JP2012108011A - Fault point orientation method - Google Patents

Fault point orientation method Download PDF

Info

Publication number
JP2012108011A
JP2012108011A JP2010257463A JP2010257463A JP2012108011A JP 2012108011 A JP2012108011 A JP 2012108011A JP 2010257463 A JP2010257463 A JP 2010257463A JP 2010257463 A JP2010257463 A JP 2010257463A JP 2012108011 A JP2012108011 A JP 2012108011A
Authority
JP
Japan
Prior art keywords
surge
line
time
waveform
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010257463A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kurosawa
潔 黒澤
Reishi Kondo
礼志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010257463A priority Critical patent/JP2012108011A/en
Publication of JP2012108011A publication Critical patent/JP2012108011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fault point orientation method that can orient a fault point with high accuracy even if surge generated by an accident is attenuated as it is transmitted along a rail track.SOLUTION: A fault point orientation method comprises the steps of: measuring and storing a surge waveform of each end of a rail track that supplies power upon an accident in the rail track synchronously; picking up a waveform to which the stored surge waveform of each end of the rail track is most similar; obtaining a time difference between a time of the picked surge waveform of one end and a time of the picked surge waveform of the other end; and obtaining a distance from the one end of the rail track to a fault point based on the time difference to orient the fault point.

Description

本発明は、電力を供給する線路に事故が発生した場合にその事故点を標定する事故点標定方法に関する。   The present invention relates to an accident point locating method for locating an accident point when an accident occurs on a power supply line.

例えば、電力を供給する線路の事故点を標定する事故点標定方法には、事故瞬時に事故点で発生するサージが線路両端に到達する時間差から標定するようにしたものがある(例えば、非特許文献1参照)。すなわち、線路の一方端の親局ではサージを受信してからカウンタを起動して時間をカウントし、線路の他方端の子局ではサージを受信してから高周波信号を発生し親局に返送パルスとして送信する。そして、親局において、サージを受信してから子局から送られてくる返送パルスの到着時間差を計数し、事故点を標定するものである。この場合のサージは、電圧サージまたは電流サージである。サージの到達の時間差から事故点を標定するものでは、線路両端においてサージの有無を閾値で判定するようにしている。   For example, there is an accident point locating method for locating an accident point of a power supply line that is determined from a time difference at which a surge generated at the accident point instantaneously reaches both ends of the line (for example, non-patent) Reference 1). That is, the master station at one end of the line receives a surge and then starts a counter to count the time. The slave station at the other end of the line receives a surge and then generates a high-frequency signal and returns a pulse to the master station. Send as. Then, the master station counts the arrival time difference of the return pulses sent from the slave station after receiving the surge and determines the accident point. The surge in this case is a voltage surge or a current surge. In the case of locating the accident point from the time difference between the arrival of surges, the presence or absence of a surge at both ends of the line is determined by a threshold.

図5は、従来の閾値方式による事故点標定方法の説明図である。いま、線路の一方端を基準とした線路位置xを考え、線路の一方端の位置をx=0とし他方端の位置をx=Lとする。そして、時刻t(=0)において、線路の一方端からxfの位置Fで事故が発生し、その事故点F(x=xf)から線路の両端に向けて速度vで進むサージu1(t+x/v)、u2(t−x/v)を考える。   FIG. 5 is an explanatory diagram of an accident point location method using a conventional threshold method. Now, consider the line position x with respect to one end of the line, and assume that the position of one end of the line is x = 0 and the position of the other end is x = L. Then, at time t (= 0), an accident occurs at a position F of xf from one end of the line, and surge u1 (t + x /) advances at a speed v from the accident point F (x = xf) toward both ends of the line. v), u2 (tx / v).

そして、線路の一方端位置(x=0)における受信サージu1及び線路の他方端位置(x=L)における受信サージu2に対して閾値utを設けておき、線路の一方端位置(x=0)における受信サージu1が閾値utを超えた時刻t1を線路の一方端位置(x=0)におけるサージ受信時刻とし、線路の他方端位置(x=L)における受信サージu2が閾値utを超えた時刻t2を線路の他方端位置(x=L)におけるサージ受信時刻とする。   Then, a threshold value ut is provided for the reception surge u1 at one end position (x = 0) of the line and the reception surge u2 at the other end position (x = L) of the line, and one end position (x = 0) of the line. ), The time t1 when the reception surge u1 exceeds the threshold ut is the surge reception time at one end position (x = 0) of the line, and the reception surge u2 at the other end position (x = L) of the line exceeds the threshold ut Let time t2 be the surge reception time at the other end position (x = L) of the line.

