JP2012107306A - Method for depositing thin film - Google Patents

Method for depositing thin film Download PDF

Info

Publication number
JP2012107306A
JP2012107306A JP2010259016A JP2010259016A JP2012107306A JP 2012107306 A JP2012107306 A JP 2012107306A JP 2010259016 A JP2010259016 A JP 2010259016A JP 2010259016 A JP2010259016 A JP 2010259016A JP 2012107306 A JP2012107306 A JP 2012107306A
Authority
JP
Japan
Prior art keywords
fluorine
thin film
substrate
vacuum
solid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010259016A
Other languages
Japanese (ja)
Inventor
Ryuji Hiroo
竜二 枇榔
Osamu Akutsu
収 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010259016A priority Critical patent/JP2012107306A/en
Publication of JP2012107306A publication Critical patent/JP2012107306A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To easily deposit a fluorine-containing thin film on a substrate without introducing fluorine-based gas.SOLUTION: A method reduces the pressure inside a vacuum film deposition container 1 to a vacuum state and applies a voltage to an electrode 3A disposed inside the vacuum film deposition container 1 to generate plasma from the introduced gas G introduced into the vacuum film deposition container 1. A target 3 is disposed in the electrode 3A so that an ion in the plasma collides with the target 3 and sputter particles are discharged from the target 3. A fluorine-containing solid compound 9 is disposed in the vicinity of the substrate 4 and exposed to the plasma so as to separate fluorine from the compound, and fluorine and sputter particles react with each other, thereby depositing the fluorine-containing thin film on the substrate 4.

Description

本発明は、良好な薄膜を基板上に形成させる薄膜形成方法であり、半導体装置で使用される素子の形成や光学分野に使用される薄膜の薄膜形成方法に関するものである。   The present invention relates to a thin film forming method for forming a good thin film on a substrate, and relates to a method for forming an element used in a semiconductor device and a thin film forming method used in an optical field.

近年、光学機器の高機能化に伴い、レンズの高性能化、特に短波長の光透過率を向上させる要望や、表面反射を抑制する要望が年々高まっている。一方、薄膜形成方法として従来、真空蒸着法が使用されてきたが、制御性の容易さ等の観点から近年プラズマを用いた成膜法、特にスパッタ法での薄膜作成が注目されている。このスパッタ法では、酸化物系の薄膜を作成するのは比較的容易だが、フッ化物の薄膜作成も最近望まれてきている。   In recent years, with the enhancement of functions of optical devices, there is an increasing demand for higher performance of lenses, particularly for improving light transmittance of short wavelengths and for suppressing surface reflection. On the other hand, a vacuum deposition method has been conventionally used as a thin film formation method, but in recent years, a film formation method using plasma, particularly a thin film formation by a sputtering method, has attracted attention from the viewpoint of ease of control. Although it is relatively easy to produce an oxide-based thin film by this sputtering method, the production of a fluoride thin film has recently been desired.

そこで従来、スパッタ法でフッ素系ガスを導入せずにフッ素系薄膜を作成しようとしており、その手段としてフッ素系固体化合物をスパッタターゲットに用いている(特許文献1,2)。   Therefore, conventionally, a fluorine-based thin film has been prepared without introducing a fluorine-based gas by a sputtering method, and a fluorine-based solid compound is used as a sputtering target as the means (Patent Documents 1 and 2).

特開平8−101301号公報JP-A-8-101301 特開平9−291359号公報Japanese Patent Laid-Open No. 9-291359

しかしながら、このようなフッ素系の固体化合物は熱に弱いため、ターゲットに使用すると溶解する可能性が高く、また溶解までいかなくても、昇温により材料中のフッ素ガス成分が脱離する等、性質の変化を招き、安定した薄膜作成が難しかった。   However, since such a fluorine-based solid compound is vulnerable to heat, it is highly likely to be dissolved when used as a target, and even if it does not go to dissolution, the fluorine gas component in the material is desorbed due to temperature rise, etc. Due to changes in properties, it was difficult to produce a stable thin film.

また、一般的にスパッタ法でフッ素系薄膜を作成するには、成膜中にフッ素系のガスを導入する方法がある。フッ素系のガスには大別して2種類存在する。   In general, in order to produce a fluorine-based thin film by a sputtering method, there is a method of introducing a fluorine-based gas during film formation. There are two types of fluorine-based gases.

