JP2012104378A - Ground structure - Google Patents

Ground structure Download PDF

Info

Publication number
JP2012104378A
JP2012104378A JP2010252050A JP2010252050A JP2012104378A JP 2012104378 A JP2012104378 A JP 2012104378A JP 2010252050 A JP2010252050 A JP 2010252050A JP 2010252050 A JP2010252050 A JP 2010252050A JP 2012104378 A JP2012104378 A JP 2012104378A
Authority
JP
Japan
Prior art keywords
mesh
electrode
ground
surge current
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010252050A
Other languages
Japanese (ja)
Inventor
Takashi Kubo
隆 久保
Koji Komura
広司 小村
Kenji Hayashi
謙治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2010252050A priority Critical patent/JP2012104378A/en
Publication of JP2012104378A publication Critical patent/JP2012104378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy-to-install ground structure capable of effectively reducing a transient ground resistance.SOLUTION: A ground structure is provided with a mesh body 1 electrically connected to a grounded body, and introducing a surge current from the grounded body while is it embedded in a ground G almost parallely. In the mesh body 1, lattice-like meshes are formed by plural vertical lines 3 parallely aligned at predetermined intervals, and plural horizontal lines 4 orthogonal to the vertical lines 3 and parallely aligned at predetermined interval, so that a steady ground resistance becomes a predetermined value. Using a predetermined intersection of the vertical lines 3 and the horizontal lines 4 except for an outer edge as an introduction portion 5, a wire 9 for a mesh dense part is arranged in a range surrounded by other intersections around the introduction portion 5, and this range is used as a net dense part 7.

Description

本発明は、被接地体と大地とを電気的に接続するための接地構造に関する。   The present invention relates to a grounding structure for electrically connecting a grounded body and the ground.

接地構造は、地中に埋設され、接地線を介して建築構造物(避雷針等)や電気設備等の被接地体に接続されて、建築構造物や電気設備に流入した雷電流等(サージ電流)を地中に放流する。これにより、大地電位の上昇を抑制し、歩幅電圧を軽減し、人身災害や電気機器の絶縁破壊を防ぐことができる。この接地構造において、サージ電流に対する過渡接地抵抗(サージインピーダンス)が低いほど、サージ電流を速やかに地中に放流でき、被接地体の保護効果が高くなる。   A grounding structure is buried in the ground and connected to a grounded object such as a building structure (lightning rod, etc.) or electrical equipment via a grounding wire, and lightning current (surge current) flowing into the building structure or electrical equipment. ) Into the ground. Thereby, the rise in ground potential can be suppressed, the stride voltage can be reduced, and personal injury and dielectric breakdown of electrical equipment can be prevented. In this grounding structure, the lower the transient grounding resistance (surge impedance) against surge current, the quicker the surge current can be discharged into the ground, and the higher the protection effect of the grounded body.

過渡接地抵抗を低減させる接地構造としては、種々のタイプのものがある(特許文献1及び特許文献2)。特許文献1の接地構造はメッシュ状の網状体であり、この網状体は地中に水平方向に延びるようにして埋設される。特許文献2の接地構造は棒状体であり、この棒状体は地中に水平乃至垂直方向に延びるようにして埋設される。変電所では、作業員の歩幅電圧の軽減や、雷撃等により地絡事故が発生した場合に、敷地内に設置された各種電気設備が異常電圧により絶縁破壊事故を起こさないため、各電気設備の接地を共通にして同電位とすべく、接地構造として特許文献1のような網状体が用いられる場合が多い。さらには、特許文献3のように、接地網と接地極を併用することにより電位上昇を低減する接地構造が知られている。   There are various types of ground structures that reduce the transient ground resistance (Patent Document 1 and Patent Document 2). The grounding structure of Patent Document 1 is a mesh-like mesh body, and this mesh body is embedded in the ground so as to extend in the horizontal direction. The grounding structure of Patent Document 2 is a rod-like body, and this rod-like body is embedded in the ground so as to extend in the horizontal or vertical direction. In substations, when ground faults occur due to reduction of workers' stride voltage, lightning strikes, etc., various electrical equipment installed in the site will not cause dielectric breakdown accidents due to abnormal voltage. In many cases, a net-like body as in Patent Document 1 is used as a grounding structure in order to make the grounding the same potential. Furthermore, as in Patent Document 3, there is known a grounding structure that reduces a potential increase by using a grounding net and a grounding electrode in combination.

特開2008−66205号公報JP 2008-66205 A 特開2005−5240号公報JP 2005-5240 A 特開平7−37669号公報JP 7-37669 A

しかしながら、接地構造を網状体又は棒状体のみで構成した場合、大地抵抗率が極めて高い場所では過渡接地抵抗を十分に低減することは難しい。また、地中に流入したサージ電流は、流入箇所を中心として、放射状に流出していく。このため、接地構造の形状としては、地中に流入したサージ電流の流れる(広がる)向きと略同一方向にサージ電流を案内する構造とするのが好ましい。   However, when the grounding structure is composed only of a net-like body or a rod-like body, it is difficult to sufficiently reduce the transient grounding resistance in a place where the ground resistivity is extremely high. Moreover, the surge current that flows into the ground flows out radially from the inflow location. For this reason, it is preferable that the grounding structure has a structure that guides the surge current in substantially the same direction as the direction in which the surge current flowing into the ground flows (spreads).

そこで、本発明は、上記事情に鑑み、サージ電流を速やかに地中に放流し、過渡接地抵抗を効果的に低減することができる接地構造を提供する。   Therefore, in view of the above circumstances, the present invention provides a grounding structure that can quickly discharge a surge current into the ground and effectively reduce a transient grounding resistance.

本発明の接地構造は、被接地体と電気的に接続されて、地中に略水平状に埋設された状態で前記被接地体からのサージ電流を導入する網状体を備える接地構造であって、前記網状体は、所定間隔を隔てて平行状に配列した複数本の縦線と、この縦線と直交して所定間隔を隔てて平行状に配列した複数本の横線とで定常接地抵抗が所定の値となるように格子状の網目が形成され、外縁を除く前記縦線と横線との所定交点を前記導入部位として、この導入部位の周囲の他の交点で囲まれる範囲に網目密部用線材を配置し、この範囲を網目密部としたものである。   The grounding structure of the present invention is a grounding structure provided with a mesh body that is electrically connected to a grounded body and introduces a surge current from the grounded body in a state of being buried substantially horizontally in the ground. The net-like body has a steady ground resistance between a plurality of vertical lines arranged in parallel at a predetermined interval and a plurality of horizontal lines orthogonal to the vertical line and arranged in parallel at a predetermined interval. A grid-like mesh is formed so as to have a predetermined value, and a meshed portion is formed in a range surrounded by other intersections around the introduction site with the predetermined intersection of the vertical line and the horizontal line excluding the outer edge as the introduction site A wire rod is arranged, and this range is a mesh dense portion.