図5に示すように、受信サージu1が線路の一方端位置(x=0)において閾値utを超えたときに受信サージu1の先端から線路の一方端位置(x=0)までの距離をΔx1とし、同様に、受信サージu2が線路の他方端位置(x=L)において閾値utを超えたときに受信サージu2の先端から線路の他方端位置(x=L)までの距離をΔx2とすると、下記の(1)、(2)式が成立する。   As shown in FIG. 5, when the reception surge u1 exceeds the threshold value ut at one end position (x = 0) of the line, the distance from the front end of the reception surge u1 to one end position (x = 0) of the line is expressed as Δx1. Similarly, when the reception surge u2 exceeds the threshold ut at the other end position (x = L) of the line, the distance from the front end of the reception surge u2 to the other end position (x = L) of the line is Δx2. The following equations (1) and (2) are established.

xf+Δx1=v・t1 …(1)
L−xf+Δx2=v・t2 …(2)
(1)、(2)式より、事故点F(x=xf)とサージ受信時刻t1、t2の関係が(3)式で示される。
xf + Δx1 = v · t1 (1)
L−xf + Δx2 = v · t2 (2)
From the equations (1) and (2), the relationship between the accident point F (x = xf) and the surge reception times t1 and t2 is represented by the equation (3).

xf={L−v(t2−t1)}/2+(Δx2−Δx1)/2 …(3)
ここで、Δx1=Δx2と仮定すると、(3)式は(4)式で示される。
xf = {L−v (t2−t1)} / 2+ (Δx2−Δx1) / 2 (3)
Here, assuming that Δx1 = Δx2, equation (3) is expressed by equation (4).

xf={L−v(t2−t1)}/2 …(4)
Lは線路の両端間の距離であるので既知であり、事故点F(x=xf)から線路の両端に向けて進むサージu1、u2も線路により決まる値であるので既知である。従って、線路の両端におけるサージu1、u2のサージ受信時刻t1、t2を測定することによって、その時間差(t2−t1)が求められると、(4)式により、事故点F(x=xf)を求めることができる。
xf = {Lv (t2-t1)} / 2 (4)
L is known because it is the distance between both ends of the line, and the surges u1 and u2 that proceed from the accident point F (x = xf) toward both ends of the line are also known because they are values determined by the line. Therefore, when the time difference (t2−t1) is obtained by measuring the surge reception times t1 and t2 of the surges u1 and u2 at both ends of the line, the accident point F (x = xf) is obtained from the equation (4). Can be sought.

電気共同研究第34巻第6号「フォルトロケータ標定信頼度向上対策」第10頁〜第11頁、昭和54年2月28日、社団法人電気共同研究会発行Electric Joint Research Vol. 34, No. 6 “Fault Locator Location Reliability Improvement Measures” pp. 10-11, February 28, 1979, published by Electric Joint Research Society

しかし、サージは線路を伝搬するに従い減衰するので、事故点Fが線路の中央でない限り、サージu1、u2のサージ波形は同じ大きさとならない。このことから、線路両端での閾値utを同じ値に設定しているのでサージ受信時刻t1、t2に誤差が生じたり、サージu1、u2のいずれか一方が検出できないことがある。   However, since the surge attenuates as it propagates through the line, the surge waveforms of the surges u1 and u2 do not have the same magnitude unless the accident point F is at the center of the line. Therefore, since the threshold value ut at both ends of the line is set to the same value, an error may occur in the surge reception times t1 and t2, or one of the surges u1 and u2 may not be detected.

図6は従来の閾値方式による事故点標定方法でサージ受信時刻t1、t2に誤差が生じる場合の説明図である。図6に示すように、サージu2の減衰が大きいとサージu2の高さが小さくなり、サージu2の受信時のΔx2がサージu1の受信時のΔx1より大きくなる。そうすると、(3)式の右辺の第2項{(Δx2−Δx1)/2}が零でなくなるので、(3)式の右辺の第2項が標定誤差となる。   FIG. 6 is an explanatory diagram in the case where an error occurs in the surge reception times t1 and t2 in the conventional fault location method using the threshold method. As shown in FIG. 6, when the attenuation of the surge u2 is large, the height of the surge u2 is small, and Δx2 when the surge u2 is received is larger than Δx1 when the surge u1 is received. Then, since the second term {(Δx2−Δx1) / 2} on the right side of the equation (3) is not zero, the second term on the right side of the equation (3) becomes an orientation error.

また、図7は従来の閾値方式による事故点標定方法でサージu1、u2のいずれか一方が検出できない場合の説明図である。線路の端部に到達するサージu1、u2のピーク値が閾値utに達しない場合には、サージは検出できない。図7ではサージu2が検出できなかった場合を示しており、図7に示すように、サージu2の減衰が大きいとサージu2のピーク値が閾値utに達しないことになり、そうすると、サージ受信時刻t2が定まらないことになる。従って、(3)式または(4)式の時間差(t2−t1)が定まらないので、事故点F(x=xf)が定まらない。   FIG. 7 is an explanatory diagram when one of the surges u1 and u2 cannot be detected by the conventional fault location method using the threshold method. If the peak values of the surges u1 and u2 that reach the end of the line do not reach the threshold value ut, the surge cannot be detected. FIG. 7 shows a case where the surge u2 cannot be detected. As shown in FIG. 7, when the attenuation of the surge u2 is large, the peak value of the surge u2 does not reach the threshold value ut. t2 is not determined. Therefore, since the time difference (t2−t1) in the expression (3) or (4) is not determined, the accident point F (x = xf) is not determined.

