以下に例示する条件等で実施すれば良いことを確認した。   In addition, as a result of experimental investigation, the outer surface of the central portion 1b of the cylindrical test material 1 has a tensile strength of 2.5% or more at a position of 25% or more of the tensile strength of the metallic material and a depth of 0.8 mm from the outer surface. When we examined the conditions of shot peening to achieve a compressive residual stress of less than 10%, shot peening was divided into the first and second stages, and the first and second stages of shot peening were It was confirmed that it should be carried out under the conditions exemplified in.

例えば、後述する実施例において示しているような、引張強度1000MPa以上2000MPa以下の鋼材を使用した円筒形試験材の疲労評価をする場合には、ショットピーニングの条件は、1段目のショットピーニングを、ショット粒径:φ0.5〜1mm、投射速度:75〜100m/sec、投射時間:40〜60secとし、2段目のショットピーニングを、ショット粒径:φ0.3〜1mm、投射速度:30〜75m/sec、投射時間:40〜60secとすることである。   For example, when performing fatigue evaluation of a cylindrical test material using a steel material having a tensile strength of 1000 MPa or more and 2000 MPa or less, as shown in the examples described later, the shot peening condition is the first stage shot peening. , Shot particle size: φ0.5-1 mm, projection speed: 75-100 m / sec, projection time: 40-60 sec, second stage shot peening, shot particle size: φ0.3-1 mm, projection speed: 30 ˜75 m / sec, projection time: 40 to 60 sec.

以上説明した円筒形金属素材1Aの疲労破壊評価方法により、機械構造物の円筒形金属素材1Aの内面に発生する疲労破壊を、先に外面から疲労破壊が発生してしまうことなく、試験で確実に再現させることができ、簡便且つ精度良く円筒形金属素材1Aの内面の疲労特性を評価することができる。   By the fatigue fracture evaluation method for cylindrical metal material 1A described above, the fatigue fracture that occurs on the inner surface of cylindrical metal material 1A of the machine structure can be reliably confirmed by the test without causing fatigue fracture from the outer surface first. The fatigue characteristics of the inner surface of the cylindrical metal material 1A can be evaluated easily and accurately.

しかし、円筒形試験材1に加える曲げ負荷或いはねじり負荷を大きくして実験を行う場合、円筒形試験材1の拘束部1aのすべりを防止するために、より大きな圧力を加えて拘束部1aを拘束することになる。このような方法で実験を行った場合、条件によれば、拘束部1aがその大きな圧力により変形してしまうことがあり、中央部1bの内面からよりも先に拘束部1aの内面から亀裂が発生してしまう可能性があることを否定できない。   However, when the experiment is performed with an increased bending load or torsion load applied to the cylindrical test material 1, in order to prevent the restraint portion 1 a of the cylindrical test material 1 from slipping, the restraint portion 1 a is applied by applying a larger pressure. You will be restrained. When the experiment is performed by such a method, depending on the conditions, the constraining portion 1a may be deformed by the large pressure, and a crack is generated from the inner surface of the constraining portion 1a before the inner surface of the central portion 1b. It cannot be denied that it may occur.

そこで実験による検討を行った結果、その条件は、円筒形試験材1に繰り返し曲げ負荷を加える場合と、円筒形試験材1に繰り返しねじり負荷を加える場合で、異なることが分かった。   As a result of examination by experiment, it was found that the conditions differ between when the bending load is repeatedly applied to the cylindrical test material 1 and when the torsional load is repeatedly applied to the cylindrical test material 1.

円筒形試験材1に曲げ負荷を加えるときの前記条件は、円筒形試験材1の両端の拘束部1aの外面曲げ応力振幅が、金属素材の引張強度の25%以上であり、且つ、その拘束部1aの素材厚さが2.5mm以下の場合である。   The condition when the bending load is applied to the cylindrical test material 1 is that the outer surface bending stress amplitude of the restraining portion 1a at both ends of the cylindrical test material 1 is 25% or more of the tensile strength of the metal material, and the restraint thereof. This is a case where the material thickness of the portion 1a is 2.5 mm or less.

