JP2012100406A - Radio charger and radio charging method using the same - Google Patents

Radio charger and radio charging method using the same Download PDF

Info

Publication number
JP2012100406A
JP2012100406A JP2010245052A JP2010245052A JP2012100406A JP 2012100406 A JP2012100406 A JP 2012100406A JP 2010245052 A JP2010245052 A JP 2010245052A JP 2010245052 A JP2010245052 A JP 2010245052A JP 2012100406 A JP2012100406 A JP 2012100406A
Authority
JP
Japan
Prior art keywords
resonance
capacitor
wireless charging
external power
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245052A
Other languages
Japanese (ja)
Other versions
JP5041610B2 (en
JP2012100406A5 (en
Inventor
Norio Miyauchi
則雄 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010245052A priority Critical patent/JP5041610B2/en
Publication of JP2012100406A publication Critical patent/JP2012100406A/en
Publication of JP2012100406A5 publication Critical patent/JP2012100406A5/ja
Application granted granted Critical
Publication of JP5041610B2 publication Critical patent/JP5041610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a radio charger with a metal housing or a part of the housing made of metal and to provide a radio charging method using the same.SOLUTION: A radio charger comprises: resonance capacitors each connected in series; a resonance circuit for resonating with frequency of external power transmitted by radio from outside, the circuit being composed of a resonance coil having a closed loop magnetic core, a part of whose sectional area where the magnetic core has no coil is smaller than a sectional area of coil part; and a secondary battery to be charged with the external power through the resonance circuit. A housing of the charger or a part of the housing is made of metal. As for the resonance capacitors, a reference resonance capacitor and one or more amendment resonance capacitors are prepared. The amendment resonance capacitors can be connected to the reference resonance capacitor and are used so that the resonance circuit resonates with the frequency of the external power.

Description

本発明は、無線で外部からの電力を、共振コイルと、該共振コイルに直列に接続する共振コンデンサからなる共振回路を介して二次電池に充電する、筐体が金属または筐体の一部が金属からなる無線充電装置とその無線充電方法に関する。 The present invention wirelessly charges an external electric power to a secondary battery via a resonance circuit including a resonance coil and a resonance capacitor connected in series to the resonance coil. The present invention relates to a wireless charging device made of metal and a wireless charging method thereof.

近年、無線で外部からの電力を共振コイルと該共振コイルに直列に接続する共振コンデンサからなる共振回路を介して二次電池に充電する電子機器が盛んに開発または実用化されつつある(非特許文献1)。その電子機器には、例えば、本出願人発明の2次電源を有するブラシレスDCモータ(特許文献1)や充電式心臓ペースメーカ(非特許文献2)などが挙げられる。また、地球温暖化の環境問題とも関係して、電気自動車に搭載した二次電池を外部から無線で充電する無線充電装置も盛んに研究、開発されてきている。その無線充電装置には、例えば、非特許文献3などが挙げられる。 In recent years, electronic devices that charge a secondary battery wirelessly through a resonance circuit including a resonance coil and a resonance capacitor connected in series to the resonance coil in a wireless manner are being actively developed or put into practical use (non-patent) Reference 1). Examples of the electronic device include a brushless DC motor having a secondary power source of the present applicant's invention (Patent Document 1) and a rechargeable cardiac pacemaker (Non-Patent Document 2). In addition, in connection with the environmental problem of global warming, a wireless charging device that wirelessly charges a secondary battery mounted on an electric vehicle from the outside has been actively researched and developed. Examples of the wireless charging device include Non-Patent Document 3.

図7に従来の無線充電装置を示す。図7には、従来の無線充電装置71に金属の筐体の壁72dを介して、無線で接続する外部電力発振装置72も示され、該外部電力発振装置72は交流電源72aと、該交流電源72aに接続する、1次コイル72cと該1次コイル72cに直列に接続する1次コンデンサ72bからなる。従来の無線充電装置71は、前記外部電力発振装置72から、前記1次コイル72cを介して、無線で外部電力を供給でき、自己インダクタンスLの2次コイル73aと該2次コイル73aに直列に接続する容量Cの2次コンデンサ73bからなる共振回路73と、該共振回路73に接続する、4個のダイオード74a,74b,74c,74dからなる全波整流回路74と、該全波整流回路74に接続する、容量Ccの充電コンデンサ75と、該充電コンデンサ75に接続し、充電を制御する充電制御器76と、該充電制御器76に接続し、外部電力を充電するリチウムイオン2次電池77と、該リチウムイオン2次電池77に接続し、該リチウムイオン2次電池77の出力電圧77a,77bをレギュレートし、無線充電装置71の外部へ出力電圧78a,78bを出力するレギュレータ78と、該無線充電装置71の外部から、該リチウムイオン2次電池77の、温度をパラメータに持つ電圧充電容量特性データ79cをメモリ(図省略)に入力して記憶し、該リチウムイオン2次電池77に接続し、該リチウムイオン2次電池77の出力電圧77a,77bを監視し、また、該リチウムイオン2次電池77に接触し、配置された温度センサ(図省略)の出力電圧77cを入力し、該出力電圧77a,77bと該出力電圧77cと、前記メモリに記憶された、該リチウムイオン2次電池77の、温度をパラメータに持つ電圧充電容量特性との照合を行い、該リチウムイオン2次電池77の充電容量を算出する機能を有し、該リチウムイオン2次電池77が過充電であると判断した場合には、該充電制御器76にレベルHの過充電検出信号79aを出力し、また、該リチウムイオン2次電池77が過放電であると判断した場合には、該レギュレータ78にレベルHの過放電検出信号79bを出力し、それとともに該無線充電装置71の外部へ過充電検出信号79a(過充電を検出した時、レベルH)と過放電検出信号79b(過放電を検出した時、レベルH)を出力する過充電過放電検出信号出力手段79から構成されている。 FIG. 7 shows a conventional wireless charging apparatus. FIG. 7 also shows an external power oscillation device 72 that is wirelessly connected to a conventional wireless charging device 71 through a wall 72d of a metal housing. The external power oscillation device 72 includes an AC power source 72a and the AC power source 72a. A primary coil 72c connected to the power source 72a and a primary capacitor 72b connected in series to the primary coil 72c. The conventional wireless charging device 71 can supply external power wirelessly from the external power oscillation device 72 via the primary coil 72c, and is connected in series to the secondary coil 73a having a self-inductance L and the secondary coil 73a. A resonant circuit 73 composed of a secondary capacitor 73 b having a capacitance C to be connected, a full-wave rectifier circuit 74 composed of four diodes 74 a, 74 b, 74 c and 74 d connected to the resonant circuit 73, and the full-wave rectifier circuit 74 Connected to the charging capacitor 75 having a capacity Cc, a charging controller 76 connected to the charging capacitor 75 for controlling charging, and a lithium ion secondary battery 77 connected to the charging controller 76 for charging external power. Connected to the lithium ion secondary battery 77, regulates the output voltage 77 a, 77 b of the lithium ion secondary battery 77, and the outside of the wireless charging device 71 Voltage charging capacity characteristic data 79c having the temperature as a parameter of the lithium ion secondary battery 77 is input to a memory (not shown) from the regulator 78 that outputs the output voltages 78a and 78b and the wireless charging device 71. Connected to the lithium ion secondary battery 77, monitoring the output voltages 77 a and 77 b of the lithium ion secondary battery 77, and in contact with the lithium ion secondary battery 77, disposed temperature sensor A voltage charge capacity characteristic having the temperature as a parameter of the lithium ion secondary battery 77 stored in the memory and the output voltages 77a and 77b and the output voltage 77c. The lithium ion secondary battery 77 is overcharged, and has a function of calculating the charge capacity of the lithium ion secondary battery 77. If it is determined that the lithium ion secondary battery 77 is overdischarged, a level H overcharge detection signal 79a is output to the charge controller 76. And an overcharge detection signal 79a (level H when overcharge is detected) and an overdischarge detection signal 79b (when overdischarge is detected, to the outside of the wireless charging device 71. Overcharge / overdischarge detection signal output means 79 for outputting level H).