1つ目の種類のガスは、CF、C、C、C、CHF、SF等、有機系のフッ素ガスである。これらは、ガスの処理装置等を設ける必要がなく、設備的にコスト増になることは少ないが、地球温暖化係数の高いガスであるため、使用制限が設けられているうえ、近年の環境負荷を軽減する観点からも使用は難しい。 The first type of gas is organic fluorine gas such as CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 8 , CHF 3 , SF 6 and the like. These do not require any gas treatment equipment and are not likely to increase the cost in terms of equipment, but because they have a high global warming potential, there are restrictions on their use and the environmental impact in recent years. It is difficult to use from the viewpoint of reducing

2つ目の種類のガスは、無機系のフッ素ガスで、F、COF、SiF、ClF、CHF、WF、XeF等が挙げられる。これらのガスは、毒性が強い為、ボンベの筐体排気、緊急除外筒設置、排ガス処理系等、高価な設備を要し、コスト高が問題である。 The second type of gas is an inorganic fluorine gas, and examples thereof include F 2 , COF 2 , SiF 4 , ClF 3 , CHF 3 , WF 6 , and XeF 6 . Since these gases are highly toxic, expensive equipment such as cylinder exhaust, emergency exclusion cylinder installation, exhaust gas treatment system is required, and high cost is a problem.

そこで、本発明は、フッ素系ガスを導入せずに基板にフッ素を含む薄膜を簡易に形成する薄膜形成方法を提供することを目的とするものである。   Therefore, an object of the present invention is to provide a thin film forming method for easily forming a thin film containing fluorine on a substrate without introducing a fluorine-based gas.

本発明は、真空成膜容器内を真空に減圧し、前記真空成膜容器内に配置した電極に電力を印加し、前記真空成膜容器内に導入した導入ガスからプラズマを生成して、前記真空成膜容器内に配置した基板にフッ素を含む薄膜を形成する薄膜形成方法であって、前記基板の近傍に、前記プラズマにより脱離するフッ素を含む固体化合物を配置したことを特徴とする。   In the present invention, the inside of the vacuum film formation container is depressurized to a vacuum, electric power is applied to an electrode disposed in the vacuum film formation container, plasma is generated from the introduced gas introduced into the vacuum film formation container, A thin film forming method for forming a fluorine-containing thin film on a substrate placed in a vacuum film-forming container, wherein a solid compound containing fluorine desorbed by the plasma is placed in the vicinity of the substrate.

本発明によれば、基板の近傍にフッ素を含む固体化合物を配置することにより、プラズマに曝された固体化合物からフッ素が脱離するので、基板の近傍のフッ素の濃度が高くなる。そして、フッ素系のガスを真空成膜容器内に導入することなく、フッ素を含む薄膜が基板に形成される。これにより、高価な設備等が不要になりコストダウンが図れる上、温暖化ガスも使用せず環境にも配慮した薄膜が形成される。   According to the present invention, by disposing a solid compound containing fluorine in the vicinity of the substrate, fluorine is desorbed from the solid compound exposed to the plasma, so that the concentration of fluorine in the vicinity of the substrate is increased. Then, a thin film containing fluorine is formed on the substrate without introducing a fluorine-based gas into the vacuum film formation container. This eliminates the need for expensive equipment and reduces costs, and also forms a thin film that does not use greenhouse gases and is environmentally friendly.

本発明の実施の形態に係る薄膜形成装置の一例であるスパッタ装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the sputtering device which is an example of the thin film formation apparatus which concerns on embodiment of this invention.

以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。図1は、本発明の実施の形態に係る薄膜形成装置の一例であるスパッタ装置の概略構成を示す説明図である。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a sputtering apparatus which is an example of a thin film forming apparatus according to an embodiment of the present invention.

図1に示すスパッタ装置100は真空成膜容器1を有しており、真空成膜容器1内には、直流電源2より電力が印加される電極3Aが設けられている。電極3Aには、ターゲット3が接触固定されている。   A sputtering apparatus 100 shown in FIG. 1 has a vacuum film formation container 1, and an electrode 3 </ b> A to which electric power is applied from a DC power supply 2 is provided in the vacuum film formation container 1. The target 3 is fixed in contact with the electrode 3A.

