JP2012106981A - Method for producing tetrahydroquinoline compound - Google Patents

Method for producing tetrahydroquinoline compound Download PDF

Info

Publication number
JP2012106981A
JP2012106981A JP2011183674A JP2011183674A JP2012106981A JP 2012106981 A JP2012106981 A JP 2012106981A JP 2011183674 A JP2011183674 A JP 2011183674A JP 2011183674 A JP2011183674 A JP 2011183674A JP 2012106981 A JP2012106981 A JP 2012106981A
Authority
JP
Japan
Prior art keywords
general formula
compound represented
copper
palladium
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011183674A
Other languages
Japanese (ja)
Inventor
Zhang Wanbin
万斌 張
Feng Jiang
峰 江
Zhengxing Wu
正興 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Nippon Chemical Industrial Co Ltd
Original Assignee
Shanghai Jiaotong University
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Nippon Chemical Industrial Co Ltd filed Critical Shanghai Jiaotong University
Publication of JP2012106981A publication Critical patent/JP2012106981A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Quinoline Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing tetrahydroquinoline compounds, having high efficiency and a low cost.SOLUTION: A tetrahydroquinoline compound represented by general formula (3) is obtained by making a compound represented by general formula (1) and a copper salt represented by general formula (2) react with each other in the presence of a divalent palladium salt in a solvent. In general formulas (1)-(3), R represents hydrogen, an electron attracting group or an electron donating group, Rrepresents hydrogen or an electron attracting group, and X represents any one selected from among fluorine, chlorine, bromine, iodine, and RCOO (Rrepresents a methyl group for which fluorine may substitute).

Description

本発明はテトラヒドロキノリン類化合物の製造方法に関する。   The present invention relates to a method for producing a tetrahydroquinoline compound.

テトラヒドロキノリン化合物は幾つかの天然産物および生物活性を有するある種の分子中に広範に存在している(非特許文献1)。例えば、抗腫瘍性抗生物質Dynemycinは、テトラヒドロキノリン上に形成され、それをコア構造とする分子である(非特許文献2および3)。   Tetrahydroquinoline compounds are widely present in some natural products and certain molecules with biological activity (Non-Patent Document 1). For example, the antitumor antibiotic Dynemycin is a molecule formed on tetrahydroquinoline and having it as a core structure (Non-patent Documents 2 and 3).

近年、テトラヒドロキノリン類化合物は、抗菌薬(非特許文献4)、抗真菌薬(非特許文献5)、または農薬(非特許+文献6)として広範に報告されている。また、テトラヒドロキノリン類化合物は、人類の疾病に関連する幾つかの酵素および受容体に対する阻害作用の故に、抗鬱病(非特許文献7)および抗糖尿病(非特許文献8)などの分野においても広範に注目されている。   In recent years, tetrahydroquinoline compounds have been widely reported as antibacterial drugs (Non-Patent Document 4), antifungal drugs (Non-Patent Document 5), or pesticides (Non-Patent Document 6). Tetrahydroquinoline compounds are also widely used in fields such as antidepressant (Non-patent Document 7) and anti-diabetes (Non-patent Document 8) because of their inhibitory action on several enzymes and receptors related to human diseases. Has attracted attention.

そのうちで、テトラヒドロキノリン類化合物の1種である2−置換−1,2,3,4−テトラヒドロキノリン類化合物は、さらに、選択的エストロゲン受容体調節物質(非特許文献9)およびコレステロールエステル転送タンパク阻害剤(非特許文献10)を設計するのに用いられている。これらの生物活性により、テトラヒドロキノリン類化合物は、エストロゲンの影響を受ける癌、およびコレステロールによって引き起こされる骨粗鬆症を治療する潜在的医薬になり得る。   Among them, 2-substituted-1,2,3,4-tetrahydroquinoline compounds, which are one type of tetrahydroquinoline compounds, further include selective estrogen receptor modulators (Non-patent Document 9) and cholesterol ester transfer proteins. It is used to design inhibitors (Non-Patent Document 10). With these biological activities, tetrahydroquinoline compounds can be potential drugs to treat estrogen-affected cancers and osteoporosis caused by cholesterol.

テトラヒドロキノリン類化合物の合成に関してはすでに多くの報告がある(非特許文献11〜13)。例えば、パラジウム触媒酸化法を用いて含窒素複素環を合成することが報告されているが、6員の含窒素複素環は触媒量のパラジウムの作用下では形成されにくい(非特許文献14)。Pd(II)触媒酸化法を用いてジヒドロキノリンが合成されたが、大多数の生成物は5員および6員複素環の混合物である(非特許文献15および16)。Pd(II)触媒酸化法を用いてキノリン類似体のみが合成されている(非特許文献17)。また、Cu(II)を酸化剤とするPd(II)触媒酸化反応を用いてテトラヒドロキノリン類化合物が合成されたが、得られたのはテトラヒドロキノリンとジヒドロインドールの混合物である(非特許文献18)。   There have already been many reports on the synthesis of tetrahydroquinoline compounds (Non-Patent Documents 11 to 13). For example, it has been reported that a nitrogen-containing heterocycle is synthesized using a palladium-catalyzed oxidation method, but a 6-membered nitrogen-containing heterocycle is hardly formed under the action of a catalytic amount of palladium (Non-patent Document 14). Dihydroquinolines have been synthesized using Pd (II) catalyzed oxidation methods, but the majority of products are mixtures of 5- and 6-membered heterocycles (Non-Patent Documents 15 and 16). Only quinoline analogs have been synthesized using the Pd (II) catalytic oxidation method (Non-patent Document 17). Further, a tetrahydroquinoline compound was synthesized using a Pd (II) -catalyzed oxidation reaction using Cu (II) as an oxidant, and a mixture of tetrahydroquinoline and dihydroindole was obtained (Non-patent Document 18). ).

Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2008, 25, 166-187.Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2008, 25, 166-187. Konishi, et al. Crystal and Molecular Structure of Dynemicin A: A Novel 1,5-Diyn-3-ene Antitumor Antibiotic. J. Am. Chem. Soc. 1990, 112, 3715-3716.Konishi, et al. Crystal and Molecular Structure of Dynemicin A: A Novel 1,5-Diyn-3-ene Antitumor Antibiotic. J. Am. Chem. Soc. 1990, 112, 3715-3716. Wender, P. A., et al. A Photochemically Triggered DNA Cleaving Agent: Synthesis, Mechanistic and DNA Cleavage Studies on a New Analog of the Antitumor Antibiotic Dynemicin. J. Org. Chem. 1993, 58, 5867-5869.Wender, P. A., et al. A Photochemically Triggered DNA Cleaving Agent: Synthesis, Mechanistic and DNA Cleavage Studies on a New Analog of the Antitumor Antibiotic Dynemicin. J. Org. Chem. 1993, 58, 5867-5869. Ramesh, E., et al. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem. 2009, 17, 660-666.Ramesh, E., et al. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem. 2009, 17, 660-666. Urbina, J. M., et al. Inhibitors of the Fungal Cell Wall. Synthesis of 4-Aryl-4-N-arylamine-1-butenes and Related Compounds with Inhibitory Activities on β(1-3)Glucan and Chitin Synthases. Bioorg. Med. Chem. 2000, 8, 691-698.Urbina, JM, et al. Inhibitors of the Fungal Cell Wall. Synthesis of 4-Aryl-4-N-arylamine-1-butenes and Related Compounds with Inhibitory Activities on β (1-3) Glucan and Chitin Synthases. Bioorg. Med Chem. 2000, 8, 691-698. Smith, H. C., et al. Synthesis and SAR of cis-1-Benzoyl-1,2,3,4-tetrahydroquinoline Ligands for Control of Gene Expression in Ecdysone Responsive Systems. Bioorg. Med. Chem. Lett. 2003, 13, 1943-1946.Smith, HC, et al. Synthesis and SAR of cis-1-Benzoyl-1,2,3,4-tetrahydroquinoline Ligands for Control of Gene Expression in Ecdysone Responsive Systems.Bioorg. Med. Chem. Lett. 2003, 13, 1943 -1946. Scott, J. D., et al. Tetrahydroquinoline sulfonamides as vasopressin 1b receptor anatgonists. Bioorg. Med. Chem. Lett. 2009, 19, 6018-6022.Scott, J. D., et al. Tetrahydroquinoline sulfonamides as vasopressin 1b receptor anatgonists. Bioorg. Med. Chem. Lett. 2009, 19, 6018-6022. Parmenon, C., et al. 4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα/γ agonists. Part I: Synthesis and pharmacological evaluation. Bioorg. Med. Chem. Lett. 2008, 18, 1617-1622.Parmenon, C., et al. 4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα / γ agonists. Part I: Synthesis and pharmacological evaluation. Bioorg. Med. Chem. Lett. 2008, 18, 1617-1622. Wallace, O. B. , et al. Tetrahydroquinoline-Based Selective Estrogen Receptor Modulators (SERMs). Bioorg. Med. Chem. Lett. 2003, 13, 1907-1910.Wallace, O. B., et al. Tetrahydroquinoline-Based Selective Estrogen Receptor Modulators (SERMs). Bioorg. Med. Chem. Lett. 2003, 13, 1907-1910. Rano, T., et al. Design and synthesis of potent inhibitors of cholesteryl ester transfer protein (CETP) exploiting a 1,2,3,4-tetrahydroquinoline platform. Bioorg. Med. Chem. Lett. 2009, 19, 2456-2460.Rano, T., et al. Design and synthesis of potent inhibitors of cholesteryl ester transfer protein (CETP) exploiting a 1,2,3,4-tetrahydroquinoline platform. Bioorg. Med. Chem. Lett. 2009, 19, 2456-2460 . Katritzky, A. R., et al. Recent Progress in the Synthesis of 1,2,3,4-tetrahydroquinolines. Tetrahedron 1996, 52, 15031-15070.Katritzky, A. R., et al. Recent Progress in the Synthesis of 1,2,3,4-tetrahydroquinolines. Tetrahedron 1996, 52, 15031-15070. Larock, R. C., et al. Tetrahedron 1998, 54, 9961-9980.Larock, R. C., et al. Tetrahedron 1998, 54, 9961-9980. Hara O., et al, Tetrahedron 2007, 63, 6170-6181.Hara O., et al, Tetrahedron 2007, 63, 6170-6181. Hegedus, L. S. , et al, J. M. J. Am. Chem. Soc. 1982, 104, 2444-2451.Hegedus, L. S., et al, J. M. J. Am. Chem. Soc. 1982, 104, 2444-2451. Larock, R. C. , et al. P. J. Org. Chem. 1996, 61, 3584-3585.Larock, R. C., et al. P. J. Org. Chem. 1996, 61, 3584-3585. Roger, M. M., et al. Org. Lett. 2006, 8, 2257-2260.Roger, M. M., et al. Org. Lett. 2006, 8, 2257-2260. Zhang, Z., et al, Org. Lett. 2008, 10, 173-175.Zhang, Z., et al, Org. Lett. 2008, 10, 173-175. Manzoni, M. R., et al. Organometallics 2004, 23, 5618-5621.Manzoni, M.R., et al. Organometallics 2004, 23, 5618-5621.

本発明の目的は、上記従来技術に存在する欠点に対して、効率が高くコストが低いテトラヒドロキノリン類化合物の製造方法を提供することである。   An object of the present invention is to provide a method for producing a tetrahydroquinoline compound which is high in efficiency and low in cost with respect to the disadvantages existing in the prior art.

上記の課題を解決するために、本発明のテトラヒドロキノリン類化合物の製造方法によれば、二価のパラジウム塩の存在下で、下記一般式(1)で表される化合物と下記一般式(2)で表される銅塩とを溶媒中で反応させて、下記一般式(3)で表されるテトラヒドロキノリン類化合物を得る。   In order to solve the above problems, according to the method for producing a tetrahydroquinoline compound of the present invention, in the presence of a divalent palladium salt, a compound represented by the following general formula (1) and the following general formula (2 ) Is reacted in a solvent to obtain a tetrahydroquinoline compound represented by the following general formula (3).