図8は、従来において使用する外部電力発振装置の1次コイルと従来の無線充電装置の2次コイルの平面配置図である。1次コイル81は、コの字形状の磁心81aに巻回した巻線81bを有し、共振回路を構成する1次コンデンサを介して外部電源に接続されている(図省略)。同様に、2次コイル82は、コの字形状の磁心82aに巻回した巻線82bを有し、2次コンデンサと共振回路を構成している(図省略)。無線充電時に、前記1次コイル81と前記2次コイル82は金属の筐体の壁83を介し近接、対向して配置される。該1次コイル81が発生する主な磁束には、該壁83を貫通して磁心82aを回り、再び該壁83を貫通して磁心81aに戻る磁束84aと、該壁83の中を通って戻る磁束84bがある。一方、該2次コイル82に誘起された起電力によって発生する共振電流による主な磁束には、該壁83を貫通して磁心81aを回り、再び該壁83を貫通して該磁心82aに戻る磁束85aと、該壁83の中を通って戻る磁束85bがある。 FIG. 8 is a plan layout diagram of a primary coil of an external power oscillation device used in the related art and a secondary coil of a conventional wireless charging device. The primary coil 81 has a winding 81b wound around a U-shaped magnetic core 81a, and is connected to an external power source via a primary capacitor constituting a resonance circuit (not shown). Similarly, the secondary coil 82 has a winding 82b wound around a U-shaped magnetic core 82a, and forms a resonance circuit with the secondary capacitor (not shown). At the time of wireless charging, the primary coil 81 and the secondary coil 82 are disposed in close proximity to each other via a wall 83 of a metal casing. The main magnetic flux generated by the primary coil 81 passes through the wall 83, passes around the magnetic core 82 a, passes through the wall 83 again and returns to the magnetic core 81 a, and passes through the wall 83. There is a returning magnetic flux 84b. On the other hand, the main magnetic flux due to the resonance current generated by the electromotive force induced in the secondary coil 82 passes through the wall 83 and passes around the magnetic core 81a, and again passes through the wall 83 and returns to the magnetic core 82a. There is a magnetic flux 85a and a magnetic flux 85b returning through the wall 83.

図9は、従来において使用する外部電力発振装置の他の1次コイルと従来の無線充電装置の他の2次コイルの断面配置図である。1次コイル91は、断面がEの字形状の磁心91aに巻回した巻線91bを有し、共振回路を構成する1次コンデンサを介して外部電源に接続されている(図省略)。同様に、2次コイル92は、断面がEの字形状の磁心92aに巻回した巻線92bを有し、2次コンデンサと共振回路を構成している(図省略)。無線充電時に、前記1次コイル91と前記2次コイル92は金属の筐体の壁93を介し近接、対向して配置される。該1次コイル91が発生する主な磁束には、該壁93を貫通して磁心92aを回り、再び該壁93を貫通して磁心91aに戻る磁束94aと、該壁93の中を通って戻る磁束94bがある。一方、該2次コイル92に誘起された起電力によって発生する共振電流による主な磁束には、該壁93を貫通して磁心91aを回り、再び該壁93を貫通して磁心92aに戻る磁束95aと、壁93の中を通って戻る磁束95bがある。 FIG. 9 is a cross-sectional layout view of another primary coil of the external power oscillation device used in the related art and another secondary coil of the conventional wireless charging device. The primary coil 91 has a winding 91b wound around a magnetic core 91a having an E-shaped cross section, and is connected to an external power source via a primary capacitor constituting a resonance circuit (not shown). Similarly, the secondary coil 92 includes a winding 92b wound around a magnetic core 92a having an E-shaped cross section, and constitutes a secondary capacitor and a resonance circuit (not shown). At the time of wireless charging, the primary coil 91 and the secondary coil 92 are disposed in close proximity to each other via a wall 93 of a metal casing. The main magnetic flux generated by the primary coil 91 passes through the wall 93, passes around the magnetic core 92 a, passes through the wall 93 again and returns to the magnetic core 91 a, and passes through the wall 93. There is a returning magnetic flux 94b. On the other hand, the main magnetic flux due to the resonance current generated by the electromotive force induced in the secondary coil 92 is a magnetic flux that passes through the wall 93 and passes around the magnetic core 91a, and again passes through the wall 93 and returns to the magnetic core 92a. 95a and magnetic flux 95b returning through the wall 93.

しかしながら、図8においては、前記壁83の中を通る磁束84bと85bは該壁83にうず電流を発生させ、うず電流損失が生じるので、無線充電効率の低下を招く問題があった。図9においては、前記壁93の中を通る磁束94bと磁束95bは該壁93にうず電流を発生させ、うず電流損失が生じるので、無線充電効率の低下を招く問題があった。図8に示す磁束85bと、図9に示す磁束95bによるうず流損失の問題を解決するために、本発明は特許文献2に開示されている、巻線のない磁心の一部の断面積が巻線部の断面積より小さい閉ループの磁心を有する2次コイル(以後、共振コイルという)を採用した。 However, in FIG. 8, since the magnetic fluxes 84b and 85b passing through the wall 83 generate eddy current in the wall 83 and eddy current loss occurs, there is a problem that the wireless charging efficiency is lowered. In FIG. 9, the magnetic flux 94b and the magnetic flux 95b passing through the wall 93 generate an eddy current in the wall 93, resulting in an eddy current loss. In order to solve the problem of eddy current loss caused by the magnetic flux 85b shown in FIG. 8 and the magnetic flux 95b shown in FIG. 9, the present invention discloses a partial cross-sectional area of a magnetic core having no winding disclosed in Patent Document 2. A secondary coil (hereinafter referred to as a resonance coil) having a closed-loop magnetic core smaller than the cross-sectional area of the winding portion was employed.

