JP2012107300A - Metal surface protective agent, method of manufacturing the same and metal surface treatment method - Google Patents

Metal surface protective agent, method of manufacturing the same and metal surface treatment method Download PDF

Info

Publication number
JP2012107300A
JP2012107300A JP2010258375A JP2010258375A JP2012107300A JP 2012107300 A JP2012107300 A JP 2012107300A JP 2010258375 A JP2010258375 A JP 2010258375A JP 2010258375 A JP2010258375 A JP 2010258375A JP 2012107300 A JP2012107300 A JP 2012107300A
Authority
JP
Japan
Prior art keywords
metal surface
protective agent
surface protective
silicon dioxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010258375A
Other languages
Japanese (ja)
Other versions
JP5358776B2 (en
Inventor
Yuichi Moto
裕一 本
Toshitaka Moto
利隆 本
Sotoshi Horimoto
外司 堀本
Kazuhiro Shimada
一裕 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOTORASHI SEISAKUSHO CO Ltd
Ishikawa Prefecture
Original Assignee
MOTORASHI SEISAKUSHO CO Ltd
Ishikawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOTORASHI SEISAKUSHO CO Ltd, Ishikawa Prefecture filed Critical MOTORASHI SEISAKUSHO CO Ltd
Priority to JP2010258375A priority Critical patent/JP5358776B2/en
Publication of JP2012107300A publication Critical patent/JP2012107300A/en
Application granted granted Critical
Publication of JP5358776B2 publication Critical patent/JP5358776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To form a thin film on the surface of a metal member by only immersing, which may give no influence on dimensional precision and prevents the metal member from being corroded as a result.SOLUTION: The metal surface protective agent contains alkoxysilane compound represented by general formula (A): HS(CH)Si(OCH)(where n is an integer), and silicon dioxide with an average particle diameter of 1 μm or less.

Description

本発明は、金属の防食(防錆)に利用される金属表面保護剤、金属表面保護剤の製造方法および金属表面処理方法に関する。   The present invention relates to a metal surface protective agent used for metal anticorrosion (rust prevention), a method for producing a metal surface protective agent, and a metal surface treatment method.

金属系の被加工材(金属部材)は、目的となる形状に形成されるために様々な加工、例えば、プレス、鍛造、切削、研削、研磨等が施される。加工直後の金属部材の表面は活性が高く、そのまま放置しておくと、空気中に含まれる酸素や、硫黄酸化物(SO)等の腐食因子と反応してしまい、表面が腐食(錆が発生)してしまう。また、各種工程が行われる間、保管中、輸送中等でも腐食が発生する。そこで、腐食の防止を目的として、金属部材の表面に被膜を形成することが一般的に行われている。 Since a metal workpiece (metal member) is formed into a target shape, various processes such as pressing, forging, cutting, grinding, and polishing are performed. The surface of the metal member immediately after processing is highly active, and if left as it is, it reacts with corrosion factors such as oxygen and sulfur oxide (SO x ) contained in the air, and the surface is corroded (rusted). Will occur). Further, during various processes, corrosion occurs during storage and transportation. Therefore, it is a common practice to form a coating on the surface of a metal member for the purpose of preventing corrosion.

例えば、金属部材の表面を樹脂で被覆することで防食(防錆)性を向上させる技術が開示されている(例えば、特許文献1、2)。特許文献1では、無機板状シリカ粒子を含んだアクリル系樹脂等の水性樹脂で被覆することで金属部材の腐食を防止する技術が記されている。特許文献2では、シランカップリング剤、水分散シリカ、ジルコニウム化合物、チタニウム化合物を含む金属表面処理剤を金属部材の表面に塗布して乾燥させ、その後、ポリオレフィン系樹脂等の水系樹脂で金属部材の表面を被覆する技術が記載されている。   For example, the technique of improving corrosion prevention (rust prevention) property by coat | covering the surface of a metal member with resin is disclosed (for example, patent document 1, 2). Patent Document 1 describes a technique for preventing corrosion of a metal member by coating with an aqueous resin such as an acrylic resin containing inorganic plate-like silica particles. In Patent Document 2, a metal surface treatment agent containing a silane coupling agent, water-dispersed silica, a zirconium compound, and a titanium compound is applied to the surface of the metal member and dried, and then the metal member is coated with an aqueous resin such as a polyolefin resin. Techniques for coating the surface are described.

しかし、上述した特許文献1、2に記載された金属部材の表面を樹脂で被覆する構成は、水系樹脂を乾燥させるために、数日間を要するといった時間的な問題があった。   However, the configuration in which the surface of the metal member described in Patent Documents 1 and 2 described above is coated with a resin has a time problem that it takes several days to dry the aqueous resin.

そこで、鉱物油を基油とし、スルホン酸塩等の防食性物質を添加した防食油に、金属部材を浸漬することが行われている。金属部材を防食油に浸漬することで、金属部材の表面に防食油の被膜が形成され、この被膜が腐食因子と金属部材との接触を遮断し、金属部材の腐食を防止する。防食油は、これに金属部材を浸漬するだけといった簡単な構成で、乾燥のための時間を要さず、金属部材の表面を防食することができるので、金属加工メーカ等では特によく利用されている。   Therefore, a metal member is immersed in an anticorrosive oil containing a mineral oil as a base oil and added with an anticorrosive substance such as a sulfonate. By immersing the metal member in the anti-corrosion oil, a coating of the anti-corrosion oil is formed on the surface of the metal member, and this coating blocks the contact between the corrosion factor and the metal member and prevents the corrosion of the metal member. Anti-corrosion oil has a simple structure such as just immersing a metal member in it, and does not require time for drying, and can prevent corrosion of the surface of the metal member. Yes.

防食油として、例えば、鉱物油を基油とし、防錆添加剤として、ジシクロヘキシルアミンのオレイン酸塩、ナフタリンスルホン酸塩、ソルビタンスチアリン酸塩を添加し、増稠剤(固めてねばり気をもたせるもの)として疎水性シリカを添加し、色、艶を向上させるためにパラフィンを添加し、塗布等の作業性を向上させるために脂肪酸を添加した防錆グリースが開示されている(例えば、特許文献3)。   As anticorrosive oil, for example, mineral oil is used as a base oil, and dicyclohexylamine oleate, naphthalenesulfonate, sorbitan stiaphosphate is added as a rust preventive additive, and a thickener (hardened and sticky) Rust-preventing grease is disclosed in which hydrophobic silica is added as a component, paraffin is added to improve color and gloss, and fatty acid is added to improve workability such as coating (for example, patent documents) 3).

特開2004−322573号公報JP 2004-322573 A 特開2001−240977号公報JP 2001-240977 A 特開平5−247485号公報JP-A-5-247485

上述した金属部材を防食油に浸漬する構成では、金属部材に防食加工を施した後、金属部材の表面に防食油の被膜が形成されることになる。この被膜は、金属部材の検査において寸法精度に影響を及ぼすため、検査を行う際には被膜を除去する必要がある。   In the structure which immerses the metal member mentioned above in anticorrosion oil, after giving a corrosion prevention process to a metal member, the coating film of anticorrosion oil will be formed on the surface of a metal member. Since this coating affects dimensional accuracy in the inspection of the metal member, it is necessary to remove the coating when performing the inspection.

しかし、防食油の被膜を除去してしまうと、金属部材の表面に腐食が生じてしまうといった問題がある。また、防食油の除去に利用される溶媒の廃棄処理も行わなければならず、コスト面、環境面でデメリットがある。   However, if the anticorrosive oil film is removed, there is a problem that the surface of the metal member is corroded. Moreover, the disposal process of the solvent used for removal of the anticorrosion oil must be performed, which is disadvantageous in terms of cost and environment.

