JP2012100625A - Cell enrichment method for cell separation - Google Patents

Cell enrichment method for cell separation Download PDF

Info

Publication number
JP2012100625A
JP2012100625A JP2010253981A JP2010253981A JP2012100625A JP 2012100625 A JP2012100625 A JP 2012100625A JP 2010253981 A JP2010253981 A JP 2010253981A JP 2010253981 A JP2010253981 A JP 2010253981A JP 2012100625 A JP2012100625 A JP 2012100625A
Authority
JP
Japan
Prior art keywords
cell
channel
cells
flow
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010253981A
Other languages
Japanese (ja)
Inventor
Zhonggang Feng
忠剛 馮
Michio Yokoyama
横山道央
Tatsuo Kitajima
北嶋龍雄
Takao Nakamura
中村孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michio Yokoyama
Original Assignee
Michio Yokoyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michio Yokoyama filed Critical Michio Yokoyama
Priority to JP2010253981A priority Critical patent/JP2012100625A/en
Publication of JP2012100625A publication Critical patent/JP2012100625A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enrich a large size cell on the basis of difference in cell sizes by only the flow in a branched micro flow path without physically or chemically influencing cells.SOLUTION: When a cell solution introduced in one micro flow path is made to flow passing through the separation chamber and separated into two branch flow paths, large size cells go into one path and small size cells go into both paths. Therefore, in the solution which has passed one path, large size cells are enriched.

Description

本発明は、生物学、再生医工学、および医学分野における細胞分離・富化に関する技術である。   The present invention relates to cell separation / enrichment in the fields of biology, regenerative medical engineering, and medicine.

溶液中に混在する多種類の細胞から、特定の特性を有する細胞を選別して抽出することは細胞生物学の研究、病理的診断・治療、再生医工学などの領域に極めて重要である。この細胞分離では現在広く使われている方法は比重法、フィルター法、またはより特異的な細胞を抽出するためにその細胞の蛍光染色に基づく高速なフローサイトメータが生物学や医療現場に広く用いられている。しかし以上の方法は標的細胞に強い物理・化学の操作を与えるため、細胞にダメージをもたらし、またエネルギー消費の増大、高コスト、環境への悪影響、などの問題点がある。   Selecting and extracting cells having specific characteristics from many types of cells mixed in a solution is extremely important in areas such as cell biology research, pathological diagnosis / treatment, and regenerative medical engineering. The most widely used methods for this cell separation are the specific gravity method, filter method, or high-speed flow cytometer based on fluorescent staining of the cells to extract more specific cells. It has been. However, the above methods give strong physical / chemical manipulations to the target cells, causing damage to the cells, and problems such as increased energy consumption, high cost, and adverse environmental impact.

近年、半導体微細加工技術の進歩とその応用領域の拡大により、マイクロ流路やマイクロ分析装置の研究・開発が盛んに行われている。その中で、マイクロ流路内の流体運動(microfluidics, マイクロ流体力学)に基づく細胞分離システムも報告された。例えば、一つのマイクロ流路に導入した細胞を二つの分岐流路に分離する際に、電気浸透流ポンプで流量を制御し、後の流路で細胞を抽出している(特許文献1)。また、流入マイクロ流路の両脇に多数の直角分岐マイクロ流路を接続し、それぞれの分岐流路の流量制御により流入溶液に含まれる粒子を粒子サイズで選別・抽出したり(非特許文献1)、マイクロ流路に全血を流す際にサイズの大きい白血球の壁沿いの運動を利用して、マイクロ分岐流路に流入する液の中での白血球を富化している(非特許文献2)。   In recent years, research and development of microchannels and microanalyzers have been actively conducted due to advances in semiconductor microfabrication technology and expansion of application areas. Among them, a cell separation system based on microfluidics (microfluidics) was also reported. For example, when a cell introduced into one micro flow channel is separated into two branch flow channels, the flow rate is controlled by an electroosmotic flow pump, and the cells are extracted from the subsequent flow channel (Patent Document 1). In addition, a large number of right-angled branch microchannels are connected to both sides of the inflow microchannel, and particles contained in the inflow solution are selected and extracted by particle size by controlling the flow rate of each branch channel (Non-patent Document 1). ) When the whole blood flows through the microchannel, the movement along the wall of the large white blood cell is used to enrich the leukocytes in the liquid flowing into the micro branch channel (Non-patent Document 2). .