本発明で使用する第1の共振コイルを、図5に示す、本発明で使用する外部電力発振装置の第1の1次コイルと本発明の無線充電装置の第1の共振コイルの平面配置図で説明する。第1の1次コイル51と第1の共振コイル52は筐体の壁53を挟んで接近、対向して配置され、該第1の1次コイル51はコの字形状の磁心51aと該磁心51aに巻回した巻線51bからなり、該第1の共振コイル52は、同様に、矩形の磁心52aと該磁心52aに巻回した巻線52bからなり、巻線部52cの断面積より小さい断面積の狭磁心部52dを有し、該第1の1次コイル51に通電することによって発生する主な磁束には、該壁53を貫通して該磁心52aを回り、再び該壁53を貫通して該磁心51aに戻る磁束54aと、該壁53の中を通って磁心51aに戻る磁束54bと、該共振コイル52の狭磁心部52dの中を通って磁心51aに戻る磁束54cがあり、一方、該共振コイル52に誘起される起電圧によって生ずる共振電流によって発生する主な磁束には、該壁53を貫通して該磁心51aを回り、再び該壁53を貫通して該磁心52aに戻る磁束55aと、狭磁心部52dの中を通って磁心52aに戻る磁束55bと、該壁53の中を通って磁心52aに戻る磁束55cがある。該磁心52aの巻線部52cの幅56aに対する該狭磁心部52dの幅56bは、該狭磁心部52dの中を通る前記磁束55bの量と、該第1の1次コイル51が発生する磁束が磁心52aを通らず、該狭磁心部52dの中を通りショートする前記磁束54cの量と、うず電流損失を発生する、前記壁53の中を通る前記磁束54bの量と前記磁束55cの量を考慮して、トータルの無線充電効率が最大になるように決定される。 The first resonance coil used in the present invention is shown in FIG. 5 as a plan layout of the first primary coil of the external power oscillation device used in the present invention and the first resonance coil of the wireless charging apparatus of the present invention. I will explain it. The first primary coil 51 and the first resonance coil 52 are disposed so as to approach and face each other with the wall 53 of the housing interposed therebetween, and the first primary coil 51 includes a U-shaped magnetic core 51a and the magnetic core. The first resonance coil 52 is similarly composed of a rectangular magnetic core 52a and a winding 52b wound around the magnetic core 52a, and is smaller than the cross-sectional area of the winding portion 52c. The main magnetic flux generated by energizing the first primary coil 51 has a narrow magnetic core portion 52d having a cross-sectional area, passes through the wall 53, travels around the magnetic core 52a, and again passes through the wall 53. There is a magnetic flux 54a that passes through and returns to the magnetic core 51a, a magnetic flux 54b that passes through the wall 53 and returns to the magnetic core 51a, and a magnetic flux 54c that passes through the narrow magnetic core portion 52d of the resonance coil 52 and returns to the magnetic core 51a. On the other hand, the electromotive voltage induced in the resonance coil 52 The main magnetic flux generated by the swaying resonance current passes through the wall 53, passes around the magnetic core 51a, passes through the wall 53 again and returns to the magnetic core 52a, and the narrow magnetic core portion 52d. There is a magnetic flux 55b that returns to the magnetic core 52a and a magnetic flux 55c that passes through the wall 53 and returns to the magnetic core 52a. The width 56b of the narrow magnetic core portion 52d with respect to the width 56a of the winding portion 52c of the magnetic core 52a is determined by the amount of the magnetic flux 55b passing through the narrow magnetic core portion 52d and the magnetic flux generated by the first primary coil 51. Of the magnetic flux 54c that does not pass through the magnetic core 52a and short-circuits through the narrow magnetic core portion 52d, and the amount of the magnetic flux 54b that passes through the wall 53 and the amount of the magnetic flux 55c that cause eddy current loss. Is taken into consideration so that the total wireless charging efficiency is maximized.

同様に、本発明で使用する第2の共振コイルを、図6に示す、本発明で使用する外部電力発振装置の第2の1次コイルと本発明の無線充電装置の第2の共振コイルの断面配置図で説明する。第2の1次コイル61と第2の共振コイル62は筐体の壁63を挟んで接近、対向して配置され、該第2の1次コイル61は断面がEの字形状の磁心61aと該磁心61aに巻回した巻線61bからなり、該第2の共振コイル62は、同様に、断面が日の字形状の磁心62aと巻線部62cに巻回した巻線62bからなり、巻線部62cの断面積より小さい断面積の狭磁心部62dを有し、該第2の1次コイル61に通電することによって発生する主な磁束には、該壁63を貫通して該磁心62aを回り、再び該壁63を貫通して該磁心61aに戻る磁束64aと、該壁63の中を通って磁心61aに戻る磁束64bと、該共振コイル62の狭磁心部62dの中を通って磁心61aに戻る磁束64cがあり、一方、該共振コイル62に誘起される起電圧によって生ずる共振電流によって発生する主な磁束には、該壁63を貫通して該磁心61aを回り、再び該壁63を貫通して該磁心62aに戻る磁束65aと、狭磁心部62dの中を通って磁心62aに戻る磁束65bと、該壁63の中を通って磁心62aに戻る磁束65cがある。該磁心62aの巻線部62cの幅66aに対する該狭磁心部62dの幅66bは、該狭磁心部62dの中を通る前記磁束65bの量と、該1次コイル61が発生する磁束が磁心62aを通らず該狭磁心部62dの中を通りショートする前記磁束64cの量と、うず電流損失を発生する、前記壁63の中を通る前記磁束64bの量と前記磁束65cの量を考慮して、トータルの無線充電効率が最大になるように決定される。 Similarly, the second resonance coil used in the present invention includes the second primary coil of the external power oscillation device used in the present invention and the second resonance coil of the wireless charging device of the present invention shown in FIG. This will be described with reference to a cross-sectional arrangement drawing. The second primary coil 61 and the second resonance coil 62 are arranged close to and opposite to each other with the wall 63 of the housing interposed therebetween, and the second primary coil 61 includes a magnetic core 61a having an E-shaped cross section. Similarly, the second resonance coil 62 is composed of a magnetic core 62a having a sun-shaped cross section and a winding 62b wound around the winding portion 62c. The magnetic core 62a has a narrow magnetic core portion 62d having a smaller cross-sectional area than the cross-sectional area of the wire portion 62c, and main magnetic flux generated by energizing the second primary coil 61 passes through the wall 63. , And again passes through the wall 63 and returns to the magnetic core 61 a, passes through the wall 63 and returns to the magnetic core 61 a, and passes through the narrow magnetic core portion 62 d of the resonance coil 62. There is a magnetic flux 64c returning to the magnetic core 61a, while being induced in the resonance coil 62. The main magnetic flux generated by the resonance current generated by the electromotive force generated is a magnetic flux 65a that passes through the wall 63, passes around the magnetic core 61a, returns to the magnetic core 62a again, and a narrow magnetic core portion 62d. There is a magnetic flux 65b that passes through the wall 63 and returns to the magnetic core 62a, and a magnetic flux 65c that passes through the wall 63 and returns to the magnetic core 62a. The width 66b of the narrow magnetic core portion 62d relative to the width 66a of the winding portion 62c of the magnetic core 62a is such that the amount of the magnetic flux 65b passing through the narrow magnetic core portion 62d and the magnetic flux generated by the primary coil 61 are the magnetic core 62a. In consideration of the amount of the magnetic flux 64c that does not pass through the narrow magnetic core portion 62d and is short-circuited, and the amount of the magnetic flux 64b that passes through the wall 63 and the amount of the magnetic flux 65c that cause eddy current loss. The total wireless charging efficiency is determined to be maximized.