そこで、閾値utを下げることが考えられるが、以下の理由により閾値utをむやみに下げることはできない。閾値utを下げた場合、サージ以外の雑音をサージとして誤検出することがある。すなわち、サージ検出器に侵入する雑音やサージ検出器の内部で発生する雑音により、サージが到達していないにもかかわらず、サージが到達したかのように誤検出することがある。   Therefore, it is conceivable to lower the threshold ut, but the threshold ut cannot be lowered unnecessarily for the following reason. When the threshold value ut is lowered, noise other than surge may be erroneously detected as surge. That is, due to noise that enters the surge detector or noise that occurs inside the surge detector, it may be erroneously detected as if the surge has arrived even though the surge has not reached.

また、一線地絡事故時には、ピーク値の低い先行サージや消滅したサージの再点弧など、ピークの高いものから低いものまで複数のサージが発生する。そのため、例え閾値を下げても線路の一方端に近い場所で同一時刻に発生したサージのうち、一方端では検出され他方端では検出されないことが起こり得る。他方端で検出できないと、(3)式または(4)式の時間差(t2−t1)が定まらないので、事故点F(x=xf)が定まらない。   In the case of a one-line ground fault, a plurality of surges are generated from a high peak to a low peak, such as a preceding surge with a low peak value and re-ignition of a disappeared surge. For this reason, even if the threshold value is lowered, out of surges generated at the same time in a place close to one end of the line, it may be detected at one end and not detected at the other end. If it cannot be detected at the other end, the time difference (t2−t1) of the expression (3) or (4) is not determined, so the accident point F (x = xf) is not determined.

本発明の目的は、事故により発生したサージが線路を伝搬するに従い減衰した場合であっても、精度良く事故点を標定できる事故点標定方法を提供することである。   An object of the present invention is to provide an accident point locating method capable of accurately locating an accident point even when a surge generated by an accident is attenuated as it propagates along a line.

請求項1の発明に係る事故点標定方法は、電力を供給する線路に事故が発生したとき線路の両端のサージ波形を同期をとって測定して記憶し、記憶した線路の両端のサージ波形が最も類似する波形を取り出し、取り出した一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求め、その時間差に基づいて線路の一方端から事故点までの距離を求めて事故点を標定することを特徴とする。   In the accident location method according to the invention of claim 1, when an accident occurs in a power supply line, the surge waveforms at both ends of the line are measured and stored in synchronization, and the stored surge waveforms at both ends of the line are stored. Take out the most similar waveform, find the time difference between the time of the surge waveform at one end and the time of the surge waveform at the other end, and find the distance from one end of the line to the accident point based on the time difference It is characterized by locating.

請求項2の発明に係る事故点標定方法は、請求項1の発明において、線路の両端のサージ波形の時間差は、線路の両端のサージ波形をそれぞれ関数で表し、これらの関数の相関関数を用いて求めることを特徴とする。   In the accident point locating method according to the invention of claim 2, in the invention of claim 1, the time difference between the surge waveforms at both ends of the line represents the surge waveforms at both ends of the line as functions, and a correlation function of these functions is used. It is characterized by seeking.

本発明によれば、線路の両端のサージ波形が最も類似するサージ波形を取り出し、取り出した一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求め、その時間差から事故点までの距離を求めて事故点を標定するので、事故により発生したサージが線路を伝搬するに従い減衰した場合であっても、精度良く事故点を標定できる。また、相関関数を用いて一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求めるので、より容易に精度良く事故点を標定できる。   According to the present invention, the surge waveform having the most similar surge waveform at both ends of the line is taken out, the time difference between the time of the surge waveform at one end taken out and the time of the surge waveform at the other end is obtained, and from the time difference to the accident point Therefore, the accident point can be accurately determined even if the surge generated by the accident is attenuated as it propagates along the line. Further, since the time difference between the time of the surge waveform at one end and the time of the surge waveform at the other end is obtained using the correlation function, the accident point can be determined more easily and accurately.

本発明の実施の形態に係る事故点標定方法を実現するための装置構成図。The apparatus block diagram for implement | achieving the accident point location method which concerns on embodiment of this invention. 本発明の実施の形態に係る事故点標定方法での線路の一方端位置(x=0)及び他方端位置(x=L)でのサージの説明図。Explanatory drawing of the surge in the one end position (x = 0) and the other end position (x = L) of the track | line in the accident point location method which concerns on embodiment of this invention. 時刻tにおけるu01(t)とu02(t)との関係を示す説明図。It illustrates the relationship between u 01 (t) and u 02 (t) at time t. 相関関数R(τ)と時間差τとの概念的な関係を示すグラフ。The graph which shows the conceptual relationship between correlation function R (τ) and time difference τ. 従来の閾値方式による事故点標定方法の説明図。Explanatory drawing of the accident point location method by the conventional threshold value system. 従来の閾値方式による事故点標定方法でサージ受信時刻t1、t2に誤差が生じる場合の説明図。Explanatory drawing in case an error arises in surge reception time t1, t2 by the accident point location method by the conventional threshold method. 従来の閾値方式による事故点標定方法でサージu1、u2のいずれか一方が検出できない場合の説明図。Explanatory drawing when either one of surge u1 and u2 cannot be detected with the accident point location method by the conventional threshold method.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係る事故点標定方法を実現するための装置構成図である。   Embodiments of the present invention will be described below. FIG. 1 is an apparatus configuration diagram for realizing an accident point location method according to an embodiment of the present invention.