そこで本発明は、このような課題に鑑み、浸漬するだけで、寸法精度に影響を及ぼさない程度の薄膜を金属部材の表面に形成することが可能な金属表面保護剤、金属表面保護剤の製造方法および金属表面処理方法を提供することを目的とする。   Therefore, in view of such a problem, the present invention provides a metal surface protective agent and a metal surface protective agent capable of forming a thin film on the surface of a metal member that does not affect the dimensional accuracy only by immersion. It is an object to provide a method and a metal surface treatment method.

上記課題を解決するために、本発明の金属表面保護剤は、下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを含むことを特徴とする。
In order to solve the above problems, the metal surface protective agent of the present invention has the following general formula (A):
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
And silicon dioxide having an average particle diameter of 1 μm or less.

上記二酸化ケイ素の平均粒径は、10〜80nmであってもよい。   10-80 nm may be sufficient as the average particle diameter of the said silicon dioxide.

上記課題を解決するために、本発明の金属表面保護剤の製造方法は、有機溶媒中に、下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを添加して、添加溶液を得る添加工程と、添加溶液を加熱しながら攪拌することで、アルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程とを含み、吸着工程において、添加溶液を50℃〜70℃に加熱し、10時間〜14時間攪拌することを特徴とする。
In order to solve the above-mentioned problems, the method for producing a metal surface protective agent of the present invention comprises the following general formula (A)
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
And an addition step of obtaining an addition solution by adding an alkoxysilane compound represented by formula (1) and silicon dioxide having an average particle diameter of 1 μm or less, and stirring the addition solution while heating, thereby adding silicon dioxide to the alkoxysilane compound. And an adsorption step of obtaining a metal surface protecting agent-containing solution by adsorption, wherein the addition solution is heated to 50 ° C. to 70 ° C. and stirred for 10 hours to 14 hours.

上記添加工程における、上記一般式(A)で示されるアルコキシシラン化合物の濃度は、1〜3wt%であってもよい。   The concentration of the alkoxysilane compound represented by the general formula (A) in the addition step may be 1 to 3 wt%.

上記課題を解決するために、本発明の金属表面処理方法は、有機溶媒中に、下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを添加して、添加溶液を得る添加工程と、添加溶液を加熱しながら攪拌することで、アルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程と、吸着工程で得た金属表面保護剤含有溶液に金属部材を浸漬する浸漬工程とを含み、浸漬工程において、金属部材を金属表面保護剤含有溶液に浸漬する時間は、45分〜90分であることを特徴とする。
In order to solve the above-described problems, the metal surface treatment method of the present invention includes the following general formula (A) in an organic solvent.
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
And an addition step of obtaining an addition solution by adding an alkoxysilane compound represented by formula (1) and silicon dioxide having an average particle diameter of 1 μm or less, and stirring the addition solution while heating, thereby adding silicon dioxide to the alkoxysilane compound. An adsorption step of adsorbing to obtain a metal surface protective agent-containing solution; and an immersion step of immersing the metal member in the metal surface protective agent-containing solution obtained in the adsorption step. The time immersed in the containing solution is 45 minutes to 90 minutes.

上述した金属表面処理剤の技術的思想に基づく構成要素やその説明は、当該金属表面処理剤の製造方法および金属表面処理方法にも適用可能である。   The component based on the technical idea of the metal surface treatment agent described above and the description thereof can be applied to the method for producing the metal surface treatment agent and the metal surface treatment method.

本発明は、浸漬するだけで、寸法精度に影響を及ぼさない程度の薄膜を金属部材の表面に形成することができ、これにより金属部材の腐食を防止することが可能となる。   In the present invention, it is possible to form a thin film on the surface of a metal member that does not affect the dimensional accuracy only by dipping, thereby preventing corrosion of the metal member.

実施形態にかかる金属表面保護剤を説明するための説明図である。It is explanatory drawing for demonstrating the metal surface protecting agent concerning embodiment. 実施形態にかかる金属表面保護剤の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the metal surface protecting agent concerning embodiment. 金属表面保護剤の熱重量分析結果を示す図である。It is a figure which shows the thermogravimetric analysis result of a metal surface protective agent. 攪拌時間と金属表面保護剤のMPM含有率との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between stirring time and the MPM content rate of a metal surface protective agent. MPMの濃度と金属表面保護剤のMPM含有率との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the density | concentration of MPM, and the MPM content rate of a metal surface protective agent. 実施形態にかかる金属表面処理方法を説明するための説明図である。It is explanatory drawing for demonstrating the metal surface treatment method concerning embodiment. 金属表面保護剤含有溶液に銅部材を30分浸漬させたものをSEMで観察した結果を示す図である。It is a figure which shows the result of having observed what immersed the copper member for 30 minutes in the metal surface protective agent containing solution by SEM. 金属表面保護剤含有溶液に銅部材を60分浸漬させたものをSEMで観察した結果を示す図である。It is a figure which shows the result of having observed what immersed the copper member for 60 minutes in the metal surface protective agent containing solution by SEM. 平均粒径が20〜30μmの二酸化ケイ素を用いて生成した金属表面保護剤含有溶液に銅部材を1時間浸漬させたものをSEMで観察した結果を示す図である。It is a figure which shows the result of having observed the thing which immersed the copper member for 1 hour in the metal surface protective agent containing solution produced | generated using the silicon dioxide whose average particle diameter is 20-30 micrometers by SEM. 金属表面保護剤含有溶液に銅部材を60分浸漬させたものをX線光電子分光法で分析した硫黄のスペクトルを示す図である。It is a figure which shows the spectrum of sulfur which analyzed what immersed the copper member for 60 minutes in the metal surface protective agent containing solution by the X ray photoelectron spectroscopy. 塩水噴霧48時間経過後の試料A、B、Cそれぞれを撮像した画像を示す図である。It is a figure which shows the image which imaged each of sample A, B, and C after 48 hours passage of salt spray. 塩水噴霧48時間経過後の、金属表面保護剤で処理した実試料と未処理の実試料それぞれを撮像した画像を示す図である。It is a figure which shows the image which imaged each of the real sample processed with the metal surface protection agent, and the non-processed real sample after 48 hours of salt spray. 大気中に3ヶ月放置した後の、金属表面保護剤で処理した実試料と未処理の実試料それぞれを撮像した画像を示す図である。It is a figure which shows the image which imaged each of the real sample processed with the metal surface protective agent, and an unprocessed real sample after leaving to stand in air | atmosphere for 3 months.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiment are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(金属表面保護剤)
本実施形態にかかる金属表面保護剤は、下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを含む。
(Metal surface protective agent)
The metal surface protective agent according to this embodiment is represented by the following general formula (A):
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
And silicon dioxide having an average particle diameter of 1 μm or less.

図1は、本実施形態にかかる金属表面保護剤を説明するための説明図である。図1(a)に示すように、金属表面保護剤は、上記一般式(A)で示されるチオール基を有するアルコキシシラン化合物(以下、単にチオールアルコキシシラン化合物と称する。)と二酸化ケイ素とを含んで構成される。そして、金属表面保護剤は、チオールアルコキシシラン化合物のアルコキシシラン基に、粒状の二酸化ケイ素が吸着している。   FIG. 1 is an explanatory diagram for explaining a metal surface protective agent according to the present embodiment. As shown in FIG. 1A, the metal surface protective agent contains an alkoxysilane compound having a thiol group represented by the general formula (A) (hereinafter simply referred to as a thiolalkoxysilane compound) and silicon dioxide. Consists of. In the metal surface protective agent, granular silicon dioxide is adsorbed on the alkoxysilane group of the thiolalkoxysilane compound.

図1(b)に示すように、金属表面保護剤におけるチオールアルコキシシラン化合物のチオール基に金属原子が結合することで、金属部材の表面が金属表面保護剤で被覆されることになる。   As shown in FIG. 1B, the surface of the metal member is coated with the metal surface protective agent by bonding the metal atom to the thiol group of the thiol alkoxysilane compound in the metal surface protective agent.