また、真空成膜容器1に隣接して真空予備排気室6が配置され、トランスファーロッド8により基板4が、トランスファーロッド10によりフッ素系固体化合物9が、真空予備排気室6から真空成膜容器1に搬入出できるようになっている。   Further, a vacuum preliminary exhaust chamber 6 is disposed adjacent to the vacuum film formation container 1, the substrate 4 is transferred by the transfer rod 8, and the fluorine-based solid compound 9 is transferred by the transfer rod 10. Can be carried in and out.

真空成膜容器1と真空予備排気室6とはゲートバルブ5で仕切られており、両室1,6はそれぞれ真空ポンプ12,7で排気される。真空成膜容器1内にはバルブ13を介してガス(導入ガス)Gが導入される。この導入ガスGは、フッ素系ガスとは異なる種類のガスであり、ターゲット3に衝突させるための不活性ガス等も含まれる。   The vacuum film formation container 1 and the vacuum preliminary exhaust chamber 6 are partitioned by a gate valve 5, and both chambers 1 and 6 are exhausted by vacuum pumps 12 and 7, respectively. A gas (introduction gas) G is introduced into the vacuum film formation container 1 through a valve 13. The introduced gas G is a different type of gas from the fluorine-based gas, and includes an inert gas or the like for colliding with the target 3.

フッ素系固体化合物9は、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂である。このフッ素系固体化合物9は、基板4よりも大きい面積に形成され、基板4の近傍に配置される。具体的には、基板4において、スパッタにより薄膜を形成する面を表面とすると、フッ素系固体化合物9は、基板4の裏面に対向するように配置される。   The fluorine-based solid compound 9 is a fluorine-based resin such as polytetrafluoroethylene (PTFE). The fluorine-based solid compound 9 is formed in a larger area than the substrate 4 and is disposed in the vicinity of the substrate 4. Specifically, if the surface of the substrate 4 on which the thin film is formed by sputtering is the front surface, the fluorine-based solid compound 9 is disposed so as to face the back surface of the substrate 4.

以上の構成で、基板4に成膜する際には、まず、真空ポンプ12,7を運転し、真空成膜容器内及び真空予備排気室内を真空に減圧する。次に、ゲートバルブ5を開き、真空成膜容器1内にトランスファーロッド8で基板4を搬入し、トランスファーロッド10でフッ素系固体化合物9を搬入する。このフッ素系固体化合物9は、基板4の近傍であって、基板4の裏面に対向する位置に配置されるが、この限りではない。   With the above configuration, when forming a film on the substrate 4, first, the vacuum pumps 12 and 7 are operated, and the inside of the vacuum film forming container and the vacuum pre-evacuation chamber are decompressed to a vacuum. Next, the gate valve 5 is opened, the substrate 4 is carried into the vacuum film formation container 1 by the transfer rod 8, and the fluorine-based solid compound 9 is carried by the transfer rod 10. Although this fluorine-type solid compound 9 is arrange | positioned in the vicinity of the board | substrate 4 and the position facing the back surface of the board | substrate 4, it is not this limitation.

次に、バルブ13を開き、導入ガスGを真空成膜容器1内に導入する。電極3Aには直流電源2により直流電力が印加され、ガスがイオン化したプラズマが発生する。そして生成したプラズマ中のイオン(正イオン)がターゲット3に衝突し、スパッタ粒子が基板4に放出される。   Next, the valve 13 is opened, and the introduction gas G is introduced into the vacuum film formation container 1. Direct current power is applied to the electrode 3A from the direct current power source 2 to generate plasma in which gas is ionized. Then, ions (positive ions) in the generated plasma collide with the target 3, and sputtered particles are emitted to the substrate 4.

被成膜体である基板4の近傍にフッ素系固体化合物9が設置されているので、フッ素系固体化合物9がプラズマに曝され、フッ素系固体化合物9からはフッ素がガス化して脱離する。これにより、基板4の近傍のフッ素ガスの濃度が高まり、フッ素系固体化合物9から脱離したフッ素と、スパッタ法によりターゲット3から放出されたスパッタ粒子とが反応し基板4にフッ素系の薄膜が形成される。   Since the fluorine-based solid compound 9 is installed in the vicinity of the substrate 4 that is the film formation target, the fluorine-based solid compound 9 is exposed to plasma, and fluorine is gasified and desorbed from the fluorine-based solid compound 9. As a result, the concentration of the fluorine gas in the vicinity of the substrate 4 is increased, and the fluorine desorbed from the fluorine-based solid compound 9 reacts with the sputtered particles released from the target 3 by the sputtering method to form a fluorine-based thin film on the substrate 4. It is formed.