一方、円筒形試験材1にねじり負荷を加えるときの前記条件は、円筒形試験材1の両端の拘束部1aの外面せん断応力振幅が金属素材の引張強度の50%以上であり、且つ、その拘束部1aの素材厚さが2.5mm以下の場合である。   On the other hand, the condition when the torsional load is applied to the cylindrical test material 1 is that the outer surface shear stress amplitude of the restraining portion 1a at both ends of the cylindrical test material 1 is 50% or more of the tensile strength of the metal material, and This is a case where the material thickness of the restraining portion 1a is 2.5 mm or less.

上記した夫々の条件を満足する場合、円筒形試験材1の拘束部1aのすべりを防止するために、より大きな圧力でその拘束部1aを拘束すると、その大きな圧力によって拘束部1aが変形してしまうことが考えられ、中央部1bの内面からより先に拘束部1aの内面から亀裂が発生してしまう可能性がある。しかしながら、図2に示すように、拘束部1aの空洞1c内部に変形抑制治具4を嵌入すれば、外部からの大きな圧力による拘束部1aの変形を抑制することができる。その結果、拘束部1aの内面から亀裂が発生することを防止でき、確実に中央部1bの内面から亀裂を発生させることができる。すなわち、拘束部1aの空洞1c内部に変形抑制治具4を嵌入することで、円筒形金属素材1Aの内面に発生する疲労破壊を確実に再現させることができる。   When each of the above conditions is satisfied, in order to prevent the restraint portion 1a of the cylindrical test material 1 from slipping, if the restraint portion 1a is restrained with a larger pressure, the restraint portion 1a is deformed by the large pressure. There is a possibility that a crack may occur from the inner surface of the restraining portion 1a before the inner surface of the central portion 1b. However, as shown in FIG. 2, if the deformation suppressing jig 4 is fitted inside the cavity 1c of the restricting portion 1a, deformation of the restricting portion 1a due to a large external pressure can be suppressed. As a result, it is possible to prevent a crack from being generated from the inner surface of the restraining portion 1a, and to reliably generate a crack from the inner surface of the central portion 1b. That is, by inserting the deformation suppressing jig 4 into the cavity 1c of the restraining portion 1a, it is possible to reliably reproduce the fatigue failure that occurs on the inner surface of the cylindrical metal material 1A.

この変形抑制治具4は、円柱状の軸部4aと頭部4bより形成されている。軸部4aの径は、円筒形試験材1の拘束部1aの空洞1cの内径より例えば0.01mm程度小さいだけであり、拘束部1aの空洞1c内部にこの変形抑制治具4の軸部4aを嵌入することで、外部からの大きな圧力による拘束部1aの変形を抑制することができる。また、この軸部4aの先端は半球状であり、変形抑制治具4と空洞1c内面との境界に形状不連続を生じにくくしている。一方、頭部4bは、変形抑制治具4が必要以上に拘束部1aの空洞1c内部に入り込んでしまうことを防止するためのストッパーの役割をなし、軸部4aより大径であることが条件であるが、図2に示す実施形態では、円筒形試験材1の拘束部1aと同じ大きさの円形断面形状である。   The deformation suppressing jig 4 is formed of a cylindrical shaft portion 4a and a head portion 4b. The diameter of the shaft portion 4a is only about 0.01 mm smaller than the inner diameter of the cavity 1c of the restraint portion 1a of the cylindrical test material 1, and the shaft portion 4a of the deformation suppressing jig 4 is placed inside the cavity 1c of the restraint portion 1a. The deformation of the restraining portion 1a due to a large external pressure can be suppressed. Further, the tip of the shaft portion 4a is hemispherical, and makes it difficult for shape discontinuity to occur at the boundary between the deformation suppressing jig 4 and the inner surface of the cavity 1c. On the other hand, the head 4b serves as a stopper for preventing the deformation suppressing jig 4 from entering the inside of the cavity 1c of the restraining portion 1a more than necessary, and has a condition that it has a larger diameter than the shaft portion 4a. However, in the embodiment shown in FIG. 2, the circular cross-sectional shape has the same size as the restraining portion 1 a of the cylindrical test material 1.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

表1および表2に示すA〜L、a〜fの各種条件の円筒形試験材を作製し、JIS Z 2274に示す回転曲げ疲労試験およびねじり疲労試験を実施した。尚、円筒形試験材の中央部の長さは全て25mmとした。   Cylindrical test materials under various conditions of A to L and a to f shown in Table 1 and Table 2 were prepared, and a rotating bending fatigue test and a torsional fatigue test shown in JIS Z 2274 were performed. The length of the central part of the cylindrical test material was all 25 mm.