このように、チオールアルコキシシラン化合物は、チオール基が金属に結合し、アルコキシシラン基が二酸化ケイ素を吸着する。したがって、チオールアルコキシシラン化合物に二酸化ケイ素を吸着させた金属表面保護剤で金属部材を処理することにより、金属部材の表面に自己組織的に配列された金属表面保護剤の単分子膜が形成され、金属部材を金属表面保護剤で被覆することができる。   Thus, in the thiol alkoxysilane compound, the thiol group is bonded to the metal, and the alkoxysilane group adsorbs silicon dioxide. Therefore, by treating the metal member with a metal surface protective agent in which silicon dioxide is adsorbed on a thiol alkoxysilane compound, a monomolecular film of the metal surface protective agent arranged in a self-organized manner on the surface of the metal member is formed, The metal member can be coated with a metal surface protective agent.

また金属表面保護剤に含まれる二酸化ケイ素の平均粒径は、1μm以下がよく、好ましくは10〜80nmがよい。このように、チオールアルコキシシラン化合物に吸着させる二酸化ケイ素の平均粒径を1μm以下とすることで、金属部材の表面に隙間なく金属表面保護剤を被覆することができ、10〜80nmとすることで、より効果的に金属部材の表面に金属表面保護剤の被膜を形成することが可能となる。   The average particle size of silicon dioxide contained in the metal surface protective agent is preferably 1 μm or less, and preferably 10 to 80 nm. Thus, by making the average particle diameter of silicon dioxide adsorbed on the thiolalkoxysilane compound 1 μm or less, the surface of the metal member can be coated with a metal surface protective agent without any gap, and by setting it to 10 to 80 nm. Thus, it is possible to more effectively form a metal surface protective agent film on the surface of the metal member.

また、チオールアルコキシシラン化合物に二酸化ケイ素を吸着させた、本実施形態の金属表面保護剤で金属部材を被覆したとき、形成される被膜は、厚みが1μm程度(平均粒径10〜80nmの二酸化ケイ素で構成する場合、数十nm程度)と薄膜であるため、金属部材を処理したとしても、検査する際に寸法精度を確保することが可能となる。   In addition, when a metal member is coated with the metal surface protecting agent of the present embodiment in which silicon dioxide is adsorbed on a thiol alkoxysilane compound, the formed film has a thickness of about 1 μm (silicon dioxide having an average particle diameter of 10 to 80 nm). Therefore, even if the metal member is processed, it is possible to ensure dimensional accuracy when inspecting.

以上説明したように、本実施形態の金属表面保護剤を有機溶媒に溶解させれば、この金属表面保護剤含有溶液に金属部材を浸漬するだけといった簡単な処理を行うだけで、寸法精度に影響を及ぼさない程度の薄膜を金属部材の表面に形成することができ、金属部材の腐食を防止することが可能となる。   As described above, if the metal surface protective agent of the present embodiment is dissolved in an organic solvent, the dimensional accuracy is affected only by performing a simple treatment such as immersing the metal member in the metal surface protective agent-containing solution. Therefore, it is possible to form a thin film on the surface of the metal member so as to prevent corrosion of the metal member.

(金属表面保護剤の製造方法)
次に、上述した金属表面保護剤の製造方法について説明する。図2は、本実施形態にかかる金属表面保護剤の製造方法を説明するための説明図である。図2に示すように本実施形態にかかる金属表面保護剤の製造方法は、有機溶媒中に、上記一般式(A)に示すチオールアルコキシシラン化合物と二酸化ケイ素とを添加して、添加溶液を得る添加工程(S100)と、添加工程S100で得られた添加溶液を加熱しながら攪拌することで、チオールアルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程(S102)とを含む。以下に、各工程の構成を詳細に説明する。
(Method for producing metal surface protective agent)
Next, the manufacturing method of the metal surface protective agent mentioned above is demonstrated. FIG. 2 is an explanatory diagram for explaining a method for producing a metal surface protective agent according to the present embodiment. As shown in FIG. 2, in the method for producing a metal surface protective agent according to this embodiment, an thiol alkoxysilane compound represented by the general formula (A) and silicon dioxide are added to an organic solvent to obtain an additive solution. Addition step (S100) and an adsorption step (S102) in which the addition solution obtained in the addition step S100 is stirred while heating to adsorb silicon dioxide to the thiol alkoxysilane compound to obtain a metal surface protective agent-containing solution. Including. Below, the structure of each process is demonstrated in detail.

(添加工程S100)
添加工程S100で利用する有機溶媒は、アセトンやエタノール等であり、上述したチオールアルコキシシラン化合物が溶解できればよく、沸点は低いほどよい。有機溶媒の沸点を低くすることで、金属表面保護剤含有溶液に金属部材を浸漬したときに、金属部材を乾燥させるための時間を短縮することができる。
(Addition step S100)
The organic solvent used in the adding step S100 is acetone, ethanol, or the like, as long as the above-described thiolalkoxysilane compound can be dissolved, and the lower the boiling point, the better. By lowering the boiling point of the organic solvent, the time for drying the metal member can be shortened when the metal member is immersed in the metal surface protecting agent-containing solution.

添加工程S100で添加するチオールアルコキシシラン化合物は、上記一般式(A)で示されるような、例えば、3−メルカプトプロピルトリメトキシシラン(以下、単にMPMと称する)である。なお、チオールアルコキシシラン化合物は、チオール基とアルコキシシラン基とを両端に有する化合物であればよい。また、チオール基とアルコキシシラン基とを中継する分子は、直鎖飽和アルキレン基に限らず、不飽和であっても、ヘテロ原子を含んでもよい。   The thiol alkoxysilane compound added in the addition step S100 is, for example, 3-mercaptopropyltrimethoxysilane (hereinafter simply referred to as MPM) as represented by the general formula (A). In addition, the thiol alkoxysilane compound should just be a compound which has a thiol group and an alkoxysilane group in both ends. Moreover, the molecule | numerator which relays a thiol group and an alkoxysilane group is not restricted to a linear saturated alkylene group, It may be unsaturated or may contain a hetero atom.

添加工程S100で添加する二酸化ケイ素は、平均粒径は、1μm以下がよく、好ましくは10〜80nmがよい。   The silicon dioxide added in the adding step S100 has an average particle size of 1 μm or less, preferably 10 to 80 nm.

(吸着工程S102)
吸着工程S102は、チオールアルコキシシラン化合物に二酸化ケイ素を吸着させる工程である。吸着工程S102では、添加工程S100で得られた添加溶液を加熱しながら攪拌する。これにより、チオールアルコキシシラン化合物に二酸化ケイ素が吸着した金属表面保護剤を得ることができる。以下に、吸着工程S102における添加溶液の温度と、添加溶液の攪拌時間との検討結果を説明する。
(Adsorption process S102)
The adsorption step S102 is a step of adsorbing silicon dioxide on the thiol alkoxysilane compound. In the adsorption step S102, the additive solution obtained in the addition step S100 is stirred while heating. Thereby, the metal surface protective agent which silicon dioxide adsorb | sucked to the thiol alkoxysilane compound can be obtained. Below, the examination result of the temperature of the addition solution in adsorption | suction process S102 and the stirring time of an addition solution is demonstrated.

<吸着工程S102における温度および攪拌時間の検討>
ここでは、チオールアルコキシシラン化合物として、MPMを、二酸化ケイ素として平均粒径10〜80nmの二酸化ケイ素を、有機溶媒としてアセトンをそれぞれ用いた。
<Examination of temperature and stirring time in adsorption step S102>
Here, MPM was used as the thiol alkoxysilane compound, silicon dioxide having an average particle diameter of 10 to 80 nm as silicon dioxide, and acetone as the organic solvent.