上記の例はいずれも微細加工によるマイクロ分岐流路に基づく、小型、安価な細胞分離装置であり、特に後者の二つは微小流れを用いるだけで、サイズの大きい細胞(粒子)を富化することが出来る。しかし、問題点としては富化率がまだ低く、それぞれの論文によるといずれも富化率は50倍以下である。  Each of the above examples is a small and inexpensive cell separation device based on micro branching channels by microfabrication. In particular, the latter two use only a micro flow to enrich large cells (particles). I can do it. However, the problem is that the enrichment rate is still low, and according to each paper, the enrichment rate is less than 50 times.

特開2004−113223号公報JP 2004-113223 A

MYamada and M Seki. Lab Chip, 2005,5:1233-1239MYamada and M Seki. Lab Chip, 2005, 5: 1233-1239 SS Shevkoplyas, et. al.. Anal Chem2005,77:933-939SS Shevkoplyas, et.al .. Anal Chem2005, 77: 933-939

従来の方法では、細胞を分離する際に蛍光染色、あるいは細胞に電圧をかける等の物理的、生化学的手段で細胞を識別して分離する。このため、細胞にダメージを与え、コストも高く、環境にも悪影響を及ぼす。 In the conventional method, the cells are identified and separated by physical or biochemical means such as fluorescent staining or voltage application when the cells are separated. This damages cells, increases costs, and adversely affects the environment.

本発明の目的は、使い捨て可能な安価な基板を用いて、細胞に電気的、化学的刺激や悪影響を与えずに分離・富化する手段を提供することを課題とする。 It is an object of the present invention to provide means for separating and enriching cells using an inexpensive disposable substrate without causing electrical or chemical stimulation or adverse effects on cells.

分離チャンバーに、細胞溶液を流入させる流入流路と、流入した細胞溶液を流出させる流出流路を複数設けてなる流路構造内に、平均サイズの異なる複数の細胞群を含む細胞溶液を流通させて、最大の平均サイズを有する細胞群を富化する細胞富化方法であって、かつ、下記(1)から(4)の特徴を有する細胞富化方法。
(1)前記流入流路の流路幅を最大の平均サイズを有する細胞群の平均直径の1〜3倍とする。
(2)分離チャンバーにおいて細胞溶液の流速が流入流路における流速より遅くなる構造を持つ。
(3)分離チャンバーにおける流線分布が主流線(流速が最大の流線)に対して非対称である。
(4)流出流量のより小さい流出流路の流路幅を最大の平均サイズを有する細胞群の平均直径以上とする。
A cell solution containing a plurality of cell groups having different average sizes is circulated in a flow path structure in which a separation chamber is provided with an inflow channel for inflow of cell solution and an outflow channel for outflow of inflowed cell solution. A cell enrichment method that enriches a cell group having the maximum average size and has the following characteristics (1) to (4).
(1) The channel width of the inflow channel is set to 1 to 3 times the average diameter of the cell group having the maximum average size.
(2) The separation chamber has a structure in which the flow rate of the cell solution is slower than the flow rate in the inflow channel.
(3) The streamline distribution in the separation chamber is asymmetric with respect to the mainstream line (streamline with the highest flow velocity).
(4) The channel width of the outflow channel having a smaller outflow rate is set to be equal to or larger than the average diameter of the cell group having the maximum average size.

本発明は従来の技術と違い、細胞のサイズの大きさの違いを利用して、マイクロ流路内の流れのみで、サイズの大きい細胞を分離・富化することを可能とする。 Unlike the prior art, the present invention makes it possible to separate and enrich large-sized cells using only the flow in the microchannel by utilizing the difference in cell size.