以上の薄膜形成方法により、フッ素系のガスを真空成膜容器1内に導入することなく、フッ素を含む薄膜が基板4に形成される。これにより、フッ素ガスを処理する高価な設備等が不要になりコストダウンが図れる上、温暖化ガスとなるフッ素ガスを使用することなく環境にも配慮した薄膜が形成される。また、フッ素系固体化合物9の真空成膜容器1内への挿入のタイミングを調整することで、任意の厚さ、量のフッ素を薄膜中に導入できる。   By the above thin film formation method, a fluorine-containing thin film is formed on the substrate 4 without introducing a fluorine-based gas into the vacuum film formation container 1. This eliminates the need for expensive equipment for treating fluorine gas, reduces costs, and forms an environmentally friendly thin film without using fluorine gas as a warming gas. Further, by adjusting the timing of insertion of the fluorine-based solid compound 9 into the vacuum film formation container 1, an arbitrary thickness and amount of fluorine can be introduced into the thin film.

なお、上記実施の形態では、スパッタ法における成膜形成方法について述べたが、プラズマを利用して成膜するプラズマCVD法においても、基板近傍にフッ素系固体化合物を配置すればフッ素が薄膜中に取り込まれる。具体的に説明すると、金属を含むターゲットを真空成膜容器内に配置するのではなく、金属を含むガスを真空成膜容器内に導入し、導入ガスをプラズマ化して基板に成膜する場合であっても、本発明は適用可能である。   Although the film formation method in the sputtering method has been described in the above embodiment, even in the plasma CVD method in which a film is formed using plasma, fluorine is contained in the thin film by disposing a fluorine-based solid compound in the vicinity of the substrate. It is captured. More specifically, when a metal-containing target is not placed in a vacuum film-forming container, a gas containing metal is introduced into the vacuum film-forming container, and the introduced gas is converted into plasma to form a film on the substrate. Even if it exists, this invention is applicable.

[実施例1]
10−4Paの圧力まで真空成膜容器1及び真空予備排気室6を排気後、ゲートバルブ5を開け、トランスファーロッド8で基板4を真空成膜容器1に搬入し、トランスファーロッド10でフッ素系固体化合物9を真空成膜容器1に搬入する。導入ガスGとしてArを50sccm、酸素を50sccm導入し、Siのターゲット3に直流電力100Wを印加し、基板4上にSiOを含む膜を約100nm成膜した。
[Example 1]
After evacuating the vacuum film formation container 1 and the vacuum pre-evacuation chamber 6 to a pressure of 10 −4 Pa, the gate valve 5 is opened, the substrate 4 is carried into the vacuum film formation container 1 by the transfer rod 8, and the transfer rod 10 is fluorinated. The solid compound 9 is carried into the vacuum film formation container 1. Ar gas was introduced at 50 sccm and oxygen was introduced at 50 sccm as the introduction gas G, DC power of 100 W was applied to the Si target 3, and a film containing SiO 2 was formed on the substrate 4 to a thickness of about 100 nm.

そして基板4を取り出し、光学特性を測定したところ、屈折率が1.38であった。SiO、フッ素系固体化合物9の屈折率がそれぞれ約1.46、1.32であることを考えると、フッ素系固体化合物9中のフッ素が脱離し、SiO薄膜中に混入して、屈折率が低下したものと考えられる。この薄膜をTDS(昇温脱離法)で分析したところ、昇温によりフッ素が薄膜中より脱離してくるのが確認された。 And when the board | substrate 4 was taken out and the optical characteristic was measured, the refractive index was 1.38. Considering that the refractive indexes of SiO 2 and the fluorine-based solid compound 9 are about 1.46 and 1.32 respectively, fluorine in the fluorine-based solid compound 9 is desorbed and mixed in the SiO 2 thin film to be refracted. The rate is thought to have declined. When this thin film was analyzed by TDS (temperature-programmed desorption method), it was confirmed that fluorine was desorbed from the thin film by heating.