まず、アセトン10mlに二酸化ケイ素10mgを添加し、さらに、3wt%(重量百分率)となるようにMPMを添加して、添加溶液を得た。   First, 10 mg of silicon dioxide was added to 10 ml of acetone, and MPM was further added so as to be 3 wt% (weight percentage) to obtain an added solution.

そして、添加溶液を室温(25℃程度)で12時間攪拌を行ったところ、二酸化ケイ素が凝集し、沈殿が生じた。次に、添加溶液を50℃〜70℃に加熱して12時間攪拌を行ったところ、二酸化ケイ素の凝集や沈殿は認められなかった。   And when the addition solution was stirred at room temperature (about 25 degreeC) for 12 hours, the silicon dioxide aggregated and precipitation occurred. Next, when the additive solution was heated to 50 ° C. to 70 ° C. and stirred for 12 hours, no aggregation or precipitation of silicon dioxide was observed.

以上の検討結果から、吸着工程S102において50℃以下である場合、二酸化ケイ素同士が凝集し沈殿してしまい吸着効率が低くなり、70℃以上であると、一旦アルコキシシラン基に吸着した二酸化ケイ素が再度解離してしまうと考えられる。   From the above examination results, when the temperature is 50 ° C. or lower in the adsorption step S102, silicon dioxide aggregates and precipitates to lower the adsorption efficiency. When the temperature is 70 ° C. or higher, the silicon dioxide once adsorbed to the alkoxysilane group is reduced. It is thought that it will dissociate again.

したがって、吸着工程S102における添加溶液の温度は50℃〜70℃がよく、好ましくは60℃がよい。このように添加溶液の温度を50℃〜70℃とすることで、二酸化ケイ素の凝集を抑制し、また、再度の解離を防止してアルコキシシラン基に効率的に二酸化ケイ素を吸着させることができる。   Therefore, the temperature of the additive solution in the adsorption step S102 is preferably 50 ° C to 70 ° C, and preferably 60 ° C. Thus, by making the temperature of the added solution 50 ° C. to 70 ° C., aggregation of silicon dioxide can be suppressed, and dissociation can be prevented again, so that silicon dioxide can be efficiently adsorbed to the alkoxysilane group. .

次に、攪拌時間について検討した。図3は、金属表面保護剤の熱重量分析結果を示す図であり、横軸に温度(℃)を、縦軸に重量減少率(%)をそれぞれ示す。ここでは、熱重量分析(ThermoGravimetric analysis:TG)器を用いて、添加溶液を60℃で12時間攪拌して得られた金属表面保護剤の熱重量測定を行った。図3に示すように、金属表面保護剤は、350℃付近から急激に重量が減少していることから、350℃付近からMPMが分解されていることが分かる。そして600℃を越えると重量が安定していることから、本実施形態において、350℃〜600℃の重量減少率を金属表面保護剤のMPM含有率とみなす。   Next, the stirring time was examined. FIG. 3 is a diagram showing the results of thermogravimetric analysis of the metal surface protective agent, with the horizontal axis indicating temperature (° C.) and the vertical axis indicating weight reduction rate (%). Here, thermogravimetric measurement of the metal surface protective agent obtained by stirring the added solution at 60 ° C. for 12 hours was performed using a thermogravimetric analysis (TG) device. As shown in FIG. 3, since the weight of the metal surface protective agent is drastically decreased from around 350 ° C., it can be seen that MPM is decomposed from around 350 ° C. Since the weight is stable when the temperature exceeds 600 ° C., the weight reduction rate of 350 ° C. to 600 ° C. is regarded as the MPM content of the metal surface protective agent in this embodiment.

図4は、攪拌時間と金属表面保護剤のMPM含有率との関係を説明するための説明図であり、横軸に攪拌時間(時間)を、縦軸に重量減少率(%)をそれぞれ示す。図4では、各攪拌時間で得られた金属表面保護剤の熱重量測定を行うことで得られた、350℃〜600℃までの重量減少率(%)を示す。ここでは、添加溶液を60℃で攪拌することで得られた金属表面保護剤を用いた。   FIG. 4 is an explanatory diagram for explaining the relationship between the stirring time and the MPM content of the metal surface protective agent, where the horizontal axis indicates the stirring time (hours) and the vertical axis indicates the weight reduction rate (%). . In FIG. 4, the weight reduction rate (%) from 350 degreeC to 600 degreeC obtained by performing the thermogravimetry of the metal surface protective agent obtained by each stirring time is shown. Here, a metal surface protective agent obtained by stirring the additive solution at 60 ° C. was used.

図4に示すように、吸着工程S102における攪拌時間が長くなるに従って、重量減少率(%)が増加した、すなわちMPMの含有量が増加した。しかし、攪拌時間が14時間を越えると、重量減少率(%)に変化は見られなかった。   As shown in FIG. 4, the weight reduction rate (%) increased, that is, the MPM content increased as the stirring time in the adsorption step S102 increased. However, when the stirring time exceeded 14 hours, no change was observed in the weight loss rate (%).

したがって、吸着工程S102において、攪拌時間が10時間以下である場合二酸化ケイ素の吸着効率が低く、14時間以上攪拌を行ったとしても二酸化ケイ素の吸着効率が向上するわけではないことが分かった。   Therefore, in adsorption process S102, when the stirring time was 10 hours or less, the adsorption efficiency of silicon dioxide was low, and even if it stirred for 14 hours or more, it turned out that the adsorption efficiency of silicon dioxide does not improve.

これにより、吸着工程S102における攪拌時間は10時間〜14時間がよく、好ましくは、12時間〜13時間がよい。このように、吸着工程S102において、添加溶液を10時間〜14時間攪拌することでアルコキシシラン基に効率的に二酸化ケイ素を吸着させることができる。   Thereby, the stirring time in adsorption | suction process S102 is good for 10 hours-14 hours, Preferably, 12 hours-13 hours are good. Thus, in the adsorption step S102, the silicon dioxide can be efficiently adsorbed to the alkoxysilane group by stirring the additive solution for 10 hours to 14 hours.

<添加工程S100におけるチオールアルコキシシラン化合物の濃度の検討>
ここでは、チオールアルコキシシラン化合物として、MPMを、二酸化ケイ素として平均粒径10〜80nmの二酸化ケイ素を、有機溶媒としてアセトンをそれぞれ用いた。
<Examination of Concentration of Thiolalkoxysilane Compound in Addition Step S100>
Here, MPM was used as the thiol alkoxysilane compound, silicon dioxide having an average particle diameter of 10 to 80 nm as silicon dioxide, and acetone as the organic solvent.

まず、アセトン10mlに二酸化ケイ素10mgを添加し、様々な濃度となるようにMPMを添加して、添加溶液を得た。そして添加溶液を60℃で12時間攪拌して得られた金属表面保護剤の熱重量測定を行った。   First, 10 mg of silicon dioxide was added to 10 ml of acetone, and MPM was added so as to obtain various concentrations to obtain an additive solution. And the thermogravimetric measurement of the metal surface protective agent obtained by stirring the addition solution at 60 ° C. for 12 hours was performed.

図5は、MPMの濃度と金属表面保護剤のMPM含有率との関係を説明するための説明図であり、横軸に添加溶液中のMPMの濃度(wt%)を、縦軸に重量減少率(%)をそれぞれ示す。図5では、各MPM濃度で得られた金属表面保護剤の熱重量測定を行うことで得られた、350℃〜600℃までの重量減少率(%)を示す。   FIG. 5 is an explanatory diagram for explaining the relationship between the MPM concentration and the MPM content of the metal surface protective agent, where the horizontal axis represents the MPM concentration (wt%) in the additive solution and the vertical axis represents the weight reduction. The rate (%) is shown respectively. In FIG. 5, the weight reduction rate (%) from 350 degreeC to 600 degreeC obtained by performing the thermogravimetry of the metal surface protective agent obtained by each MPM density | concentration is shown.