本発明で使用されるマイクロ流路構造の一例(概略図)である。It is an example (schematic diagram) of the microchannel structure used in the present invention. 図1に記載のマイクロ流路構造における流体力学的解析の流線図と大きい細胞の流れ軌跡を示す図である。It is a figure which shows the flow line figure of the hydrodynamic analysis in the microchannel structure of FIG. 1, and the flow locus | trajectory of a large cell. 大きい細胞を含む分離チャンバーにおける圧力分布図である。It is a pressure distribution map in the separation chamber containing a large cell. 大きい細胞が受けた総圧力と変更された速度方向を示す図である。It is a figure which shows the total pressure which the big cell received, and the changed speed direction. 本発明で使用される本マイクロ流路構造の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of this microchannel structure used by this invention. 本発明で使用される本マイクロ流路構造の変形例の一例を示す図である。It is a figure which shows an example of the modification of this microchannel structure used by this invention. 本発明で使用される本マイクロ流路構造の変形例の一例を示す図である。It is a figure which shows an example of the modification of this microchannel structure used by this invention. 本発明で使用される本マイクロ流路構造の変形例の一例を示す図である。It is a figure which shows an example of the modification of this microchannel structure used by this invention.

本発明を、添付図面に関連して下記に説明する。 The present invention is described below with reference to the accompanying drawings.

図1は、本発明に係る細胞富化方法において使用されるマイクロ流路構造の一例である。当該マイクロ流路構造においては、分離チャンバー101に対して、細胞溶液を流入させる流入流路100と、流入した細胞溶液を流出させる2つの流出流路102、103が設けられている。 FIG. 1 is an example of a microchannel structure used in the cell enrichment method according to the present invention. In the microchannel structure, an inflow channel 100 through which a cell solution flows in and two outflow channels 102 and 103 through which the cell solution flows out are provided for the separation chamber 101.

図2は、図1に示したマイクロ流路に流体を流した際の流れの様子を示す流線図である。当該流線図は、実際の流路における測定に基づいて作成する以外に、公知の流体力学的分析によっても作成することが可能である。 FIG. 2 is a streamline diagram showing a flow state when a fluid is caused to flow through the microchannel shown in FIG. The streamline diagram can be created not only based on the measurement in the actual flow path but also by a known hydrodynamic analysis.

図2に示すように、流入流路100の各断面においては、流体と流路壁の摩擦に起因して流路の中心付近で最も大きな流速が観測される。本発明においては、このように流入流路100の各断面において最も流速の速い点を結ぶことで得られる線を「主流線」と定義する。図1に示すマイクロ流路構造においては、図2に示されるように、流入流路100、分離チャンバー101、流出流路102、流入流路から導入された主流線が入る流出流路103が構成されている。 As shown in FIG. 2, in each cross section of the inflow channel 100, the largest flow velocity is observed near the center of the channel due to friction between the fluid and the channel wall. In the present invention, a line obtained by connecting points having the fastest flow velocity in each cross section of the inflow channel 100 is defined as a “mainstream line”. In the micro-channel structure shown in FIG. 1, as shown in FIG. 2, an inflow channel 100, a separation chamber 101, an outflow channel 102, and an outflow channel 103 into which a main stream line introduced from the inflow channel enters are configured. Has been.

本発明においては、このように構成されたマイクロ流路構造に対して、平均サイズの異なる複数の細胞群を含む細胞溶液を流入流路100から流入させる際に、流入流路100の流路幅を当該細胞溶液に含まれる最大の平均サイズを有する細胞群(以下、簡単に「最大の細胞」と記載する。)の直径の1〜3倍程度に調整することを特徴とする。このように構成されたマイクロ流路を使用することで、流入流路100を流れる最大の細胞は、流入流路100の流路幅のほぼ中央に位置するように制限される結果、当該最大の細胞は流入流路100内の主流線に沿って移動することとなる。そして、一旦主流線に沿った最大の細胞は分離チャンバー101内における圧力差により主流線から離れ、主流線の流出流路103と違う流出流路102に流入するように移動する。こうした主流線から離れる流線横断運動によって、より高い富化率を得ることが出来る。この際に、流出流路102の流路幅を最大の細胞が流通可能なサイズにしておくことで、最大の細胞のほぼ全てが流出流路102を経て流出する。 In the present invention, when the cell solution containing a plurality of cell groups having different average sizes is introduced from the inflow channel 100 to the microchannel structure configured as described above, the channel width of the inflow channel 100 Is adjusted to about 1 to 3 times the diameter of a cell group having the maximum average size contained in the cell solution (hereinafter simply referred to as “maximum cell”). By using the microchannel configured as described above, the maximum cell flowing through the inflow channel 100 is limited to be positioned at approximately the center of the channel width of the inflow channel 100. The cells will move along the main stream line in the inflow channel 100. Then, the largest cell once along the main stream line moves away from the main stream line due to the pressure difference in the separation chamber 101 and flows into the outflow channel 102 different from the outflow channel 103 of the main stream line. A higher enrichment rate can be obtained by streamline crossing movement away from the mainstream line. At this time, by setting the flow channel width of the outflow channel 102 to a size that allows the maximum cells to flow, almost all of the maximum cells flow out through the outflow channel 102.