円筒形試験材を作製した後に、下記の条件でショットピーニングを施し、円筒形試験材に圧縮残留応力を負荷した。尚、ショットピーニングには鋼球を用いた。   After producing the cylindrical test material, shot peening was performed under the following conditions, and a compressive residual stress was applied to the cylindrical test material. A steel ball was used for shot peening.

ショットピーニング条件(A,B,C,D,F,G,H,I,J,L,a,b,c,d,e,f)
1段目:ショット粒径φ0.8mm、投射速度88m/sec、投射時間:50sec
2段目:ショット粒径φ0.3mm、投射速度50m/sec、投射時間:50sec
ショットピーニング条件(E,K)
1段目:ショット粒径φ0.8mm、投射速度88m/sec、投射時間:10sec
2段目:ショット粒径φ0.3mm、投射速度50m/sec、投射時間:10sec
Shot peening conditions (A, B, C, D, F, G, H, I, J, L, a, b, c, d, e, f)
First stage: shot particle diameter φ0.8mm, projection speed 88m / sec, projection time: 50sec
Second stage: Shot particle diameter φ0.3mm, Projection speed 50m / sec, Projection time: 50sec
Shot peening conditions (E, K)
First stage: shot particle diameter φ0.8mm, projection speed 88m / sec, projection time: 10sec
Second stage: Shot particle diameter φ0.3mm, Projection speed 50m / sec, Projection time: 10sec

回転曲げ疲労試験の試験結果を表1に示す。   Table 1 shows the results of the rotating bending fatigue test.

Figure 2012108102
Figure 2012108102

A〜Cは発明例であり、いずれの場合でも円筒形試験材の内面に疲労破壊が発生した。これら発明例のうちでは、円筒形試験材の内面の表面粗さ(表面凹凸の差)が最も大きい発明例Aが、破断寿命が最も短く、円筒形試験材の内面の表面粗さ(表面凹凸の差)が最も小さい発明例Cが、破断寿命が最も長い結果となった。この試験結果は、円筒形金属素材の内面の表面粗さ(表面凹凸の差)が破断寿命に影響を及ぼしていることを示す結果である。   A to C are examples of the invention, and in any case, fatigue failure occurred on the inner surface of the cylindrical test material. Among these invention examples, Invention Example A having the largest surface roughness (difference in surface irregularities) of the cylindrical test material has the shortest rupture life, and the surface roughness (surface irregularities) of the cylindrical test material. Inventive example C having the smallest difference) has the longest fracture life. This test result is a result showing that the surface roughness (difference in surface irregularities) of the inner surface of the cylindrical metal material has an influence on the fracture life.

Dは円筒形試験材の中央部の外径と内径の比(外径/内径)が2.5と大きすぎる比較例、Eは円筒形試験材の中央部の外表面の圧縮残留応力が金属素材の引張強度の21%と小さすぎる比較例、Fは円筒形試験材の中央部の板厚(素材厚さ)が0.5mmと薄すぎる比較例である。   D is a comparative example in which the ratio of the outer diameter to the inner diameter (outer diameter / inner diameter) of the central part of the cylindrical test material is 2.5, which is too large. E is a compressive residual stress on the outer surface of the central part of the cylindrical test material. Comparative example 21 which is too small, 21% of the tensile strength of the material, F is a comparative example where the plate thickness (material thickness) of the central part of the cylindrical test material is too thin, 0.5 mm.

その結果、比較例Dでは円筒形試験材の中央部の応力が十分に大きくならず拘束部において破断した。比較例Eでは、円筒形試験材の中央部の外表面の破壊抵抗が十分に大きくならず中央部の外表面において破断した。   As a result, in Comparative Example D, the stress at the central portion of the cylindrical test material was not sufficiently increased and fractured at the restraint portion. In Comparative Example E, the fracture resistance of the outer surface of the central portion of the cylindrical test material was not sufficiently increased, and the fracture occurred on the outer surface of the central portion.