次にこのフッ素系固体化合物を挿入して製作したフッ素系薄膜の上にフッ素系樹脂の液体をディッピングで成膜し薄膜を積層させた。この積層膜を上からアルコールで浸した柔らかい布で拭いたところ、膜が剥がれることはなかった。一方、このフッ素系樹脂の薄膜を、通常のスパッタ法で成膜したSiO膜上に積層させて先と同様の拭きを行うと、フッ素系樹脂の薄膜が剥離してしまう現象が観られた。よって、SiO膜のような酸化物薄膜の上にフッ素系樹脂のような濡れ性の低い薄膜を成膜し、密着性を向上させるには、本実施例のように下地薄膜の成膜の際にフッ素系固体化合物9を真空成膜容器1に挿入することが有効である。これによりフッ素が薄膜中に取り込まれ、薄膜界面間での濡れ性の相違を解消し、密着性を向上させることができる。 Next, a fluorine resin liquid was formed by dipping on the fluorine thin film produced by inserting the fluorine solid compound, and the thin film was laminated. When this laminated film was wiped with a soft cloth soaked in alcohol from above, the film was not peeled off. On the other hand, when this fluororesin thin film was laminated on the SiO 2 film formed by the usual sputtering method and the same wiping was performed, a phenomenon that the fluororesin thin film was peeled was observed. . Therefore, in order to improve the adhesion by forming a thin film with low wettability such as a fluorine-based resin on the oxide thin film such as SiO 2 film, the film formation of the base thin film is performed as in this embodiment. At this time, it is effective to insert the fluorine-based solid compound 9 into the vacuum film formation container 1. As a result, fluorine is taken into the thin film, the difference in wettability between the thin film interfaces can be eliminated, and the adhesion can be improved.

[実施例2]
10−4Paの圧力まで真空成膜容器1及び真空予備排気室6を排気後、ゲートバルブ5を開け、トランスファーロッド8で基板4を真空成膜容器1に搬入し、トランスファーロッド10でフッ素系固体化合物9を真空成膜容器1に搬入する。本実施例2では、フッ素系固体化合物9は、ポリテトラフルオロエチレン(PTFE)である。導入ガスGとしてArを50sccm、酸素を50sccm導入し、Siのターゲット3に直流電力100Wを印加し、基板4上にSiOを含む膜を約100nm成膜した。そして基板4を取り出し、光学特性を測定したところ、屈折率が1.39であった。SiO、PTFEの屈折率が各々約1.46、1.30であることを考えると、フッ素系固体化合物9中のフッ素が脱離し、SiO薄膜中に混入して屈折率が低下したものと考えられる。この薄膜もまた、TDS(昇温脱離法)で分析したところ、昇温によりフッ素が薄膜中より脱離してくるのが確認された。
[Example 2]
After evacuating the vacuum film formation container 1 and the vacuum pre-evacuation chamber 6 to a pressure of 10 −4 Pa, the gate valve 5 is opened, the substrate 4 is carried into the vacuum film formation container 1 by the transfer rod 8, and the transfer rod 10 is fluorinated. The solid compound 9 is carried into the vacuum film formation container 1. In Example 2, the fluorinated solid compound 9 is polytetrafluoroethylene (PTFE). Ar gas was introduced at 50 sccm and oxygen was introduced at 50 sccm as the introduction gas G, DC power of 100 W was applied to the Si target 3, and a film containing SiO 2 was formed on the substrate 4 to a thickness of about 100 nm. And when the board | substrate 4 was taken out and the optical characteristic was measured, the refractive index was 1.39. Considering that the refractive indexes of SiO 2 and PTFE are about 1.46 and 1.30, respectively, fluorine in the fluorine-based solid compound 9 is desorbed and mixed into the SiO 2 thin film, and the refractive index is lowered. it is conceivable that. This thin film was also analyzed by TDS (temperature-programmed desorption method), and it was confirmed that fluorine was desorbed from the thin film by the temperature increase.

[実施例3]
上記実施例1,2では、フッ素系固体化合物中のフッ素を薄膜中に取り込ませ薄膜を成膜する方法を述べているが、フッ素系固体化合物に替えて、酸素系固体化合物や窒素系固体化合物を同様に基板近傍へ設置すれば、酸化系薄膜や窒化系薄膜の作成も可能である。
[Example 3]
In Examples 1 and 2 described above, a method for forming a thin film by incorporating fluorine in the fluorine-based solid compound into the thin film is described. However, instead of the fluorine-based solid compound, an oxygen-based solid compound or a nitrogen-based solid compound is used. In the same manner, if an oxide film is installed near the substrate, an oxide-based thin film or a nitride-based thin film can be formed.