一方、細胞溶液に含まれる比較的小さな細胞は、流入流路100内において幅方向には略均等に分布されるため、必ずしも流出流路102に流入せず、一部は流出流路103に流入して最大の細胞と分離されることになる。従って、流出流路102から流出する細胞溶液において最大の細胞が富化される。 On the other hand, the relatively small cells contained in the cell solution are distributed almost uniformly in the width direction in the inflow channel 100, and therefore do not necessarily flow into the outflow channel 102, and a part of the cells flows into the outflow channel 103. And will be separated from the largest cell. Therefore, the largest cell in the cell solution flowing out from the outflow channel 102 is enriched.

図1に示したマイクロ流路構造においては、流出流路103の途中にネック部分があり、その後に拡張部分が設けられている。このように、流入させる細胞溶液に応じて流路幅などが決定される流入流路100に対して、分離チャンバー101、流出流路102、103の形状や位置などを適宜設定することで、マイクロ流路における流線分布を調整可能であり、細胞溶液中の最大の細胞を富化する割合を決定することができる。 In the microchannel structure shown in FIG. 1, a neck portion is provided in the middle of the outflow channel 103, and an extended portion is provided thereafter. In this way, by appropriately setting the shapes and positions of the separation chamber 101 and the outflow channels 102 and 103 with respect to the inflow channel 100 in which the channel width and the like are determined according to the cell solution to be introduced, The streamline distribution in the channel can be adjusted and the rate of enrichment of the largest cells in the cell solution can be determined.

図3は分離チャンバー101内で最大の細胞が受ける圧力分布を示している。 FIG. 3 shows the pressure distribution experienced by the largest cell in the separation chamber 101.

分離チャンバー内では圧力勾配が生じ、図4に示す様にサイズの大きい細胞が受けた総圧力の方向には、溶液の主流線とある角度が生じ、そのため細胞は下の流線に渡る動力を受け、速度の方向が元の流線方向から下に変わる。従って、主流線が流出流路103に入っていても、最大の細胞は流出流路102に流れ込む事が可能である。これによって、流出流路102を経る大きいサイズの細胞の富化率がより上がる。 A pressure gradient is created in the separation chamber, and as shown in FIG. 4, an angle is formed with the main stream line of the solution in the direction of the total pressure received by the large-sized cell, so that the cell has power over the lower stream line. The direction of speed changes from the original streamline direction to the bottom. Therefore, even if the main stream line enters the outflow channel 103, the largest cell can flow into the outflow channel 102. This further increases the enrichment rate of large size cells passing through the outflow channel 102.

本発明を実現する具体的な流路構造は従来の微細加工技術で充分に作成可能である。例えば、ガラス、シリコン、プラスチック、ポリイミド樹脂などの基板にフォトレジストやレーザエッチングなどの技法を用いて数十μmオーダーの流路・チャンバーを加工して作製する。 A specific flow channel structure that realizes the present invention can be sufficiently produced by a conventional microfabrication technique. For example, a flow path / chamber on the order of several tens of μm is fabricated by using a technique such as photoresist or laser etching on a substrate such as glass, silicon, plastic, or polyimide resin.