比較例Fでは、円筒形試験材の中央部の板厚(素材厚さ)が薄すぎるため、中央部の内表面にまで圧縮残留応力の影響が及ぶこととなり、発明例Bよりも円筒形金属素材の内面の表面粗さ(表面凹凸の差)が大きかったにも関わらず、発明例Bよりも疲労寿命が大きいという相矛盾した結果が得られた。すなわち、比較例Fのような円筒形試験材を用いた試験では正確な試験結果が得られないことが分かる。   In Comparative Example F, since the plate thickness (material thickness) of the central portion of the cylindrical test material is too thin, the effect of compressive residual stress is exerted on the inner surface of the central portion. Although the surface roughness (difference in surface irregularities) of the inner surface of the material was large, a contradictory result was obtained that the fatigue life was longer than that of Invention Example B. In other words, it can be seen that an accurate test result cannot be obtained in the test using the cylindrical test material as in Comparative Example F.

a〜cは発明例であるが、請求項2記載の変形抑制治具を用いた場合に得られる効果を確認するための回転曲げ疲労試験の試験結果を示す。発明例aは、拘束部の外面曲げ応力振幅が金属素材の引張強度の25%以上となっているが、拘束部の板厚(素材厚さ)が2.5mmを超えているため、中央部の内面から破壊が発生している。   Although ac is an example of an invention, the test result of the rotation bending fatigue test for confirming the effect acquired when the deformation | transformation suppression jig | tool of Claim 2 is used is shown. In invention example a, the outer surface bending stress amplitude of the restraint portion is 25% or more of the tensile strength of the metal material, but the plate thickness (material thickness) of the restraint portion exceeds 2.5 mm. Destruction has occurred from the inside.

一方、発明例b,cは、拘束部の外面曲げ応力振幅が金属素材の引張強度の25%以上で、なお且つ拘束部の板厚(素材厚さ)が2.5mmであり、発明例bは、変形抑制治具を用いなかった事例、発明例cは、変形抑制治具を拘束部の空洞内部に嵌入して試験を行った事例である。その結果、変形抑制治具を用いた発明例cの方が変形抑制治具を用いなかった発明例bより破断寿命が長いという結果が得られた。疲労破壊は基本的に中央部の内面から発生するが、試験を重ねた結果、変形抑制治具を用いなかった発明例bでは、中央部の内面より先に拘束部の内面から破壊が発生することがあるという結果を得ることができた。   On the other hand, in invention examples b and c, the outer surface bending stress amplitude of the restraint portion is 25% or more of the tensile strength of the metal material, and the plate thickness (material thickness) of the restraint portion is 2.5 mm. Is a case where the deformation suppression jig was not used, and Invention Example c was a case where the deformation suppression jig was inserted into the cavity of the restraint portion and tested. As a result, the result was obtained that the invention example c using the deformation suppressing jig had a longer fracture life than the invention example b not using the deformation suppressing jig. Fatigue fracture basically occurs from the inner surface of the central portion. However, as a result of repeated tests, in Invention Example b in which the deformation suppression jig was not used, fracture occurred from the inner surface of the restraining portion before the inner surface of the central portion. I was able to get results that

以上の試験結果から、円筒形試験材の両端の拘束部の外面曲げ応力振幅が金属素材の引張強度の25%以上、且つ、拘束部の板厚(素材厚さ)が2.5mm以下である場合には、疲労破壊が中央部の内面より先に拘束部の内面から破壊が発生する可能性があるが、変形抑制治具を用いることで、確実に疲労破壊を中央部の内面から発生させることができるということを確認できた。   From the above test results, the outer surface bending stress amplitude of the restraint portion at both ends of the cylindrical test material is 25% or more of the tensile strength of the metal material, and the plate thickness (material thickness) of the restraint portion is 2.5 mm or less. In some cases, fatigue failure may occur from the inner surface of the constraining portion before the inner surface of the central portion, but by using a deformation suppression jig, the fatigue failure is reliably generated from the inner surface of the central portion. I was able to confirm that it was possible.

ねじり疲労試験の試験結果を表2に示す。   Table 2 shows the test results of the torsional fatigue test.