変電所11aの変圧器12aと変電所11bの変圧器12bとは線路13で結ばれている。線路13の両端部には線路13に発生するサージを検出するサージ検出器14a、14b及びサージ波形測定器15a、15bが設けられている。そして、この線路13で地絡事故が発生したとすると、図示省略の保護継電装置が動作し、サージ波形測定器15a、15bに保護継電装置からの事故検出信号が入力される。   The transformer 12 a of the substation 11 a and the transformer 12 b of the substation 11 b are connected by a line 13. Surge detectors 14 a and 14 b and surge waveform measuring instruments 15 a and 15 b for detecting a surge generated in the line 13 are provided at both ends of the line 13. If a ground fault occurs on the line 13, a protective relay device (not shown) is operated, and an accident detection signal from the protective relay device is input to the surge waveform measuring devices 15a and 15b.

サージ波形測定器15a、15bは事故検出信号が入力されると、サージ検出器14a、14bから線路13の両端のサージの波形を同期をとって測定する。すなわち、サージ波形測定器15a、15bはGPS (Global Positioning System)16からの時刻を受信し、その時刻と同期をとってサージ検出器14a、14bで検出されたサージ波形を測定し、測定したサージ波形を演算制御装置17の入力処理部18に伝送する。   When an accident detection signal is input to the surge waveform measuring devices 15a and 15b, the surge waveforms at both ends of the line 13 are measured synchronously from the surge detectors 14a and 14b. That is, the surge waveform measuring devices 15a and 15b receive the time from the GPS (Global Positioning System) 16, measure the surge waveforms detected by the surge detectors 14a and 14b in synchronization with the time, and measure the measured surge. The waveform is transmitted to the input processing unit 18 of the arithmetic and control unit 17.

入力処理部18は、サージ波形測定器15a、15bから入力したサージ波形を記憶装置19に記憶する。これにより、記憶装置19には線路13に事故が発生したとき、線路13の両端の各時刻のサージ波形が記憶されることになる。   The input processing unit 18 stores the surge waveform input from the surge waveform measuring instruments 15 a and 15 b in the storage device 19. As a result, when an accident occurs on the line 13, the storage device 19 stores surge waveforms at each time at both ends of the line 13.

次に、時間差演算手段20は、まず、記憶装置19に記憶した線路の両端のサージ波形の中から、一方端のサージ波形と他方端のサージ波形との組合せで、その重なり度合いが最も大きい組合せのサージ波形を取り出す。これは、事故点で同時に発生し線路13の両端に伝搬したサージは、例え、減衰があって両端に到達したときの大きさが異なっていても、似たような形の波形となることが多いからである。   Next, the time difference calculation means 20 is a combination of the surge waveform at one end and the surge waveform at the other end among the surge waveforms at both ends of the line stored in the storage device 19 with the largest degree of overlap. Take out the surge waveform. This is because surges that occur at the same time at the accident point and propagate to both ends of the line 13 may have a similar waveform even if they are attenuated and have different sizes when they reach both ends. Because there are many.

そして、時間差演算手段20は、サージ波形の重なり度合いが最も大きい組合せのサージ波形を取り出すと、その取り出した一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求める。これは、サージ波形測定器15a、15bで測定されたサージ波形には時刻が付与されているからである。例えば、サージ波形の重なり度合いが最も大きい組合せのサージ波形として、一方端のサージ波形の時刻はt1であり、他方端のサージ波形の時刻がt2であると、時間差として(t2−t1)が求められる。   When the time difference calculation means 20 extracts a surge waveform having the largest degree of overlap of surge waveforms, the time difference calculation means 20 obtains a time difference between the time of the extracted surge waveform at one end and the time of the surge waveform at the other end. This is because time is given to the surge waveforms measured by the surge waveform measuring instruments 15a and 15b. For example, when the time of the surge waveform at one end is t1 and the time of the surge waveform at the other end is t2 as a combination of surge waveforms having the largest degree of overlap of surge waveforms, (t2−t1) is obtained as the time difference. It is done.

事故点演算手段21は、時間差演算手段20で求められた時間差(t2−t1)に基づいて、線路13の一方端から事故点までの距離を求めて事故点を標定する。例えば、前述の(4)式を用いて、一方端から事故点までの距離xfを求める。事故点演算手段21で求められた事故点は、必要に応じて、出力処理部22を介して表示装置23に表示出力される。また、記憶装置19に記憶するようにしてもよい。   The accident point calculation means 21 determines the distance from the one end of the line 13 to the accident point based on the time difference (t2-t1) obtained by the time difference calculation means 20 to determine the accident point. For example, the distance xf from one end to the accident point is obtained using the above-described equation (4). The accident point obtained by the accident point calculation means 21 is displayed and output on the display device 23 via the output processing unit 22 as necessary. Further, it may be stored in the storage device 19.