本実施例3では、10−4Paの圧力まで真空成膜容器1及び真空予備排気室6を排気後、ゲートバルブ5を開け、トランスファーロッド8で基板4を真空成膜容器1内に搬入し、トランスファーロッド10で窒素系固体化合物を真空成膜容器1内に搬入する。導入ガスGとしてArを50sccm、TEOS(テトラエトキシシラン)を50sccm、酸素を50sccm導入し、電極3Aに直流電力100Wを印加し、基板4上にSiOを含む膜を約100nm成膜した。そして基板4を取り出し、光学特性を測定したところ、屈折率が1.71であった。SiO、窒素系固体化合物の屈折率が各々約1.46、2.00であることを考えると、窒素系固体化合物中の窒素が脱離しSiO薄膜中に取り込まれ、屈折率が上昇したものと考えられる。実際、この薄膜をTDS(昇温脱離法)で分析したところ、昇温により窒素が薄膜中より脱離してくるのが確認された。 In Example 3, after the vacuum film formation container 1 and the vacuum preliminary exhaust chamber 6 are exhausted to a pressure of 10 −4 Pa, the gate valve 5 is opened, and the substrate 4 is carried into the vacuum film formation container 1 by the transfer rod 8. Then, the nitrogen-based solid compound is carried into the vacuum film formation container 1 by the transfer rod 10. As the introduction gas G, Ar was introduced at 50 sccm, TEOS (tetraethoxysilane) was introduced at 50 sccm, and oxygen was introduced at 50 sccm. A DC power of 100 W was applied to the electrode 3A, and a film containing SiO 2 was formed on the substrate 4 to a thickness of about 100 nm. And when the board | substrate 4 was taken out and the optical characteristic was measured, the refractive index was 1.71. Considering that the refractive indexes of SiO 2 and nitrogen-based solid compound are about 1.46 and 2.00, respectively, nitrogen in the nitrogen-based solid compound is desorbed and taken into the SiO 2 thin film, increasing the refractive index. It is considered a thing. Actually, when this thin film was analyzed by TDS (temperature-programmed desorption method), it was confirmed that nitrogen was desorbed from the thin film by the temperature rise.

[実施例4]
10−4Paの圧力まで真空成膜容器1及び真空予備排気室6を排気後、ゲートバルブ5を開け、トランスファーロッド8で基板4を搬入し、トランスファーロッド10で酸素系固体化合物を搬入する。導入ガスGとしてArを50sccm導入し、Siのターゲット3に直流電力100Wを印加し、基板4上にSiを含む膜を約100nm成膜した。そして基板4を取り出し、光学特性を測定したところ、屈折率が1.48の誘電体膜が形成された。通常Siをターゲット3にして成膜するとSi金属膜が成膜される。しかし誘電体膜が形成されたことを考えると、酸素系固体化合物中の酸素が脱離しSi薄膜中に混入したものと考えられる。この薄膜もまた、TDS(昇温脱離法)で分析したところ、昇温により酸素が薄膜中より脱離してくるのが確認された。
[Example 4]
After evacuating the vacuum film formation container 1 and the vacuum preliminary exhaust chamber 6 to a pressure of 10 −4 Pa, the gate valve 5 is opened, the substrate 4 is loaded with the transfer rod 8, and the oxygen-based solid compound is loaded with the transfer rod 10. Ar was introduced at 50 sccm as the introduction gas G, DC power of 100 W was applied to the Si target 3, and a film containing Si was formed on the substrate 4 to a thickness of about 100 nm. When the substrate 4 was taken out and the optical characteristics were measured, a dielectric film having a refractive index of 1.48 was formed. Usually, when a film is formed using Si as a target 3, a Si metal film is formed. However, considering that the dielectric film is formed, it is considered that oxygen in the oxygen-based solid compound is desorbed and mixed into the Si thin film. When this thin film was also analyzed by TDS (temperature-programmed desorption method), it was confirmed that oxygen was desorbed from the thin film by heating.