Figure 2012108102
Figure 2012108102

G〜Iは発明例であり、いずれの場合でも円筒形試験材の内面に疲労破壊が発生した。これら発明例のうちでは、円筒形試験材の内面の表面粗さ(表面凹凸の差)が最も大きい発明例Gが、破断寿命が最も短く、円筒形試験材の内面の表面粗さ(表面凹凸の差)が最も小さい発明例Iが、破断寿命が最も長い結果となった。この試験結果は、円筒形金属素材の内面の表面粗さ(表面凹凸の差)が破断寿命に影響を及ぼしていることを示す結果である。   GI are invention examples, and in any case, fatigue fracture occurred on the inner surface of the cylindrical test material. Among these invention examples, Invention Example G, which has the largest surface roughness (difference in surface irregularities) of the cylindrical test material, has the shortest fracture life, and the surface roughness (surface irregularities) of the cylindrical test material. Inventive Example I having the smallest difference) has the longest fracture life. This test result is a result showing that the surface roughness (difference in surface irregularities) of the inner surface of the cylindrical metal material has an influence on the fracture life.

Jは円筒形試験材の中央部の外径と内径の比(外径/内径)が2.5と大きすぎる比較例、Kは円筒形試験材の中央部の外表面の圧縮残留応力が金属素材の引張強度の20%と小さすぎる比較例、Lは円筒形試験材の中央部の板厚が0.5mmと薄すぎる比較例である。   J is a comparative example in which the ratio of the outer diameter to the inner diameter (outer diameter / inner diameter) of the central portion of the cylindrical test material is too large as 2.5, and K is a compressive residual stress of the outer surface of the central portion of the cylindrical test material is a metal. A comparative example in which the tensile strength of the raw material is 20% which is too small, and L is a comparative example in which the thickness of the central portion of the cylindrical test material is too thin at 0.5 mm.

その結果、比較例Jでは円筒形試験材の中央部の応力が十分に大きくならず拘束部において破断した。比較例Kでは、円筒形試験材の中央部の外表面の破壊抵抗が十分に大きくならず中央部の外表面において破断した。   As a result, in Comparative Example J, the stress at the central portion of the cylindrical test material was not sufficiently increased, and fractured at the restraint portion. In Comparative Example K, the fracture resistance of the outer surface of the central portion of the cylindrical test material was not sufficiently increased, and the fracture occurred on the outer surface of the central portion.

比較例Lでは、円筒形試験材の中央部の板厚が薄すぎるため、中央部の内表面にまで圧縮残留応力の影響が及ぶこととなり、発明例Hよりも円筒形金属素材の内面の表面粗さ(表面凹凸の差)が大きかったにも関わらず、発明例Hよりも疲労寿命が大きいという相矛盾した結果が得られた。すなわち、比較例Lのような円筒形試験材を用いた試験では正確な試験結果が得られないことが分かる。   In Comparative Example L, since the plate thickness of the central portion of the cylindrical test material is too thin, the inner surface of the central portion is affected by the compressive residual stress, and the surface of the inner surface of the cylindrical metal material is more than that of Invention Example H. Although the roughness (difference in surface irregularities) was large, a contradictory result was obtained in which the fatigue life was longer than that of Invention Example H. In other words, it can be seen that an accurate test result cannot be obtained in a test using a cylindrical test material as in Comparative Example L.

d〜fは発明例であるが、請求項3記載の変形抑制治具を用いた場合に得られる効果を確認するための回転曲げ疲労試験の試験結果を示す。発明例dは、拘束部の外面せん断応力振幅が金属素材の引張強度の50%以上となっているが、拘束部の板厚(素材厚さ)が2.5mmを超えているため、中央部の内面から破壊が発生している。   df is an example of an invention, The test result of the rotation bending fatigue test for confirming the effect acquired when the deformation | transformation suppression jig | tool of Claim 3 is used is shown. In invention example d, the outer surface shear stress amplitude of the restraint portion is 50% or more of the tensile strength of the metal material, but the plate thickness (material thickness) of the restraint portion exceeds 2.5 mm. Destruction has occurred from the inside.