次に、本発明の実施の形態に係る事故点標定方法の手順を説明する。まず、手順1として、線路の両端に設置したサージ検出器14a、14bが検出するサージに時刻情報を付与して記録する。つまり、サージを時刻の関数として記録し記憶装置19に記憶する。図2は本発明の実施の形態に係る事故点標定方法での線路の一方端位置(x=0)及び他方端位置(x=L)でのサージの説明図である。   Next, the procedure of the accident location method according to the embodiment of the present invention will be described. First, as procedure 1, time information is added to and recorded on surges detected by the surge detectors 14a and 14b installed at both ends of the line. That is, the surge is recorded as a function of time and stored in the storage device 19. FIG. 2 is an explanatory diagram of surges at one end position (x = 0) and the other end position (x = L) of the line in the accident point location method according to the embodiment of the present invention.

図2では、事故点Fから発生する複数のサージA、B、Cが減衰しながら線路を伝搬し、線路の両端に伝達することを表している。線路の一方端位置(x=0)にはサージA1、B1、C1として伝搬し、線路の他方端位置(x=L)にはサージA2、B2、C2として伝搬する。   FIG. 2 shows that a plurality of surges A, B, and C generated from the accident point F propagate along the line while being attenuated and are transmitted to both ends of the line. Propagation as surges A1, B1, and C1 at one end position (x = 0) of the line, and propagation as surges A2, B2, and C2 at the other end position (x = L) of the line.

このサージA1〜C1、A2〜C2には雑音N1、N2が含まれ、線路を伝搬してきたサージA1〜C1、A2〜C2は、線路の両端に設けられたサージ検出器14a、14bで雑音N1、N2とともに検出される。なお、図2では雑音N1、N2はサージA1〜C1、A2〜C2と分離して示している。   The surges A1 to C1 and A2 to C2 include noises N1 and N2. The surges A1 to C1 and A2 to C2 that have propagated through the line are generated by the surge detectors 14a and 14b provided at both ends of the line. , N2 are detected. In FIG. 2, noises N1 and N2 are shown separately from surges A1 to C1 and A2 to C2.

いま、線路の一方端位置(x=0)に設置したサージ検出器14aで検出される受信信号をS1(t)とし、線路の他方端位置(x=L)に設置したサージ検出器14bで検出される受信信号をS2(t)とすると、受信信号S1(t)は(5)式で示され、受信信号S2(t)は(6)式で示される。   Now, let S1 (t) be the received signal detected by the surge detector 14a installed at one end position (x = 0) of the line, and the surge detector 14b installed at the other end position (x = L) of the line. Assuming that the received signal to be detected is S2 (t), the received signal S1 (t) is represented by equation (5), and the received signal S2 (t) is represented by equation (6).

S1(t)=k1u01(t)+N1(t)…(5)
S2(t)=k2u02(t−L/v)+N2(t)…(6)
ここで、u01(t)は、サージS1(t)に減衰がないとした場合の線路の一方端位置(x=0)におけるサージ、u01(t)は、サージS2(t)に減衰がないとした場合の線路の他方端位置(x=L)におけるサージ、N1は線路の一方端位置(x=0)における雑音、N2は線路の一方端位置(x=L)における雑音である。
S1 (t) = k1u 01 (t) + N1 (t) (5)
S2 (t) = k2u 02 (t−L / v) + N2 (t) (6)
Attenuation Here, u 01 (t) is the surge at one end position (x = 0) of the line in the case of that there is no attenuation to the surge S1 (t), u 01 ( t) is the surge S2 (t) If there is no line, the surge at the other end position (x = L) of the line, N1 is the noise at one end position (x = 0) of the line, and N2 is the noise at one end position (x = L) of the line. .

また、k1は線路の一方端位置(x=0)におけるサージ減衰定数、k2は線路の他方端位置(x=L)におけるサージ減衰定数であり、サージの減衰係数をαとすると、サージ減衰定数k1は(7)式で示され、サージ減衰定数k2は(8)式で示される。   Further, k1 is a surge attenuation constant at one end position (x = 0) of the line, k2 is a surge attenuation constant at the other end position (x = L) of the line, and when the surge attenuation coefficient is α, the surge attenuation constant k1 is expressed by equation (7), and the surge attenuation constant k2 is expressed by equation (8).

k1=exp(−αxf) …(7)
k2=exp{−α(L−xf)} …(8)
次に、手順2として、手順1で記録した受信信号S1(t)、S2(t)とを並べ、両者を平行移動させて比較し、両者の波形が最も類似するときのずらした時間(時間差)τを求める。この時間差τと、線路の一方端から事故点Fまでの距離xfとの関係は、以下の(9)式の通りである。
k1 = exp (−αxf) (7)
k2 = exp {−α (L−xf)} (8)
Next, as the procedure 2, the received signals S1 (t) and S2 (t) recorded in the procedure 1 are arranged, the two are translated and compared, and the shifted time (time difference) when both waveforms are most similar to each other is compared. ) Find τ. The relationship between this time difference τ and the distance xf from one end of the line to the accident point F is as shown in the following equation (9).