本発明の接地構造によれば、棒状体は、網状体の被接地体からのサージ電流の導入部位に設けられているため、導入部位において、網状体がサージ電流を水平方向に案内できる。この場合、網状体は、導入部位の周囲の他の交点で囲まれる範囲に網目密部が設けられているため、網目密部において、サージ電流を分流する流路を増やし、サージ電流を速やかに地中に放流することができる。   According to the grounding structure of the present invention, since the rod-shaped body is provided at the site where the surge current is introduced from the grounded body of the mesh body, the mesh body can guide the surge current in the horizontal direction at the site of introduction. In this case, since the mesh body is provided with a mesh dense portion in a range surrounded by other intersections around the introduction site, the number of flow paths for dividing the surge current is increased in the mesh dense portion so that the surge current can be quickly generated. It can be discharged into the ground.

前記網目密部用線材は、前記導入部位と、この導入部位から格子の対角線にある交点とを結ぶ斜線とすることができる。網目密部用線材を斜線とすると、導入部位からサージ電流を分流する流路は、複数本の縦線と、この縦線と直交する複数本の横線以外に、追加された斜線が増えることとなる。   The wire for a mesh-dense part can be a diagonal line connecting the introduction part and an intersection point on the diagonal line of the lattice from the introduction part. If the wire rod for the mesh-dense part is a slanted line, the number of added slant lines increases in addition to the plurality of vertical lines and the plurality of horizontal lines orthogonal to the vertical lines in the flow path for dividing the surge current from the introduction site. Become.

前記網状体の、前記被接地体からのサージ電流の導入部位に、前記網状体に対して垂直に設けられて、前記網状体にて導入したサージ電流を地中に案内する棒状体を備えることができる。このようにすれば、棒状体がサージ電流を垂直方向に案内することができる。すなわち、網状体と棒状体とは、導入部位からサージ電流の流れる(広がる)向きと略同一方向にサージ電流を案内する三次元的な構造となる。   A rod-shaped body that is provided perpendicularly to the mesh body at the site where the surge current is introduced from the grounded body of the mesh body and guides the surge current introduced by the mesh body into the ground is provided. Can do. In this way, the rod-shaped body can guide the surge current in the vertical direction. That is, the net-like body and the rod-like body have a three-dimensional structure that guides the surge current in a direction substantially the same as the direction in which the surge current flows (spreads) from the introduction site.

前記棒状体は、中実乃至中空の柱体からなり、前記被接地体からのサージ電流を地中に導入する第1電極と、この第1電極の外周から径方向に突出する複数の平板体を有し、前記第1電極から外周側へサージ電流を案内する第2電極とを備え、第2電極の平板体は、前記第1電極の軸方向略全長にわたって延びるとともに、周方向に沿って等間隔で配置されて、その径方向の突出長さが同一となるように配置することができる。これにより、第1電極と第2電極とで立体的な形状を構成することができて、しかも、第2電極は地中に流入したサージ電流が広がる向きと略同一の向きに延びる。また、第2電極は、第1電極の軸方向略全長にわたって延びるとともに、その径方向の突出長さが同一となるように配置される複数の平板体にて構成されているため、第1電極で導入したサージ電流を、その軸方向全長において外周側へ案内することができる。すなわち、平板体は、第1電極の軸方向全長において、サージ電流を外周側へ案内するものとなるため、過渡接地抵抗を小さくすることができる。   The rod-shaped body is a solid or hollow column body, and includes a first electrode for introducing a surge current from the grounded body into the ground, and a plurality of flat plates projecting radially from the outer periphery of the first electrode. And a second electrode for guiding a surge current from the first electrode to the outer peripheral side, and the flat plate body of the second electrode extends substantially along the entire length in the axial direction of the first electrode and extends along the circumferential direction. It can arrange | position so that it may arrange | position at equal intervals and the protrusion length of the radial direction may become the same. As a result, the first electrode and the second electrode can form a three-dimensional shape, and the second electrode extends in substantially the same direction as the direction in which the surge current flowing into the ground spreads. In addition, since the second electrode extends over substantially the entire length in the axial direction of the first electrode and is composed of a plurality of flat plates arranged so that the protruding length in the radial direction is the same, the first electrode It is possible to guide the surge current introduced in step (b) to the outer peripheral side in the entire axial length. That is, since the flat plate guides the surge current to the outer peripheral side over the entire length of the first electrode in the axial direction, the transient grounding resistance can be reduced.

この場合、前記棒状体は、前記平板体を4つ備えた十字形とするのが好ましい。隣合う平板体の間隔が近接している場合、近接する各々の平板体から流出するサージ電流の流路となる地中部分が共有する関係となって、サージ電流は地中へ流出しにくくなる。従って、平板体を4つ備えた十字形に配置することにより、効果的にサージ電流を地中へ放出することができる。   In this case, it is preferable that the rod-shaped body has a cross shape having four flat plates. When the distance between adjacent flat plates is close, the underground portion that serves as a flow path for surge current flowing out from each adjacent flat plate is shared, and the surge current is less likely to flow into the ground. . Therefore, the surge current can be effectively discharged into the ground by arranging the four flat bodies in a cross shape.

本発明の接地構造は、網状体の網目密部では、サージ電流を分流する流路が多くなるため、導入部位から流入したサージ電流を分流し、速やかに地中に放流し、過渡接地抵抗を小さくすることができる。   In the grounding structure of the present invention, since there are many flow paths for shunting the surge current in the mesh dense part of the mesh body, the surge current flowing from the introduction site is shunted and quickly discharged into the ground, and the transient grounding resistance is reduced. Can be small.

前記網目密部用線材を斜線とすると、縦線および横線、ならびに網目密部用線材によりサージ電流を8方向に分流し地中に放流することができるため、過渡接地抵抗を小さくすることができる。しかも、既存の網状体に網目密部用線材を追加すれば容易に網目密部を形成することができ、低コストで過渡接地抵抗の低減対策が実施できる。   When the mesh dense portion wire is diagonal, the surge current can be divided into eight directions and discharged into the ground by the vertical and horizontal lines and the mesh dense wire, so that the transient ground resistance can be reduced. . In addition, if a wire for a mesh-tight portion is added to an existing mesh body, the mesh-tight portion can be easily formed, and measures for reducing transient ground resistance can be implemented at low cost.

網状体と棒状体とで三次元的な構造とすると、サージ電流を一層速やかに地中に放流し、過渡接地抵抗を小さくすることができる。   When the three-dimensional structure is made up of a net-like body and a rod-like body, a surge current can be discharged into the ground more quickly, and the transient ground resistance can be reduced.

棒状体を、前記のように第1電極と第2電極とで構成すると、第2電極が地中に流入したサージ電流が広がる向きと略同一の向きに延びることとなり、第1電極の軸方向全長において外周側へ案内するため、シンプルな構成で過渡接地抵抗を小さくすることができる。そして、このように過渡接地抵抗を小さくした場合でも比較的軽量化を図ることができる。これにより、棒状体は運搬し易いものとなって、設置作業を容易なものとできる。また、既存の第1電極に第2電極を取り付けることができ、材料費や加工費を低減でき、コストの低減を図ることができる。   When the rod-shaped body is composed of the first electrode and the second electrode as described above, the second electrode extends in substantially the same direction as the direction in which the surge current flowing into the ground spreads, and the axial direction of the first electrode Since the entire length is guided to the outer peripheral side, the transient grounding resistance can be reduced with a simple configuration. Even when the transient grounding resistance is reduced in this way, the weight can be relatively reduced. Thereby, a rod-shaped body becomes what is easy to carry and can make installation work easy. Moreover, a 2nd electrode can be attached to the existing 1st electrode, a material cost and a processing cost can be reduced, and cost reduction can be aimed at.

平板体を4つ備えた十字形に配置することにより、効果的にサージ電流を地中へ放出することができる。また、平板体を90°ピッチに配設すればよく、製作や加工が容易なものとなる。   By arranging the four flat bodies in a cross shape, a surge current can be effectively discharged into the ground. Further, it is sufficient to arrange the flat plates at a pitch of 90 °, which makes it easy to manufacture and process.

本発明の第1実施形態を示す接地構造の簡略斜視図である。It is a simplified perspective view of the grounding structure which shows 1st Embodiment of this invention. 本発明の第1実施形態を示す接地構造を構成する網状体の平面図である。It is a top view of the mesh body which comprises the grounding structure which shows 1st Embodiment of this invention. 本発明の第1実施形態を示す接地構造を構成する棒状体の斜視図である。It is a perspective view of the rod-shaped body which comprises the earthing | grounding structure which shows 1st Embodiment of this invention. 本発明の第1実施形態を示す接地構造を構成する棒状体の平面図である。It is a top view of the rod-shaped body which comprises the earthing | grounding structure which shows 1st Embodiment of this invention. 実施例及び比較例の接地構造の過渡接地抵抗を測定するための回路図である。It is a circuit diagram for measuring the transient grounding resistance of the grounding structure of an Example and a comparative example. 実施例1の接地構造の網状体の平面図である。FIG. 3 is a plan view of a mesh body having a ground structure according to the first embodiment. 前記図6の網状体のa点〜e点における電位を示すグラフ図である。It is a graph which shows the electric potential in the point a-e of the mesh body of the said FIG. 実施例2の接地構造の平面図であり、(1)〜(3)は比較例、(4)〜(6)は実施例である。It is a top view of the grounding structure of Example 2, (1)-(3) is a comparative example, (4)-(6) is an Example. 実施例2の接地構造の接地抵抗の周波数特性を示すグラフ図であり、(a)は比較例、(b)は実施例である。It is a graph which shows the frequency characteristic of the grounding resistance of the grounding structure of Example 2, (a) is a comparative example, (b) is an Example. 実施例3で用いた比較例の各接地体を示す斜視図である。It is a perspective view which shows each grounding body of the comparative example used in Example 3. FIG. 実施例3及び比較例の接地体の接地抵抗の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of the grounding resistance of the grounding body of Example 3 and a comparative example. 実施例4で用いた比較例の接地体(1)を示し、(a)は側面図、(b)は斜視図である。The grounding body (1) of the comparative example used in Example 4 is shown, (a) is a side view, (b) is a perspective view.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の第1実施形態に係る接地構造の簡略斜視図である。この接地構造は、図1に示すように、地中Gに埋設されて、電気設備や建築構造物(避雷針等)の被接地体(図示省略)と地中Gとを電気的に接続するものである。本実施形態では、被接地体を変電所の避雷器としている。   FIG. 1 is a simplified perspective view of a grounding structure according to a first embodiment of the present invention. As shown in FIG. 1, this grounding structure is embedded in the underground G and electrically connects a grounded body (not shown) of an electrical facility or a building structure (such as a lightning rod) and the underground G. It is. In the present embodiment, the grounded body is a lightning arrester of a substation.

本発明の接地構造は、図1に示すように、被接地体と電気的に接続されて、地中に略水平方向に埋設された状態で被接地体からのサージ電流を導入する網状体1と、網状体1の下方に、網状体1にて導入したサージ電流を地中Gに案内する棒状体2とから構成されている。   As shown in FIG. 1, the grounding structure of the present invention is a mesh body 1 that is electrically connected to a grounded body and introduces a surge current from the grounded body in a state of being embedded in the ground in a substantially horizontal direction. And a rod-like body 2 for guiding a surge current introduced by the mesh-like body 1 to the underground G below the mesh-like body 1.

網状体1は、図2に示すように、所定間隔(例えば5m)を隔てて平行状に配列した複数本(図示例では5本)の縦線3と、縦線3と直交して所定間隔(例えば5m)を隔てて平行状に配列した複数本(図示例では5本)の横線4とで格子状の網目が形成されたものである。この所定間隔は、定常状態における定常接地抵抗が、所定の値(例えば10Ω)となるような間隔に設定されている。なお、本実施形態では、網状体1は硬銅より線100sqにて構成している。   As shown in FIG. 2, the mesh body 1 includes a plurality of (five in the illustrated example) vertical lines 3 arranged in parallel with a predetermined interval (for example, 5 m), and a predetermined interval orthogonal to the vertical line 3. A grid-like mesh is formed by a plurality of (for example, 5 in the illustrated example) horizontal lines 4 arranged in parallel across (for example, 5 m). This predetermined interval is set such that the steady grounding resistance in a steady state has a predetermined value (for example, 10Ω). In the present embodiment, the reticulated body 1 is composed of a hard copper strand 100 sq.

網状体1の縦線3と横線4との外縁を除く交点の1つには、図1に示すように立上げ接地線6(導線)が接続されており、この立上げ接地線6は、被接地体としての避雷器に接続されている。これにより、立上げ接地線6が接続される交点がサージ電流の導入部位5となり、被接地体にサージ電流が流入すると、立上げ接地線6を介してサージ電流を地中の導入部位5に導入することができる。   As shown in FIG. 1, a rising ground wire 6 (conductive wire) is connected to one of the intersection points excluding the outer edges of the vertical line 3 and the horizontal line 4 of the mesh body 1. It is connected to a lightning arrester as a grounded body. As a result, the intersection where the rising ground wire 6 is connected becomes the surge current introduction site 5, and when surge current flows into the grounded body, the surge current is passed to the underground introduction site 5 via the startup ground wire 6. Can be introduced.

図2に示すように、導入部位5の周囲の他の交点8で囲まれる範囲(導入部位5を囲む4つの格子)には、網目密部7が設けられている。この網目密部7は、夫々の格子に網目密部用線材9を配置することにより形成されている。すなわち、導入部位5と、この導入部位5から格子の対角線にある交点8とを結ぶ斜線を網目密部用線材9として、これらの4つの格子の網目を他の格子の網目よりも密としている。この場合、導入部位5を囲む格子の対角線にある交点8は4つであるため、網目密部用線材(斜線)9は4つ設けられる。これにより、導入部位5から外側に延びる経路は8本となる。このため、導入部位5より導入したサージ電流は、網目密部7にて、縦線3および横線4、ならびに網目密部用線材により網状体1を分流して流れ、サージ電流を速やかに地中に放流することにより過渡接地抵抗を小さくすることができる。   As shown in FIG. 2, a mesh dense portion 7 is provided in a range surrounded by other intersections 8 around the introduction site 5 (four lattices surrounding the introduction site 5). The mesh dense portion 7 is formed by arranging the mesh dense portion wire 9 on each lattice. That is, the oblique line connecting the introduction part 5 and the intersection 8 on the diagonal line of the lattice from the introduction part 5 is used as a mesh dense portion wire 9, and the mesh of these four lattices is made denser than the meshes of the other lattices. . In this case, since there are four intersections 8 on the diagonal line of the grid surrounding the introduction site 5, four mesh-dense portion wire rods (oblique lines) 9 are provided. As a result, there are eight paths extending outward from the introduction site 5. For this reason, the surge current introduced from the introduction part 5 flows in the mesh dense portion 7 by diverting the mesh 1 through the vertical lines 3 and the horizontal wires 4 and the wire for the mesh dense portion, so that the surge current can be quickly brought into the ground. It is possible to reduce the transient grounding resistance by discharging to the ground.

棒状体2は、図3及び図4に示すように、被接地体からのサージ電流を地中Gに導入する第1電極11と、第1電極11から外周側へサージ電流を案内する第2電極12とから構成されている。棒状体2は、網状体1の直下に設けられ、図示省略の導線にて網状体1に対して垂直方向に延びるように連結されている。本実施形態では、棒状体2は、図1に示すように導入部位5の直下、及び網状体1の4つの角部の直下の5箇所に設けられている。   As shown in FIGS. 3 and 4, the rod-shaped body 2 includes a first electrode 11 that introduces a surge current from the grounded body into the ground G, and a second electrode that guides the surge current from the first electrode 11 to the outer peripheral side. And the electrode 12. The rod-like body 2 is provided directly below the mesh-like body 1 and is connected to the mesh-like body 1 so as to extend in the vertical direction by a conducting wire (not shown). In the present embodiment, the rod-like body 2 is provided at five locations immediately below the introduction site 5 and immediately below the four corners of the mesh-like body 1 as shown in FIG.

第1電極11は、金属製の円柱体からなる。第1電極11の材質は、抵抗率が小さくサージ電流の流れ易い銅とするのが好ましいが、鉄やステンレス等の他の金属にて構成することもできる。この第1電極11は、その長手方向が地中Gの上下方向に沿うようにして地中に埋設される。   The 1st electrode 11 consists of metal cylinders. The material of the first electrode 11 is preferably copper, which has a low resistivity and allows a surge current to flow easily, but may be composed of other metals such as iron and stainless steel. The first electrode 11 is buried in the ground such that its longitudinal direction is along the vertical direction of the ground G.

第2電極12は、図3に示すように、複数枚(本実施形態では4つ)の金属製の平板体13からなる。夫々の平板体13は、第1電極11とほぼ等しい全長を有しており、平板体13は、第1電極11の軸方向の全長にわたって、第1電極11の外周から径方向に突出している。これにより、平板体13は、第1電極11の軸方向略全長にわたって延びるものとなる。各平板体13は、周方向に沿って等間隔、すなわち90°ピッチで配置され、各平板体13の径方向の突出長さが同一となるように配置される。棒状体は、図4に示すような平面視十字形となる。第2電極12も、前記第1電極11と同一の材質にて構成されている。   As shown in FIG. 3, the second electrode 12 is composed of a plurality of (four in the present embodiment) metal flat plate 13. Each flat plate 13 has a length substantially equal to that of the first electrode 11, and the flat plate 13 protrudes in the radial direction from the outer periphery of the first electrode 11 over the entire length in the axial direction of the first electrode 11. . Thereby, the flat plate 13 extends over substantially the entire length of the first electrode 11 in the axial direction. The flat plates 13 are arranged at equal intervals along the circumferential direction, that is, at a pitch of 90 °, and are arranged so that the protruding lengths in the radial direction of the flat plates 13 are the same. The rod-like body has a cross shape in plan view as shown in FIG. The second electrode 12 is also made of the same material as the first electrode 11.

このとき、平板体13は、第1電極11から外周側へ4つ備え、90°ピッチで配置した十字形とする。隣合う平板体の間隔が近接している場合、近接する各々の平板体から流出するサージ電流の流路となる地中部分が共有する関係となって、サージ電流は地中へ流出しにくくなる。そのため、隣合う平板体3の間隔を広く90°ピッチに配設すれば、サージ電流を速やかに地中に放流し、過渡接地抵抗が大きくなるのを防止することができる。   At this time, the flat plate 13 is provided with four pieces from the first electrode 11 to the outer peripheral side, and has a cross shape arranged at a pitch of 90 °. When the distance between adjacent flat plates is close, the underground portion that serves as a flow path for surge current flowing out from each adjacent flat plate is shared, and the surge current is less likely to flow into the ground. . Therefore, if the interval between the adjacent flat plates 3 is widely arranged at a pitch of 90 °, the surge current can be quickly discharged into the ground and the transient grounding resistance can be prevented from increasing.

過渡状態では、図2に示すように、サージ電流が網状体1を流れるとともに棒状体2を流れる。すなわち、導入部位5に流入したサージ電流は、外側に延びる8本の経路を辿りつつ網状体1全体へ広がる。同時に、導入部位5に流入したサージ電流は、導入部位5の下方に配置された第1電極11へも案内され、第2電極12の平板体13にて、第1電極11の軸方向全長において外周側へ案内される。さらに、網状体1に案内されたサージ電流は、網状体1の角部に配置されている棒状体2においても地中Gへ案内されることになる。このように、網状体1と棒状体2とは、地中Gに流入したサージ電流が導入部位5から広がる向きと略同一の向きに延びるため、過渡接地抵抗を小さくすることができる。   In the transient state, as shown in FIG. 2, the surge current flows through the mesh body 1 and the rod-shaped body 2. That is, the surge current that has flowed into the introduction site 5 spreads throughout the net 1 while following eight paths extending outward. At the same time, the surge current that has flowed into the introduction site 5 is also guided to the first electrode 11 disposed below the introduction site 5, and the flat body 13 of the second electrode 12 has a total axial length of the first electrode 11. Guided to the outer periphery. Furthermore, the surge current guided to the mesh body 1 is also guided to the underground G in the rod-shaped body 2 arranged at the corner of the mesh body 1. Thus, since the net-like body 1 and the rod-like body 2 extend in substantially the same direction as the direction in which the surge current flowing into the underground G spreads from the introduction site 5, the transient grounding resistance can be reduced.

本発明の接地構造では、網状体1と棒状体2とは、導入部位5からサージ電流の流れる(広がる)向きと略同一方向にサージ電流を案内する三次元的な構造となっている。しかも、網状体1の網目密部7では、導入部位5から外側に延びる経路が多くなるため、サージ電流の流路を増やすことができる。これにより、網目密部7において、サージ電流を分流させ、サージ電流を速やかに地中に放流することができて、過渡接地抵抗を小さくすることができる。   In the grounding structure of the present invention, the net-like body 1 and the rod-like body 2 have a three-dimensional structure that guides the surge current in a direction substantially the same as the direction in which the surge current flows (spreads) from the introduction site 5. Moreover, since the number of paths extending outward from the introduction site 5 in the mesh dense portion 7 of the mesh body 1 increases, the flow path of surge current can be increased. As a result, the surge current can be shunted in the mesh-tight part 7, and the surge current can be quickly discharged into the ground, and the transient grounding resistance can be reduced.

網目密部用線材9を斜線とすると、縦線3および横線4、ならびに網目密部用線材9によりサージ電流を8方向に分流し地中に放流することができ、過渡接地抵抗を小さくすることができる。しかも、既存の網状体1に網目密部用線材9を追加すれば容易に網目密部7を形成することができ、低コストで過渡接地抵抗の低減対策が実施できる。   When the mesh dense portion wire 9 is slanted, the surge current can be divided into eight directions by the vertical line 3 and the horizontal wire 4 and the mesh dense portion wire 9 to be discharged into the ground, thereby reducing the transient grounding resistance. Can do. In addition, if the wire 9 for the mesh portion is added to the existing mesh body 1, the mesh portion 7 can be easily formed, and measures for reducing the transient ground resistance can be implemented at low cost.

棒状体2を第1電極11と第2電極12とで構成すると、第2電極12が、地中Gに流入したサージ電流が広がる向きと略同一の向きに延びることとなり、第1電極11の軸方向全長において外周側へ案内するため、シンプルな構成で過渡接地抵抗を小さくすることができる。また、シンプルな構成から、軽量で運搬が容易となり、設置作業も省力化でき、また、電極の製作においては材料費や加工費を低減できて、電極を安価に製作することができる。   When the rod-shaped body 2 is composed of the first electrode 11 and the second electrode 12, the second electrode 12 extends in substantially the same direction as the direction in which the surge current flowing into the underground G spreads. Since the guide is guided to the outer peripheral side in the entire axial length, the transient grounding resistance can be reduced with a simple configuration. In addition, the simple configuration makes it light and easy to carry, saving labor for installation, and can reduce the material cost and the processing cost in the manufacture of the electrode, thereby making it possible to manufacture the electrode at low cost.

平板体13を4つ備えた十字形としているので、効果的にサージ電流を地中へ放出することができ、しかも製作や加工が容易なものとなる。   Since it has a cross shape with four flat plates 13, it is possible to effectively discharge a surge current into the ground, and it is easy to manufacture and process.

以上、本発明の実施形態及び実施例について説明したが、本発明はこれらに限定されることなく種々の変形が可能である。例えば、網状体1の材質、断面積は種々のものとでき、単線であってもよい。網状体1の縦線3と横線4との間隔や数は種々設定することができる。縦線3と横線4との数は相違していてもよい。棒状体2は、少なくとも導入部位5の下方にあればよいため、網状体1の角部に配置している棒状体2を省略してもよい。第1電極11や第2電極12の材質は、種々のものとすることができる。第1電極11や第2電極12の全長は種々の長さに設定することができ、第1電極11の全長と第2電極12の全長とが相違してもよい。   While the embodiments and examples of the present invention have been described above, the present invention is not limited to these and various modifications can be made. For example, the material and cross-sectional area of the net-like body 1 can be various, and may be a single wire. Various intervals and the number of the vertical lines 3 and the horizontal lines 4 of the net 1 can be set. The number of vertical lines 3 and horizontal lines 4 may be different. Since the rod-shaped body 2 only needs to be at least below the introduction site 5, the rod-shaped body 2 arranged at the corner of the mesh-shaped body 1 may be omitted. The material of the first electrode 11 and the second electrode 12 can be various. The total length of the first electrode 11 and the second electrode 12 can be set to various lengths, and the total length of the first electrode 11 and the total length of the second electrode 12 may be different.

本発明に係る接地構造の有効性を検証するための実験について述べる。本実験は、図5に示す実験回路を用いて、図6に示すような接地構造を地中に埋設し、接地構造におけるサージ電流の導入部位(図6のa点)での電位と、接地構造における複数の場所(図6のb点〜e点)における電位を測定した。接地構造は網状体のみから構成され、縦線と横線とが5m×5mで配置される格子状のものとした。網状体は、100sqの硬銅より線(HDCC)とし、地面からの埋設深さを1mとした。大地抵抗率は42Ωmである。   An experiment for verifying the effectiveness of the grounding structure according to the present invention will be described. In this experiment, the grounding structure as shown in FIG. 6 is embedded in the ground using the experimental circuit shown in FIG. 5, and the potential at the site where the surge current is introduced (point a in FIG. 6) in the grounding structure is grounded. Potentials at a plurality of locations in the structure (points b to e in FIG. 6) were measured. The grounding structure is composed only of a net-like body, and has a lattice shape in which vertical lines and horizontal lines are arranged at 5 m × 5 m. The reticulated body was a 100 sq hard copper strand (HDCC), and the embedding depth from the ground was 1 m. The earth resistivity is 42 Ωm.

以下、実験結果について述べる。図7において横軸は時間[μs]、縦軸は電位[V]をそれぞれ示している。図7(a)よりa点(サージ電流の導入部位)の最高電位は150Vである。また、図7(b)からb点の最高電位は4.4V、図7(c)からc点の最高電位は11V、図7(d)からd点の電位は30V、図7(e)からe点の電位は9.5Vであった。つまり、導入部位である図7(a)に現れた電位150Vは、b点では97%減衰して4.4Vに、同様にc点では93%減衰して11V、d点では80%減衰して30V、e点では94%減衰して9.5Vとなっている。これより、過渡接地抵抗の低減対策は、サージ電流が流入する避雷器等の被接地体と電気的に接続された網状体の導入部位の近傍(導入部位を囲む4つの格子)にて重点的に行うことで、網状体に広く実施することなく、低コストで大きな効果が得られることがわかった。   The experimental results are described below. In FIG. 7, the horizontal axis represents time [μs], and the vertical axis represents potential [V]. As shown in FIG. 7A, the maximum potential at point a (surge current introduction site) is 150V. 7B, the maximum potential at the point b is 4.4V, the maximum potential at the point c from FIG. 7C is 11V, the potential at the point d from FIG. 7D is 30V, and FIG. 7E. To e potential was 9.5V. That is, the potential 150V appearing in FIG. 7A, which is the introduction site, is attenuated 97% at point b to 4.4V, similarly 93% attenuated at point c 11V, and attenuated 80% at point d. 30V and at point e, it is 94% attenuated to 9.5V. As a result, measures to reduce the transient grounding resistance are focused on in the vicinity of the introduction part of the mesh body (four grids surrounding the introduction part) that is electrically connected to the grounded object such as a surge arrester into which surge current flows. By doing so, it was found that a large effect can be obtained at a low cost without widely implementing the mesh.

次に、図8に示す実験回路にて、各種接地構造の接地抵抗の周波数特性を測定した。地中には、図8の(1)、(2)、(3)、(4)、(5)、(6)に示す夫々の接地構造を埋設し、被接地体としての避雷器を接続する導入部位Pにサージ電流を印加し、接地抵抗の周波数特性を測定した。(1)、(2)、(3)が比較例、(4)、(5)、(6)が実施例である。網状体の1つの網目の大きさは、5m×5mである。なお、大地抵抗率は109Ωmであった。   Next, the frequency characteristics of the grounding resistance of various grounding structures were measured using the experimental circuit shown in FIG. Each ground structure shown in (1), (2), (3), (4), (5), and (6) of FIG. 8 is buried in the ground, and a lightning arrester as a grounded body is connected. A surge current was applied to the introduction site P, and the frequency characteristics of the ground resistance were measured. (1), (2), (3) are comparative examples, and (4), (5), (6) are examples. The size of one mesh of the mesh is 5 m × 5 m. The earth resistivity was 109 Ωm.

以下、比較例の実験結果について述べる。図9(a)は、(1)、(2)、(3)における接地抵抗の周波数特性を1つのグラフで示している。横軸は周波数[Hz]、縦軸は接地抵抗[Ω]である。サージ電流の周波数領域は数MHzと高く、有効性の検証は2MHz(図9の矢印で示す)における接地抵抗値(本実施例では、この値を過渡接地抵抗とする。)にて評価した。図中の一点鎖線は(1)、破線は(2)、実線は(3)を示している。(1)の接地構造では88Ω、(2)および(3)では55Ωであった。全体的に右上がりのカーブで、周波数が高くなるにつれ、接地抵抗も増加しているが、棒状体電極を併用することで、増加傾向は抑制されている。   Hereinafter, the experimental results of the comparative example will be described. FIG. 9A shows the frequency characteristics of the ground resistance in (1), (2), and (3) with one graph. The horizontal axis is frequency [Hz], and the vertical axis is ground resistance [Ω]. The frequency region of the surge current is as high as several MHz, and the effectiveness was verified by a ground resistance value at 2 MHz (indicated by an arrow in FIG. 9) (in this embodiment, this value is referred to as a transient ground resistance). The one-dot chain line in the figure indicates (1), the broken line indicates (2), and the solid line indicates (3). It was 88Ω in the ground structure of (1), and 55Ω in (2) and (3). As the frequency increases, the ground resistance increases as the frequency rises as a whole. However, the increase tendency is suppressed by using the rod electrode together.

以下、実施例の実験結果について述べる。図9(b)は、(4)、(5)、(6)における接地抵抗の周波数特性を1つのグラフで示している。横軸は周波数[Hz]、縦軸は接地抵抗[Ω]である。有効性の評価は、比較例の実験結果と同じである。図中の一点鎖線は(4)、破線は(5)、実線は(6)を示している。(4)の接地構造では50Ω、(5)は35Ω、(3)は23Ωであった。全体的に右上がりの傾向を示すが、その増加傾向は比較例より小さい。   Hereinafter, experimental results of the examples will be described. FIG. 9B shows the frequency characteristics of the ground resistance in (4), (5), and (6) with one graph. The horizontal axis is frequency [Hz], and the vertical axis is ground resistance [Ω]. The evaluation of effectiveness is the same as the experimental result of the comparative example. The dashed line in the figure indicates (4), the broken line indicates (5), and the solid line indicates (6). In the ground structure of (4), 50Ω, (5) was 35Ω, and (3) was 23Ω. Although the overall trend is upward, the increasing trend is smaller than that of the comparative example.

次に、棒状体を地中に埋設し、接地抵抗の周波数特性を測定した。本実験は、図5に示す実験回路を用いて、同一土壌に3種類の異なる棒状体を埋設した。棒状体以外は、実験の条件は同一とした。棒状体は、図10(a)に示すように、(1)幅150mmの板状鋼板を捩ってスパイラル状に形成されたスパイラル電極、図10(b)に示すように、(2)1辺が75mm、断面がL字状に形成された鋼製L形電極、図10(c)に示すように、(3)直径φ50mmの鋼管製第1電極と、当該第1電極の外周に90°ピッチで幅100mmの4つの平板体からなる第2電極とで構成された十字形電極を用いた。(1)及び(2)が比較例、(3)が実施例である。夫々の接地体の長さはいずれも1m、厚さ4mmの鋼材である。接地体の表面積は、(1)及び(2)が0.3m2、(3)が0.96m2である。大地抵抗率は109Ωmである。 Next, the rod-shaped body was buried in the ground, and the frequency characteristics of the ground resistance were measured. In this experiment, three different rods were embedded in the same soil using the experimental circuit shown in FIG. Except for the rod-shaped body, the experimental conditions were the same. As shown in FIG. 10 (a), the rod-shaped body has (1) a spiral electrode formed by twisting a plate steel plate having a width of 150 mm, and (2) 1 shown in FIG. 10 (b). A steel L-shaped electrode having a side of 75 mm and an L-shaped cross section, as shown in FIG. 10 (c), (3) a steel tube first electrode having a diameter of 50 mm, and 90 mm on the outer periphery of the first electrode. A cross-shaped electrode composed of four flat plates each having a width of 100 mm at a pitch was used. (1) and (2) are comparative examples, and (3) is an example. Each grounding body is a steel material having a length of 1 m and a thickness of 4 mm. The surface area of the ground body, (1) and (2) is 0.3 m 2, (3) is 0.96 m 2. The earth resistivity is 109 Ωm.

以下、実験結果について述べる。図11は、接地抵抗の周波数特性を示すもので、横軸は周波数[Hz]、縦軸は接地抵抗[Ω]をそれぞれ示している。サージ電流の周波数領域は数MHzと高く、有効性の検証は2MHz(図11の矢印で示す)における接地抵抗値(本実施例では、この値を過渡接地抵抗とする。)にて評価した。また、各接地体の接地抵抗のピーク値も、2MHzあたりにみられる。図中の一点鎖線は(1)スパイラル電極、破線は(2)L形電極、実線は(3)十字形電極を示している。この実験結果から、(3)の十字形電極が最も低い抵抗値を示しており、過渡接地抵抗は、(1)が280Ω、(2)が230Ω、(3)が80Ωと(3)が最も低い値を示した。また、定常接地抵抗を測定したところ、(1)が135Ω、(2)が112Ω、(3)が45Ωであった。(3)の十字形抵抗は、他の電極と比較して、地中において土との接触面積が広いため、過渡接地抵抗を低くできることに加えて、定常接地抵抗も低減した。   The experimental results are described below. FIG. 11 shows the frequency characteristics of the ground resistance, where the horizontal axis represents the frequency [Hz] and the vertical axis represents the ground resistance [Ω]. The frequency region of the surge current is as high as several MHz, and the effectiveness was verified by a ground resistance value at 2 MHz (indicated by an arrow in FIG. 11) (in this embodiment, this value is referred to as a transient ground resistance). Moreover, the peak value of the grounding resistance of each grounding body is also seen around 2 MHz. In the figure, the alternate long and short dash line indicates (1) spiral electrode, the broken line indicates (2) L-shaped electrode, and the solid line indicates (3) cross-shaped electrode. From this experimental result, the cross-shaped electrode of (3) shows the lowest resistance value, and the transient ground resistance is (280) for (1), 230Ω for (2), 80Ω for (3) and (3) for the most. It showed a low value. When the steady ground resistance was measured, (1) was 135Ω, (2) was 112Ω, and (3) was 45Ω. The cross-shaped resistance of (3) has a large contact area with soil in the ground compared to other electrodes, so that in addition to being able to reduce the transient ground resistance, the steady ground resistance was also reduced.

また、第2電極の形状と接地抵抗との関係を測定するため、図5に示す実験回路を用いて、同一地中に2種類の異なる接地体を埋設した。接地体の形状以外は、実験の条件は同一とした。接地体は夫々図12に示すような(1)直径φ50mm、長さ4mの鋼管に、直径250mmの円板4つを軸方向に沿って等ピッチ(1m間隔)で付加した円板体付加電極、(2)直径φ50mm、長さ4mの鋼管に、幅100mm、長さ4mの平板体を周方向に沿って等ピッチ(90°間隔)で4つ付加した十字形電極を用いた。夫々の接地体は、厚さ4mmの鋼材である。接地体の表面積は、(1)が1.02m2、(2)が3.83m2である。(1)が比較例、(2)が実施例である。(1)円板体付加電極と(2)十字形電極は、共に電極中心の鋼管に導入したサージ電流を、外周側へ案内する平板体を有するが、(1)はその形状が鋼管より大きい直径の円形板であるが、(2)は鋼管と長さが同じである長方形板である。これらの測定結果を表1に示す。

Figure 2012104378
Further, in order to measure the relationship between the shape of the second electrode and the grounding resistance, two different grounding bodies were embedded in the same ground using the experimental circuit shown in FIG. The experimental conditions were the same except for the shape of the grounding body. As shown in FIG. 12, each of the grounding bodies is (1) a disc body additional electrode in which four discs having a diameter of 250 mm are added to a steel pipe having a diameter of 50 mm and a length of 4 m at an equal pitch (1 m interval) along the axial direction. (2) A cross-shaped electrode in which four flat plates having a width of 100 mm and a length of 4 m were added to a steel pipe having a diameter of 50 mm and a length of 4 m at an equal pitch (90 ° interval) along the circumferential direction was used. Each grounding body is a steel material having a thickness of 4 mm. The surface area of the ground body, (1) is 1.02 m 2, (2) is 3.83 m 2. (1) is a comparative example, and (2) is an example. (1) The disc body additional electrode and (2) the cruciform electrode both have a flat plate that guides the surge current introduced into the steel tube at the center of the electrode to the outer peripheral side, but (1) is larger in shape than the steel tube. Although it is a circular plate having a diameter, (2) is a rectangular plate having the same length as the steel pipe. These measurement results are shown in Table 1.
Figure 2012104378

表1は、実施例4における(1)円板形付加電極と(2)十字形電極の過渡接地抵抗および定常接地抵抗の測定値を示す。   Table 1 shows measured values of the transient grounding resistance and the steady grounding resistance of the (1) disk-shaped additional electrode and (2) the cross-shaped electrode in Example 4.

表1より、(2)十字形電極は、(1)円板形付加電極を基準として、過渡接地抵抗は約20%、定常接地抵抗においては約47%低い値となった。すなわち、(1)のように、鋼管から周方向に突出する部分を有していても、鋼管の軸方向に沿って連続して延びるものでなければ、過渡接地抵抗の低減効果は薄い。従って、接地体を十字形にし、かつ、平板体が第1電極の軸方向略全長にわたって延びるものとすれば、過渡接地抵抗の低減に効果的であり、加えて定常接地抵抗の低減にも有効である。   From Table 1, (2) the cross-shaped electrode was lower by about 20% in the transient grounding resistance and about 47% in the steady grounding resistance, based on the (1) disk-shaped additional electrode. That is, as in (1), even if it has a portion protruding in the circumferential direction from the steel pipe, the effect of reducing the transient grounding resistance is thin unless it extends continuously along the axial direction of the steel pipe. Therefore, if the grounding body is cross-shaped and the flat body extends over substantially the entire length in the axial direction of the first electrode, it is effective in reducing the transient grounding resistance, and in addition, effective in reducing the steady grounding resistance. It is.

1 網状体
2 棒状体
3 縦線
4 横線
5 導入部位
7 網目密部
9 網目密部用線材
11 第1電極
12 第2電極
13 平板体
G 地中
DESCRIPTION OF SYMBOLS 1 Reticulated body 2 Rod-shaped body 3 Vertical line 4 Horizontal line 5 Introduction part 7 Reticulated part 9 Reticulated part wire 11 First electrode 12 Second electrode 13 Flat plate G Underground

Claims (5)

被接地体と電気的に接続されて、地中に略水平状に埋設された状態で前記被接地体からのサージ電流を導入する網状体を備える接地構造であって、
前記網状体は、所定間隔を隔てて平行状に配列した複数本の縦線と、この縦線と直交して所定間隔を隔てて平行状に配列した複数本の横線とで定常接地抵抗が所定の値となるように格子状の網目が形成され、
外縁を除く前記縦線と横線との所定交点を前記導入部位として、この導入部位の周囲の他の交点で囲まれる範囲に網目密部用線材を配置し、この範囲を網目密部としたことを特徴とする接地構造。
A grounding structure comprising a mesh body that is electrically connected to a grounded body and introduces a surge current from the grounded body in a state of being embedded in a substantially horizontal shape in the ground,
The net-like body has a predetermined steady ground resistance with a plurality of vertical lines arranged in parallel at a predetermined interval and a plurality of horizontal lines orthogonal to the vertical line and arranged in parallel at a predetermined interval. A grid-like mesh is formed so that
With the predetermined intersection of the vertical line and the horizontal line excluding the outer edge as the introduction part, a wire rod for a mesh-dense part is arranged in a range surrounded by other intersections around the introduction part, and this range is a mesh-dense part A grounding structure characterized by
前記網目密部用線材は、前記導入部位と、この導入部位から格子の対角線にある交点とを結ぶ斜線としたことを特徴とする請求項1の接地構造。   The grounding structure according to claim 1, wherein the wire rod for the mesh-tight portion is a diagonal line connecting the introduction portion and an intersection point on the diagonal line of the lattice from the introduction portion. 前記網状体の、前記被接地体からのサージ電流の導入部位に、前記網状体に対して垂直に設けられて、前記網状体にて導入したサージ電流を地中に案内する棒状体を備えたことを特徴とする請求項1又は請求項2の接地構造。   A rod-like body that is provided perpendicular to the mesh body at the site where the surge current is introduced from the grounded body of the mesh body and guides the surge current introduced by the mesh body into the ground is provided. The grounding structure according to claim 1 or 2, characterized in that 前記棒状体は、中実乃至中空の柱体からなり、前記被接地体からのサージ電流を地中に導入する第1電極と、この第1電極の外周から径方向に突出する複数の平板体を有し、前記第1電極から外周側へサージ電流を案内する第2電極とを備え、第2電極の平板体は、前記第1電極の軸方向略全長にわたって延びるとともに、周方向に沿って等間隔で配置されて、その径方向の突出長さが同一となるように配置されることを特徴とする請求項3の接地構造。   The rod-shaped body is a solid or hollow column body, and includes a first electrode for introducing a surge current from the grounded body into the ground, and a plurality of flat plates projecting radially from the outer periphery of the first electrode. And a second electrode for guiding a surge current from the first electrode to the outer peripheral side, and the flat plate body of the second electrode extends substantially along the entire length in the axial direction of the first electrode and extends along the circumferential direction. The grounding structure according to claim 3, wherein the grounding structures are arranged at equal intervals so that the protruding lengths in the radial direction are the same. 前記棒状体は、前記平板体を4つ備えた十字形としたことを特徴とする請求項4の接地構造。   5. The grounding structure according to claim 4, wherein the rod-shaped body has a cross shape having four flat plates.
JP2010252050A 2010-11-10 2010-11-10 Ground structure Pending JP2012104378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252050A JP2012104378A (en) 2010-11-10 2010-11-10 Ground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252050A JP2012104378A (en) 2010-11-10 2010-11-10 Ground structure

Publications (1)

Publication Number Publication Date
JP2012104378A true JP2012104378A (en) 2012-05-31

Family

ID=46394533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252050A Pending JP2012104378A (en) 2010-11-10 2010-11-10 Ground structure

Country Status (1)

Country Link
JP (1) JP2012104378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538750A (en) * 2014-12-23 2015-04-22 国网浙江诸暨市供电公司 Graphite type grounded resistance reducing module
CN113507001A (en) * 2021-06-09 2021-10-15 中国科学院国家空间科学中心 Novel extremely low ground resistance grounding system
CN114389059A (en) * 2021-12-31 2022-04-22 国核电力规划设计研究院有限公司 External-lead-in sea grounding device for sea-side power plant and transformer substation
CN114759375A (en) * 2022-05-07 2022-07-15 北京万云科技开发有限公司 Large-scale charge balance surface direct lightning protection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538750A (en) * 2014-12-23 2015-04-22 国网浙江诸暨市供电公司 Graphite type grounded resistance reducing module
CN113507001A (en) * 2021-06-09 2021-10-15 中国科学院国家空间科学中心 Novel extremely low ground resistance grounding system
CN114389059A (en) * 2021-12-31 2022-04-22 国核电力规划设计研究院有限公司 External-lead-in sea grounding device for sea-side power plant and transformer substation
CN114389059B (en) * 2021-12-31 2024-05-07 国核电力规划设计研究院有限公司 External-lead-in sea grounding device for offshore power plant and transformer substation
CN114759375A (en) * 2022-05-07 2022-07-15 北京万云科技开发有限公司 Large-scale charge balance surface direct lightning protection device

Similar Documents

Publication Publication Date Title
JP4709715B2 (en) Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
JP2012104378A (en) Ground structure
KR101605511B1 (en) Lightning protecting apparatus for spreading lightning current for cable-stayed bridge
KR100621876B1 (en) Equipotential Earthing System And Method for Constructing The Same
KR20200122611A (en) Band type ground electrode for replacing mesh ground cable
JP4954250B2 (en) Ground electrode
KR100867663B1 (en) Lightning arrester system employing the double-triangle method
CN103474791A (en) Radial grounding device with impact impedance reducing function
KR101237431B1 (en) type mesh grounding system
KR101267186B1 (en) Virtual multi-point grounding type multi-tubular surge discharge earth rod
JP4362812B2 (en) Grounding body
CN103474790B (en) A kind of possess to impact the ring ground of resistance function drops
JP2012104379A (en) Ground structure and ground structure construction method
WO2007114543A1 (en) Earthing device which needs not be buried under ground
KR20110007885U (en) Surge Electric Discharge Earth Apparatus
JP2012104377A (en) Ground body
JP4099785B1 (en) Multi-layer shielded wire for lightning protection
CN2821951Y (en) Inductance lightning arrester
CN106450824B (en) Grounded screen
JP5665669B2 (en) Method for suppressing the spread of potential rise at ground electrode
CN213400800U (en) Electrified suppression device of power transformer oil stream
JP6696162B2 (en) Radiation detecting element and radiation detecting apparatus
CN203260750U (en) Net-nail-strip integrated grounding system for mobile electronic equipment
KR101145226B1 (en) An earthing bar for arc-discharging
KR100930992B1 (en) Complex type earthing equipment