一方、発明例e,fは、拘束部の外面せん断応力振幅が金属素材の引張強度の50%以上で、なお且つ拘束部の板厚(素材厚さ)が2.5mmであり、発明例eは、変形抑制治具を用いなかった事例、発明例fは、変形抑制治具を拘束部の空洞内部に嵌入して試験を行った事例である。その結果、変形抑制治具を用いた発明例fの方が変形抑制治具を用いなかった発明例eより破断寿命が長いという結果が得られた。疲労破壊は基本的に中央部の内面から発生するが、試験を重ねた結果、変形抑制治具を用いなかった発明例eでは、中央部の内面より先に拘束部の内面から破壊が発生することがあるという結果を得ることができた。   On the other hand, invention examples e and f have an outer surface shear stress amplitude of the restraint portion of 50% or more of the tensile strength of the metal material, and the plate thickness (material thickness) of the restraint portion is 2.5 mm. Is an example in which the deformation suppression jig was not used, and Invention Example f was an example in which the test was performed by inserting the deformation suppression jig into the cavity of the restraint portion. As a result, the result that the fracture life of the invention example f using the deformation suppression jig was longer than that of the invention example e not using the deformation suppression jig was obtained. Fatigue fracture basically occurs from the inner surface of the central portion, but as a result of repeated tests, in Invention Example e in which the deformation suppression jig was not used, fracture occurred from the inner surface of the restraining portion before the inner surface of the central portion. I was able to get results that

以上の試験結果から、円筒形試験材の両端の拘束部の外面せん断応力振幅が金属素材の引張強度の50%以上、且つ、拘束部の板厚(素材厚さ)が2.5mm以下である場合には、疲労破壊が中央部の内面より先に拘束部の内面から破壊が発生する可能性があるが、変形抑制治具を用いることで、確実に疲労破壊を中央部の内面から発生させることができるということを確認できた。   From the above test results, the outer surface shear stress amplitude of the restraint portion at both ends of the cylindrical test material is 50% or more of the tensile strength of the metal material, and the plate thickness (material thickness) of the restraint portion is 2.5 mm or less. In some cases, fatigue failure may occur from the inner surface of the constraining portion before the inner surface of the central portion, but by using a deformation suppression jig, the fatigue failure is reliably generated from the inner surface of the central portion. I was able to confirm that it was possible.

1…円筒形試験材
1a…拘束部
1b…中央部
1c…空洞
1A…円筒形金属素材
2…疲労破壊
3…試験機治具
4…変形抑制治具
4a…軸部
4b…頭部
DESCRIPTION OF SYMBOLS 1 ... Cylindrical test material 1a ... Restraint part 1b ... Center part 1c ... Cavity 1A ... Cylindrical metal material 2 ... Fatigue failure 3 ... Test machine jig 4 ... Deformation suppression jig 4a ... Shaft part 4b ... Head

Claims (3)