(L−xf)−xf=v|τ| …(9)
ここで、受信信号S1(t)、S2(t)の二つの信号の波形を比較する手順の具体例として、以下の(10)式に示す相関関数R(τ)を用いて、線路の両端のサージ波形の時間差τを求める場合について説明する。
(L−xf) −xf = v | τ | (9)
Here, as a specific example of the procedure for comparing the waveforms of the two signals of the received signals S1 (t) and S2 (t), using the correlation function R (τ) shown in the following equation (10), both ends of the line The case where the time difference τ of the surge waveform is obtained will be described.

R(τ)=∫S1(t)S2(t+τ)dt …(10)
τは受信信号S2(t)の波形の時刻をずらした時間を表し、受信信号S1(t)との時間差となる。また、(10)式の積分する時間の範囲は、測定を行った時間の範囲とする。
R (τ) = ∫S1 (t) S2 (t + τ) dt (10)
τ represents a time in which the time of the waveform of the reception signal S2 (t) is shifted, and is a time difference from the reception signal S1 (t). In addition, the range of time for integrating the equation (10) is the range of time for measurement.

(10)式に、(5)式及び(6)式を代入すると、(11)式が得られる。   When the expressions (5) and (6) are substituted into the expression (10), the expression (11) is obtained.

R(τ)=∫{k1u01(t)+N1(t)}{k2u02(t−L/v)+N2(t)} =∫k1u01(t)k2u02(t−L/v)dt
+∫k1u01(t)N2(t)dt
+∫N1(t)k2u02(t−L/v)dt
+∫N1(t)N2(t)dt …(11)
ここで、u01(t)とN2(t)、N1(t)とu02(t−L/v)、N1(t)とN2(t)は、互いに相関がないので、(11)式の右辺の第2項、第3項、第4項の値はごく小さい値となる。そこで、これらの第2項、第3項、第4項の値を零とすると、(11)式は、(12)式で示される。
R (τ) = ∫ {k1u 01 (t) + N1 (t)} {k2u 02 (t−L / v) + N2 (t)} = ∫k1u 01 (t) k2u 02 (t−L / v) dt
+ ∫k1u 01 (t) N2 (t) dt
+ ∫N1 (t) k2u 02 (t−L / v) dt
+ ∫N1 (t) N2 (t) dt (11)
Here, u 01 (t) and N 2 (t), N 1 (t) and u 02 (t−L / v), and N 1 (t) and N 2 (t) are not correlated with each other. The values of the second term, the third term, and the fourth term on the right side of are very small values. Therefore, when the values of the second term, the third term, and the fourth term are set to zero, the equation (11) is expressed by the equation (12).

R(τ)=∫k1u01(t)k2u02(t−L/v+τ)dt
=k1k2∫u01(t)u02(t−L/v+τ)dt …(12)
ここで、(12)式の関数u01(t)とu02(t)との関係を調べる。図3は時刻tにおけるu01(t)とu02(t)との関係を示す説明図である。
R (τ) = ∫k1u 01 (t) k2u 02 (t−L / v + τ) dt
= K1k2∫u 01 (t) u 02 (t−L / v + τ) dt (12)
Here, the relationship between the functions u 01 (t) and u 02 (t) in the equation (12) is examined. FIG. 3 is an explanatory diagram showing the relationship between u 01 (t) and u 02 (t) at time t.

図3において、故障点Fから左側のdの距離にサージu01(t)が伝搬し、故障点Fから右側のdの距離にサージu02(t)が伝搬しているとする。図3より、(13)式が成り立つ。 In FIG. 3, it is assumed that the surge u 01 (t) propagates to the distance d on the left side from the failure point F, and the surge u 02 (t) propagates to the distance d on the right side from the failure point F. From FIG. 3, equation (13) holds.

01{t+(xf−d)/v}=u02(t−(xf+d)/v} …(13)
ここで、線路の一方端位置(x=0)におけるxfとdとの関係は、(14)式で示される。
u 01 {t + (xf−d) / v} = u 02 (t− (xf + d) / v} (13)
Here, the relationship between xf and d at one end position (x = 0) of the line is expressed by equation (14).

xf−d=0 …(14)
(14)式を(13)式に代入すると、(15)式が得られる。
xf−d = 0 (14)
Substituting equation (14) into equation (13) yields equation (15).