図5に示すように、MPMの濃度が増加するに従って、重量減少率(%)が増加した、すなわちMPMの含有量が増加した。しかし、MPMの濃度が3wt%を越えると、重量減少率(%)に変化は見られなかった(飽和した)。   As shown in FIG. 5, as the concentration of MPM increased, the weight loss rate (%) increased, that is, the content of MPM increased. However, when the concentration of MPM exceeded 3 wt%, no change was found in the weight loss rate (%) (saturated).

これにより添加工程S100におけるチオールアルコキシシラン化合物(MPM)の濃度は、1〜3wt%がよく、好ましくは、2.5wt%〜3wt%がよい。このように、添加工程S100において、チオールアルコキシシラン化合物の濃度を1〜3wt%とすることでアルコキシシラン基に効率的に二酸化ケイ素を吸着させることができる。   Thereby, the concentration of the thiol alkoxysilane compound (MPM) in the adding step S100 is preferably 1 to 3 wt%, and preferably 2.5 wt% to 3 wt%. Thus, in addition process S100, silicon dioxide can be efficiently adsorbed to the alkoxysilane group by setting the concentration of the thiolalkoxysilane compound to 1 to 3 wt%.

(金属表面処理方法)
続いて、上述した金属表面保護剤を利用した金属表面処理方法について説明する。図6は、本実施形態にかかる金属表面処理方法を説明するための説明図である。図6に示すように本実施形態にかかる金属表面処理方法は、有機溶媒中に、上記一般式(A)に示すチオールアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを添加して、添加溶液を得る添加工程(S100)と、添加工程S100で得た添加溶液を加熱しながら攪拌することで、チオールアルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程(S102)と、吸着工程S102で得た金属表面保護剤含有溶液に金属部材を浸漬する浸漬工程(S104)とを含む。
(Metal surface treatment method)
Then, the metal surface treatment method using the metal surface protective agent mentioned above is demonstrated. FIG. 6 is an explanatory diagram for explaining the metal surface treatment method according to the present embodiment. As shown in FIG. 6, the metal surface treatment method according to the present embodiment adds a thiolalkoxysilane compound represented by the general formula (A) and silicon dioxide having an average particle size of 1 μm or less in an organic solvent. Then, the addition step (S100) for obtaining an addition solution and the addition solution obtained in the addition step S100 are stirred while heating, thereby adsorbing silicon dioxide to the thiolalkoxysilane compound to obtain a solution containing a metal surface protective agent. An adsorption step (S102) and an immersion step (S104) of immersing the metal member in the metal surface protective agent-containing solution obtained in the adsorption step S102 are included.

上述した金属表面保護剤の製造方法における工程として既に述べた、添加工程S100および吸着工程S102は、実質的に処理が等しいので重複説明を省略し、ここでは、処理が相違する浸漬工程S104を主に説明する。   The addition step S100 and the adsorption step S102, which have already been described as steps in the above-described method for producing the metal surface protective agent, are substantially the same in processing, and thus redundant description is omitted. Here, the immersion step S104 in which the processing is different is mainly performed. Explained.

(浸漬工程S104)
浸漬工程S104は、吸着工程S102で得た金属表面保護剤含有溶液に金属部材を浸漬する工程である。
(Immersion process S104)
The dipping step S104 is a step of dipping the metal member in the metal surface protecting agent-containing solution obtained in the adsorption step S102.

<浸漬工程S104における浸漬時間の検討>
ここでは、チオールアルコキシシラン化合物としてMPMを、二酸化ケイ素として平均粒径10〜80nmの二酸化ケイ素を、有機溶媒としてアセトンをそれぞれ用いた。まず、アセトン10mlに二酸化ケイ素10mgを添加し、さらに、3wt%となるようにMPMを添加して、添加溶液を得た。そして、添加溶液を60℃で12時間攪拌して得られた金属表面保護剤含有溶液を用いた。また金属部材として銅部材(10mm×10mm、Ra=0.5μm)を用いた。なお、Raは、金属部材の算術平均粗さを示す値である。
<Examination of immersion time in immersion step S104>
Here, MPM was used as the thiolalkoxysilane compound, silicon dioxide having an average particle size of 10 to 80 nm as silicon dioxide, and acetone as the organic solvent. First, 10 mg of silicon dioxide was added to 10 ml of acetone, and MPM was further added so as to be 3 wt% to obtain an additive solution. And the metal surface protective agent containing solution obtained by stirring the addition solution at 60 degreeC for 12 hours was used. A copper member (10 mm × 10 mm, Ra = 0.5 μm) was used as the metal member. Ra is a value indicating the arithmetic average roughness of the metal member.

金属表面保護剤含有溶液に銅部材を2時間浸漬させたところ、銅部材の表面が白く変化したことを目視で確認できた。これは、金属表面保護剤の二酸化ケイ素が凝集したものであると考えられる。   When the copper member was immersed in the metal surface protective agent-containing solution for 2 hours, it was confirmed by visual observation that the surface of the copper member was changed to white. This is considered that the metal surface protective agent silicon dioxide is agglomerated.

次に、金属表面保護剤含有溶液に銅部材を30分浸漬させたものと、60分浸漬させたものとを作成し、両者の表面状態を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した。   Next, a copper member immersed in a metal surface protective agent-containing solution for 30 minutes and a copper member immersed for 60 minutes are prepared, and the surface state of both is observed with a scanning electron microscope (SEM). did.

図7は、金属表面保護剤含有溶液に銅部材を30分浸漬させたものをSEMで観察した結果を示す図であり、図8は、金属表面保護剤含有溶液に銅部材を60分浸漬させたものをSEMで観察した結果を示す図である。   FIG. 7 is a view showing a result of observing a copper member immersed in a metal surface protective agent-containing solution for 30 minutes with an SEM, and FIG. 8 is a result of immersing the copper member in a metal surface protective agent-containing solution for 60 minutes. It is a figure which shows the result of having observed the thing with SEM.

図7を見て理解できるように、金属表面保護剤含有溶液に銅部材を30分浸漬させたものは、表面に銅(図7中、黒色で表されている部分)が確認でき、金属表面保護剤の被膜が形成されていないことが分かった。   As can be seen from FIG. 7, the copper member immersed in the metal surface protecting agent-containing solution for 30 minutes can be confirmed to have copper on the surface (the portion shown in black in FIG. 7). It was found that no protective agent film was formed.

一方、図8を見て理解できるように、金属表面保護剤含有溶液に銅部材を60分浸漬させたものでは、表面に二酸化ケイ素の粒子(図8中、白色で表されている部分)が確認でき、金属表面保護剤の被膜が形成されていることが分かった。   On the other hand, as can be understood from FIG. 8, in the case where the copper member is immersed in the metal surface protective agent-containing solution for 60 minutes, silicon dioxide particles (portions represented in white in FIG. 8) are formed on the surface. It was confirmed that a metal surface protective agent film was formed.

したがって、浸漬工程S104において、45分以下である場合、金属部材の表面に、金属表面保護剤の被膜が形成されない部分が多く存在してしまい、90分以上であると、金属部材の表面に金属表面保護剤の被膜が過剰に形成されて、金属部材の表面に二酸化ケイ素が析出してしまうことが分かった。   Therefore, in the dipping step S104, when it is 45 minutes or less, there are many portions on the surface of the metal member where the coating of the metal surface protective agent is not formed. It was found that the surface protective agent film was formed excessively and silicon dioxide was deposited on the surface of the metal member.