金属素材で成る円筒形試験材の両端部を拘束し、前記円筒形試験材に繰り返し曲げ負荷或いはねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させ、円筒形金属素材の内面に発生する疲労破壊を再現させる円筒形金属素材の疲労破壊評価方法であって、
前記円筒形試験材の中央部の外径を両端の拘束部の外径の90%以下とすると共に、前記中央部の外径と内径の比を(外径/内径)≦2とし、且つ、前記中央部の素材厚さを1mm以上とし、
前記円筒形試験材の中央部の外表面に前記金属素材の引張強度の25%以上、その外表面より0.8mm深さの位置に前記金属素材の引張強度の2.5%以下の圧縮残留応力を負荷した状態とし、
前記円筒形試験材に、繰り返し曲げ負荷或いはねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させ、その疲労破壊が生じた繰り返し曲げ負荷の条件或いはねじり負荷の条件を基に円筒形金属素材の疲労破壊特性を評価することを特徴とする円筒形金属素材の疲労破壊評価方法。
By constraining both ends of a cylindrical test material made of a metal material and repeatedly applying a bending load or a torsion load to the cylindrical test material, fatigue failure occurs on the inner surface of the cylindrical test material, and the cylindrical metal material A method for evaluating fatigue fracture of a cylindrical metal material that reproduces fatigue fracture occurring on the inner surface,
The outer diameter of the central portion of the cylindrical test material is 90% or less of the outer diameter of the restraining portions at both ends, and the ratio of the outer diameter to the inner diameter of the central portion is (outer diameter / inner diameter) ≦ 2, and The material thickness of the central part is 1 mm or more,
Compressive residue of 25% or more of the tensile strength of the metal material on the outer surface of the central portion of the cylindrical test material and 2.5% or less of the tensile strength of the metal material at a depth of 0.8 mm from the outer surface. With stress applied,
By applying repeated bending load or torsional load to the cylindrical test material, fatigue failure occurs on the inner surface of the cylindrical test material, and based on the repeated bending load condition or torsional load condition where the fatigue failure occurred. A method for evaluating fatigue fracture of a cylindrical metal material characterized by evaluating fatigue fracture characteristics of the cylindrical metal material.
前記円筒形試験材に繰り返し曲げ負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させるときに、
前記円筒形試験材の両端の拘束部の外面曲げ応力振幅が前記金属素材の引張強度の25%以上、且つ、前記拘束部の素材厚さが2.5mm以下である場合には、
前記拘束部の空洞内部に変形抑制治具を嵌入した状態で、前記円筒形試験材に繰り返し曲げ負荷を加えて前記円筒形試験材の内面に疲労破壊を発生させることを特徴とする請求項1記載の円筒形金属素材の疲労破壊評価方法。
When generating fatigue failure on the inner surface of the cylindrical test material by repeatedly applying a bending load to the cylindrical test material,
When the outer surface bending stress amplitude of the constraining portion at both ends of the cylindrical test material is 25% or more of the tensile strength of the metal material, and the material thickness of the constraining portion is 2.5 mm or less,
The fatigue fracture is generated on the inner surface of the cylindrical test material by repeatedly applying a bending load to the cylindrical test material in a state where a deformation suppressing jig is fitted inside the cavity of the restraint portion. The fatigue fracture evaluation method for the cylindrical metal material described.
前記円筒形試験材に繰り返しねじり負荷を加えることで前記円筒形試験材の内面に疲労破壊を発生させるときに、
前記円筒形試験材の両端の拘束部の外面せん断応力振幅が前記金属素材の引張強度の50%以上、且つ、前記拘束部の素材厚さが2.5mm以下である場合には、
前記拘束部の空洞内部に変形抑制治具を嵌入した状態で、前記円筒形試験材に繰り返しねじり負荷を加えて前記円筒形試験材の内面に疲労破壊を発生させることを特徴とする請求項1記載の円筒形金属素材の疲労破壊評価方法。
When generating fatigue fracture on the inner surface of the cylindrical test material by repeatedly applying a torsional load to the cylindrical test material,
When the outer surface shear stress amplitude of the restraint portion at both ends of the cylindrical test material is 50% or more of the tensile strength of the metal material, and the material thickness of the restraint portion is 2.5 mm or less,
The fatigue fracture is generated on the inner surface of the cylindrical test material by repeatedly applying a torsional load to the cylindrical test material in a state in which a deformation suppressing jig is fitted inside the cavity of the restraint portion. The fatigue fracture evaluation method for the cylindrical metal material described.
JP2011195240A 2010-10-28 2011-09-07 Fatigue fracture evaluation method for cylindrical metal materials Expired - Fee Related JP5503608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195240A JP5503608B2 (en) 2010-10-28 2011-09-07 Fatigue fracture evaluation method for cylindrical metal materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010241808 2010-10-28
JP2010241808 2010-10-28
JP2011195240A JP5503608B2 (en) 2010-10-28 2011-09-07 Fatigue fracture evaluation method for cylindrical metal materials

Publications (2)

Publication Number Publication Date
JP2012108102A true JP2012108102A (en) 2012-06-07
JP5503608B2 JP5503608B2 (en) 2014-05-28

Family

ID=46493864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195240A Expired - Fee Related JP5503608B2 (en) 2010-10-28 2011-09-07 Fatigue fracture evaluation method for cylindrical metal materials

Country Status (1)

Country Link
JP (1) JP5503608B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090177A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Torsion test method of steel pipe
JP2017150876A (en) * 2016-02-23 2017-08-31 新日鐵住金株式会社 Method for manufacturing test piece, test piece and stress corrosion crack test method
CN108507875A (en) * 2018-03-22 2018-09-07 浙江工业大学 A kind of experimental rig suitable for homogeneous metal thin-walled straight tube fatigue test
CN108535107A (en) * 2018-03-28 2018-09-14 湖北新冶钢特种钢管有限公司 A kind of simple measurement method of seamless steel pipe residual stress
JPWO2017146245A1 (en) * 2016-02-24 2018-12-13 株式会社山本金属製作所 Fatigue testing equipment
KR101956349B1 (en) * 2017-01-26 2019-03-11 동아대학교 산학협력단 Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen
CN111678817A (en) * 2020-04-28 2020-09-18 中国电力科学研究院有限公司 Bending fatigue test method for hollow composite material insulator
CN112505286A (en) * 2019-09-16 2021-03-16 中国科学院上海光学精密机械研究所 Detection device and method for zinc-induced liquid metal crack formation condition
CN112763318A (en) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method
CN112781986A (en) * 2020-12-29 2021-05-11 中国航空工业集团公司西安飞机设计研究所 Method for testing tensile property of pure glue film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809213B2 (en) * 2016-12-27 2021-01-06 日本製鉄株式会社 Test method, test piece manufacturing method, and test piece