01(t)=u02(t−2xf/v) …(15)
一方、線路の他方端位置(x=L)におけるxfとdとの関係は、(16)式で示される。
u 01 (t) = u 02 (t−2xf / v) (15)
On the other hand, the relationship between xf and d at the other end position (x = L) of the line is expressed by equation (16).

xf+d=L …(16)
(16)式を(13)式の右辺に代入すると、(13)式の右辺はu02(t−L/v)となる。従って、x=Lでのu02(t−L/v)の時間をτだけずらして、(15)と等しくできる条件が次の(17)式の通り求まる。
xf + d = L (16)
If the equation (16) is substituted into the right side of the equation (13), the right side of the equation (13) becomes u 02 (t−L / v). Therefore, the condition that can be made equal to (15) by shifting the time of u 02 (t−L / v) at x = L by τ is obtained as the following equation (17).

t−L/v+τ=t−2xf/v …(17)
従って、ずらす時間τは、(18)で求められる。
t−L / v + τ = t−2xf / v (17)
Accordingly, the shift time τ is obtained by (18).

τ=(L−2xf)/v …(18)
(18)式を変形すると、線路の一方端位置(x=0)から事故点Fまでの距離xfが(19)式のように求まる。
τ = (L−2xf) / v (18)
When the equation (18) is transformed, the distance xf from the one end position (x = 0) of the track to the accident point F is obtained as the equation (19).

xf=(L−vτ)/2 …(19)
このとき、(12)式の相関関数R(τ)は、(7)式及び(8)式を参照して、(20)式のように示される。
xf = (L−vτ) / 2 (19)
At this time, the correlation function R (τ) of the equation (12) is expressed as the equation (20) with reference to the equations (7) and (8).

R(τ)=k1k2∫u01(t)u02(t−L/v+τ)dt
=exp(−αxf)exp{−α(L−xf)}∫{u01(t)}dt …(20)
図4は、相関関数R(τ)と時間差τとの概念的な関係を示すグラフである。相関関数R(τ)と時間差τとの関係は、概念的に図4に示すようになり、相関関数R(τ)が最大Rmaxとなるときに、受信信号S1(t)、S2(t)とが最も類似するときであるので、そのときの時間差τfを求める。そして、このτfを(19)式に代入して、線路の一方端位置(x=0)から事故点Fまでの距離xfを求め、これにより事故点を標定する。
R (τ) = k1k2∫u 01 (t) u 02 (t−L / v + τ) dt
= Exp (−αxf) exp {−α (L−xf)} x {u 01 (t)} 2 dt (20)
FIG. 4 is a graph showing a conceptual relationship between the correlation function R (τ) and the time difference τ. The relationship between the correlation function R (τ) and the time difference τ is conceptually as shown in FIG. 4, and when the correlation function R (τ) reaches the maximum Rmax, the received signals S1 (t) and S2 (t) Is the most similar, so the time difference τf at that time is obtained. Then, by assigning this τf to the equation (19), the distance xf from the one end position (x = 0) of the track to the accident point F is obtained, and thereby the accident point is determined.

このように、線路の両端のサージ波形が最も類似するサージ波形を取り出し、取り出した一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求め、その時間差から事故点までの距離を求めて事故点を標定するので、事故により発生したサージが線路を伝搬するに従い減衰した場合であっても、精度良く事故点を標定できる。   In this way, the surge waveform with the most similar surge waveform at both ends of the line is taken out, the time difference between the time of the extracted surge waveform at one end and the time of the surge waveform at the other end is obtained, and the distance from the time difference to the accident point Therefore, the accident point can be accurately determined even if the surge generated by the accident is attenuated as it propagates through the line.

以上の説明では、GPS16から時刻を受信しサージ波形測定器15a、15bの同期をとるようにしたが、GPS16による同期方法でなく別の方法でもよい。例えば、高精度時間プロトコルIEEE1588などの分散クロック同期を利用して同期をとってもよいし、一般の通信回線などを利用して相互に通信し同期を取るようにしてもよい。   In the above description, the time is received from the GPS 16 and the surge waveform measuring devices 15a and 15b are synchronized, but another method may be used instead of the synchronization method using the GPS 16. For example, the synchronization may be performed using distributed clock synchronization such as the high-precision time protocol IEEE 1588, or may be synchronized with each other using a general communication line.

11…変電所、12…変圧器、13…線路、14…サージ検出器、15…サージ波形測定器、16…GPS、17…演算制御装置、18…入力処理部、19…記憶装置、20…時間差演算手段、21…事故点演算手段、22…出力処理部、23…表示装置 DESCRIPTION OF SYMBOLS 11 ... Substation, 12 ... Transformer, 13 ... Line, 14 ... Surge detector, 15 ... Surge waveform measuring device, 16 ... GPS, 17 ... Arithmetic control device, 18 ... Input processing part, 19 ... Storage device, 20 ... Time difference calculation means, 21 ... Accident point calculation means, 22 ... Output processing section, 23 ... Display device

Claims (2)