図5は、このマイクロ流路構造の具体的な実施例である。溶液には、ラットの脂肪組織由来幹細胞:直径約14μmと、赤血球:直径約6μmが含まれる。流入流路100の幅は、25μmとし、分離チャンバー101の形状は、図1に示す通りである。流出流路102の幅は40μmであり、流出流路103の幅は、最小幅14μmで、長さ40μmのネック部分を経て、100μm幅に拡張してある。 FIG. 5 shows a specific example of this microchannel structure. The solution contains rat adipose tissue-derived stem cells: about 14 μm in diameter and erythrocytes: about 6 μm in diameter. The width of the inflow channel 100 is 25 μm, and the shape of the separation chamber 101 is as shown in FIG. The width of the outflow channel 102 is 40 μm, and the width of the outflow channel 103 is 14 μm at a minimum, and is expanded to a width of 100 μm through a neck portion having a length of 40 μm.

この構造を1回通して、幹細胞の富化率が流入側に比較して約2倍になる。さらにこの手法をn回繰り返せば、富化率は2倍程度になる。 Through this structure once, the enrichment rate of the stem cells is about twice that of the inflow side. Furthermore, if this method is repeated n times, the enrichment rate becomes about 2n times.

図6は、このマイクロ流路構造の変形例の1つである。マイクロ流入流路の形状は、曲線状になっており、遠心力を利用して、サイズの大きい細胞の軌跡をより制御し、富化率をさらに上げる事が可能である。 FIG. 6 shows one modification of this microchannel structure. The shape of the micro inflow channel is curved, and it is possible to further increase the enrichment rate by using centrifugal force to further control the trajectory of large cells.

図7は、このマイクロ流路構造の変形例の1つである。マイクロ流入流路の形状は、テーパ状になっており、サイズの小さい細胞の流路幅方向の分布を不均一にして、流出流路103への流出割合を高め、サイズの大きい細胞の富化率を高める事が可能である。 FIG. 7 shows one modification of this microchannel structure. The shape of the micro inflow channel is tapered, making the distribution of small cells in the channel width direction non-uniform, increasing the outflow rate to the outflow channel 103, and enriching large cells It is possible to increase the rate.

図8は、このマイクロ流路構造の変形例の1つである。サイズの大きい細胞が流出流路102に流出した際に上方の壁に沿うことを利用し、102流路をさらに分岐すると、サイズの大きい細胞が分岐流路104に流出することで、この104流路において大きい細胞の富化率がさらに高まる。 FIG. 8 shows one modification of the microchannel structure. By utilizing the fact that large-sized cells flow along the upper wall when flowing into the outflow channel 102, and further branching the 102 channel, large-sized cells flow out into the branch channel 104. The enrichment rate of large cells in the road is further increased.

以上のように、細胞の大きさの違いに基づき、細胞に物理的、化学的影響を与えず、分岐マイクロ流路内の流れのみによって、例えばラットの幹細胞と赤血球の混合溶液において、大きいサイズの幹細胞を富化できる事を確認している。この流路構造は小型・安価であるため、生物学、再生医工学、および医学分野において細胞分離・富化を必要としていた現場では、細胞にダメージを与えず、省エネルギーで、低コスト、かつ環境にやさしい細胞分離・富化工程が可能となる。 As described above, based on the difference in cell size, the cells are not affected physically or chemically, and only by the flow in the branch microchannel, for example, in a mixed solution of rat stem cells and erythrocytes, It has been confirmed that stem cells can be enriched. Because this channel structure is small and inexpensive, it does not damage cells, saves energy, is low cost, and is environmentally friendly in the field where cell separation / enrichment is required in the fields of biology, regenerative medicine, and medicine. Easy cell separation and enrichment process is possible.