これにより、浸漬工程S104における金属部材を金属表面保護剤含有溶液に浸漬する時間は、45分〜90分がよく、好ましくは50分〜70分がよい。このように、浸漬工程において、金属部材を金属表面保護剤含有溶液に浸漬する時間を、45分〜90分とすることで二酸化ケイ素の析出を防止して、金属部材の表面に効率的に金属表面保護剤の被膜を形成することができる。   Thereby, 45 minutes-90 minutes are good for the time which the metal member in immersion process S104 is immersed in a metal surface protective agent containing solution, Preferably 50 minutes-70 minutes are good. Thus, in the dipping process, the time for dipping the metal member in the metal surface protective agent-containing solution is 45 minutes to 90 minutes, so that the deposition of silicon dioxide is prevented and the metal is efficiently applied to the surface of the metal member. A film of a surface protective agent can be formed.

上述した金属表面保護剤の製造方法では、平均粒径が1μm以下の二酸化ケイ素を用いているため、金属部材の表面に均一かつ隙間なく金属表面保護剤が被膜されるが、SEMで観察することで、二酸化ケイ素の平均粒径を20〜30μmと大きくすると、銅部材の表面に形成される被膜に隙間ができることが確認できる。   In the method for producing a metal surface protective agent described above, since silicon dioxide having an average particle size of 1 μm or less is used, the metal surface protective agent is coated uniformly and without gaps on the surface of the metal member. Thus, when the average particle diameter of silicon dioxide is increased to 20 to 30 μm, it can be confirmed that a gap is formed in the coating formed on the surface of the copper member.

図9は、平均粒径が20〜30μmの二酸化ケイ素を用いて生成した金属表面保護剤含有溶液に銅部材を1時間浸漬させたものをSEMで観察した結果を示す図である。図9を見て理解できるように、表面に銅(図9中、黒色で表されている部分)と、二酸化ケイ素(図9中、丸い形状で表されている部分)が確認でき、銅部材の全面が二酸化ケイ素の粒子で覆われていない、すなわち金属表面保護剤で被覆されていないことが分かった。   FIG. 9 is a diagram showing a result of observing a copper member immersed in a metal surface protective agent-containing solution produced using silicon dioxide having an average particle diameter of 20 to 30 μm for 1 hour by SEM. As can be seen from FIG. 9, copper (a portion represented by black in FIG. 9) and silicon dioxide (a portion represented by a round shape in FIG. 9) can be confirmed on the surface, and a copper member. It was found that the entire surface was not covered with silicon dioxide particles, that is, not covered with a metal surface protective agent.

したがって、金属表面保護剤に含まれる二酸化ケイ素の粒径を1μm以下とすることで、金属部材の表面を金属表面保護剤で緻密に覆う(成膜する)ことができ、金属部材の腐食を防止することが可能となる。特にチオールアルコキシシラン化合物としてMPMを用いた場合、MPMの層の厚みは、数(2〜3)nmであるため、MPMで構成される金属表面保護剤で金属部材を処理したとしても、検査する際に寸法精度を確保することが可能となる。   Therefore, by setting the particle size of silicon dioxide contained in the metal surface protective agent to 1 μm or less, the surface of the metal member can be densely covered (deposited) with the metal surface protective agent to prevent corrosion of the metal member. It becomes possible to do. In particular, when MPM is used as the thiolalkoxysilane compound, the thickness of the MPM layer is several (2 to 3) nm. Therefore, even if the metal member is treated with a metal surface protective agent composed of MPM, inspection is performed. It is possible to ensure dimensional accuracy.

図10は、金属表面保護剤含有溶液に銅部材を60分浸漬させたものをX線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)で分析した硫黄(S2p)のスペクトルを示す図であり、横軸に結合エネルギー(eV)を、縦軸に強度をそれぞれ示す。   FIG. 10 is a view showing a spectrum of sulfur (S2p) obtained by analyzing a copper member immersed in a metal surface protective agent-containing solution for 60 minutes by X-ray photoelectron spectroscopy (XPS); The horizontal axis represents the binding energy (eV), and the vertical axis represents the strength.

図10に示すように、結合エネルギー163.3eV付近のピークは、硫黄と銅の結合を示すピークであるため、金属部材の銅とMPMとが硫黄を介して化学結合していることが分かった。   As shown in FIG. 10, since the peak near the binding energy of 163.3 eV is a peak indicating a bond between sulfur and copper, it was found that copper and MPM of the metal member are chemically bonded via sulfur. .

また、上述した各試験において、金属部材として銅を利用したが、金や銀等他の様々な金属や、銅、金、銀を含む合金でも、金属部材の全面に金属表面保護剤の被膜を形成することができ、腐食を防ぐことが可能となる。   Moreover, in each test mentioned above, although copper was utilized as a metal member, the coating of a metal surface protective agent was applied to the entire surface of the metal member even in various other metals such as gold and silver, and alloys containing copper, gold and silver. It can be formed and corrosion can be prevented.

(実施例)
アセトン10mlに平均粒径が1μm以下の二酸化ケイ素10mgを添加し、さらに、3wt%となるようにMPMを添加して、添加溶液を得た。そして、添加溶液を60℃で12時間攪拌して金属表面保護剤含有溶液を得た。得られた金属表面保護剤含有溶液に銅部材(10mm×10mm、Ra=0.5μm)を1時間浸漬した。
(Example)
10 mg of silicon dioxide having an average particle diameter of 1 μm or less was added to 10 ml of acetone, and MPM was further added so as to be 3 wt% to obtain an added solution. The additive solution was stirred at 60 ° C. for 12 hours to obtain a metal surface protective agent-containing solution. A copper member (10 mm × 10 mm, Ra = 0.5 μm) was immersed in the obtained metal surface protective agent-containing solution for 1 hour.

(評価)
実施例で得られた銅部材(以下、単に試料Aとする)の比較例として、平均粒径が20〜30μmの二酸化ケイ素を用いて生成した金属表面保護剤含有溶液に銅部材を1時間浸漬させたもの(以下、単に試料Bとする)と、コントロールとして未処理の銅部材(以下、単に試料Cとする)とを用いて、防食評価を行った。防食評価として、試料A、B、Cに対して、JIS Z 2371に準拠した塩水噴霧試験を行った。
(Evaluation)
As a comparative example of the copper member obtained in the examples (hereinafter simply referred to as sample A), the copper member was immersed in a metal surface protective agent-containing solution produced using silicon dioxide having an average particle size of 20 to 30 μm for 1 hour. The anticorrosion evaluation was carried out by using the prepared material (hereinafter simply referred to as sample B) and the untreated copper member (hereinafter simply referred to as sample C) as the control. As a corrosion prevention evaluation, a salt spray test based on JIS Z 2371 was performed on samples A, B, and C.

図11は、塩水噴霧48時間経過後の試料A、B、Cそれぞれを撮像した画像を示す図であり、表1は、試料A、B、CをX線光電子分光法で分析した銅/銅化合物の強度比を示す表である。

Figure 2012107300
FIG. 11 is a diagram showing images obtained by imaging samples A, B, and C after 48 hours of salt spray, and Table 1 shows copper / copper obtained by analyzing samples A, B, and C by X-ray photoelectron spectroscopy. It is a table | surface which shows the intensity ratio of a compound.
Figure 2012107300

図11中、黒色で表されている部分が腐食である。図11を見て理解できるように、試料Aでは、腐食(錆の発生)が見られなかったが、試料Bおよび試料Cでは、腐食が確認された。   In FIG. 11, the black part is corrosion. As can be understood from FIG. 11, no corrosion (generation of rust) was observed in sample A, but corrosion was confirmed in sample B and sample C.

また、表1に示すように、試料Aでは、銅化合物よりも銅の比率が高い、すなわち銅部材が腐食されていないことが分かり、金属表面保護剤は防食機能が高いことが示された。一方、試料Bでは、試料Cほどではないものの、試料Aと比較して銅化合物よりも銅の比率が低いことが分かった。試料Bでは、二酸化ケイ素の粒子が大きいため、銅部材の全面に金属表面保護剤の被膜が形成されず、その隙間に腐食が発生したと考えられる。   Moreover, as shown in Table 1, in Sample A, it was found that the copper ratio was higher than that of the copper compound, that is, the copper member was not corroded, indicating that the metal surface protective agent has a high anticorrosion function. On the other hand, in Sample B, although not as much as Sample C, it was found that the ratio of copper was lower than that of Copper Compound compared to Sample A. In Sample B, since the silicon dioxide particles are large, it is considered that the coating of the metal surface protective agent was not formed on the entire surface of the copper member, and corrosion occurred in the gap.

また、実試料での金属表面保護剤の効果を検証するために、金属部材として、銅合金の筒(L=75mm、φ=15mm、Ra=0.1μm)を用いて、JIS Z 2371に準拠した塩水噴霧試験を行った。   In addition, in order to verify the effect of the metal surface protective agent on the actual sample, a copper alloy tube (L = 75 mm, φ = 15 mm, Ra = 0.1 μm) was used as the metal member, in accordance with JIS Z 2371. The salt spray test was conducted.

図12は、塩水噴霧48時間経過後の、金属表面保護剤で処理した実試料と未処理の実試料それぞれを撮像した画像を示す図である。図12中、腐食が黒色で表されている。図12を見て理解できるように、未処理の実試料は、表面が黒色で表されていることから腐食が発生していることが分かる。また図12を見て理解できるように、金属表面保護剤で処理した実試料は、表面に黒色で表される箇所がないことから腐食が発生していないことが分かる。   FIG. 12 is a diagram showing images obtained by imaging the real sample treated with the metal surface protective agent and the untreated real sample after 48 hours of salt water spray. In FIG. 12, the corrosion is represented in black. As can be seen from FIG. 12, the untreated real sample has a black surface, which indicates that corrosion has occurred. In addition, as can be understood from FIG. 12, it can be seen that the actual sample treated with the metal surface protective agent has no corrosion due to the absence of a black portion on the surface.

図13は、大気中に3ヶ月放置した後の、金属表面保護剤で処理した実試料と未処理の実試料それぞれを撮像した画像を示す図である。図13を見て理解できるように、金属表面保護剤で処理した実試料には、腐食を見いだすことはできないが、未処理の実試料は、部分的ではあるものの表面に腐食(図13中、矢印で示す)が発生していることが分かる。   FIG. 13 is a diagram showing images obtained by capturing an actual sample treated with a metal surface protective agent and an untreated real sample after being left in the atmosphere for three months. As can be seen from FIG. 13, no corrosion can be found in the actual sample treated with the metal surface protective agent, but the untreated actual sample is partially corroded on the surface (in FIG. 13, It can be seen that (indicated by an arrow) occurs.

これにより、本実施例の金属表面保護剤は、処理対象である金属部材の形状や大きさに拘わらず、好適に金属表面を被覆することができ、金属の腐食を防ぐことが可能となることが分かった。   As a result, the metal surface protective agent of the present embodiment can suitably cover the metal surface regardless of the shape and size of the metal member to be treated, and can prevent metal corrosion. I understood.

以上説明したように、本実施形態にかかる金属表面保護剤によれば、金属表面保護剤を構成するチオール基が金属部材と化学結合することで、金属部材の表面に自己組織的に配列された金属表面保護剤の単分子膜が形成され、金属部材を金属表面保護剤で被覆することができる。また、金属表面保護剤を構成する二酸化ケイ素の平均粒径を1μm以下とすることで、被膜の厚みが1μm以下となり、金属部材を処理したとしても、検査する際に寸法精度を確保することが可能となる。したがって、金属表面保護剤含有溶液に金属部材を浸漬するだけといった簡単な処理を行うだけで、寸法精度に影響を及ぼさない程度の薄膜を金属部材の表面に形成することができ、金属部材の腐食を防止することが可能となる。   As described above, according to the metal surface protective agent according to the present embodiment, the thiol groups constituting the metal surface protective agent are chemically bonded to the metal member, and thus are self-organized on the surface of the metal member. A monomolecular film of the metal surface protective agent is formed, and the metal member can be coated with the metal surface protective agent. In addition, by making the average particle diameter of silicon dioxide constituting the metal surface protective agent 1 μm or less, the thickness of the coating becomes 1 μm or less, and even when the metal member is processed, dimensional accuracy can be ensured when inspecting. It becomes possible. Therefore, it is possible to form a thin film on the surface of the metal member that does not affect the dimensional accuracy by simply performing a simple treatment such as immersing the metal member in a solution containing the metal surface protective agent. Can be prevented.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

なお、本明細書の金属表面保護剤の製造方法および金属表面処理方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的に進めることも可能である。   In addition, each process in the manufacturing method of a metal surface protective agent of this specification and a metal surface treatment method does not necessarily need to process in time series along the order described as a flowchart, and can also advance in parallel. is there.

本発明は、金属の防食(防錆)に利用される金属表面保護剤、金属表面保護剤の製造方法および金属表面処理方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a metal surface protective agent used for metal corrosion prevention (rust prevention), a method for producing a metal surface protective agent, and a metal surface treatment method.

S100 …添加工程
S102 …吸着工程
S104 …浸漬工程
S100 ... addition process S102 ... adsorption process S104 ... immersion process

Claims (5)

下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、
平均粒径が1μm以下である二酸化ケイ素と、
を含むことを特徴とする金属表面保護剤。
The following general formula (A)
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
An alkoxysilane compound represented by:
Silicon dioxide having an average particle size of 1 μm or less;
A metal surface protective agent comprising:
前記二酸化ケイ素の平均粒径は、10〜80nmであることを特徴とする請求項1に記載の金属表面保護剤。   2. The metal surface protective agent according to claim 1, wherein the silicon dioxide has an average particle diameter of 10 to 80 nm. 有機溶媒中に、
下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを添加して、添加溶液を得る添加工程と、
前記添加溶液を加熱しながら攪拌することで、前記アルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程と、
を含み、
前記吸着工程において、前記添加溶液を50℃〜70℃に加熱し、10時間〜14時間攪拌することを特徴とする金属表面保護剤の製造方法。
In an organic solvent,
The following general formula (A)
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
An addition step of adding an alkoxysilane compound represented by formula (II) and silicon dioxide having an average particle size of 1 μm or less to obtain an additive solution;
By adsorbing silicon dioxide to the alkoxysilane compound by stirring the additive solution while heating, an adsorption step of obtaining a metal surface protective agent-containing solution;
Including
In the adsorption step, the additive solution is heated to 50 ° C. to 70 ° C. and stirred for 10 hours to 14 hours.
前記添加工程における、前記アルコキシシラン化合物の濃度は、1〜3wt%であることを特徴とする請求項3に記載の金属表面保護剤の製造方法。   The method for producing a metal surface protective agent according to claim 3, wherein the concentration of the alkoxysilane compound in the adding step is 1 to 3 wt%. 有機溶媒中に、
下記一般式(A)
HS(CHSi(OCH …一般式(A)
(一般式(A)中、nは、整数を示す。)
で示されるアルコキシシラン化合物と、平均粒径が1μm以下である二酸化ケイ素とを添加して、添加溶液を得る添加工程と、
前記添加溶液を加熱しながら攪拌することで、前記アルコキシシラン化合物に二酸化ケイ素を吸着させて、金属表面保護剤含有溶液を得る吸着工程と、
前記吸着工程で得た金属表面保護剤含有溶液に金属部材を浸漬する浸漬工程と、
を含み、
前記浸漬工程において、前記金属部材を前記金属表面保護剤含有溶液に浸漬する時間は、45分〜90分であることを特徴とする金属表面処理方法。
In an organic solvent,
The following general formula (A)
HS (CH 2) n Si ( OCH 3) 3 ... Formula (A)
(In general formula (A), n represents an integer.)
An addition step of adding an alkoxysilane compound represented by formula (II) and silicon dioxide having an average particle size of 1 μm or less to obtain an additive solution;
By adsorbing silicon dioxide to the alkoxysilane compound by stirring the additive solution while heating, an adsorption step of obtaining a metal surface protective agent-containing solution;
An immersion step of immersing the metal member in the metal surface protecting agent-containing solution obtained in the adsorption step;
Including
In the dipping step, the time for dipping the metal member in the metal surface protective agent-containing solution is 45 minutes to 90 minutes.
JP2010258375A 2010-11-18 2010-11-18 Metal surface protective agent, metal surface protective agent production method and metal surface treatment method Active JP5358776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258375A JP5358776B2 (en) 2010-11-18 2010-11-18 Metal surface protective agent, metal surface protective agent production method and metal surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258375A JP5358776B2 (en) 2010-11-18 2010-11-18 Metal surface protective agent, metal surface protective agent production method and metal surface treatment method

Publications (2)

Publication Number Publication Date
JP2012107300A true JP2012107300A (en) 2012-06-07
JP5358776B2 JP5358776B2 (en) 2013-12-04

Family

ID=46493205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258375A Active JP5358776B2 (en) 2010-11-18 2010-11-18 Metal surface protective agent, metal surface protective agent production method and metal surface treatment method

Country Status (1)

Country Link
JP (1) JP5358776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176123A (en) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 Method for treating surface of metal base material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093835A (en) * 1973-12-25 1975-07-26
JPS57155386A (en) * 1981-03-18 1982-09-25 Murata Mfg Co Ltd Preventing method for oxidation of copper powder
JPS6283478A (en) * 1985-10-09 1987-04-16 Sumitomo Metal Ind Ltd Chromated steel material having superior adhesion to coating
JPH09195063A (en) * 1996-01-12 1997-07-29 Kobe Steel Ltd White chromate treated steel sheet excellent in corrosion resistance and appearance
JPH11302576A (en) * 1998-04-16 1999-11-02 Kansai Paint Co Ltd Anionic type matte electrodeposition coating material
JP2000248383A (en) * 1998-12-28 2000-09-12 Nippon Steel Corp Non-chromium type treated galvanized steel sheet
JP2000282252A (en) * 1999-01-29 2000-10-10 Nippon Steel Corp Non-chromium type surface treated metallic material
JP2001026889A (en) * 1998-12-28 2001-01-30 Nippon Steel Corp Rust preventive agent for metallic surface and surface treated metallic product
JP2001240977A (en) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd Metallic surface treatment method
WO2004044062A1 (en) * 2002-11-13 2004-05-27 Asahi Glass Company, Limited Actinic radiation curable coating composition and molded articles having coating films made from the composition through curing
JP2008202147A (en) * 2004-02-25 2008-09-04 Posco Method of protecting metal from corrosion using thiol compound, and coating method therefor
JP2009185363A (en) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd Surface treating composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093835A (en) * 1973-12-25 1975-07-26
JPS57155386A (en) * 1981-03-18 1982-09-25 Murata Mfg Co Ltd Preventing method for oxidation of copper powder
JPS6283478A (en) * 1985-10-09 1987-04-16 Sumitomo Metal Ind Ltd Chromated steel material having superior adhesion to coating
JPH09195063A (en) * 1996-01-12 1997-07-29 Kobe Steel Ltd White chromate treated steel sheet excellent in corrosion resistance and appearance
JPH11302576A (en) * 1998-04-16 1999-11-02 Kansai Paint Co Ltd Anionic type matte electrodeposition coating material
JP2000248383A (en) * 1998-12-28 2000-09-12 Nippon Steel Corp Non-chromium type treated galvanized steel sheet
JP2001026889A (en) * 1998-12-28 2001-01-30 Nippon Steel Corp Rust preventive agent for metallic surface and surface treated metallic product
JP2000282252A (en) * 1999-01-29 2000-10-10 Nippon Steel Corp Non-chromium type surface treated metallic material
JP2001240977A (en) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd Metallic surface treatment method
WO2004044062A1 (en) * 2002-11-13 2004-05-27 Asahi Glass Company, Limited Actinic radiation curable coating composition and molded articles having coating films made from the composition through curing
JP2008202147A (en) * 2004-02-25 2008-09-04 Posco Method of protecting metal from corrosion using thiol compound, and coating method therefor
JP2009185363A (en) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd Surface treating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176123A (en) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 Method for treating surface of metal base material

Also Published As

Publication number Publication date
JP5358776B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
Balbo et al. Effectiveness of corrosion inhibitor films for the conservation of bronzes and gilded bronzes
Chiavari et al. Atmospheric corrosion of fire-gilded bronze: corrosion and corrosion protection during accelerated ageing tests
RU2248409C1 (en) Solution for metal article treatment, method for production of corrosion-resistant chromium(iii)-based coating on metal substrate and article containing coated metal substrate (variants)
Hamdy et al. Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol–gel method for aluminum alloys
Dalmoro et al. Corrosion behavior of AA2024-T3 alloy treated with phosphonate-containing TEOS
Singh et al. Role of tannic acid based rust converter on formation of passive film on zinc rich coating exposed in simulated concrete pore solution
Edraki et al. Azole derivatives embedded in montmorillonite clay nanocarriers as corrosion inhibitors of mild steel
TW201723161A (en) Water-based lubricating coating agent for metal materials, surface-treated metal material and method of forming lubricating coating of metal materials
Mofidabadi et al. Investigating the effectiveness of Watermelon extract-zinc ions for steel alloy corrosion mitigation in sodium chloride solution
Wittmar et al. Hybrid sol–gel coatings doped with transition metal ions for the protection of AA 2024-T3
Jakeria et al. Long term durability studies on the corrosion inhibition effect of 2-mercaptobenzimidazole (C3H4N2S) on AA6022: mechanism of film formation and influence of IMPs
JP5358776B2 (en) Metal surface protective agent, metal surface protective agent production method and metal surface treatment method
Cai et al. Experimental investigations on corrosion behavior and antibacterial property of nickel-aluminum bronze fabricated through wire-arc additive manufacturing (WAAM)
Guo et al. Corrosion interactions between stainless steel and lead vanado-iodoapatite nuclear waste form part I
JP2017190473A (en) Slide member, method for producing slide member and plating solution for producing slide member
WO2015146466A1 (en) Steel wire rod having coating film that has excellent corrosion resistance and workability and method for producing same
Sharifalhoseini et al. Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni–P/ZnO@ SiO2 coatings
CN111020551B (en) Using ZrO2/MoO3Method for protecting irony cultural relics by composite nano film layer
Maqsood et al. PTFE thin film coating on 316l stainless steel for corrosion protection in acidic environment
Li Corrosion protection provided by trivalent chromium process conversion coatings on aluminum alloys
Pejić et al. Inhibitory effect of cysteine and lanthanides on AA7075‐T6 in neutral NaCl solution
Salam Hamdy et al. Corrosion protection performance of nano‐particles thin‐films containing vanadium ions formed on aluminium alloys
KR101859527B1 (en) Chemical modification method of aluminium surface for improving corrosion resistant charateristics and aluminium materials modified thereby
Nasr-Esfahani et al. Improvement of the corrosion performance of 304L stainless steel by a nanostructure hybrid coating/henna extract
Peng et al. Hybrid sol-gel coating incorporated with TiO2 nanosheets and anti-corrosive effects on AA2024-T3

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5358776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250