電力を供給する線路に事故が発生したとき線路の両端のサージ波形を同期をとって測定して記憶し、
記憶した線路の両端のサージ波形が最も類似する波形を取り出し、
取り出した一方端のサージ波形の時刻と他方端のサージ波形の時刻との時間差を求め、
その時間差に基づいて線路の一方端から事故点までの距離を求めて事故点を標定することを特徴とする事故点標定方法。
When an accident occurs on the power supply line, the surge waveforms at both ends of the line are measured and stored in synchronization,
Take out the waveform with the most similar surge waveform at both ends of the memorized line,
Find the time difference between the time of the surge waveform at one end and the time of the surge waveform at the other end,
An accident point locating method characterized in that a fault point is determined by obtaining a distance from one end of the track to the accident point based on the time difference.
線路の両端のサージ波形の時間差は、線路の両端のサージ波形をそれぞれ関数で表し、これらの関数の相関関数を用いて求めることを特徴とする請求項1に記載の事故点標定方法。   2. The accident location method according to claim 1, wherein the time difference between the surge waveforms at both ends of the line is obtained by representing the surge waveforms at both ends of the line as functions, and using a correlation function of these functions.
JP2010257463A 2010-11-18 2010-11-18 Fault point orientation method Pending JP2012108011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010257463A JP2012108011A (en) 2010-11-18 2010-11-18 Fault point orientation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257463A JP2012108011A (en) 2010-11-18 2010-11-18 Fault point orientation method

Publications (1)

Publication Number Publication Date
JP2012108011A true JP2012108011A (en) 2012-06-07

Family

ID=46493791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257463A Pending JP2012108011A (en) 2010-11-18 2010-11-18 Fault point orientation method

Country Status (1)

Country Link
JP (1) JP2012108011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941153A (en) * 2014-04-03 2014-07-23 昆明理工大学 Multi-outgoing-line radiation network fault distance measuring method for k-NN algorithm based on waveform similarity
WO2017024618A1 (en) * 2015-08-13 2017-02-16 国家电网公司 Hybrid line fault point positioning method based on single-end electrical quantity and comprehensive transient travelling wave characteristic analysis
JPWO2015145752A1 (en) * 2014-03-28 2017-04-13 三菱電機株式会社 Semiconductor module and drive device mounted with semiconductor module
JP2017520750A (en) * 2015-05-07 2017-07-27 コリア エレクトリカル セーフティ コーポレーション Cable fault diagnosis method and system
CN109768585A (en) * 2018-12-29 2019-05-17 全球能源互联网研究院有限公司 A kind of ac and dc systems and its decoupling method, protection equipment
JP2021050954A (en) * 2019-09-24 2021-04-01 株式会社日立製作所 Power grid monitoring device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015145752A1 (en) * 2014-03-28 2017-04-13 三菱電機株式会社 Semiconductor module and drive device mounted with semiconductor module
CN103941153A (en) * 2014-04-03 2014-07-23 昆明理工大学 Multi-outgoing-line radiation network fault distance measuring method for k-NN algorithm based on waveform similarity
JP2017520750A (en) * 2015-05-07 2017-07-27 コリア エレクトリカル セーフティ コーポレーション Cable fault diagnosis method and system
WO2017024618A1 (en) * 2015-08-13 2017-02-16 国家电网公司 Hybrid line fault point positioning method based on single-end electrical quantity and comprehensive transient travelling wave characteristic analysis
CN109768585A (en) * 2018-12-29 2019-05-17 全球能源互联网研究院有限公司 A kind of ac and dc systems and its decoupling method, protection equipment
JP2021050954A (en) * 2019-09-24 2021-04-01 株式会社日立製作所 Power grid monitoring device and method
JP7304783B2 (en) 2019-09-24 2023-07-07 株式会社日立製作所 Power system monitoring apparatus and method

Similar Documents

Publication Publication Date Title
US10114063B2 (en) Method of single-ended fault location in HVDC transmission lines
JP2012108011A (en) Fault point orientation method
US10892822B2 (en) Optical fiber event location
US9588168B2 (en) Fault location using traveling waves
CN106443353B (en) Traveling wave-based GIL discharge fault positioning method and device
CN106151887A (en) A kind of gas oil pipe leakage comprehensive monitor system
JP2008141866A (en) Method of synchronizing time of transmission and distribution systems, and faulty point locating method and device using it
KR20140126790A (en) Position estimating method based on wireless sensor network system
CN103884968B (en) XLPE cable partial discharge positioning method based on GPS sync identification
CN109564256B (en) Travelling wave based method for locating a fault in a transmission line and device for the method
Aurangzeb et al. Fault location on a transmission line using high frequency travelling waves measured at a single line end
KR101454827B1 (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
Campbell et al. Decawave: Exploring state of the art commercial localization
JP2016142659A (en) Failure point locating method and failure point locating system
CN101738225A (en) Method and apparatus for time synchronization of events for multiple instruments
CN110221174A (en) A kind of tuning on-line device and method of transmission line malfunction
KR102016828B1 (en) Noise Source Analysis Method
KR102217681B1 (en) Underground medium detecting device
JPH0454470A (en) Fault point locating device for power transmission line
US20140303906A1 (en) System and method for detecting deterioration or a cut in a cable for conveying signals
US11287461B2 (en) Testing an energy transmission network and localizing a fault location in an energy transmission cable
GB2370925A (en) Arc location using signal generation and reflected signal detection
KR101380054B1 (en) Apparatus and method for detecting of line obstruction
JPH02103478A (en) Fault locator
EP3682259A1 (en) Method and system for transceiver calibration