Figure 2012106981
Figure 2012106981

かつ、本発明の製造方法において、Rは、水素、フッ素、塩素、臭素、ヨウ素、メチル基、およびメトキシ基から選択されるいずれか1種を表す。R1は、水素、アシル基、およびスルホニル基から選択されるいずれか1種を表す。
かつ、本発明の製造方法において、前記銅塩は、酢酸銅、臭化銅、塩化銅、ヨウ化銅およびトリフルオロ酢酸銅から選択される少なくとも1種である。
In the production method of the present invention, R represents any one selected from hydrogen, fluorine, chlorine, bromine, iodine, a methyl group, and a methoxy group. R 1 represents any one selected from hydrogen, an acyl group, and a sulfonyl group.
In the production method of the present invention, the copper salt is at least one selected from copper acetate, copper bromide, copper chloride, copper iodide and copper trifluoroacetate.

また、本発明の製造方法において、前記二価のパラジウム塩は、酢酸パラジウム、塩化パラジウム、トリフルオロ酢酸パラジウム、臭化パラジウム、およびジクロロビス(アセトニトリル)パラジウム(II)から選択される少なくとも1種である。   In the production method of the present invention, the divalent palladium salt is at least one selected from palladium acetate, palladium chloride, palladium trifluoroacetate, palladium bromide, and dichlorobis (acetonitrile) palladium (II). .

また、本発明の製造方法において、前記溶媒は、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、アセトン、DMSO、DMF、NMP、アセトニトリル、ジエチルエーテル、ジクロロメタン、トルエン、キシレン、ベンゼン、およびトリフルオロメチルベンゼンから選択される少なくとも1種である。   In the production method of the present invention, the solvent is selected from methanol, ethanol, isopropyl alcohol, tetrahydrofuran, acetone, DMSO, DMF, NMP, acetonitrile, diethyl ether, dichloromethane, toluene, xylene, benzene, and trifluoromethylbenzene. Is at least one kind.

また、本発明の製造方法において、前記一般式(1)で表される化合物(アニリン類化合物)を反応させるときに、さらに、添加剤を共存させる。かつ、前記添加剤は、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸ナトリウム、酢酸カリウム、酢酸ナトリウム、安息香酸、および酢酸から選択される少なくとも1種である。   Moreover, in the manufacturing method of this invention, when making the compound (aniline compound) represented by the said General formula (1) react, an additive is further made to coexist. The additive is at least one selected from potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, sodium carbonate, potassium acetate, sodium acetate, benzoic acid, and acetic acid.

また、本発明の製造方法において、前記二価のパラジウム塩と前記一般式(1)で表される化合物とのモル比として、二価のパラジウム塩:一般式(1)で表される化合物=0.1:1〜0.4:1である。
また、本発明の製造方法において、前記銅塩と前記一般式(1)で表される化合物とのモル比として、銅塩:一般式(1)で表される化合物=1.2:1〜4:1である。
また、本発明の製造方法において、前記添加剤と前記一般式(1)で表される化合物とのモル比として、添加剤:一般式(1)で表される化合物=1.2:1〜4:1である。
In the production method of the present invention, as the molar ratio of the divalent palladium salt to the compound represented by the general formula (1), the divalent palladium salt: the compound represented by the general formula (1) = 0.1: 1 to 0.4: 1.
Moreover, in the manufacturing method of this invention, as a molar ratio of the said copper salt and the compound represented by the said General formula (1), copper salt: The compound represented by General formula (1) = 1.2: 1- 4: 1.
Moreover, in the manufacturing method of this invention, as a molar ratio of the said additive and the compound represented by the said General formula (1), an additive: The compound represented by General formula (1) = 1.2: 1- 4: 1.

以下に本発明を詳細に説明する。
本発明のテトラヒドロキノリン類化合物の製造方法は、その反応式は下記の通りである。
The present invention is described in detail below.
The method for producing the tetrahydroquinoline compound of the present invention has the following reaction formula.

Figure 2012106981
Figure 2012106981

上記反応式において、二価のパラジウム塩(Pd(II))の存在下で、一般式(1)で表される化合物(すなわち、ベース物質)と一般式(2)で表される銅塩(CuX2)とを溶媒中で反応させて、一般式(3)で表されるテトラヒドロキノリン類化合物を得る。 In the above reaction formula, in the presence of a divalent palladium salt (Pd (II)), a compound represented by the general formula (1) (that is, a base substance) and a copper salt represented by the general formula (2) ( CuX 2 ) is reacted in a solvent to obtain a tetrahydroquinoline compound represented by the general formula (3).

式中、Rは、水素、電子吸引基または電子供与基を表し、ここで、電子吸引基の具体例としては、フッ素、塩素、臭素、ヨウ素などが挙げられ、電子供与基の具体例としては、メチル基およびメトキシ基などが挙げられる。かつ、Rは、好ましくは水素、塩素またはメチル基である。かつ、一般式(1)および(3)において、Rは、窒素原子が結合している炭素原子に対してオルト位、メタ位またはパラ位に位置してよい。   In the formula, R represents hydrogen, an electron-withdrawing group, or an electron-donating group. Here, specific examples of the electron-withdrawing group include fluorine, chlorine, bromine, iodine and the like, and specific examples of the electron-donating group include , Methyl group, methoxy group and the like. R is preferably hydrogen, chlorine or a methyl group. In the general formulas (1) and (3), R may be located at the ortho, meta, or para position with respect to the carbon atom to which the nitrogen atom is bonded.

1は、水素または電子吸引基を表し、ここで、電子吸引基の具体例としては、アシル基およびスルホニル基が挙げられる。かつ、R1は、好ましくはスルホニル基である。 R 1 represents hydrogen or an electron withdrawing group, and specific examples of the electron withdrawing group include an acyl group and a sulfonyl group. R 1 is preferably a sulfonyl group.

Xは、フッ素、塩素、臭素、ヨウ素およびR2COO(R2はフッ素で置換されていてもよいメチル基を表す。R2COOは、R2COOHで表されるカルボン酸からHを除去した残基である。)から選択されるいずれか1種を表し、好ましくは塩素、臭素またはヨウ素であり、より好ましくは臭素である。 X represents fluorine, chlorine, bromine, iodine and R 2 COO (R 2 represents a methyl group which may be substituted with fluorine. R 2 COO removed H from the carboxylic acid represented by R 2 COOH. It is any one selected from the group consisting of a residue, preferably chlorine, bromine or iodine, more preferably bromine.

反応において、銅塩は、酸化剤として働く。銅塩の具体例としては、酢酸銅、臭化銅、塩化銅、ヨウ化銅およびトリフルオロ酢酸銅などが挙げられる。そのうちで、好ましくは臭化銅、塩化銅またはヨウ化銅であり、より好ましくは臭化銅である。   In the reaction, the copper salt acts as an oxidant. Specific examples of the copper salt include copper acetate, copper bromide, copper chloride, copper iodide and copper trifluoroacetate. Of these, copper bromide, copper chloride or copper iodide is preferred, and copper bromide is more preferred.

かつ、前記銅塩と前記一般式(1)で表される化合物とのモル比、すなわち前記銅塩:前記一般式(1)で表される化合物は1.2:1〜4:1であり、好ましくは1.2:1〜3:1である。前記モル比が4:1より大きい場合、触媒反応の収率はほぼ変わらないが、銅塩の浪費をもたらす。前記モル比が1.2:1より小さい場合、不完全な反応を引き起こす。   The molar ratio of the copper salt to the compound represented by the general formula (1), that is, the copper salt: the compound represented by the general formula (1) is 1.2: 1 to 4: 1. , Preferably 1.2: 1 to 3: 1. When the molar ratio is larger than 4: 1, the yield of the catalytic reaction is not changed, but the copper salt is wasted. If the molar ratio is less than 1.2: 1, an incomplete reaction is caused.

反応において、二価のパラジウム塩は、触媒として働く。二価のパラジウム塩の具体例としては、酢酸パラジウム、塩化パラジウム、トリフルオロ酢酸パラジウム、臭化パラジウム、およびジクロロビス(アセトニトリル)パラジウム(II)などが挙げられる。そのうちで、好ましくは臭化パラジウムである。   In the reaction, the divalent palladium salt serves as a catalyst. Specific examples of the divalent palladium salt include palladium acetate, palladium chloride, palladium trifluoroacetate, palladium bromide, dichlorobis (acetonitrile) palladium (II), and the like. Of these, palladium bromide is preferred.

かつ、前記二価のパラジウム塩と前記一般式(1)で表される化合物とのモル比、すなわち二価のパラジウム塩:一般式(1)で表される化合物は0.1:1〜0.4:1であり、好ましくは0.1:1〜0.3:1である。前記モル比が0.4:1より大きい場合、触媒反応の収率はほぼ変わらないが、二価のパラジウム塩の浪費をもたらす。前記モル比が0.1:1より小さい場合、有効な触媒効果を達成することができない。   In addition, the molar ratio of the divalent palladium salt to the compound represented by the general formula (1), that is, the divalent palladium salt: the compound represented by the general formula (1) is 0.1: 1 to 0. .4: 1, preferably 0.1: 1 to 0.3: 1. When the molar ratio is larger than 0.4: 1, the yield of the catalytic reaction is not substantially changed, but the divalent palladium salt is wasted. If the molar ratio is less than 0.1: 1, an effective catalytic effect cannot be achieved.

上記反応は溶媒中で行われる。溶媒の具体例としては、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、アセトン、DMSO、DMF、NMP、アセトニトリル、ジエチルエーテル、ジクロロメタン、トルエン、キシレン、ベンゼン、およびトリフルオロメチルベンゼンなどが挙げられる。そのうちで、好ましくはメタノール、テトラヒドロフラン、DMF、アセトニトリルまたはジエチルエーテルであり、より好ましくはテトラヒドロフランである。   The above reaction is carried out in a solvent. Specific examples of the solvent include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, acetone, DMSO, DMF, NMP, acetonitrile, diethyl ether, dichloromethane, toluene, xylene, benzene, and trifluoromethylbenzene. Of these, methanol, tetrahydrofuran, DMF, acetonitrile or diethyl ether is preferred, and tetrahydrofuran is more preferred.

さらに、前記反応は、さらに、添加剤の存在下で、前記一般式(1)で表される化合物と前記銅塩とを反応させる。
前記添加剤は、反応の順調な進行を有効に促進することができる。添加剤の具体例としては、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸ナトリウム、酢酸カリウム、酢酸ナトリウム、安息香酸、および酢酸が挙げられる。そのうちで、好ましくは酢酸カリウム、酢酸ナトリウム、炭酸カリウム、炭酸ナトリウムであり、より好ましくは炭酸カリウムである。
Furthermore, the reaction further comprises reacting the compound represented by the general formula (1) with the copper salt in the presence of an additive.
The additive can effectively promote the smooth progress of the reaction. Specific examples of the additive include potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, sodium carbonate, potassium acetate, sodium acetate, benzoic acid, and acetic acid. Of these, potassium acetate, sodium acetate, potassium carbonate and sodium carbonate are preferred, and potassium carbonate is more preferred.

前記添加剤と前記一般式(1)で表される化合物とのモル比、すなわち添加剤:前記一般式(1)で表される化合物は1.2:1〜4:1である。前記モル比が4:1より大きい場合、触媒反応の収率はほぼ変わらないが、添加剤の浪費をもたらす。前記モル比が1.2:1より小さい場合、反応の進行を促進する効果を達成することができない。   The molar ratio of the additive to the compound represented by the general formula (1), that is, the additive: the compound represented by the general formula (1) is 1.2: 1 to 4: 1. When the molar ratio is greater than 4: 1, the yield of the catalytic reaction is not substantially changed, but the additive is wasted. When the molar ratio is less than 1.2: 1, the effect of promoting the progress of the reaction cannot be achieved.

本発明のテトラヒドロキノリン類化合物の製造方法は、具体的に以下のステップからなる。
第1ステップ:一般式(1)で表される化合物、銅塩、および必要な場合は添加剤を溶媒に添加して撹拌する。
第2ステップ:冷却する。
第3ステップ:二価のパラジウム塩を加え、昇温し、その後に撹拌してテトラヒドロキノリン類化合物を得る。
The method for producing a tetrahydroquinoline compound of the present invention specifically comprises the following steps.
First step: A compound represented by the general formula (1), a copper salt, and, if necessary, an additive are added to a solvent and stirred.
Second step: Cool.
Third step: Add a divalent palladium salt, raise the temperature, and then stir to obtain a tetrahydroquinoline compound.

上記第1ステップにおいて、撹拌は、好ましくは、室温(20〜25℃)、不活性ガス雰囲気中で行われ、撹拌時間は、好ましくは、0.5〜1時間である。
上記第2ステップにおいて、好ましくは−20〜0℃まで冷却し、より好ましくは0℃まで冷却する。
上記第3ステップにおいて、好ましくは25〜45℃まで昇温し、より好ましくは25℃まで昇温する。かつ撹拌時間は、好ましくは1〜5日であり、より好ましくは3日である。
In the first step, the stirring is preferably performed at room temperature (20 to 25 ° C.) in an inert gas atmosphere, and the stirring time is preferably 0.5 to 1 hour.
In the second step, it is preferably cooled to -20 to 0 ° C, more preferably to 0 ° C.
In the third step, the temperature is preferably raised to 25 to 45 ° C, more preferably to 25 ° C. And stirring time becomes like this. Preferably it is 1-5 days, More preferably, it is 3 days.

以下に実施例を挙げて本発明を詳細に説明するが、本発明は下記の実施例によって限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

製造例1
公知の方法に従って以下の化合物S1〜S6を合成して(Rogers M.M., Wendlandt J.E., Guzei I.A., Stahl S.S., Org.Lett.2006, 8, 2257-2260. 参照)ベース物質とし、以下の実施例においてテトラヒドロキノリン類化合物の製造に用いた。
Production Example 1
The following compounds S1 to S6 were synthesized according to known methods (see Rogers MM, Wendlandt JE, Guzei IA, Stahl SS, Org. Lett. 2006, 8, 2257-2260.) And used in the following examples. Used for the production of tetrahydroquinoline compounds.

Figure 2012106981
Figure 2012106981

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S1の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体30.0mgを得、収率は76%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S1, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 30.0 mg of white solid. The yield was 76%.

1H NMR (400 MHz, CDCl3) δ 7.42 (d, J = 8Hz, 2H), 7.26-7.15 (m, 3H), 7.10 (t, J = 8Hz, 1H), 6.80 (d, J = 8Hz, 1H), 4.40-4.31 (m, 1H), 3.69-3.63 (m, 1H), 3.36-3.29 (m, 1H), 2.53 (s, 3H), 2.42 (s, 3H), 2.30-2.22 (m, 1H), 2.10-2.03 (m, 1H), 1.34-1.10 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 144.2, 139.6, 139.2, 136.0, 134.4, 130.2, 129.8, 127.9, 127.3, 124.9, 57.5, 37.3, 31.0, 26.4, 21.8, 19.8.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0379.
1 H NMR (400 MHz, CDCl 3 ) δ 7.42 (d, J = 8Hz, 2H), 7.26-7.15 (m, 3H), 7.10 (t, J = 8Hz, 1H), 6.80 (d, J = 8Hz, 1H), 4.40-4.31 (m, 1H), 3.69-3.63 (m, 1H), 3.36-3.29 (m, 1H), 2.53 (s, 3H), 2.42 (s, 3H), 2.30-2.22 (m, 1H), 2.10-2.03 (m, 1H), 1.34-1.10 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 144.2, 139.6, 139.2, 136.0, 134.4, 130.2, 129.8, 127.9, 127.3, 124.9, 57.5, 37.3, 31.0, 26.4, 21.8, 19.8.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0379.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S2の33.6mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体27.8mgを得、収率は67%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 33.6 mg (0.1 mmol) of the base material S2, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 27.8 mg of white solid. The yield was 67%.

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8Hz, 2H), 7.37 (d, J = 8Hz, 1H), 7.27 (d, J = 8Hz, 2H), 7.14 (t, J = 8Hz, 1H), 6.96 (d, J = 8Hz, 1H), 4.42-4.32 (m, 1H), 3.59-3.53 (m, 1H), 3.20-3.13 (m, 1H), 2.45-2.36 (m, 4H), 2.26-2.20 (m, 1H), 1.70-1.60 (m, 1H), 1.41-1.30 (m, 1H).
13C NMR (100 MHz, CDCl3) δ 144.5, 141.6, 136.1, 135.1, 133.4, 130.0, 129.4, 128.4, 128.2, 126.0, 57.1, 36.5, 31.1, 26.7, 21.8.
HRMS (マイクロマスLCT) C17H17BrClNO2Sの計算値, 412.9852, 実測値412.9823.
1 H NMR (400 MHz, CDCl 3 ) δ 7.63 (d, J = 8Hz, 2H), 7.37 (d, J = 8Hz, 1H), 7.27 (d, J = 8Hz, 2H), 7.14 (t, J = 8Hz, 1H), 6.96 (d, J = 8Hz, 1H), 4.42-4.32 (m, 1H), 3.59-3.53 (m, 1H), 3.20-3.13 (m, 1H), 2.45-2.36 (m, 4H ), 2.26-2.20 (m, 1H), 1.70-1.60 (m, 1H), 1.41-1.30 (m, 1H).
13 C NMR (100 MHz, CDCl 3 ) δ 144.5, 141.6, 136.1, 135.1, 133.4, 130.0, 129.4, 128.4, 128.2, 126.0, 57.1, 36.5, 31.1, 26.7, 21.8.
HRMS (Micromass LCT) Calculated for C 17 H 17 BrClNO 2 S, 412.9852, found 412.9823.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S3の33.6mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体37.7mgを得、収率は91%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 33.6 mg (0.1 mmol) of the base material S3, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Stir warm and follow by TLC until the reaction is complete, filter to remove insolubles and elute with petroleum ether: ethyl acetate = 10: 1 by silica gel column chromatography to give 37.7 mg of white solid. The yield was 91%.

1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8Hz, 1H), 7.35 (d, J = 8Hz, 2H), 7.24-7.17 (m, 3H), 6.97-6.95 (m, 1H), 4.39-4.31 (m, 1H), 3.72-3.67 (m, 1H), 3.41-3.35 (m, 1H), 2.39 (s, 3H), 2.30-2.22 (m, 1H), 2.17-2.08 (m, 1H), 1.64-1.44 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 144.3, 136.4, 135.3, 134.1, 131.9, 129.9, 129.3, 127.7, 127.5, 127.3, 56.8, 36.3, 28.5, 25.0, 21.8.
HRMS (マイクロマスLCT) C17H17BrClNO2Sの計算値, 412.9852, 実測値412.9850.
1 H NMR (400 MHz, CDCl 3 ) δ 7.65 (d, J = 8Hz, 1H), 7.35 (d, J = 8Hz, 2H), 7.24-7.17 (m, 3H), 6.97-6.95 (m, 1H) , 4.39-4.31 (m, 1H), 3.72-3.67 (m, 1H), 3.41-3.35 (m, 1H), 2.39 (s, 3H), 2.30-2.22 (m, 1H), 2.17-2.08 (m, 1H), 1.64-1.44 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 144.3, 136.4, 135.3, 134.1, 131.9, 129.9, 129.3, 127.7, 127.5, 127.3, 56.8, 36.3, 28.5, 25.0, 21.8.
HRMS (micromass LCT) C 17 H 17 BrClNO 2 S calculated, 412.9852, found 412.9850.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体33.9mgを得、収率は86%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Stir warm and follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 33.9 mg of white solid. The yield was 86%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム2.7mg(0.01mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体20.9mgを得、収率は53%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran The mixture was stirred at room temperature (20 ° C.) for 60 minutes, cooled to 0 ° C. and stirred for 15 minutes, and then 2.7 mg (0.01 mmol) of palladium bromide was added, and the mixture naturally rose to room temperature (20 ° C.). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 20.9 mg of white solid. The yield was 53%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム4.0mg(0.015mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体27.2mgを得、収率は69%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran The mixture was stirred at room temperature (20 ° C.) for 60 minutes, cooled to 0 ° C. and stirred for 15 minutes, and then 4.0 mg (0.015 mmol) of palladium bromide was added, and the temperature naturally increased to room temperature (20 ° C.). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 27.2 mg of white solid. The yield was 69%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム8.1mg(0.03mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体35.1mgを得、収率は89%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran The mixture was stirred at room temperature (20 ° C) for 60 minutes, then cooled to 0 ° C and stirred for 15 minutes, and then 8.1 mg (0.03 mmol) of palladium bromide was added, and the mixture naturally rose to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 35.1 mg of white solid. The yield was 89%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム10.6mg(0.04mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体35.1mgを得、収率は89%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran The mixture was stirred at room temperature (20 ° C.) for 60 minutes, cooled to 0 ° C. and stirred for 15 minutes. Then, 10.6 mg (0.04 mmol) of palladium bromide was added, and the mixture naturally rose to room temperature (20 ° C.). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 35.1 mg of white solid. The yield was 89%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅26.8mg(0.12mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体29.9mgを得、収率は76%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 26.8 mg (0.12 mmol) of copper bromide and 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute by silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 29.9 mg of white solid. The yield was 76%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅89.4mg(0.4mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体33.9mgを得、収率は86%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 27.6 mg (0.2 mmol) of potassium carbonate, 89.4 mg (0.4 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Stir warm and follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 33.9 mg of white solid. The yield was 86%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム16.6mg(0.12mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体31.9mgを得、収率は81%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 16.6 mg (0.12 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 31.9 mg of white solid. The yield was 81%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S5の31.5mg(0.1mmol)、炭酸カリウム55.2mg(0.4mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体31.1mgを得、収率は79%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.5 mg (0.1 mmol) of the base material S5, 55.2 mg (0.4 mmol) of potassium carbonate, and 67.0 mg (0.3 mmol) of copper bromide were added to 3 ml of tetrahydrofuran. After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 31.1 mg of white solid. The yield was 79%.

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (マイクロマスLCT) C18H20BrNO2Sの計算値393.0398, 実測値393.0392.
1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (d, J = 8Hz, 1H), 7.33 (d, J = 8Hz, 2H), 7.17 (d, J = 8Hz, 2H), 7.07-7.03 (m, 1H), 6.77 (s, 1H), 4.36-4.28 (m, 1H), 3.75-3.71 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H) , 2.26-2.19 (m, 1H), 2.18-2.10 (m, 1H), 1.59-1.41 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 136.3, 135.6, 134.7, 132.7, 129.7, 128.4, 128.0, 127.9, 127.3, 56.9, 36.6, 29.0, 25.1, 21.8, 21.2.
HRMS (micromass LCT) C 18 H 20 BrNO 2 S calculated 393.0398, measured 393.0392.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S4の30.1mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体32.3mgを得、収率は85%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 30.1 mg (0.1 mmol) of the base material S4, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Warm and stir, follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 32.3 mg of white solid. The yield was 85%.

1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8Hz, 1H), 7.32 (d, J = 8Hz, 2H), 7.27-7.22 (m, 1H), 7.17-7.10 (m, 3H), 6.96 (d, J = 8Hz, 1H), 4.40-4.31 (m, 1H), 3.75-3.71 (m, 1H), 3.40-3.34 (m, 1H), 2.37 (s, 3H), 2.32-2.24 (m, 1H), 2.22-2.12 (m, 1H), 1.62-1.47 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 144.0, 135.6, 135.3, 134.9, 129.7, 128.1, 127.7, 127.3, 127.2, 126.5, 57.0, 36.5, 28.9, 25.2, 21.8.
HRMS (マイクロマスLCT) C17H18BrNO2Sの計算値, 379.0242, 実測値379.0237.
1 H NMR (400 MHz, CDCl 3 ) δ 7.70 (d, J = 8Hz, 1H), 7.32 (d, J = 8Hz, 2H), 7.27-7.22 (m, 1H), 7.17-7.10 (m, 3H) , 6.96 (d, J = 8Hz, 1H), 4.40-4.31 (m, 1H), 3.75-3.71 (m, 1H), 3.40-3.34 (m, 1H), 2.37 (s, 3H), 2.32-2.24 ( m, 1H), 2.22-2.12 (m, 1H), 1.62-1.47 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 144.0, 135.6, 135.3, 134.9, 129.7, 128.1, 127.7, 127.3, 127.2, 126.5, 57.0, 36.5, 28.9, 25.2, 21.8.
HRMS (micromass LCT) C 17 H 18 BrNO 2 S calculated, 379.0242, measured 379.0237.

Figure 2012106981
Figure 2012106981

室温(20℃)、窒素ガス雰囲気中で、ベース物質S6の31.7mg(0.1mmol)、炭酸カリウム27.6mg(0.2mmol)、臭化銅67.0mg(0.3mmol)をテトラヒドロフラン3mlに加え、室温(20℃)で60分撹拌した後、0℃まで冷却して15分撹拌した後、臭化パラジウム5.3mg(0.02mmol)を加え、室温(20℃)まで自然に昇温して撹拌し、TLCにより反応が終了するまで追跡し、濾過して不溶物を除去し、シリカゲルカラムクロマトグラフィーにより石油エーテル:酢酸エチル=10:1で溶離して、白色固体33.2mgを得、収率は81%であった。   In a nitrogen gas atmosphere at room temperature (20 ° C.), 31.7 mg (0.1 mmol) of the base material S6, 27.6 mg (0.2 mmol) of potassium carbonate, 67.0 mg (0.3 mmol) of copper bromide in 3 ml of tetrahydrofuran After stirring at room temperature (20 ° C) for 60 minutes, cooling to 0 ° C and stirring for 15 minutes, 5.3 mg (0.02 mmol) of palladium bromide was added, and the temperature was naturally increased to room temperature (20 ° C). Stir warm and follow by TLC until the reaction is complete, filter to remove insolubles and elute with silica gel column chromatography with petroleum ether: ethyl acetate = 10: 1 to give 33.2 mg of white solid. The yield was 81%.

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8Hz, 1H), 7.31 (d, J = 8Hz, 2H), 7.16 (d, J = 8Hz, 2H), 6.81-6.76 (m, 1H), 6.51-6.48 (m, 1H), 4.33-4.25 (m, 1H), 3.78 (s, 3H), 3.74-3.69 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.24-2.12 (m, 2H), 1.54-1.34 (m, 2H).
13C NMR (100 MHz, CDCl3) δ 158.0, 143.9, 136.8, 135.4, 129.7, 129.5, 128.1, 127.3, 113.0, 112.2, 56.9, 55.6, 36.7, 29.2, 25.6, 21.8.
HRMS (マイクロマスLCT) C18H20BrNO3Sの計算値, 409.0347, 実測値409.0352.
1 H NMR (400 MHz, CDCl 3 ) δ 7.59 (d, J = 8Hz, 1H), 7.31 (d, J = 8Hz, 2H), 7.16 (d, J = 8Hz, 2H), 6.81-6.76 (m, 1H), 6.51-6.48 (m, 1H), 4.33-4.25 (m, 1H), 3.78 (s, 3H), 3.74-3.69 (m, 1H), 3.38-3.32 (m, 1H), 2.38 (s, 3H), 2.24-2.12 (m, 2H), 1.54-1.34 (m, 2H).
13 C NMR (100 MHz, CDCl 3 ) δ 158.0, 143.9, 136.8, 135.4, 129.7, 129.5, 128.1, 127.3, 113.0, 112.2, 56.9, 55.6, 36.7, 29.2, 25.6, 21.8.
HRMS (micromass LCT) C 18 H 20 BrNO 3 S calculated, 409.0347, measured 409.0352.

Claims (11)

二価のパラジウム塩の存在下で、下記一般式(1)で表される化合物と下記一般式(2)で表される銅塩とを溶媒中で反応させて、下記一般式(3)で表されるテトラヒドロキノリン類化合物を得ることを特徴とする、テトラヒドロキノリン類化合物の製造方法。
Figure 2012106981
In the presence of a divalent palladium salt, a compound represented by the following general formula (1) and a copper salt represented by the following general formula (2) are reacted in a solvent to obtain the following general formula (3): A method for producing a tetrahydroquinoline compound, comprising obtaining the tetrahydroquinoline compound represented.
Figure 2012106981
Rが、水素、フッ素、塩素、臭素、ヨウ素、メチル基、およびメトキシ基から選択されるいずれか1種を表すことを特徴とする、請求項1に記載の製造方法。   The production method according to claim 1, wherein R represents any one selected from hydrogen, fluorine, chlorine, bromine, iodine, a methyl group, and a methoxy group. 1が、水素、アシル基、およびスルホニル基から選択されるいずれか1種を表すことを特徴とする、請求項1に記載の製造方法。 The production method according to claim 1 , wherein R 1 represents any one selected from hydrogen, an acyl group, and a sulfonyl group. 前記銅塩が、酢酸銅、臭化銅、塩化銅、ヨウ化銅およびトリフルオロ酢酸銅から選択される少なくとも1種であることを特徴とする、請求項1に記載の製造方法。   The method according to claim 1, wherein the copper salt is at least one selected from copper acetate, copper bromide, copper chloride, copper iodide, and copper trifluoroacetate. 前記二価のパラジウム塩が、酢酸パラジウム、塩化パラジウム、トリフルオロ酢酸パラジウム、臭化パラジウム、およびジクロロビス(アセトニトリル)パラジウム(II)から選択される少なくとも1種であることを特徴とする、請求項1に記載の製造方法。   The divalent palladium salt is at least one selected from palladium acetate, palladium chloride, palladium trifluoroacetate, palladium bromide, and dichlorobis (acetonitrile) palladium (II). The manufacturing method as described in. 前記溶媒が、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、アセトン、DMSO、DMF、NMP、アセトニトリル、ジエチルエーテル、ジクロロメタン、トルエン、キシレン、ベンゼン、およびトリフルオロメチルベンゼンから選択される少なくとも1種であることを特徴とする、請求項1に記載の製造方法。   The solvent is at least one selected from methanol, ethanol, isopropyl alcohol, tetrahydrofuran, acetone, DMSO, DMF, NMP, acetonitrile, diethyl ether, dichloromethane, toluene, xylene, benzene, and trifluoromethylbenzene. The manufacturing method according to claim 1, wherein the manufacturing method is characterized. さらに、添加剤の存在下で、前記一般式(1)で表される化合物と前記銅塩とを反応させることを特徴とする、請求項1に記載の製造方法。   Furthermore, the compound represented by the said General formula (1) and the said copper salt are made to react in presence of an additive, The manufacturing method of Claim 1 characterized by the above-mentioned. 前記添加剤が、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸ナトリウム、酢酸カリウム、酢酸ナトリウム、安息香酸、および酢酸から選択される少なくとも1種であることを特徴とする、請求項7に記載の製造方法。   8. The additive according to claim 7, wherein the additive is at least one selected from potassium carbonate, potassium bicarbonate, sodium bicarbonate, sodium carbonate, potassium acetate, sodium acetate, benzoic acid, and acetic acid. Manufacturing method. 前記二価のパラジウム塩と前記一般式(1)で表される化合物とのモル比として、二価のパラジウム塩:一般式(1)で表される化合物=0.1:1〜0.4:1であることを特徴とする、請求項1から8のいずれか一項に記載の製造方法。   As a molar ratio between the divalent palladium salt and the compound represented by the general formula (1), the divalent palladium salt: the compound represented by the general formula (1) = 0.1: 1 to 0.4. The manufacturing method according to claim 1, wherein the manufacturing method is one. 前記銅塩と前記一般式(1)で表される化合物とのモル比として、銅塩:一般式(1)で表される化合物=1.2:1〜4:1であることを特徴とする、請求項1から8のいずれか一項に記載の製造方法。   The molar ratio of the copper salt to the compound represented by the general formula (1) is copper salt: the compound represented by the general formula (1) = 1.2: 1 to 4: 1, The manufacturing method according to any one of claims 1 to 8. 前記添加剤と前記一般式(1)で表される化合物とのモル比として、添加剤:一般式(1)で表される化合物=1.2:1〜4:1であることを特徴とする、請求項7または8に記載の製造方法。   As a molar ratio of the additive and the compound represented by the general formula (1), the additive: the compound represented by the general formula (1) = 1.2: 1 to 4: 1 The manufacturing method according to claim 7 or 8.
JP2011183674A 2010-11-16 2011-08-25 Method for producing tetrahydroquinoline compound Withdrawn JP2012106981A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010551149.0 2010-11-16
CN2010105511490A CN102464614A (en) 2010-11-16 2010-11-16 Method for manufacturing tetrahydroquinoline compound

Publications (1)

Publication Number Publication Date
JP2012106981A true JP2012106981A (en) 2012-06-07

Family

ID=46068776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183674A Withdrawn JP2012106981A (en) 2010-11-16 2011-08-25 Method for producing tetrahydroquinoline compound

Country Status (2)

Country Link
JP (1) JP2012106981A (en)
CN (1) CN102464614A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754585B (en) * 2021-10-13 2023-11-21 天津医科大学 Novel tetrahydroisoquinoline compound and preparation method and application thereof

Also Published As

Publication number Publication date
CN102464614A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
CA2878699C (en) Process and intermediates for preparing integrase inhibitors
Miliutina et al. Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones
CN110204486B (en) Synthesis method of quinoline derivative
Mondal et al. Palladium-catalysed stereoselective synthesis of 4-(diarylmethylidene)-3, 4-dihydroisoquinolin-1 (2 H)-ones: expedient access to 4-substituted isoquinolin-1 (2 H)-ones and isoquinolines
Lüdtke et al. Synthesis of fluorine-containing 1, 10-phenanthrolines using mild versions of Skraup and Doebner-von Miller reactions
CN108610304B (en) Synthetic method of diaryl sultam compound
Gao et al. Design, synthesis and biological evaluation of benzyloxyphenyl-methylaminophenol derivatives as STAT3 signaling pathway inhibitors
JP2012106981A (en) Method for producing tetrahydroquinoline compound
Das et al. Organocatalytic synthesis of (Het) biaryl scaffolds via photoinduced intra/intermolecular C (sp 2)–H arylation by 2-pyridone derivatives
Lin et al. Palladium-mediated synthesis of 1, 1, 2-triarylethanes. Application to the synthesis of CDP-840
Cheng et al. Cobalt-promoted synthesis of sulfurated oxindoles via radical annulation of N-arylacrylamides with disulfides
Ramesh et al. Novel synthesis of indolylquinoline derivatives via the C-alkylation of Baylis–Hillman adducts
Duan et al. Palladium-catalyzed cascade synthesis of novel quinolone-bis (indolyl) methane hybrids as promising α-glucosidase inhibitors
TWI787416B (en) Method for producing quinolin-4(1H)-one derivatives
Xia et al. Palladium-Catalyzed Decarboxylative Csp 2–Csp 2 Cross-Coupling Reactions: An Efficient Route for Synthesis of Azaisoflavone Derivatives
CN105636938B (en) The method for preparing 3- alkylthio group -2- bromopyridines
CN109608407B (en) Synthetic method of dibenzo seven-membered nitrogen-containing heterocyclic compound
KR101584731B1 (en) A novel tubulin polymerization inhibitor, and the synthesizing method thereof
CN102351870B (en) Method for preparing benzacridine derivative and application of benzacridine derivative as anti-cancer medicine
Dimitrijević et al. Rapid access to pyrrolo [3, 4-c] quinoline-1, 3-diones: An improved synthetic protocol using a precursor prepared by Pfitzinger reaction
CN106083690A (en) A kind of preparation method of polysubstituted 3 methylene indolones
CN103274999A (en) 3-halogenated quinolone derivative and preparation method thereof
EP1179532B1 (en) Process for the production of indole derivatives and intermediates therefor
CN102329262B (en) Chiral nitrogen-containing heterocyclic compound and synthesis method thereof
KR101006737B1 (en) Process for the preparation of 2-sulfonyliminoindoline using Cu catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104