1…真空成膜容器、2…直流電源、3…ターゲット、3A…電極、4…基板、9…フッ素系固体化合物、G…導入ガス DESCRIPTION OF SYMBOLS 1 ... Vacuum film-forming container, 2 ... DC power supply, 3 ... Target, 3A ... Electrode, 4 ... Substrate, 9 ... Fluorine-type solid compound, G ... Introducing gas

Claims (3)

真空成膜容器内を真空に減圧し、前記真空成膜容器内に配置した電極に電力を印加し、前記真空成膜容器内に導入した導入ガスからプラズマを生成して、前記真空成膜容器内に配置した基板にフッ素を含む薄膜を形成する薄膜形成方法であって、
前記基板の近傍に、前記プラズマにより脱離するフッ素を含む固体化合物を配置したことを特徴とする薄膜形成方法。
The vacuum film-forming container is depressurized to a vacuum, electric power is applied to an electrode disposed in the vacuum film-forming container, and plasma is generated from the introduced gas introduced into the vacuum film-forming container, and the vacuum film-forming container A thin film forming method for forming a thin film containing fluorine on a substrate disposed inside,
A thin film forming method, wherein a solid compound containing fluorine desorbed by the plasma is disposed in the vicinity of the substrate.
前記電極にターゲットを配置し、スパッタ法により前記ターゲットから放出されたスパッタ粒子と前記固体化合物から脱離したフッ素とで前記基板に薄膜を形成することを特徴とする請求項1に記載の薄膜形成方法。   2. The thin film formation according to claim 1, wherein a target is disposed on the electrode, and a thin film is formed on the substrate with sputtered particles released from the target by a sputtering method and fluorine desorbed from the solid compound. Method. 前記固体化合物がフッ素系樹脂であることを特徴とする請求項1又は2に記載の薄膜形成方法。   The thin film forming method according to claim 1, wherein the solid compound is a fluororesin.
JP2010259016A 2010-11-19 2010-11-19 Method for depositing thin film Pending JP2012107306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259016A JP2012107306A (en) 2010-11-19 2010-11-19 Method for depositing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259016A JP2012107306A (en) 2010-11-19 2010-11-19 Method for depositing thin film

Publications (1)

Publication Number Publication Date
JP2012107306A true JP2012107306A (en) 2012-06-07

Family

ID=46493211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259016A Pending JP2012107306A (en) 2010-11-19 2010-11-19 Method for depositing thin film

Country Status (1)

Country Link
JP (1) JP2012107306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418304B1 (en) * 2013-01-14 2014-07-10 (주)알에프트론 Doping method for metal oxide with F by using teflon and manufacturing method of oxide semiconductor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418304B1 (en) * 2013-01-14 2014-07-10 (주)알에프트론 Doping method for metal oxide with F by using teflon and manufacturing method of oxide semiconductor using the same

Similar Documents

Publication Publication Date Title
US9533914B2 (en) Method for depositing layers on a glass substrate by means of low-pressure PECVD
US9281420B2 (en) Chemical vapor deposited film formed by plasma CVD method
US20200381700A1 (en) Electrode plate and surface treatment method thereof
CN110484869B (en) Mildew-proof and damp-proof optical film and preparation method thereof
WO2017029890A1 (en) Laminate
US20080014466A1 (en) Glass with scratch-resistant coating
KR101480113B1 (en) Mask for Manufacturing OLED and Method thereof
TW201503376A (en) Method for fabricating IGZO layer and TFT
US20120263941A1 (en) Coated article and method for making the same
JP2012107306A (en) Method for depositing thin film
KR101242591B1 (en) Deposition method of anti-finger layer
US20120276406A1 (en) Anti-corrosion treatment process for aluminum or aluminum alloy and aluminum or aluminum alloy article thereof
US8721845B2 (en) Coated article and method for making same
US20120121895A1 (en) Anti-corrosion treatment process for aluminum or aluminum alloy and aluminum or aluminum alloy article thereof
CA2698629A1 (en) Method for depositing a fluorinated layer from a precursor monomer
JP2009001894A (en) Method for forming transparent dlc film on surface of resin
US20120276349A1 (en) Anti-corrosion treatment process for aluminum or aluminum alloy and aluminum or aluminum alloy article thereof
JP5504350B2 (en) Laminated body
US9328409B2 (en) Coated article, method for making the same and electronic device using the same
KR20130087244A (en) Physical vapor deposition plating apparatus of guide roll and plating method
CN102477537B (en) Casing and preparation method thereof
CN103943789A (en) OLED device and manufacturing method thereof
JP2008062561A (en) Method of manufacturing article equipped with hydrophilic laminated film, and article equipped with hydrophilic laminated film
JP2016086152A (en) Silicon oxide film and manufacturing method thereof, and device for manufacturing silicon oxide film
US20130243967A1 (en) Fto thin film preparation using magnetron sputtering deposition with pure tin target

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228