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090177A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Torsion test method of steel pipe
JP2017150876A (en) * 2016-02-23 2017-08-31 新日鐵住金株式会社 Method for manufacturing test piece, test piece and stress corrosion crack test method
JPWO2017146245A1 (en) * 2016-02-24 2018-12-13 株式会社山本金属製作所 Fatigue testing equipment
KR101956349B1 (en) * 2017-01-26 2019-03-11 동아대학교 산학협력단 Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen
CN108507875A (en) * 2018-03-22 2018-09-07 浙江工业大学 A kind of experimental rig suitable for homogeneous metal thin-walled straight tube fatigue test
CN108535107A (en) * 2018-03-28 2018-09-14 湖北新冶钢特种钢管有限公司 A kind of simple measurement method of seamless steel pipe residual stress
CN112505286A (en) * 2019-09-16 2021-03-16 中国科学院上海光学精密机械研究所 Detection device and method for zinc-induced liquid metal crack formation condition
CN112505286B (en) * 2019-09-16 2023-08-11 中国科学院上海光学精密机械研究所 Detection device and method for zinc-induced liquid metal crack formation condition
CN111678817A (en) * 2020-04-28 2020-09-18 中国电力科学研究院有限公司 Bending fatigue test method for hollow composite material insulator
CN112763318A (en) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method
CN112781986A (en) * 2020-12-29 2021-05-11 中国航空工业集团公司西安飞机设计研究所 Method for testing tensile property of pure glue film
CN112763318B (en) * 2020-12-29 2024-04-09 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method

Also Published As

Publication number Publication date
JP5503608B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5503608B2 (en) Fatigue fracture evaluation method for cylindrical metal materials
Takahashi et al. Improvement of fatigue limit by shot peening for high‐strength steel containing a crack‐like surface defect
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
Jeung et al. Crack initiation and propagation under fretting fatigue of inconel 600 alloy
JPWO2020170359A1 (en) Soundness evaluation device and method for fiber reinforced composite materials
Nakagawa et al. Improvement in fatigue limit by shot peening for high-strength steel containing crack-like surface defect: influence of surface crack aspect ratio
Takahashi et al. Effects of shot peening on the torsional fatigue limit of high‐strength steel containing an artificial surface defect
JP2010142899A (en) Stress improvement processing method
JP6543019B2 (en) Evaluation method of corrosion fatigue life of steel
Moinereau et al. STYLE project: a large scale ductile tearing experiment on a cladded ferritic pipe
Sadeler et al. The effect of contact pad hardness on the fretting fatigue behaviour of AZ61 magnesium alloy
JP7167748B2 (en) Ultrasonic fatigue test specimen and ultrasonic fatigue test method
JP6520547B2 (en) Method of manufacturing test piece
Schönbauer et al. Torsional fatigue properties of 17-4PH stainless steel in the VHCF regime
Sakamoto et al. Method for assessing applicability of an artificial flaw as a small initial crack for fatigue limit evaluation and its application to a drill hole and an FIB processed sharp notch in annealed 0.45% carbon steel
JP6607178B2 (en) Test method for stress corrosion cracking of pipes
JP2011064629A (en) Hollow metal tube for cracking test and method for manufacturing it
Mittal et al. Effect of vibration loading on the fatigue life of part-through notched pipe
JP5007461B2 (en) Design method for long-life fatigue strength of metallic materials
Chaudhari et al. Study of influence of notch root radius on fracture behaviour of extra deep drawn steel sheets
Fitzka et al. Ultrasonic fatigue testing of thin MP35N alloy wire
JP2022149121A (en) Method for predicting size of maximum inclusion in steel material
Goanta Plastic Deformation Degree Based on Vickers Hardness Test Near The Fractured Surfaces for Determining JIC
Sakamoto et al. Applicability of a FIB-notch as a small initial crack for fatigue limit evaluation
Xue et al. Fatigue life assessment of a high strength steel 300 M in the gigacycle regime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees