JP2012101398A - Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film - Google Patents

Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film Download PDF

Info

Publication number
JP2012101398A
JP2012101398A JP2010250452A JP2010250452A JP2012101398A JP 2012101398 A JP2012101398 A JP 2012101398A JP 2010250452 A JP2010250452 A JP 2010250452A JP 2010250452 A JP2010250452 A JP 2010250452A JP 2012101398 A JP2012101398 A JP 2012101398A
Authority
JP
Japan
Prior art keywords
film
cooling
thermoplastic resin
air
cooling drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010250452A
Other languages
Japanese (ja)
Inventor
Tetsuji Hanada
哲治 花田
Masateru Ono
正照 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010250452A priority Critical patent/JP2012101398A/en
Publication of JP2012101398A publication Critical patent/JP2012101398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/917Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means by applying pressurised gas to the surface of the flat article

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a film using a cooling device, which has high productivity and is capable of producing a thick film being excellent in haze at a high speed without generating film thickness unevenness due to the unevenness formed on the film surface in the cooling device for cooling the thermoplastic resin film on an anti-cooling drum surface.SOLUTION: The cooling device, for cooling the anti-cooling drum surface film on the cooling drum by blowing air to the film from a blowing nozzle, has a means for measuring the film surface temperature on an anti-drum surface and optionally adjusting the wind velocity of air blown toward the film from a plurality of nozzle mounted on the anti-cooling drum surface. The film manufacturing method uses the cooling device for adjusting the wind velocity in accordance with the degree of the film thickness unevenness while measuring the film thickness unevenness in the film flow direction by a film thickness meter mounted in an cooling drum outlet.

Description

本発明は光学用フィルム、表面保護材、電気絶縁材料および離型材等の用途、中でも光学用フィルムおよび表面保護材などの透明性と平面性に優れた熱可塑性樹脂フィルムの冷却装置および熱可塑性樹脂フィルムの製造方法に関する。   The present invention relates to an optical film, a surface protective material, an electrical insulating material, a release material, and the like, in particular, a cooling device and a thermoplastic resin for a thermoplastic resin film excellent in transparency and flatness such as an optical film and a surface protective material. The present invention relates to a film manufacturing method.

近年、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)に代表される各種ディスプレイ部材の軽量化、低コスト化が進められている中、ディスプレイの重要部材として、光学用フィルムの市場が拡大している。光学用フィルムは、ポリエチレンテレフタレート(PET)などのポリエステル、アクリル系ポリマー、ポリカーボネート(PC)等の熱可塑性樹脂からなる各種の透明フィルムを基材とし、機能性付与のため、例えば傷つきを防止する保護膜(ハードコート層)、AR層(反射防止層)、集光・光拡散層、偏光板等を基材に積層する各種表面処理加工が施されて得られるものであり、基材フィルムには透明性が強く求められている。一方で大型ディスプレイ等に組み込んで加工される際、十分な強度が要求されるため、厚みが150μm以上の厚物フィルムが好んで使われている。   In recent years, as various display members represented by liquid crystal displays (LCDs) and plasma display panels (PDPs) have been reduced in weight and cost, the market for optical films has expanded as an important component of displays. Yes. The optical film is made of various transparent films made of thermoplastic resin such as polyester such as polyethylene terephthalate (PET), acrylic polymer, polycarbonate (PC), etc., for protection, for example, to prevent damage. It is obtained by applying various surface treatments to laminate a film (hard coat layer), AR layer (antireflection layer), light collecting / light diffusing layer, polarizing plate, etc. on the substrate. There is a strong demand for transparency. On the other hand, when it is processed by being incorporated into a large display or the like, a sufficient thickness is required, so that a thick film having a thickness of 150 μm or more is preferably used.

このようなフィルムの製造工程には、溶融させた熱可塑性樹脂を押出ダイより押出して冷却する工程があり、透明性に優れたフィルムを製造するには押し出された熱可塑性樹脂を速やかに所望の温度まで冷却することが重要となる。熱可塑性樹脂を速やかに冷却する方法としては、冷却ドラムに熱可塑性樹脂を密着させる方法が一般的であり、厚み150μm以上の厚物フィルムの製造時は、冷却ドラムに接しないフィルム面(反冷却ドラム面という)からも冷却する必要がある。なぜなら、厚物フィルムにおいて、冷却ドラムのみによる冷却の場合、反冷却ドラム面のフィルム温度は所望の温度までなかなか下がらないからである。特にポリエステルなどの結晶性樹脂からなるフィルムの場合、熱可塑性樹脂のガラス転移温度近傍における冷却速度が十分でないと、熱可塑性樹脂の結晶化が進行し、結果としてフィルムの透明性(ヘイズ)が低下してしまうからである。反冷却ドラム面を速やかに冷却する方法としては、反冷却ドラム面に補助冷却装置を設置し、前記溶融させた熱可塑性樹脂の冷却を促進する方法が知られている。この補助冷却装置は、たとえば、反冷却ドラム面から熱可塑性樹脂に向けて冷気を吹き付けるノズル(以下吹き付けノズルとする)により構成されているのが一般的である(例えば、特許文献1、特許文献2)。   The manufacturing process of such a film includes a process of extruding a molten thermoplastic resin from an extrusion die and cooling it, and in order to manufacture a film having excellent transparency, the extruded thermoplastic resin is quickly desired. It is important to cool to temperature. As a method for quickly cooling the thermoplastic resin, a method of bringing the thermoplastic resin into close contact with the cooling drum is generally used. When manufacturing a thick film having a thickness of 150 μm or more, a film surface that is not in contact with the cooling drum (anti-cooling) It is also necessary to cool from the drum surface. This is because, in a thick film, when cooling with only a cooling drum, the film temperature on the surface of the anti-cooling drum does not easily fall to a desired temperature. In particular, in the case of a film made of a crystalline resin such as polyester, if the cooling rate in the vicinity of the glass transition temperature of the thermoplastic resin is not sufficient, crystallization of the thermoplastic resin proceeds, resulting in a decrease in transparency (haze) of the film. Because it will do. As a method for quickly cooling the surface of the anti-cooling drum, a method is known in which an auxiliary cooling device is installed on the surface of the anti-cooling drum and the cooling of the molten thermoplastic resin is promoted. This auxiliary cooling device is generally constituted by a nozzle (hereinafter referred to as a spray nozzle) that blows cool air from the surface of the anti-cooling drum toward the thermoplastic resin (for example, Patent Document 1 and Patent Document). 2).

しかしながら、最近の厚物フィルムでは、ヘイズに対する要求が高くなっており、従来の補助冷却装置による冷却では冷却能力が不足し、品質に問題が生じるようになった。公知の技術では冷却ドラム上において降温結晶化温度の200℃から150℃の範囲を5℃/秒以上の冷却速度でフィルムを冷却することでヘイズに優れたフィルムを得られることが公知となっている。(例えば、特許文献3)厚みが150μm以上で厚みが大きくなるほど、反冷却ドラム面ではフィルム温度が下がり難くなるため、フィルムが200℃まで冷却される位置では冷却ドラムの出口位置に近く、降温結晶化温度の200℃から150℃の範囲に吹き付けノズルを設置することが困難であるため、冷却ドラムの回転速度を遅くし、冷却ドラムとフィルムの接する時間を長くする、または、フィルム温度が200℃より高い温度位置のできるだけ押出ダイに近い位置から吹き付けノズルによる冷却開始する、冷気の吹き付け速度を大きくする、吹き付ける冷気の温度を下げる等の方法が取られてきた。しかしながら、冷却ドラムの回転速度を遅くする方法は生産性が低下するため、好ましくない。また、冷気の吹き付け位置を押出ダイに近づける方法と冷気の吹き付け速度を大きくする方法はフィルムの冷却効果が大きいが、フィルム融点付近の軟化しているフィルム表面に冷気を吹き付けるため、フィルム表面に凹凸を生じさせ、フィルムの厚みムラが大きくなる問題があった。   However, the recent thick film has a high demand for haze, and the cooling with the conventional auxiliary cooling device has insufficient cooling capacity, which causes a problem in quality. It is publicly known that a film having excellent haze can be obtained by cooling the film at a cooling rate of 5 ° C./second or more in the range from 200 ° C. to 150 ° C. of the cooling crystallization temperature on the cooling drum. Yes. (For example, Patent Document 3) Since the film temperature is less likely to be lowered on the anti-cooling drum surface as the thickness is increased to 150 μm or more, the temperature-falling crystal is closer to the exit position of the cooling drum at the position where the film is cooled to 200 ° C. Since it is difficult to install the spray nozzle in the range of 200 ° C. to 150 ° C., the rotation speed of the cooling drum is slowed down, the time for the cooling drum and the film to contact is increased, or the film temperature is 200 ° C. Methods such as starting cooling with a spray nozzle from a position as close as possible to an extrusion die at a higher temperature position, increasing the spray speed of cool air, and lowering the temperature of cool air to be sprayed have been taken. However, a method of reducing the rotation speed of the cooling drum is not preferable because productivity is lowered. In addition, the method of bringing the cold air blowing position closer to the extrusion die and the method of increasing the cold air blowing speed have a large film cooling effect, but since the cold air is blown to the softened film surface near the film melting point, the film surface is uneven. This causes a problem that the film thickness unevenness increases.

特開平3−239525号公報JP-A-3-239525 特開平7−329153号公報JP 7-329153 A 特開2007−185898号公報JP 2007-185898 A

本発明は、従来技術では困難であったフィルムの厚みムラを発生させず、かつヘイズに優れた厚物フィルムを高速で生産するため、反冷却ドラム面のフィルム表面を変形させることなく冷却することが可能な、最も冷却効果の高い吹き付けノズルによる熱可塑性樹脂フィルムの冷却装置および熱可塑性樹脂フィルムの製造方法を提供することを目的とする。   In order to produce a thick film excellent in haze at a high speed without causing uneven thickness of the film, which was difficult with the prior art, the present invention is cooled without deforming the film surface of the anti-cooling drum surface. An object of the present invention is to provide a thermoplastic resin film cooling device and a thermoplastic resin film manufacturing method using a spray nozzle having the highest cooling effect.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、溶融させた熱可塑性樹脂を押出ダイより冷却ドラム上にキャストし、該冷却ドラム上で冷却固化して熱可塑性樹脂フィルムを製造するに際し、冷却ドラムに接しないフィルム面(以下、反冷却ドラム面とする)側に設置された複数ノズルからフィルムに向けてエアーを吹き付ける装置において、吹き付けるエアーの風速を各ノズル個別に調整できる手段を有することを特徴とする熱可塑性樹脂フィルムの冷却装置である。   The present invention employs the following means in order to solve such problems. That is, when a molten thermoplastic resin is cast on a cooling drum from an extrusion die and cooled and solidified on the cooling drum to produce a thermoplastic resin film, a film surface that is not in contact with the cooling drum (hereinafter referred to as an anti-cooling drum) In the apparatus which blows air toward the film from a plurality of nozzles installed on the side), it is a thermoplastic resin film cooling device having means capable of individually adjusting the wind speed of the air to be blown .

また、溶融させた熱可塑性樹脂を押出ダイより冷却ドラム上にキャストし、該冷却ドラム上で冷却固化する熱可塑性樹脂フィルムの製造方法であって、冷却ドラムに接しないフィルム面(以下、反冷却ドラム面とする)側に設置された複数ノズルからフィルムに向けてエアーを吹き付ける工程を有し、吹き付けるエアーの風速を各ノズル個別に調整できることを特徴とする熱可塑性樹脂フィルムの製造方法である。   Also, a method for producing a thermoplastic resin film in which a molten thermoplastic resin is cast from an extrusion die onto a cooling drum and is cooled and solidified on the cooling drum, the film surface not contacting the cooling drum (hereinafter referred to as anti-cooling). A method for producing a thermoplastic resin film, comprising: a step of blowing air from a plurality of nozzles installed on the side of the drum surface toward the film, and the speed of the blowing air can be adjusted individually for each nozzle.

本発明によれば、反冷却ドラム面の冷却装置の吹き付け風速を、反冷却ドラム面のフィルム表面温度を測定し調整することで、エアーの吹き付け位置を、従来の冷却装置より押出ダイに近づけることが可能となる。結果として、反冷却ドラム面のフィルムを急速に冷却することが可能となり、ヘイズに優れた厚物フィルムを高速で生産することができる。   According to the present invention, the air blowing position of the cooling device on the anti-cooling drum surface is adjusted by measuring the film surface temperature on the anti-cooling drum surface, thereby bringing the air blowing position closer to the extrusion die than the conventional cooling device. Is possible. As a result, the film on the anti-cooling drum surface can be rapidly cooled, and a thick film excellent in haze can be produced at high speed.

さらに、冷却ドラム出口に設置されたフィルム厚み測定器により、フィルム流れ方向の厚みムラを測定し測定データをフィードバックすることにより、冷却装置の吹き付け風速を再度調整することで、フィルム表面に凹凸を生じさせるフィルム厚みムラの発生を防止できる。   Furthermore, the film thickness measuring device installed at the outlet of the cooling drum measures the thickness unevenness in the film flow direction and feeds back the measurement data, thereby adjusting the blowing air speed of the cooling device again to produce irregularities on the film surface. The occurrence of uneven film thickness can be prevented.

この発明により得られるフィルムは、従来、フィルム厚みが150μm程度以上の厚物フィルムの製造技術では両立困難であった、優れたヘイズと小さいフィルム厚みムラの特性を同時に持ち、主にディスプレイ関連のハードコート用途、詳細には、タッチパネル、保護シート、筐体等に使用される光学機能性フィルムの基材として好適である。   The film obtained by this invention has the characteristics of excellent haze and small film thickness unevenness, both of which have been difficult to achieve with conventional technology for manufacturing thick films having a film thickness of about 150 μm or more. It is suitable as a base material for optical functional films used for coating applications, specifically, touch panels, protective sheets, housings, and the like.

本発明の熱可塑性樹脂フィルムの冷却装置の一例を示す。(但し、符号1、2、5、11、12は、従来からの装置のため除く。)An example of the cooling device of the thermoplastic resin film of this invention is shown. (However, reference numerals 1, 2, 5, 11, and 12 are excluded because they are conventional devices.)

まず、本発明の熱可塑性樹脂フィルムの製造方法で得られる熱可塑性樹脂フィルムは、特に限定されないが、代表的な例を挙げれば、ポリエステルとしてポリエチレンテレフタレート、ポリエチレン−2、6−ナフタレート、ポリアミドとしてナイロン−6、ポリアリーレンサルファイドとしてポリフェニレンサルファイドなどである(以下、熱可塑性樹脂フィルムを単にフィルムと表現することがある)。   First, the thermoplastic resin film obtained by the method for producing a thermoplastic resin film of the present invention is not particularly limited, but typical examples include polyethylene terephthalate, polyethylene-2, 6-naphthalate as polyester, and nylon as polyamide. -6, polyphenylene sulfide as polyarylene sulfide (hereinafter, the thermoplastic resin film may be simply expressed as a film).

本発明の熱可塑性樹脂フィルムの冷却装置は、例えば図1に示すものであり(但し、符号1、2、5、11、12は、従来からの装置のため除く。)、押出ダイ1とその下にある冷却ドラム2からなる従来の装置に付加する装置として、冷却ドラムの回転方向に沿って、吹き付けノズル3を、冷却ドラムの中心に向かってエアーを吹き付けるように、冷却ドラムの円周方向に複数配置するものである。   The thermoplastic resin film cooling device of the present invention is, for example, as shown in FIG. 1 (however, reference numerals 1, 2, 5, 11, and 12 are excluded for conventional devices), and an extrusion die 1 and its die As a device added to the conventional device composed of the cooling drum 2 below, the circumferential direction of the cooling drum is such that the blowing nozzle 3 blows air toward the center of the cooling drum along the rotation direction of the cooling drum. A plurality of them are arranged.

上記の吹き付けノズルにエアーを供給するブロアは、吹き付けノズルの形状や、吹き付けエアーの流路となる配管や、ダクトの圧損に応じて静圧仕様を選定する必要があるが、圧損に対してブロアの静圧が小さい場合、必要な吹き付けエアーの風速(風量)が得られないことがあるため、高い静圧と風量を得ることができるターボファンが好ましい。流路となる配管やダクトは、必要な風量より選定する必要があるが、流路内の各箇所において20m/s以下となるような断面積で選定することが好ましい。   For the blower that supplies air to the above-mentioned spray nozzle, it is necessary to select the static pressure specification according to the pressure loss of the shape of the spray nozzle, the piping used as the flow path of the spray air, and the duct. When the static pressure is low, the required wind speed (air volume) of the blowing air may not be obtained, so a turbo fan capable of obtaining a high static pressure and air volume is preferable. The pipes and ducts to be the flow paths need to be selected based on the required air volume, but are preferably selected with a cross-sectional area that is 20 m / s or less at each location in the flow path.

上記ブロアには、複数ノズルに供給する風量の調整が可能な風量調整機構を有することが望ましく、例えば、風量調整装置7が取付けられている。ブロアの風量調整装置は、例えば、電気式であればブロアモーターの周波数を変更することにより、回転数を変更するインバータや、ブロアへの入力電流を変更するスライダック方式、機械式であれば、ブロアのエアー出口にダンパーを設置する方法を用いることができるが、汎用性が高く、風量の調整が容易であるインバータによるブロア風量の変更が好ましい。使用するインバータは、特に限定されないが、汎用性と信頼性が高いものが好ましく、例えば、三菱電機製や東芝製等が例示される。また、下限に近い周波数でも過電流によるインバータ停止を防止するため、使用するブロアモーターよりも電気容量が大きいインバータを用いることがより好ましい。   The blower preferably has an air volume adjustment mechanism capable of adjusting the air volume supplied to the plurality of nozzles. For example, an air volume adjusting device 7 is attached to the blower. The blower air volume adjustment device is, for example, an inverter that changes the frequency of the blower motor if it is electric, a slidac type that changes the input current to the blower, or a blower that changes the input current to the blower. Although it is possible to use a method of installing a damper at the air outlet, it is preferable to change the blower air volume by an inverter that is highly versatile and easy to adjust the air volume. The inverter to be used is not particularly limited, but an inverter having high versatility and reliability is preferable, and examples thereof include those manufactured by Mitsubishi Electric and Toshiba. In order to prevent the inverter from being stopped due to overcurrent even at a frequency close to the lower limit, it is more preferable to use an inverter having a larger electric capacity than the blower motor to be used.

上記の供給されるエアーは、各吹き付けノズルへと分配された後に、風量調整弁9により、各吹き付けノズル毎に吹き付け風量が調整され、吹き付けノズルより反冷却ドラム面の熱可塑性樹脂フィルムに向けて吹き付けられる。風量調整弁は、全開−全閉のON−OFF式ではなく、電動式アクチュエーターにより入力された指令信号より、自動で弁の開度を無段階に調整し、風量を調整することが可能であることが好ましい。アクチュエーター部にはポジションメーターが取付けられ、バルブ開度を電気信号として出力することが可能であることが好ましい。風量調整弁は、バタフライバルブ(バタフライダンパー)、ボールバルブ、ゲートバルブ、等を用いることができ、完全にエアーを遮断し、風量を0にできる構造であることが望ましく、風量調整が容易なバタフライバルブ(バタフライダンパー)を用いることが好ましい。バルブの材質は、製品となるフィルムに吹き付けるエアーの流路となるため、サビや異物の混入を防止するため、バルブ内面部にはステンレスを用いることが好ましく、シート部にはテフロン(登録商標)を用いることが好ましい。   After the supplied air is distributed to the spray nozzles, the air volume control valve 9 adjusts the spray air volume for each spray nozzle. From the spray nozzle toward the thermoplastic resin film on the anti-cooling drum surface. Be sprayed. The air volume adjustment valve is not a fully open-fully closed ON-OFF type, but can automatically adjust the valve opening steplessly by a command signal input by an electric actuator to adjust the air volume. It is preferable. It is preferable that a position meter is attached to the actuator part and the valve opening degree can be output as an electric signal. The air volume adjustment valve can be a butterfly valve (butterfly damper), ball valve, gate valve, etc., and it is desirable to have a structure that can completely shut off the air and reduce the air volume to 0, making it easy to adjust the air volume. It is preferable to use a valve (butterfly damper). The material of the valve is a flow path of air to be blown onto the product film. Therefore, stainless steel is preferably used for the inner surface of the valve, and Teflon (registered trademark) is used for the seat, in order to prevent rust and foreign matter from entering. Is preferably used.

本発明における吹き付けノズルは、冷却ドラムの幅方向に長い形状となるが、幅方向での吹き付け風速ムラが10%以下であることが好ましい。幅方向での吹き付け風速ムラが大きい場合、各吹き付けノズルごとに吹き付け風速が調整されていても、幅方向で局部的に吹き付け風速が速い箇所を作り出し、フィルムの厚みムラを発生させる場合がある。吹き付けノズルは、直径1000〜2000mm、幅1000〜2600mmの冷却ドラムに対して、例えば、間隙2〜10mmのスリット状の先端部を持った吹き付けノズルを設置角5〜15°ピッチで、円周方向に複数設置する構成が好ましい。これは、これまでの吹き付けノズルでは、段数が5段より少ないとフィルムの結晶化速度の速い領域を冷却しきれず、結晶化キズが発生する可能性や、吹き付けノズルの段数が15段より多いと、吹き付けノズル部において、過冷却が生じ、冷却ドラム出のフィルム温度が低くなり、次工程、例えば、縦延伸での延伸ムラを誘発する可能性があったが、本発明では、各吹き付けノズルの吹き付け風速の調整だけでなく、吹き付け開始位置、終了位置の変更も可能となるためである。   Although the spray nozzle in this invention becomes a shape long in the width direction of a cooling drum, it is preferable that the spray wind speed nonuniformity in the width direction is 10% or less. When the spraying wind speed unevenness in the width direction is large, even if the spraying wind speed is adjusted for each spraying nozzle, a portion where the spraying wind speed is locally high in the width direction is created, and the film thickness unevenness may occur. The spray nozzle is a cooling drum having a diameter of 1000 to 2000 mm and a width of 1000 to 2600 mm. For example, a spray nozzle having a slit-shaped tip with a gap of 2 to 10 mm is installed at a pitch of 5 to 15 ° in the circumferential direction. A configuration in which a plurality of units are installed in the unit is preferable. This is because, with conventional spray nozzles, if the number of stages is less than five, the region where the crystallization speed of the film is fast cannot be cooled, and there is a possibility that crystallization scratches may occur or the number of stages of spray nozzles is more than fifteen. In the spray nozzle portion, overcooling occurs, the film temperature from the cooling drum is lowered, and there is a possibility of inducing stretching unevenness in the next process, for example, longitudinal stretching. This is because not only the adjustment of the blowing wind speed but also the change of the spray start position and end position are possible.

また、本発明における吹き付けノズルの幅は、冷却ドラム上の熱可塑性樹脂フィルムの幅に対して、100〜500mm広いことが好ましい。また、吹き付けノズルの先端面と熱可塑性樹脂フィルム表面との距離は、5〜30mmが好ましい。吹き付けノズルの先端面とフィルムの距離が5mmより近いと、フィルム表面に発生した昇華物が吹き付けノズルの先端部で析出または落下し、フィルムに異物として付着しやすくなる。また、その距離が30mmより離れると、吹き付けエアーの冷却効率が落ち、ヘイズを悪化させる可能性がある。   In addition, the width of the spray nozzle in the present invention is preferably 100 to 500 mm wider than the width of the thermoplastic resin film on the cooling drum. In addition, the distance between the tip surface of the spray nozzle and the surface of the thermoplastic resin film is preferably 5 to 30 mm. If the distance between the front end surface of the spray nozzle and the film is shorter than 5 mm, the sublimate generated on the film surface is deposited or dropped at the front end portion of the spray nozzle and easily adheres to the film as a foreign matter. On the other hand, if the distance is longer than 30 mm, the cooling efficiency of the blowing air is lowered, and haze may be deteriorated.

本発明における吹き付けノズルより吹き付けられるエアーの風速を各ノズル個別に調整できる手段を有することが好ましい。吹き付けノズルより吹き付けられるエアーの風速は、吹き付け風量/吹き付けノズルの開口面積で求まり、風量調整弁により、吹き付け風量を調整することで吹き付けエアーの風速が調整することができる。吹き付けノズルの段数が1段の場合、ブロアの静圧が十分に大きく、吹き付けノズルの形状や吹き付けエアーの流路となる配管やダクトの圧損の影響を受けない場合は、「ブロア風量/(吹き付けノズルの1段の開口面積)」で求まる吹き付けエアー風速を得ることができ、この時の風速が最大吹き付けエアー風速となる。しかしながら、実使用時の吹き付けエアー風速は、60m/sec以下の範囲が好ましく、より好ましくは、完全に吹き付けエアーを止める場合を除けば、10〜35m/secの範囲が好ましい。   It is preferable to have means capable of individually adjusting the air velocity of air blown from the blowing nozzle in the present invention. The wind speed of the air blown from the blowing nozzle is obtained by the blowing air volume / the opening area of the blowing nozzle, and the wind speed of the blowing air can be adjusted by adjusting the blowing air volume with the air volume adjusting valve. If the number of spray nozzles is one, the static pressure of the blower is sufficiently large, and if it is not affected by the pressure loss of the shape of the spray nozzle or the piping or duct used as the flow path of the air, The blowing air wind speed obtained by “the opening area of one stage of the nozzle” ”can be obtained, and the wind speed at this time becomes the maximum blowing air wind speed. However, the blowing air wind speed during actual use is preferably in the range of 60 m / sec or less, and more preferably in the range of 10 to 35 m / sec except when the blowing air is completely stopped.

本発明における吹き付けノズルは、冷却ドラム直上を0°としたとき、40°〜180°の範囲に設置することが好ましいが、0°〜40°の範囲や180°以上の位置でも支障がなければ、設置しても構わない。また、押出ダイに近い吹き付けノズルから吹き付けるエアー速度が速い場合、吹き上がりが大きくなり、溶融させた熱可塑性樹脂が、押出ダイから押し出されて冷却ドラムに着地するまでの間で、振動することで厚みムラを起こす場合がある。そのため、熱可塑性樹脂が冷却ドラムに着地する地点に近い吹き付けノズルの吹き付け風速は遅くし、着地する地点から離れるほど吹き付け風速を速くすることが好ましい。熱可塑性樹脂が冷却ドラムに着地する地点に近い位置の吹き付けノズル風速を遅くしても、厚みムラが発生する場合は、例えば、熱可塑性樹脂が冷却ドラムに着地する地点に近い吹き付けノズル数本の吹き付けエアーを止めて風速0m/secとし、設置した吹き付けノズルの途中から冷却を開始してもよい。また、逆に、冷却装置により、フィルム温度が下がり過ぎてしまう場合は、冷却ドラム出口位置近くの吹き付けノズル数本の吹き付けエアーを止めて風速0m/secとし、設置した吹き付けノズルの途中から冷却を終了してもよい。   The spray nozzle in the present invention is preferably installed in the range of 40 ° to 180 °, assuming that the position directly above the cooling drum is 0 °, but there is no problem even in the range of 0 ° to 40 ° or a position of 180 ° or more. Can be installed. In addition, when the air speed blown from the blowing nozzle close to the extrusion die is high, the blow-up increases, and the molten thermoplastic resin is vibrated until it is extruded from the extrusion die and landed on the cooling drum. Thickness unevenness may occur. Therefore, it is preferable that the blowing air speed of the spray nozzle near the point where the thermoplastic resin lands on the cooling drum is slow, and the spraying wind speed is increased as the distance from the landing point increases. Even if the blowing nozzle wind speed at a position close to the point where the thermoplastic resin lands on the cooling drum is slow, if thickness unevenness occurs, for example, several spray nozzles near the point where the thermoplastic resin lands on the cooling drum The blowing air may be stopped to set the wind speed to 0 m / sec, and cooling may be started in the middle of the installed blowing nozzle. Conversely, if the film temperature drops too much due to the cooling device, stop the several blowing nozzles near the cooling drum outlet position to reduce the air speed to 0 m / sec, and cool down from the middle of the installed blowing nozzles. You may end.

本発明における吹き付けエアー温度は、好ましくは5〜20℃の範囲であり、また、吹き付けエアーの風速の調整範囲は、各吹き付けノズルから均等にエアーを吹き付けるのであれば、理論的には、「ブロア風量/(各吹き付けノズルの開口面積×吹き付けノズルの総段数)」が最小値となる。一方、吹き付けノズル段数を減らして吹き付ける場合は、均等に吹き付ける場合の風速を超える風速が可能となる。   The temperature of the blowing air in the present invention is preferably in the range of 5 to 20 ° C., and the range of adjustment of the wind speed of the blowing air is theoretically “blower as long as air is blown evenly from each blowing nozzle. “Air volume / (opening area of each spray nozzle × total number of spray nozzles)” is the minimum value. On the other hand, in the case of spraying with the number of spray nozzles reduced, it is possible to achieve a wind speed that exceeds the wind speed when sprayed uniformly.

ブロアより供給されたエアーは、熱交換器8を通過する際に冷媒との間で熱交換し、冷却される。熱交換に使用する冷媒は、吹き付けエアーの温度が高い場合は冷水を用いても構わないが、吹き付けエアー温度を低温、例えば5℃とする場合、例えば、フロン式冷凍機を設置し、フロンを直接冷媒として用いたり、フロンと熱交換した冷水を冷媒として用いることが好ましい。フロンと熱交換した冷水を冷媒として用いる場合、凍結を防止するため、冷水には不凍液を混ぜることが好ましい。   When the air supplied from the blower passes through the heat exchanger 8, it exchanges heat with the refrigerant and is cooled. As the refrigerant used for heat exchange, cold water may be used when the temperature of the blowing air is high. However, when the temperature of the blowing air is low, for example, 5 ° C., for example, a Freon type refrigerator is installed and It is preferable to use cold water that is directly used as a refrigerant or heat-exchanged with Freon as the refrigerant. When using cold water heat-exchanged with chlorofluorocarbon as a refrigerant, it is preferable to mix antifreeze with the cold water in order to prevent freezing.

吹き付けエアーの流路において、熱交換器より下流位置にフィルターを設置し、エアーに混入した異物を除去することが好ましい。吹き付けエアーに僅かな異物が混入してもフィルムの品位が低下することから、設置するフィルターは、HEPAフィルターであることがより好ましい。また、HEPAフィルターより下流位置の配管、ダクト、風量調整弁、ノズル部等には同様に流路内でのサビや異物混入を防止するため、材質としてステンレスを用いることが好ましい。   In the blowing air flow path, it is preferable to install a filter at a position downstream from the heat exchanger to remove foreign matters mixed in the air. The filter to be installed is more preferably a HEPA filter because the quality of the film is lowered even if a slight amount of foreign matter is mixed in the blowing air. In addition, it is preferable to use stainless steel as a material in order to prevent rust and foreign matter in the flow path in the same way for piping, ducts, air volume control valves, nozzles, etc. downstream of the HEPA filter.

上記、各吹き付けノズル間には、反冷却ドラム面のフィルム表面温度を測定する非接触式表面温度計4を設けることが望ましい。   It is desirable to provide a non-contact surface thermometer 4 for measuring the film surface temperature of the anti-cooling drum surface between the spray nozzles.

各々のノズルから出るエアーがフィルムに当たる部分よりも、フィルム流れ方向の上流側で、フィルム表面温度を測定し、該フィルム表面温度に応じて、エアーの風速の調整が可能な風速調整機構を有することが好ましい。ここで、各々のノズルから出るエアーの当たる部分は、フィルム流れ方向の上流側で、その直前が好ましい。   It has a wind speed adjustment mechanism that measures the film surface temperature upstream of the part where the air from each nozzle hits the film in the film flow direction and can adjust the air speed according to the film surface temperature. Is preferred. Here, the portion of the nozzle that is exposed to air is preferably upstream of the film flow direction and immediately before it.

フィルム表面温度測定は非接触式表面温度計が好ましく、該非接触式表面温度計は、赤外線放射温度計などフィルム表面の温度測定ができる測定器であれば、特に限定されないが、測定温度に応じた電気信号を出力する機能を備えており、比較的安価で、設備的に小型で、設置が容易な赤外線放射温度計(温度センサ)が好ましい。赤外線放射温度計は、雰囲気温度が比較的高い環境で使用することになるため、使用可能温度範囲が55℃以上であることが好ましい。例えば、オムロン製非接触温度センサー:ES1Cや、キーエンス製デジタル放射温度センサー:FT−H20等を用いることが可能である。赤外線放射温度計は、各段の吹き付けノズルに入る直前のフィルム表面温度を測定可能な位置に設置され、少なくともフィルム幅方向の中心位置が測定できるように設置される。また、フィルム幅方向に複数個設置して、フィルム端部付近の温度が測定可能であればより好ましい。   The film surface temperature measurement is preferably a non-contact type surface thermometer, and the non-contact type surface thermometer is not particularly limited as long as it is a measuring instrument capable of measuring the temperature of the film surface such as an infrared radiation thermometer, but according to the measurement temperature. An infrared radiation thermometer (temperature sensor) that has a function of outputting an electrical signal, is relatively inexpensive, is small in equipment, and is easy to install is preferable. Since the infrared radiation thermometer is used in an environment where the ambient temperature is relatively high, the usable temperature range is preferably 55 ° C. or higher. For example, OMRON non-contact temperature sensor: ES1C, KEYENCE digital radiation temperature sensor: FT-H20, or the like can be used. The infrared radiation thermometer is installed at a position where the film surface temperature immediately before entering the spray nozzle of each stage can be measured, and is installed so that at least the center position in the film width direction can be measured. Further, it is more preferable if a plurality of films are installed in the film width direction and the temperature near the film edge can be measured.

測定されたフィルム表面温度に応じた電気出力を制御装置10に送る際、制御装置には、熱可塑性樹脂フィルムの品種、厚み、フィルム表面温度に応じた指令信号を予め設定しておき、フィルム表面温度に応じた指令信号を、各風量調整弁に出力し、吹き付けエアーの風速を最適な風速へと調整することが好ましい。   When the electrical output corresponding to the measured film surface temperature is sent to the control device 10, the control device is preset with a command signal corresponding to the type, thickness, and film surface temperature of the thermoplastic resin film. It is preferable to output a command signal corresponding to the temperature to each air volume adjustment valve to adjust the wind speed of the blowing air to an optimum wind speed.

冷却ドラムを通過した熱可塑性樹脂フィルムは、冷却ガイドロール11、12を通過した後、フィルム厚み測定器13により、フィルム流れ方向のフィルム厚みを測定され、フィルムの厚みデータは制御装置へ送信される。制御装置に送られた厚みムラデータが大きい場合には、風量調整弁に指令信号が送られ、吹き付けエアーの風速が再調整される。   After the thermoplastic resin film that has passed through the cooling drum passes through the cooling guide rolls 11 and 12, the film thickness measuring device 13 measures the film thickness in the film flow direction, and the film thickness data is transmitted to the control device. . When the thickness unevenness data sent to the control device is large, a command signal is sent to the air volume adjusting valve, and the wind speed of the blowing air is readjusted.

フィルム流れ方向において、冷却ドラムよりも下流に設置されたフィルム厚み測定器により、フィルム流れ方向の厚みムラを、少なくともフィルム幅方向の1箇所で測定し、厚みムラの大きさにより、エアーの風速の調整が可能な風速調整機構を有することが好ましい。   In the film flow direction, the film thickness measuring device installed downstream of the cooling drum measures the thickness unevenness in the film flow direction at least at one location in the film width direction. It is preferable to have a wind speed adjusting mechanism that can be adjusted.

制御装置には、フィルム厚みムラに応じた指令信号値が予め設定しておき、フィルム厚みムラデータをフィードバックし、調整を行うことで、徐々にフィルム厚みムラは小さくなり、規定内のフィルム厚みムラとなる。フィルム厚み測定器は、測定するフィルム厚み、物性等に合わせて、β線、X線、赤外線、光干渉式を用いたセンサーによる非接触方式であることが好ましい。また、十分な精度が得られるのであれば、レーザー変位計等を用いて厚みを測定しても構わない。センサー部は幅方向の移動が可能で、任意の場所に停止可能であることが好ましいが、センサー位置を固定する場合は、少なくともフィルム幅方向のセンター位置に設置し、フィルムの縦(MD)方向厚みを測定する。必要に応じ、フィルム端部近くも測定が可能なように複数台設置することがより好ましい。フィルム厚みを測定する位置のフィルムはバタツキが少ないことが好ましく、フィルム厚み測定器を設置する上下流位置にガイドロール等を設置し、フィルムのバタツキを小さくする構成がより好ましい。   In the control device, the command signal value corresponding to the film thickness unevenness is set in advance, and the film thickness unevenness data is fed back and adjusted, so that the film thickness unevenness gradually decreases, and the film thickness unevenness within the specified range. It becomes. The film thickness measuring device is preferably a non-contact method using a sensor using β-rays, X-rays, infrared rays, or a light interference type in accordance with the film thickness to be measured, physical properties and the like. Moreover, as long as sufficient accuracy is obtained, the thickness may be measured using a laser displacement meter or the like. The sensor part can be moved in the width direction and preferably stopped at any position. However, when the sensor position is fixed, it should be installed at least at the center position in the film width direction, and the longitudinal (MD) direction of the film. Measure the thickness. If necessary, it is more preferable to install a plurality of units so that measurement can be performed even near the edge of the film. It is preferable that the film at the position where the film thickness is measured has less flutter, and a configuration in which guide rolls are installed at upstream and downstream positions where the film thickness measuring device is installed to reduce the flutter of the film is more preferable.

その後、フィルムは、公知の方法で、縦方向、横方向にそれぞれ3倍程度に延伸され、必要に応じ、熱処理され、巻き取られ、製品フィルムとなる。   Thereafter, the film is stretched by about 3 times in the longitudinal direction and the transverse direction by a known method, and is heat-treated and wound up as necessary to form a product film.

本発明における特性の測定方法及び効果の評価方法は次のとおりである。   The characteristic measuring method and the effect evaluating method in the present invention are as follows.

1.フィルム厚みムラ
長さ1m、幅600mmのフィルムから、フィルムの幅方向中心部および端部から100mmの位置をサンプル中央とするようにして、幅40mmの厚み測定用サンプルを3箇所切り出した。その後、接触式厚み計(アンリツ(株)製KG60/A)を用いて、各厚み測定用サンプルの長手方向の厚みを連続的に測定してチャートレコーダに出力した。出力した厚みのプロファイルから厚みの最大値(MAX)と最小値(MIN)の差を厚みムラR(=MAX-MIN)μmとした。厚みムラRは3箇所の値を平均した。
1. Unevenness of film thickness From a film having a length of 1 m and a width of 600 mm, three samples for thickness measurement having a width of 40 mm were cut out so that the position in the center in the width direction of the film and the position of 100 mm from the end were the center of the sample. Thereafter, using a contact thickness gauge (KG60 / A manufactured by Anritsu Co., Ltd.), the thickness in the longitudinal direction of each thickness measurement sample was continuously measured and output to a chart recorder. The difference between the maximum value (MAX) and the minimum value (MIN) of the thickness from the output thickness profile was defined as thickness unevenness R (= MAX−MIN) μm. Thickness unevenness R averaged the value of three places.

なお、以下の実施例、比較例で記載する厚みムラについて、冷却ガイドロール通過後に設置されたフィルム厚み測定器により測定されたフィルム厚みをインラインフィルム厚み、本測定方法により測定される本発明装置を用いて製造される製品としてのフィルム厚みを製品フィルム厚みとし、区別して記載する。   In addition, about the thickness nonuniformity described in the following Examples and Comparative Examples, the film thickness measured by the film thickness measuring instrument installed after passing through the cooling guide roll is the in-line film thickness, and the apparatus of the present invention measured by this measuring method. The film thickness as a product manufactured by using the product is referred to as the product film thickness.

2.フイルムヘイズ
JIS−K7105(1981)にもとづき、ヘイズメーター(日本電色工業(株)製NDH2000)を用いて測定した。長さ1m、幅600mmのフィルムに対して、長さ方向、幅方向の一辺が100mmの正方形の範囲で、但し、隣り合う正方形同士は重ならず、隣り合う正方形同士が一辺を共有するように、長さ方向9個所×幅方向5個所の計45箇所で測定し、その平均値をとった。
2. The film haze was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.) based on JIS-K7105 (1981). For a film having a length of 1 m and a width of 600 mm, one side in the length direction and the width direction is in the range of a square of 100 mm. However, adjacent squares do not overlap each other, and adjacent squares share one side. Measured at a total of 45 locations, 9 in the length direction and 5 in the width direction, and the average value was taken.

3.吹き付けエアー風速
開口面積120mm×13mmのカップを吹き付けノズル先端部に密着するように押し当て、
マルチ環境測定器(testo435、株式会社テストー製)にピトー管接続用シリコンチューブ(φ7、長さ2m)を接続し、各吹き付けノズルの幅方向5箇所で測定し、平均値を各吹き付けノズルの吹き付け風速とした。
3. Blowing air wind speed A cup with an opening area of 120 mm x 13 mm is pressed against the tip of the nozzle,
A pitot tube connection silicon tube (φ7, length 2 m) is connected to a multi-environmental measuring instrument (testo 435, manufactured by Testo Co., Ltd.), measured at 5 locations in the width direction of each spray nozzle, and the average value is sprayed from each spray nozzle Wind speed.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図1に示す冷却ドラム(直径:1600mm、幅:1500mm)上のフィルムの反冷却ドラム面に、吹き付けノズルによりエアーを吹き付けて冷却を行う冷却装置において、吹き付けノズルが、押出ダイ位置を角度0°としたとき、40°〜170°の範囲に10°毎に14カ所設置されている。以下、最も押出ダイに近い吹き付けノズルを吹き付けノズルNo.1、冷却ドラムの回転方向に次の吹き付けノズルを吹き付けノズルNo.2、次を吹き付けノズルNo.3・・・No.14とする。また、同様に各吹き付けノズル直前に設置された非接触式表面温度計を非接触式表面温度計No.1、No.2・・・No.14とする。
Example 1
In the cooling device that cools the film on the cooling drum (diameter: 1600 mm, width: 1500 mm) on the cooling drum shown in FIG. 1 by blowing air with the blowing nozzle to cool the film, the blowing nozzle positions the extrusion die at an angle of 0 °. As a result, 14 places are installed every 10 ° in a range of 40 ° to 170 °. Hereinafter, the spray nozzle closest to the extrusion die is referred to as spray nozzle No. 1, the next spray nozzle in the rotation direction of the cooling drum is spray nozzle No. 2, and the next is spray nozzle No. 3 to No. 14. Similarly, non-contact surface thermometers installed immediately before each spray nozzle are referred to as non-contact surface thermometers No. 1, No. 2,.

実質的に不活性粒子を含まない固有粘度0.65のポリエチレンテレフタレートを、180℃の温度で5時間、3torrの減圧下で乾燥し、押出し機に投入して温度290℃で溶融した後、濾過精度8μmのフィルターで濾過後、溶融樹脂を押出ダイより吐出し、速度:6m/minで回転する表面温度20℃の冷却ドラム上に、厚さ1.8mmのフィルムとして冷却固化させた。全ての吹き付けノズルの先端に設けられた2mmのスリット状間隙より、風速:30m/sec、風温:10℃で反冷却ドラム面のフィルムに吹き付けエアーを吹き付けた。各非接触式表面温度計にて反冷却ドラム面のフィルム表面温度を測定したところ、吹き付けノズルNo.1の直前に設置された非接触式表面温度計No.1が270℃であった。このフィルム表面温度に基づき、吹き付けノズルNo.1のみ風量調整弁の開度を風速:10m/secに変更した。このフィルムが冷却ガイドロールを通過した後、フィルム厚み測定器により、フィルム流れ方向のインラインフィルム厚みを測定し、目標厚み:1.8mm(1800μm)に対してフィルムの厚みムラは3μm以内であり、良好であった。また、得られた製品フィルム厚みムラR値は、1μm、得られたフィルムのヘイズも1.3%〜1.4%であり、良好であった。   Polyethylene terephthalate having an intrinsic viscosity of 0.65 substantially free of inert particles is dried at a temperature of 180 ° C. for 5 hours under a reduced pressure of 3 torr, put into an extruder and melted at a temperature of 290 ° C., and then filtered. After filtration through a filter with an accuracy of 8 μm, the molten resin was discharged from an extrusion die and cooled and solidified as a 1.8 mm thick film on a cooling drum with a surface temperature of 20 ° C. rotating at a speed of 6 m / min. Air was blown onto the film on the surface of the anti-cooling drum at a wind speed of 30 m / sec and an air temperature of 10 ° C. through a 2 mm slit-like gap provided at the tip of all the spray nozzles. When the film surface temperature of the anti-cooling drum surface was measured with each non-contact type surface thermometer, the non-contact type surface thermometer No. 1 installed immediately before the spray nozzle No. 1 was 270 ° C. Based on the film surface temperature, only the blowing nozzle No. 1 changed the opening of the air volume adjusting valve to the wind speed: 10 m / sec. After this film passes the cooling guide roll, the film thickness measuring device measures the in-line film thickness in the film flow direction. The target thickness: 1.8 mm (1800 μm), the film thickness unevenness is within 3 μm, It was good. Moreover, the obtained product film thickness nonuniformity R value was 1 micrometer, and the haze of the obtained film was also 1.3%-1.4%, and was favorable.

(実施例2)
実施例1と同様にして、実質的に不活性粒子を含まない固有粘度0.65のポリエチレンテレフタレートを180℃の温度で5時間、3torrの減圧下で乾燥し、押出し機に投入して温度290℃で溶融した後、濾過精度8μmのフィルターで濾過後、溶融樹脂を押出ダイより吐出し、速度:6m/minで回転する表面温度20℃の冷却ドラム上に、厚さ2.5mmのフィルムとして冷却固化させた。全ての吹き付けノズルの先端に設けられた2mmのスリット状間隙より、風速:40m/sec、風温:10℃で反冷却ドラム面のフィルムに吹き付けエアーを吹き付けた。各非接触式表面温度計にて反冷却ドラム面のフィルム表面温度を測定したところ、非接触式表面温度計No.1が260℃、非接触式表面温度計No.2が256℃、非接触式表面温度計No.3が253℃であった。このフィルム表面温度に基づき、風量調整弁の開度を変更し、吹き付けノズルNo.1〜吹き付けノズルNo.3の風速を0m/sec、吹き付けノズルNo.4の風速を5m/sec、吹き付けノズルNo.5の風速を10m/sec、吹き付けノズルNo.6の風速を20m/secに変更した。このフィルムが冷却ガイドロールを通過した後、フィルム厚み測定器により、フィルム流れ方向のフィルム厚みを測定し、目標厚み:2.5mm(2500μm)に対してフィルムの厚みムラが20μmであったため、この厚みムラ測定値に基づき、各風量調整弁の開度を変更し、吹き付けノズルNo.1〜5の吹き付け風速を0m/sec、吹き付けノズルNo.6の風速を10m/sec、吹き付けノズルNo.7の風速を20m/secに変更した。冷却ガイドロールを通過後のフィルム厚み測定器で目標厚み:2.5mm(2500μm)に対してインラインフィルムの厚みムラは8μm以内であり、良好であった。また、得られた製品フィルム厚みムラR値は、2μm、ヘイズも1.5%〜1.6%であり、良好であった。
(Example 2)
In the same manner as in Example 1, polyethylene terephthalate having an intrinsic viscosity of 0.65 substantially free of inert particles was dried at a temperature of 180 ° C. for 5 hours under a reduced pressure of 3 torr. After melting at ℃, after filtering through a filter with filtration accuracy of 8μm, the molten resin is discharged from an extrusion die, and on a cooling drum with a surface temperature of 20 ℃ rotating at a speed of 6 m / min, as a 2.5 mm thick film Cooled and solidified. Air was blown onto the film on the surface of the anti-cooling drum at a wind speed of 40 m / sec and an air temperature of 10 ° C. through a 2 mm slit-like gap provided at the tip of all the spray nozzles. When the film surface temperature of the anti-cooling drum surface was measured with each non-contact type surface thermometer, non-contact type surface thermometer No. 1 was 260 ° C, non-contact type surface thermometer No. 2 was 256 ° C, non-contact Formula surface thermometer No. 3 was 253 degreeC. Based on the film surface temperature, the opening degree of the air volume adjusting valve is changed, the wind speed of spray nozzle No. 1 to spray nozzle No. 3 is 0 m / sec, the speed of spray nozzle No. 4 is 5 m / sec, and the spray nozzle No. The wind speed of .5 was changed to 10 m / sec, and the wind speed of spray nozzle No. 6 was changed to 20 m / sec. After this film passed through the cooling guide roll, the film thickness in the film flow direction was measured with a film thickness meter, and the film thickness unevenness was 20 μm with respect to the target thickness: 2.5 mm (2500 μm). Based on the measured thickness unevenness, the opening of each air volume adjusting valve is changed, the blowing air speed of spray nozzle No. 1-5 is 0 m / sec, the air speed of spray nozzle No. 6 is 10 m / sec, and spray nozzle No. 7 The wind speed was changed to 20 m / sec. The thickness unevenness of the in-line film was within 8 μm with respect to the target thickness: 2.5 mm (2500 μm) with the film thickness measuring instrument after passing through the cooling guide roll, which was good. Further, the obtained product film thickness unevenness R value was 2 μm, and the haze was 1.5% to 1.6%, which was favorable.

(比較例1)
実施例1と同様にして、冷却装置において、吹き付けノズルが14カ所設置しているが、非接触式表面温度計と吹き付けノズルの風速調整を行う風量調整弁が設置されていない装置において、実質的に不活性粒子を含まない固有粘度0.65のポリエチレンテレフタレートを180℃の温度で5時間、3torrの減圧下で乾燥し、押出し機に投入して温度290℃で溶融した後、濾過精度8μmのフィルターで濾過後、溶融樹脂を押出ダイより吐出し、速度:6m/minで回転する表面温度20℃の冷却ドラム上に厚さ1.8mmのフィルムとして冷却固化させた。全ての吹き付けノズルの先端に設けられた2mmのスリット状間隙より、風速:30m/sec、風温:10℃で反冷却ドラム面のフィルムに吹き付けエアーを吹き付けた。得られたフィルムのヘイズは1.3%〜1.4%で良好であったが、製品フィルム厚みムラR値は4.5μmと満足できるものではなかった。
(Comparative Example 1)
In the same manner as in Example 1, in the cooling device, 14 spray nozzles are installed, but in the device in which the non-contact type surface thermometer and the air volume adjusting valve for adjusting the wind speed of the spray nozzle are not installed, A polyethylene terephthalate having an intrinsic viscosity of 0.65 and containing no inert particles is dried at 180 ° C. for 5 hours under a reduced pressure of 3 torr, put into an extruder and melted at a temperature of 290 ° C., and a filtration accuracy of 8 μm. After filtration through a filter, the molten resin was discharged from an extrusion die, and cooled and solidified as a 1.8 mm thick film on a cooling drum with a surface temperature of 20 ° C. rotating at a speed of 6 m / min. Air was blown onto the film on the surface of the anti-cooling drum at a wind speed of 30 m / sec and an air temperature of 10 ° C. through a 2 mm slit-like gap provided at the tip of all the spray nozzles. Although the haze of the obtained film was favorable at 1.3% to 1.4%, the product film thickness unevenness R value was not satisfactory at 4.5 μm.

(比較例2)
比較例1と同様にして、冷却装置において、実質的に不活性粒子を含まない固有粘度0.65のポリエチレンテレフタレートを180℃の温度で5時間、3torrの減圧下で乾燥し、押出し機に投入して温度290℃で溶融した後、濾過精度8μmのフィルターで濾過後、溶融樹脂を押出ダイより吐出し、速度:6m/minで回転する表面温度20℃の冷却ドラム上に厚さ2.5mmのフィルムとして冷却固化させた。全ての吹き付けノズルの先端に設けられた2mmのスリット状間隙より、風速:40m/sec、風温:10℃で反冷却ドラム面のフィルムに吹き付けエアーを吹き付けた。この時、得られたフィルムの製品フィルム厚みを測定したところ、製品フィルム厚みムラR値は5.75μmで、全ての吹き付けノズルの風速を10m/secに変更した。しかし、得られたフィルムのヘイズは3.5%〜3.8%と悪く、製品フィルム厚みムラR値は4.0μmになり、変更前よりは小さくなったが、満足できるものではなかった。
(Comparative Example 2)
In the same manner as in Comparative Example 1, in the cooling device, polyethylene terephthalate having an intrinsic viscosity of 0.65 substantially containing no inert particles was dried at 180 ° C. for 5 hours under a reduced pressure of 3 torr and charged into an extruder. After being melted at a temperature of 290 ° C., filtered through a filter with a filtration accuracy of 8 μm, the molten resin is discharged from an extrusion die, and the thickness is 2.5 mm on a cooling drum having a surface temperature of 20 ° C. rotating at a speed of 6 m / min. The film was cooled and solidified. Air was blown onto the film on the surface of the anti-cooling drum at a wind speed of 40 m / sec and an air temperature of 10 ° C. through a 2 mm slit-like gap provided at the tip of all the spray nozzles. At this time, when the product film thickness of the obtained film was measured, the product film thickness unevenness R value was 5.75 μm, and the wind speed of all the spray nozzles was changed to 10 m / sec. However, the haze of the obtained film was as bad as 3.5% to 3.8%, and the product film thickness unevenness R value was 4.0 μm, which was smaller than before the change, but was not satisfactory.

(比較例3)
比較例1と同様にして、冷却装置において、実質的に不活性粒子を含まない固有粘度0.65のポリエチレンテレフタレートを180℃の温度で5時間、3torrの減圧下で乾燥し、押出し機に投入して温度290℃で溶融した後、濾過精度8μmのフィルターで濾過後、溶融樹脂を押出ダイより吐出し、速度:10m/minで回転する表面温度20℃の冷却ドラム上に厚さ2.5mmのフィルムとして冷却固化させた。全ての吹き付けノズルの先端に設けられた2mmのスリット状間隙より、風速:40m/sec、風温:10℃で反冷却ドラム面のフィルムに吹き付けエアーを吹き付けた。この時得られたフィルムの製品フィルム厚みを測定したところ、厚みムラR値は7.9μmだったので、全ての吹き付けノズルの風速を10m/secに変更した。しかし、得られたフィルムのヘイズは3.8%〜4.0%と悪く、製品フィルム厚みムラR値は6.0μmになった。再度、全ての吹き付けノズルの風速を7m/secに変更した。しかし、得られたフィルムのヘイズは4.1%〜4.3%と悪く、製品フィルム厚みムラR値は5.8μmになり、変更前よりは小さくなったが、満足できるものではなかった。
(Comparative Example 3)
In the same manner as in Comparative Example 1, in the cooling device, polyethylene terephthalate having an intrinsic viscosity of 0.65 substantially containing no inert particles was dried at 180 ° C. for 5 hours under a reduced pressure of 3 torr and charged into an extruder. After being melted at a temperature of 290 ° C., filtered through a filter with a filtration accuracy of 8 μm, the molten resin is discharged from an extrusion die, and the thickness is 2.5 mm on a cooling drum having a surface temperature of 20 ° C. rotating at a speed of 10 m / min. The film was cooled and solidified. Air was blown onto the film on the surface of the anti-cooling drum at a wind speed of 40 m / sec and an air temperature of 10 ° C. through a 2 mm slit-like gap provided at the tip of all the spray nozzles. When the product film thickness of the film obtained at this time was measured, the thickness unevenness R value was 7.9 μm, so the wind speed of all the spray nozzles was changed to 10 m / sec. However, the haze of the obtained film was as bad as 3.8% to 4.0%, and the product film thickness unevenness R value was 6.0 μm. Again, the wind speed of all the spray nozzles was changed to 7 m / sec. However, the haze of the obtained film was as bad as 4.1% to 4.3%, and the product film thickness unevenness R value was 5.8 μm, which was smaller than before the change, but was not satisfactory.

以上詳述したように、本発明は、冷却ドラム上の反冷却ドラム面フィルムに、吹き付けノズルよりエアーを吹き付けて冷却を行う冷却装置及びそれを用いたフィルムの製造方法に係わるものであり、本発明により、従来の冷却装置より、反冷却ドラム面のフィルムを急速に冷却することが可能となり、ヘイズに優れた厚物フィルムを高速で生産すること可能となる。また、フィルム流れ方向の厚みムラを測定することでフィルム厚みムラの発生が防止でき、高品質の製品を安定して生産することができ有用である。   As described above in detail, the present invention relates to a cooling device that cools an anti-cooling drum surface film on a cooling drum by blowing air from a spray nozzle and a film manufacturing method using the same. The invention makes it possible to rapidly cool the film on the surface of the anti-cooling drum and to produce a thick film excellent in haze at a high speed from the conventional cooling device. Moreover, by measuring the thickness unevenness in the film flow direction, the occurrence of the film thickness unevenness can be prevented, and high-quality products can be stably produced, which is useful.

1:押出ダイ
2:冷却ドラム
3:吹き付けノズル
4:非接触式表面温度計
5:熱可塑性樹脂フィルム
6:ブロア
7:ブロア風量調整装置
8:熱交換器
9:風量調整弁
10:制御装置
11:冷却ガイドロール
12:冷却ガイドロール
13:フィルム厚み測定器
1: Extrusion die 2: Cooling drum 3: Spray nozzle 4: Non-contact surface thermometer 5: Thermoplastic resin film 6: Blower 7: Blower air volume adjusting device 8: Heat exchanger 9: Air volume adjusting valve 10: Controller 11 : Cooling guide roll 12: Cooling guide roll 13: Film thickness measuring device

Claims (6)

溶融させた熱可塑性樹脂を押出ダイより冷却ドラム上にキャストし、該冷却ドラム上で冷却固化して熱可塑性樹脂フィルムを製造するに際し、冷却ドラムに接しないフィルム面(以下、反冷却ドラム面とする)側に設置された複数ノズルからフィルムに向けてエアーを吹き付ける装置において、吹き付けるエアーの風速を各ノズル個別に調整できる手段を有することを特徴とする熱可塑性樹脂フィルムの冷却装置。 When a molten thermoplastic resin is cast on a cooling drum from an extrusion die and cooled and solidified on the cooling drum to produce a thermoplastic resin film, a film surface that does not contact the cooling drum (hereinafter referred to as an anti-cooling drum surface) In the apparatus which blows air toward the film from the plurality of nozzles installed on the side, a cooling apparatus for a thermoplastic resin film, characterized by having means capable of individually adjusting the wind speed of the air to be blown. 各々のノズルから出るエアーがフィルムに当たる部分よりも、フィルム流れ方向の上流側で、フィルム表面温度を測定し、該フィルム表面温度に応じて、エアーの風速の調整が可能な風速調整機構を有する請求項1に記載の熱可塑性樹脂フィルムの冷却装置。 Claims have a wind speed adjustment mechanism that measures the film surface temperature upstream of the portion where the air from each nozzle hits the film in the film flow direction, and can adjust the air wind speed according to the film surface temperature. Item 2. The thermoplastic resin film cooling device according to Item 1. 複数ノズルに供給する風量の調整が可能な風量調整機構を有する請求項1または2に記載の熱可塑性樹脂フィルムの冷却装置。 The cooling device for a thermoplastic resin film according to claim 1 or 2, further comprising an air volume adjusting mechanism capable of adjusting an air volume supplied to the plurality of nozzles. フィルム流れ方向において、冷却ドラムよりも下流に設置されたフィルム厚み測定器により、フィルム流れ方向の厚みムラを、少なくともフィルム幅方向の1箇所で測定し、厚みムラの大きさにより、エアーの風速の調整が可能な風速調整機構を有する請求項1〜3のいずれかに記載の熱可塑性樹脂フィルムの冷却装置。 In the film flow direction, the film thickness measuring device installed downstream of the cooling drum measures the thickness unevenness in the film flow direction at least at one location in the film width direction. The cooling device for a thermoplastic resin film according to any one of claims 1 to 3, further comprising a wind speed adjusting mechanism capable of adjustment. 複数ノズルからエアーを吹き付ける装置において、吹き付けるエアーの風速を各ノズル個別に調整できる手段を有することを特徴とするエアー吹き付けノズル。 An apparatus for blowing air from a plurality of nozzles, comprising means for individually adjusting the air velocity of the blowing air. 溶融させた熱可塑性樹脂を押出ダイより冷却ドラム上にキャストし、該冷却ドラム上で冷却固化する熱可塑性樹脂フィルムの製造方法であって、冷却ドラムに接しないフィルム面(以下、反冷却ドラム面とする)側に設置された複数ノズルからフィルムに向けてエアーを吹き付ける工程を有し、吹き付けるエアーの風速を各ノズル個別に調整することを特徴とする熱可塑性樹脂フィルムの製造方法。 A method for producing a thermoplastic resin film in which a molten thermoplastic resin is cast on a cooling drum from an extrusion die and is cooled and solidified on the cooling drum, wherein the film surface does not contact the cooling drum (hereinafter referred to as an anti-cooling drum surface). A method for producing a thermoplastic resin film, comprising the step of blowing air from a plurality of nozzles installed on the side toward the film, and adjusting the air velocity of the blowing air individually for each nozzle.
JP2010250452A 2010-11-09 2010-11-09 Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film Pending JP2012101398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250452A JP2012101398A (en) 2010-11-09 2010-11-09 Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250452A JP2012101398A (en) 2010-11-09 2010-11-09 Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film

Publications (1)

Publication Number Publication Date
JP2012101398A true JP2012101398A (en) 2012-05-31

Family

ID=46392414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250452A Pending JP2012101398A (en) 2010-11-09 2010-11-09 Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP2012101398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313348B1 (en) 2013-07-01 2013-10-01 (주)한도기공 Dry apparatus and cooling apparatus of sheet type rubber goods using the same
CN106514990A (en) * 2016-12-09 2017-03-22 青阳县绿通复合材料有限公司 Automatic pipe supporting device
CN112109298A (en) * 2019-06-21 2020-12-22 帕克西斯全球股份公司 Apparatus and method for manufacturing pipe bodies with optimized cooling device
CN113199677A (en) * 2021-06-03 2021-08-03 湖南信提环保装备技术咨询有限公司 Plastic film storage and heat setting device
CN113199677B (en) * 2021-06-03 2024-05-31 湖南信提环保装备技术咨询有限公司 Plastic film storage and heat setting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313348B1 (en) 2013-07-01 2013-10-01 (주)한도기공 Dry apparatus and cooling apparatus of sheet type rubber goods using the same
CN106514990A (en) * 2016-12-09 2017-03-22 青阳县绿通复合材料有限公司 Automatic pipe supporting device
CN106514990B (en) * 2016-12-09 2023-10-31 池州市琼琚信息技术服务有限公司 Automatic pipe supporting device
CN112109298A (en) * 2019-06-21 2020-12-22 帕克西斯全球股份公司 Apparatus and method for manufacturing pipe bodies with optimized cooling device
CN113199677A (en) * 2021-06-03 2021-08-03 湖南信提环保装备技术咨询有限公司 Plastic film storage and heat setting device
CN113199677B (en) * 2021-06-03 2024-05-31 湖南信提环保装备技术咨询有限公司 Plastic film storage and heat setting device

Similar Documents

Publication Publication Date Title
JP5889713B2 (en) Film roll manufacturing method
JP5257023B2 (en) Polyethylene terephthalate resin film and method for producing the same
JP2013240897A5 (en)
JP2009073154A (en) Optical film and method for producing optical film
JP2012101398A (en) Cooling device of thermoplastic resin film, and method of manufacturing the thermoplastic resin film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
JP5333441B2 (en) Optical film manufacturing method and manufacturing apparatus
JP5221888B2 (en) Method for producing polyester resin film
WO2008032769A1 (en) Method of longitudinally stretching thermoplastic resin film and longitudinally stretched film produced by the method
JP5332234B2 (en) Polyethylene terephthalate resin film roll and method for producing the same
JP5119469B2 (en) Polyethylene terephthalate resin film for releasing polarizing plate and method for producing the same
JP2007320038A (en) Manufacturing apparatus of thermoplastic resin film and manufacturing method of thermoplastic resin film
JP5799505B2 (en) Method and apparatus for producing thermoplastic resin film
JP2010167768A (en) Biaxially stretched polyethylene terephthala-based resin film and method of manufacturing the same
JP4239112B1 (en) Biaxially oriented polyethylene terephthalate film and method for producing the same
WO2018062028A1 (en) Method for manufacturing thermoplastic resin film
JP2009090541A (en) Manufacturing method of thermoplastic resin film
JP2009131982A (en) Polyethylene terephthalate resin film and manufacturing method therefor
JP2008254414A (en) Polyethylene terephthalate resin film roll and method for manufacturing the same
US20230022144A1 (en) Polymer film and substrate for communication
JP5332224B2 (en) Polyethylene terephthalate resin film roll and method for producing the same
JP2008101164A (en) Polyethylene terephthalate resin film roll and method for manufacturing the same
JP2009139886A (en) Light-diffusing film and method for manufacturing the same
JP2009226847A (en) Floating type longitudinally orienting device and forming method of thermoplastic resin film
JP2015164768A (en) Heat treatment apparatus for film and production method of film