Claims (1)

分離チャンバーに、細胞溶液を流入させる流入流路と、流入した細胞溶液を流出させる流出流路を複数設けてなる流路構造内に、平均サイズの異なる複数の細胞群を含む細胞溶液を流通させて、最大の平均サイズを有する細胞群を富化する細胞富化方法であって、
(1)前記流入流路の流路幅を最大の平均サイズを有する細胞群の平均直径の1〜3倍とし、
(2)分離チャンバーにおいて細胞溶液の流速が流入流路における流速より遅くなる構造を持ち、
(3)分離チャンバーにおける流線分布が主流線(流速が最大の流線)に対して非対称であり、
(4)流出流量のより小さい流出流路の流路幅を最大の平均サイズを有する細胞群の平均直径以上とすることを特徴とする。
上記(1)から(4)の特徴を有する細胞富化方法。
A cell solution containing a plurality of cell groups having different average sizes is circulated in a flow path structure in which a separation chamber is provided with an inflow channel for inflow of cell solution and an outflow channel for outflow of inflowed cell solution. A cell enrichment method for enriching a cell population having a maximum average size,
(1) The channel width of the inflow channel is 1 to 3 times the average diameter of the cell group having the maximum average size,
(2) In the separation chamber, the flow rate of the cell solution is slower than the flow rate in the inflow channel,
(3) The streamline distribution in the separation chamber is asymmetric with respect to the mainstream line (streamline with the highest flow velocity),
(4) The width of the outflow channel having a smaller outflow rate is set to be equal to or larger than the average diameter of the cell group having the maximum average size.
A cell enrichment method having the characteristics of (1) to (4) above.
JP2010253981A 2010-11-12 2010-11-12 Cell enrichment method for cell separation Pending JP2012100625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253981A JP2012100625A (en) 2010-11-12 2010-11-12 Cell enrichment method for cell separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253981A JP2012100625A (en) 2010-11-12 2010-11-12 Cell enrichment method for cell separation

Publications (1)

Publication Number Publication Date
JP2012100625A true JP2012100625A (en) 2012-05-31

Family

ID=46391858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253981A Pending JP2012100625A (en) 2010-11-12 2010-11-12 Cell enrichment method for cell separation

Country Status (1)

Country Link
JP (1) JP2012100625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016043168A1 (en) * 2014-09-16 2017-06-22 国立大学法人大阪大学 Method for producing pluripotent stem cell-derived cardiomyocyte population
US10139323B2 (en) 2014-12-08 2018-11-27 Samsung Electronics Co., Ltd. Apparatus for separating micro-particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016043168A1 (en) * 2014-09-16 2017-06-22 国立大学法人大阪大学 Method for producing pluripotent stem cell-derived cardiomyocyte population
US10696948B2 (en) 2014-09-16 2020-06-30 Osaka University Method for preparing pluripotent stem cell-derived cardiomyocyte population
US10139323B2 (en) 2014-12-08 2018-11-27 Samsung Electronics Co., Ltd. Apparatus for separating micro-particles

Similar Documents

Publication Publication Date Title
Salafi et al. A review on deterministic lateral displacement for particle separation and detection
Dalili et al. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches
Zhang et al. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device
Bayareh An updated review on particle separation in passive microfluidic devices
US10875021B2 (en) Sorting particles in a microfluidic device
Zhang et al. High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device
Yan et al. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device
Sajeesh et al. Particle separation and sorting in microfluidic devices: a review
Mach et al. Automated cellular sample preparation using a Centrifuge-on-a-Chip
Sun et al. Double spiral microchannel for label-free tumor cell separation and enrichment
Zhang et al. High-throughput separation of white blood cells from whole blood using inertial microfluidics
US9133499B2 (en) Method and device for isolating cells from heterogeneous solution using microfluidic trapping vortices
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
Moloudi et al. Inertial particle focusing dynamics in a trapezoidal straight microchannel: Application to particle filtration
CN109456875B (en) Rare cell multi-stage sorting microfluidic device integrating inertia and deterministic lateral displacement technology
CN103464229A (en) Multilevel sorting microfluidic device for rare cells
Maria et al. Development of a microfluidic device for cell concentration and blood cell-plasma separation
Huang et al. Rapid separation of human breast cancer cells from blood using a simple spiral channel device
CN203525731U (en) Multistage sorting microfluidic device for rare cells
JP2007021465A (en) Flow passage structure and method for concentrating/separating particle continuously
Jiang et al. Centrifuge-based deterministic lateral displacement separation
Zhao et al. Top sheath flow-assisted secondary flow particle manipulation in microchannels with the slanted groove structure
Lee et al. Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system
JP2012100625A (en) Cell enrichment method for cell separation
CN111491736B (en) Inertial cell focusing and sorting