特開2007−217173JP 2007-217173 A 特開2006−8542JP 2006-8542 A ワイヤレス給電2010 日経エレクトロニクス 編集Wireless power supply 2010 Nikkei Electronics edit 佐藤拓他 J.Magn.Soc.Jpn.Vol.32 27 (2008)Taku Sato et al. Magn. Soc. Jpn. Vol. 32 27 (2008) 金子裕良他 IEEJ Trans.IA,Vol.130 734 (208)Hiroko Kaneko et al. IEEE Trans. IA, Vol. 130 734 (208)

しかしながら、本発明の無線充電装置は特許文献2と、次に点において、その状況が大きく異なる。つまり、特許文献2においては、共振コイルは微弱電力の長波を捉えるのであるが、一方、本発明の無線充電装置の共振コイルはそれにくらべかなり大きい電力を無線で捉えなければならないという点である。その結果、2次コンデンサ(以後、共振コンデンサという)が1個のみでは、外部からの無線の電力によって共振コイルに誘起される起電圧の大きさの変化につれ、共振時の共振電流が大きく変化し、それとともに、該共振電流によって磁心に発生する磁束によって、共振コイルの、図5に示す狭磁心部52dまたは図6に示す狭磁心部62dが磁気飽和することから、共振コイルのインダクタンスも変化してしまい、下記に示す数1で決まる共振回路の共振周波数が外部電力の周波数からはずれてしまうので、共振コイルのリアクタンス、ωLと共振コンデンサのリアクタンス、−1/ωCが相殺せず、それに相当して共振電流が減少し、十分な充電効率が得られないという問題が発生した。 However, the wireless charging device of the present invention is significantly different from Patent Document 2 in the following points. That is, in Patent Document 2, the resonance coil captures a long wave of weak power, whereas the resonance coil of the wireless charging device of the present invention must capture much higher power wirelessly. As a result, when there is only one secondary capacitor (hereinafter referred to as “resonance capacitor”), the resonance current during resonance greatly changes as the magnitude of the electromotive voltage induced in the resonance coil by the wireless power from the outside changes. At the same time, the magnetic flux generated in the magnetic core by the resonance current causes the narrow magnetic core portion 52d shown in FIG. 5 or the narrow magnetic core portion 62d shown in FIG. 6 to be magnetically saturated, so that the inductance of the resonant coil also changes. Therefore, the resonance frequency of the resonance circuit determined by Equation 1 shown below deviates from the frequency of the external power, so that the reactance of the resonance coil, ωL and the reactance of the resonance capacitor, −1 / ωC do not cancel each other, and this corresponds to that. As a result, the resonance current is reduced and sufficient charging efficiency cannot be obtained.

ここで、fは共振回路の共振周波数、
Lは共振コイルのインダクタンス、
Cは共振コンデンサの容量である。
Where f is the resonant frequency of the resonant circuit,
L is the inductance of the resonant coil,
C is the capacity of the resonant capacitor.

共振コイルに流れる共振電流は数2に示す式となる。
ここで、Iは共振電流、
Vは共振コイルの両端間に誘起される起電圧、
Rは共振コイルの抵抗である。
共振時には、共振電流Iは起電圧にVに比例し、お互いの位相は同一になる。
The resonance current flowing through the resonance coil is expressed by the equation (2).
Where I is the resonance current,
V is an electromotive voltage induced between both ends of the resonance coil,
R is the resistance of the resonant coil.
At the time of resonance, the resonance current I is proportional to the electromotive voltage V, and the phases thereof are the same.

共振コイルのQ値は数3に示す式となる。
ここで、QはQ値、
ωは外部電力の角周波数、
Lは共振コイルの自己インダクタンス、
Rは共振コイルの抵抗である。
The Q value of the resonance coil is expressed by the equation (3).
Where Q is the Q value,
ω is the angular frequency of the external power,
L is the self-inductance of the resonant coil,
R is the resistance of the resonant coil.

共振時の共振コイルの両端間の電圧は数4に示す式となる。
ここで、vは共振コイルの両端間の電圧、
jは虚数、
QはQ値、
Vは共振コイルの両端間に誘起される起電圧である。
共振時には、共振コイルの両端間の電圧vは、共振コイルの両端間に誘起される起電圧Vにくらべ、その位相が90度遅れる、つまり、共振電流Iにくらべ、その位相は90度遅れることになる。
The voltage between both ends of the resonance coil at the time of resonance is expressed by the equation (4).
Where v is the voltage across the resonant coil,
j is an imaginary number,
Q is the Q value,
V is an electromotive voltage induced between both ends of the resonance coil.
At the time of resonance, the voltage v between both ends of the resonance coil is delayed by 90 degrees compared to the electromotive voltage V induced between both ends of the resonance coil, that is, the phase is delayed by 90 degrees compared to the resonance current I. become.

お互いに直列に接続する、共振コンデンサと、巻線のない磁心の一部の断面積が巻線部の断面積より小さい閉ループの磁心を有する共振コイルから構成され、外部から無線で伝送する外部電力の周波数に共振する共振回路と、該共振回路を介して外部電力を充電する二次電池からなり、筐体が金属または筐体の一部が金属からなる無線充電装置において、前記共振コンデンサには、基準共振コンデンサと、該基準共振コンデンサに接続可能な1個以上の、前記共振回路を前記外部電力の周波数に共振させるために使用する補正用共振コンデンサが用意されている。 External power that consists of a resonant capacitor connected in series with each other and a resonant coil that has a closed-loop magnetic core whose partial cross-sectional area of the magnetic core without winding is smaller than the cross-sectional area of the winding part. In the wireless charging device, which includes a resonance circuit that resonates at a frequency of and a secondary battery that charges external power via the resonance circuit, and the casing is made of metal or part of the casing is made of metal, the resonance capacitor includes And a reference resonance capacitor and one or more correction resonance capacitors that can be connected to the reference resonance capacitor and are used to resonate the resonance circuit to the frequency of the external power.

前記補正用共振コンデンサはアナログスイッチによって前記基準共振コンデンサに直列あるいは並列に接続される、あるいは、該基準共振コンデンサから切り離される。 The correction resonance capacitor is connected in series or in parallel to the reference resonance capacitor by an analog switch, or is disconnected from the reference resonance capacitor.

前記無線充電装置は、前記外部電力の周波数に比べ十分大きい周波数のデジタル基準信号を発生するデジタル基準信号発生手段を有する。 The wireless charging device includes a digital reference signal generating unit that generates a digital reference signal having a frequency sufficiently higher than the frequency of the external power.

前記無線充電装置は、前記共振コイルの両端間の電圧を、該外部電力の周波数と同じ周波数のデジタル電圧にデジタル化するデジタル化手段と、その位相を90度進ませ、デジタル信号を発生する、位相90度進ませ手段からなるデジタル信号発生手段を有する。 The wireless charging device generates a digital signal by digitizing means for digitizing the voltage between both ends of the resonance coil into a digital voltage having the same frequency as the frequency of the external power, and by advancing its phase by 90 degrees. It has digital signal generating means comprising means for advancing the phase by 90 degrees.

前記共振電流が大きくなることに対応して、前記基準共振コンデンサに前記補正用共振コンデンサを並列に接続し、あるいは、該基準共振コンデンサから該補正用共振コンデンサをその直列の接続から切り離し、前記共振コンデンサを、その容量が大きくなるように切り換えことによって、また、前記共振電流が小さくなることに対応して、前記基準共振コンデンサから前記補正用共振コンデンサをその並列の接続から切り離し、あるいは、該基準共振コンデンサに該補正用共振コンデンサを直列に接続し、前記共振コンデンサを、その容量が小さくなるように切り換えことによって、前記共振回路を前記外部電力の周波数に共振させる。 Corresponding to the increase in the resonance current, the correction resonance capacitor is connected in parallel to the reference resonance capacitor, or the correction resonance capacitor is disconnected from the series connection from the reference resonance capacitor, and the resonance By switching the capacitor so that its capacity increases, and corresponding to the decrease in the resonance current, the correction resonance capacitor is disconnected from the parallel connection from the reference resonance capacitor, or the reference The resonant capacitor for correction is connected in series to a resonant capacitor, and the resonant capacitor is switched so as to reduce its capacitance, thereby resonating the resonant circuit at the frequency of the external power.

前記位相90度進ませ手段による前記デジタル電圧の90度進ませは、前記デジタル基準信号発生手段の出力するデジタル基準信号のカウント数に基づいて行われ、また、前記共振コンデンサの切り換えのタイミングは、前記デジタル信号の立ち上がりあるいは立下りからの該デジタル基準信号のカウント数に基づいて行われる。 The 90-degree advancement of the digital voltage by the phase advancement means is performed based on the count number of the digital reference signal output from the digital reference signal generation means, and the switching timing of the resonance capacitor is: This is performed based on the count number of the digital reference signal from the rising or falling edge of the digital signal.

本発明の無線充電装置とその無線充電方法を使用することによって、筐体が金属または筐体の一部が金属からなる無線充電装置の共振回路を外部電力の周波数に共振させることができるので、効率のよい無線充電が可能である。 By using the wireless charging device and the wireless charging method of the present invention, the resonance circuit of the wireless charging device in which the casing is made of metal or part of the casing made of metal can resonate with the frequency of the external power, Efficient wireless charging is possible.

以下、本発明の実施の形態を図面に基づいて詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に本発明の第1の無線充電装置のブロック図を示す。無線充電装置1に金属の筐体の壁2dを介して、無線で接続する外部電力発振装置2も示されている。該外部電力発振装置2は、交流電源2aとそれに接続する1次コンデンサ2bと1次コイル2cから構成され、該無線充電装置1は、前記外部電力発振装置2の1次コイル2cに近接、対向して配置されるインダクタンスL0の共振コイル3aと該共振コイル3aに直列に接続する容量C0の基準共振コンデンサ3bと、該共振コンデンサ3bにアナログスイッチAS1,3dを介して並列に接続する容量C1の補正用共振コンデンサ3cと、該共振コンデンサ3bにアナログスイッチAS2,3fを介して並列に接続する容量C2の補正用共振コンデンサ3eとからなる共振回路3、該共振回路3に接続する、ブリッジ状に接続したダイオード4a,4b,4c,4dからなる全波整流回路4と、該全波整流回路4に接続する容量Ccの充電コンデンサ5と、該充電コンデンサ5に接続し、充電を制御する充電制御器6と、該充電制御器6に接続し、外部電力を充電するリチウムイオン2次電池7と、該リチウムイオン2次電池7に接続し、前記無線充電装置1がその外部に出力する出力電圧8a,8bをレギュレートするレギュレータ8と、さらに、前記共振コイル3aの両端間の電圧をデジタル電圧にデジタル化するデジタル化手段9aと該デジタル化手段の出力するデジタル電圧の位相を90度進ませ、デジタル信号を出力する、位相90度進ませ手段9bからなるデジタル信号発生手段9と、前記外部電力の周波数に比べ十分大きい周波数のデジタル基準信号を発生するデジタル基準信号発生手段17と、前記アナログスイッチAS1,3dとAS2,3fをオンオフして前記基準共振コンデンサ3bへ前記補正用共振コンデンサ3c,3eを接続し、または、切り離す補正用共振コンデンサ接続切り換え手段18と、前記無線充電装置1の外部から、あらかじめ前記リチウムイオン2次電池7の温度をパラメータに持つ電圧充電容量特性を内部のメモリ(図省略)に入力し、前記リチウムイオン2次電池7に接続し、該リチウムイオン2次電池7の出力電圧7a,7bを監視して、また、該リチウムイオン2次電池7に接触し、配置された温度センサ(図省略)の出力電圧7cを入力し、該出力電圧7a,7bと該出力電圧7cと、前記メモリに記憶された、該リチウムイオン2次電池7の、温度をパラメータに持つ電圧充電容量特性との照合を行い、該リチウムイオン2次電池7の充電容量を算出する機能を有し、該リチウムイオン2次電池7が過充電であると判断した場合には、該充電制御器6にレベルHの過充電検出信号9aを出力し、また、該リチウムイオン2次電池7が過放電であると判断した場合には、該レギュレータ8にレベルHの過放電検出信号9bを出力し、それとともに該無線充電装置1の外部へ過充電検出信号9a(過充電を検出した時、レベルH)と過放電検出信号9b(過放電を検出した時、レベルH)を出力する過充電過放電検出信号出力手段9から構成されている。 FIG. 1 shows a block diagram of a first wireless charging apparatus of the present invention. Also shown is an external power oscillation device 2 that is wirelessly connected to the wireless charging device 1 via a metal housing wall 2d. The external power oscillation device 2 includes an AC power source 2a, a primary capacitor 2b connected to the AC power source 2a, and a primary coil 2c. The wireless charging device 1 is close to and faces the primary coil 2c of the external power oscillation device 2. A resonant coil 3a having an inductance L0, a reference resonant capacitor 3b having a capacitance C0 connected in series to the resonant coil 3a, and a capacitor C1 connected in parallel to the resonant capacitor 3b via analog switches AS1 and 3d. A resonance circuit 3 comprising a correction resonance capacitor 3c, a correction resonance capacitor 3e with a capacitance C2 connected in parallel to the resonance capacitor 3b via analog switches AS2 and 3f, and a bridge connected to the resonance circuit 3 Full-wave rectifier circuit 4 composed of connected diodes 4a, 4b, 4c and 4d, and charging of capacitor Cc connected to full-wave rectifier circuit 4 A capacitor 5; a charging controller 6 connected to the charging capacitor 5 to control charging; a lithium ion secondary battery 7 connected to the charging controller 6 to charge external power; and the lithium ion secondary battery 7 and a regulator 8 for regulating the output voltages 8a and 8b output from the wireless charging device 1 to the outside, and a digitizing means for digitizing the voltage between both ends of the resonance coil 3a into a digital voltage. 9a and the digital voltage output from the digitizing means are advanced by 90 degrees to output a digital signal, and the digital signal generating means 9 comprising the phase advanced 90 means 9b is sufficiently larger than the frequency of the external power. Digital reference signal generating means 17 for generating a digital reference signal of frequency and the analog switches AS1, 3d and AS2, 3f are turned on / off. The correction resonance capacitor connection switching means 18 for connecting or disconnecting the correction resonance capacitors 3c, 3e to the reference resonance capacitor 3b and the temperature of the lithium ion secondary battery 7 from the outside of the wireless charging device 1 in advance. Is input to an internal memory (not shown), connected to the lithium ion secondary battery 7, and the output voltages 7a and 7b of the lithium ion secondary battery 7 are monitored. The output voltage 7c of the temperature sensor (not shown) placed in contact with the lithium ion secondary battery 7 is input, the output voltages 7a and 7b, the output voltage 7c, and the memory stored in the memory, The function of collating with the voltage charge capacity characteristic of the lithium ion secondary battery 7 having temperature as a parameter, and calculating the charge capacity of the lithium ion secondary battery 7 And when the lithium ion secondary battery 7 is determined to be overcharged, it outputs a level H overcharge detection signal 9a to the charge controller 6, and the lithium ion secondary battery 7 If it is determined that the battery is overdischarged, an overdischarge detection signal 9b of level H is output to the regulator 8, and an overcharge detection signal 9a (when overcharge is detected, Level overcharge detection signal output means 9 for outputting level H) and overdischarge detection signal 9b (level H when overdischarge is detected).

まず、図3に示す、無線充電時の各信号の時間変化を説明する。図3(a)は、前記外部電力発振装置2のスイッチ(図省略)31の時間変化(発振開始、発振中、ON,発振停止、OFF)、図3(b)は、充電制御器6の出力信号6a,32の時間変化(充電開始、充電中、H,充電停止、終了、L)、図3(c)は、レギュレータ8の出力電圧8aと出力電圧8bの電圧差33の時間変化、図3(d)は、共振コイル3aの両端間に誘起される起電圧34の時間変化、図3(e)は、共振コイル3aの両端間の電圧35の時間変化、図3(f)は、デジタル信号発生手段9のデジタル化手段9aの出力するデジタル電圧36の時間変化、図3(g)は、該デジタル信号発生手段9の位相90度進ませ手段9bの出力する、前記デジタル基準信号発生手段17の出力するデジタル基準信号17aのカウント数に基づいて、該デジタル電圧36の位相を90度進ませたデジタル信号37の時間変化、図3(h)は、補正用共振コンデンサ接続切り換え手段18の、補正用共振コンデンサ3cを基準共振コンデンサ3bに接続する、または、該基準共振コンデンサ3bから切り離すためのアナログスイッチAS1,3dへの補正用共振コンデンサ接続切り換え信号38(38a,38bそれぞれ、前記起電圧34の位相が30度から150度までH,210度から330度までH)の時間変化、同様に、図3(i)は、補正用共振コンデンサ接続切り換え手段18の、補正用共振コンデンサ3eを基準共振コンデンサ3bに接続する、または、該基準共振コンデンサ3bから切り離すためのアナログスイッチAS2,3fへの補正用共振コンデンサ接続切り換え信号39(39a,39bそれぞれ、前記起電圧34の位相が60度から120度までH,240度から300度までH)の時間変化を示す。 First, the time change of each signal at the time of wireless charging shown in FIG. 3 will be described. 3A shows a time change (oscillation start, oscillation in progress, ON, oscillation stop, OFF) of the switch (not shown) 31 of the external power oscillation device 2, and FIG. The time change of the output signals 6a, 32 (charging start, charging, H, charge stop, end, L), FIG. 3C shows the time change of the voltage difference 33 between the output voltage 8a of the regulator 8 and the output voltage 8b, FIG. 3D shows the time change of the electromotive voltage 34 induced across the resonance coil 3a, FIG. 3E shows the time change of the voltage 35 across the resonance coil 3a, and FIG. FIG. 3G shows a time change of the digital voltage 36 output from the digitizing means 9a of the digital signal generating means 9, and the digital reference signal output from the means 9b of the digital signal generating means 9 by advancing the phase by 90 degrees. Cow of digital reference signal 17a output from generating means 17 FIG. 3 (h) shows the reference resonance of the correcting resonance capacitor 3c of the correcting resonance capacitor connection switching means 18 based on the number of the signals. Resonance capacitor connection switching signal 38 for correction to analog switches AS1 and 3d for connection to capacitor 3b or disconnection from reference resonance capacitor 3b (the phase of electromotive voltage 34 is 30 to 150 degrees, respectively) FIG. 3 (i) shows that the correction resonance capacitor connection switching means 18 of the correction resonance capacitor connection switching means 18 is connected to the reference resonance capacitor 3b. , The resonant capacitor for correction to the analog switches AS2 and 3f for disconnecting from the reference resonant capacitor 3b Connection switching signal 39 (39a, 39 b respectively, the phase of the electromotive force 34 is H from 60 degrees to 300 degrees from H, 240 degrees to 120 degrees) showing the time variation of.

図1に示す本発明の第1の無線充電装置1の無線充電時の動作を図2に示す無線充電時のフローチャートと、図3に示す無線充電時の各信号の時間変化を使用して説明する。まず、前記外部電力発振装置2の1次コイル2cと前記第1の無線充電装置1の共振回路3の有する共振コイル3aが近接、対向して配置させる。その後、前記外部電力発振装置2が発振を開始させる(S1)。前記充電制御器6はレベルHの充電開始信号6aを前記補正用共振コンデンサ接続切り換え手段18とデジタル基準信号発生手段17に出力する(S2)。レギュレータ8の出力8a,8bが基準電圧を超えると(S3)、該補正用共振コンデンサ接続切り換え手段18は基準共振コンデンサ3bへの補正用共振コンデンサ3c,3eの接続の切り換えを開始する(S4)。該補正用共振コンデンサ接続切り換え手段18はデジタル信号37の立ち上がりを検出すると(S5)、前記デジタル基準信号発生手段17の出力するデジタル基準信号17aのカウント数に基づいて、まず、t10後に、補正用共振コンデンサ接続切り換え手段18の出力38aがレベルHとなって、AS1、3dをオンし(S6)、t20後に、補正用共振コンデンサ接続切り換え手段18の出力39aがレベルHとなって、AS2,3fをオンし(S7)、t11後に、補正用共振コンデンサ接続切り換え手段18の出力38aがレベルLとなって、AS1、3dをオフし(S8)、t21後に、補正用共振コンデンサ接続切り換え手段18の出力39aがレベルLとなって、AS2,3fをオフする(S9)。 前記充電制御器6はレベルLの充電終了信号6aをまだ出していないので、S5に戻り、該補正用共振コンデンサ接続切り換え手段18はデジタル信号37の立ち下がりを検出すると(S5)、前記デジタル基準信号発生手段17の出力するデジタル基準信号17aのカウント数に基づいて、まず、t10後に、補正用共振コンデンサ接続切り換え手段18の出力38bがレベルHとなって、AS1,3dをオンし(S6)、t20後に、補正用共振コンデンサ接続切り換え手段18の出力39bがレベルHとなって、AS2,3fをオンし(S7)、t11後に、補正用共振コンデンサ接続切り換え手段18の出力38bがレベルLとなって、AS1,3dをオフし(S8)、t21後に、補正用共振コンデンサ接続切り換え手段18の出力39bがレベルLとなって、AS2,3fをオフする(S9)。このシーケンスを繰り返し、その後、S10で、前記外部電力発振装置2が発振を終了し、充電制御器6がレベルLの充電終了信号6aを出すと、該補正用共振コンデンサ接続切り換え手段18は前記基準共振コンデンサ3bへの該補正用共振コンデンサ3c,3eの接続の切り換えを停止し(S11)、無線充電が終了する。 The wireless charging operation of the first wireless charging device 1 of the present invention shown in FIG. 1 will be described using the wireless charging flowchart shown in FIG. 2 and the time variation of each signal during wireless charging shown in FIG. To do. First, the primary coil 2c of the external power oscillation device 2 and the resonance coil 3a of the resonance circuit 3 of the first wireless charging device 1 are arranged close to each other and face each other. Thereafter, the external power oscillation device 2 starts oscillation (S1). The charge controller 6 outputs a charge start signal 6a of level H to the correcting resonance capacitor connection switching means 18 and the digital reference signal generating means 17 (S2). When the outputs 8a and 8b of the regulator 8 exceed the reference voltage (S3), the correction resonance capacitor connection switching means 18 starts switching the connection of the correction resonance capacitors 3c and 3e to the reference resonance capacitor 3b (S4). . When the correction resonance capacitor connection switching means 18 detects the rising edge of the digital signal 37 (S5), first, after t10, the correction signal is corrected based on the count number of the digital reference signal 17a output from the digital reference signal generation means 17. The output 38a of the resonance capacitor connection switching means 18 becomes level H, turns on AS1, 3d (S6), and after t20, the output 39a of the correction resonance capacitor connection switching means 18 becomes level H, AS2, 3f Is turned on (S7), and after t11, the output 38a of the correcting resonance capacitor connection switching means 18 becomes level L, and AS1, 3d is turned off (S8), and after t21, the correcting resonance capacitor connection switching means 18 The output 39a becomes level L, and AS2 and 3f are turned off (S9). Since the charge controller 6 has not yet issued the level L charge end signal 6a, the process returns to S5, and when the correcting resonance capacitor connection switching means 18 detects the falling edge of the digital signal 37 (S5), the digital reference Based on the count number of the digital reference signal 17a output from the signal generating means 17, first, after t10, the output 38b of the correcting resonance capacitor connection switching means 18 becomes the level H and turns on AS1, 3d (S6). After t20, the output 39b of the correcting resonance capacitor connection switching means 18 becomes level H and turns on AS2 and 3f (S7). After t11, the output 38b of the correcting resonance capacitor connection switching means 18 becomes level L. Then, AS1 and 3d are turned off (S8), and after t21, the output 3 of the correcting resonance capacitor connection switching means 18 is output. b is a level L, turning off the AS2,3f (S9). This sequence is repeated, and then, in S10, when the external power oscillation device 2 finishes oscillating and the charge controller 6 outputs a charge end signal 6a of level L, the correcting resonant capacitor connection switching means 18 makes the reference Switching of the connection of the correcting resonance capacitors 3c and 3e to the resonance capacitor 3b is stopped (S11), and the wireless charging is finished.

図2に示す無線充電時のフローチャートでは、前記過充電過放電検出信号出力手段19が動作しない場合であった。該過充電過放電検出信号出力手段19がレベルHの過充電検出信号19aを前記充電制御器6に出力した場合は、該充電制御器6は該過充電検出信号19aがレベルLになるまで、充電制御機能を停止する。該過充電過放電検出信号出力手段19がレベルHの過放電検出信号19bを前記レギュレータ8に出力した場合は、該レギュレータ8は該過放電検出信号19bがレベルLになるまで、該レギュレータ8は前記無線充電装置1の外部への出力(出力電圧8a,8b)を停止する。 In the flowchart at the time of wireless charging shown in FIG. 2, the overcharge / overdischarge detection signal output means 19 does not operate. When the overcharge / overdischarge detection signal output means 19 outputs an overcharge detection signal 19a of level H to the charge controller 6, the charge controller 6 will wait until the overcharge detection signal 19a becomes level L. Stop the charge control function. When the overcharge / overdischarge detection signal output means 19 outputs the overdischarge detection signal 19b of level H to the regulator 8, the regulator 8 keeps the regulator 8 until the overdischarge detection signal 19b becomes level L. Output to the outside of the wireless charging device 1 (output voltages 8a and 8b) is stopped.

図4に本発明の第2の無線充電装置のブロック図を示す。無線充電装置41に金属の筐体の壁42dを介して、無線で接続する外部電力発振装置42が示されている。該外部電力発振装置42は、交流電源42aとそれに接続する1次コンデンサ42bと1次コイル42cから構成され、該無線充電装置41は、前記外部電力発振装置42の1次コイル42cに近接、対向して配置されるインダクタンスL40の共振コイル43aと該共振コイル43aに直列に接続する容量C40の基準共振コンデンサ43bと、該基準共振コンデンサ43bにアナログスイッチAS1,43dを介して直列に接続する、または、該基準共振コンデンサ43bから切り離される容量C41の補正用共振コンデンサ43cと、該基準共振コンデンサ43bにアナログスイッチAS2,43fを介して直列に接続する、または、該基準共振コンデンサ43bから切り離される容量C42の補正用共振コンデンサ43eとからなる共振回路43と、該共振回路43に接続する、ブリッジ状に接続したダイオード44a,44b,44c,44dからなる全波整流回路44と、該全波整流回路44に接続する充電コンデンサ45と、該充電コンデンサ45に接続し、充電を制御する充電制御器46と、該充電制御器46に接続し、外部電力を充電するリチウムイオン2次電池47と、該リチウムイオン2次電池47に接続し、前記無線充電装置41がその外部に出力する出力電圧48a,48bをレギュレートするレギュレータ48と、さらに、前記共振コイル43aの両端間の電圧をデジタル電圧にデジタル化するデジタル化手段49aと該デジタル化手段の出力するデジタル電圧の位相を90度進ませデジタル信号を出力する、位相90度進ませ手段49bからなるデジタル信号発生手段49と、前記外部電力の周波数に比べ十分大きい周波数のデジタル基準信号を発生するデジタル基準信号発生手段417と、前記アナログスイッチAS1,43dとAS2,43fをオンオフして前記基準共振コンデンサ43bへの前記補正用共振コンデンサ43cと43eの接続を切り換える補正用共振コンデンサ接続切り換え手段418と、前記無線充電装置41の外部から、あらかじめ前記リチウムイオン2次電池47の電圧充電容量特性を内部のメモリ(図省略)に入力し、前記リチウムイオン2次電池47に接続し、該リチウムイオン2次電池47の出力電圧47a,47bを監視して、また、該リチウムイオン2次電池47に接触し、配置された温度センサ(図省略)の出力電圧47cを入力し、該出力電圧47a,47bと該出力電圧47cと、前記メモリに記憶された、該リチウムイオン2次電池47の、温度をパラメータに持つ電圧充電容量特性との照合を行い、該リチウムイオン2次電池47の充電容量を算出する機能を有し、該リチウムイオン2次電池47が過充電であると判断した場合には、該充電制御器46にレベルHの過充電検出信号419aを出力し、また、該リチウムイオン2次電池47が過放電であると判断した場合には、該レギュレータ48にレベルHの過放電検出信号419bを出力し、それとともに該無線充電装置47の外部へ、過充電検出信号419a(過充電を検出した時、レベルH)と、過放電検出信号419b(過放電を検出した時、レベルH)を出力する過充電過放電検出信号出力手段419から構成されている。 FIG. 4 shows a block diagram of the second wireless charging apparatus of the present invention. An external power oscillation device 42 that is wirelessly connected to the wireless charging device 41 via a metal housing wall 42d is shown. The external power oscillation device 42 includes an AC power source 42a, a primary capacitor 42b connected to the AC power source 42a, and a primary coil 42c. The wireless charging device 41 is close to and faces the primary coil 42c of the external power oscillation device 42. A resonant coil 43a having an inductance L40 arranged in series and a reference resonant capacitor 43b having a capacitance C40 connected in series to the resonant coil 43a, and connected in series to the reference resonant capacitor 43b via analog switches AS1 and 43d, or The correction resonance capacitor 43c of the capacitor C41 separated from the reference resonance capacitor 43b and the capacitance C42 connected in series to the reference resonance capacitor 43b via the analog switches AS2 and 43f or separated from the reference resonance capacitor 43b And the correcting resonance capacitor 43e. An oscillation circuit 43; a full-wave rectification circuit 44 comprising diodes 44a, 44b, 44c, 44d connected to the resonance circuit 43; and a charging capacitor 45 connected to the full-wave rectification circuit 44; Connected to the charging capacitor 45 and connected to the charging controller 46 for controlling charging; the lithium ion secondary battery 47 connected to the charging controller 46 for charging external power; and the lithium ion secondary battery 47; A regulator 48 for regulating the output voltages 48a and 48b output to the outside by the wireless charging device 41, and a digitizing means 49a for digitizing the voltage between both ends of the resonance coil 43a into a digital voltage and the digitizing The phase of the digital voltage output from the means is advanced by 90 degrees and the digital signal is output. The reference resonance capacitor by turning on and off the analog signal AS1, 43d and AS2, 43f, the digital signal generating means 49, the digital reference signal generating means 417 for generating a digital reference signal having a frequency sufficiently larger than the frequency of the external power, The correction resonance capacitor connection switching means 418 for switching the connection of the correction resonance capacitors 43c and 43e to 43b and the voltage charging capacity characteristic of the lithium ion secondary battery 47 from the outside of the wireless charging device 41 in advance Input into a memory (not shown), connect to the lithium ion secondary battery 47, monitor the output voltages 47a and 47b of the lithium ion secondary battery 47, and contact the lithium ion secondary battery 47. The output voltage 47c of the arranged temperature sensor (not shown) is input, and the output voltage 4 7a and 47b, the output voltage 47c, and the voltage charge capacity characteristics of the lithium ion secondary battery 47 stored in the memory having the temperature as a parameter, and charging the lithium ion secondary battery 47 When it is determined that the lithium ion secondary battery 47 is overcharged, a level H overcharge detection signal 419a is output to the charge controller 46. When it is determined that the ion secondary battery 47 is overdischarged, the level 48 overdischarge detection signal 419b is output to the regulator 48, and at the same time, the overcharge detection signal 419a ( And an overcharge detection signal output means 419 that outputs an overdischarge detection signal 419b (level H when an overdischarge is detected). That.

まず、図3に示す、無線充電時の各信号の時間変化を説明する。図3(a)は、前記外部電力発振装置42のスイッチ(図省略)31の時間変化(発振開始、発振中、ON,発振停止、OFF)、図3(b)は、充電制御器46の出力信号46a,32の時間変化(充電開始、充電中、H,充電停止、終了、L)、図3(c)は、レギュレータ48の出力電圧48aと出力電圧48bの電圧差33の時間変化、図3(d)は、共振コイル43aの両端間に誘起される起電圧34の時間変化、図3(e)は、共振コイル43aの両端間の電圧35の時間変化、図3(f)は、デジタル信号発生手段49のデジタル化手段49aの出力するデジタル電圧36の時間変化、図3(g)は、該デジタル信号発生手段49の位相90度進ませ手段49bの出力する、前記デジタル基準信号発生手段417の出力するデジタル基準信号417aのカウント数に基づいて、該デジタル電圧36の位相を90度進ませたデジタル信号37の時間変化、図3(h)は、補正用共振コンデンサ切り換え手段418の、補正用共振コンデンサ43cを基準共振コンデンサ43bに接続するためのアナログスイッチAS1,43dへの補正用共振コンデンサ接続切り換え信号38(38a,38bそれぞれ、前記起電圧34の位相が30度から150度までH,210度から330度までH)の時間変化、同様に、図3(i)は、補正用共振コンデンサ接続切り換え手段418の、補正用共振コンデンサ43eを基準共振コンデンサ43bに接続するためのアナログスイッチAS2,43fへの補正用共振コンデンサ接続切り換え信号39(39a,39bそれぞれ、前記起電圧34の位相が60度から120度までH,240度から300度までH)の時間変化を示す。 First, the time change of each signal at the time of wireless charging shown in FIG. 3 will be described. 3A shows a time change (oscillation start, oscillation in progress, ON, oscillation stop, OFF) of the switch (not shown) 31 of the external power oscillation device 42, and FIG. The time change of the output signals 46a, 32 (charging start, charging, H, charge stop, end, L), FIG. 3C shows the time change of the voltage difference 33 between the output voltage 48a of the regulator 48 and the output voltage 48b, FIG. 3D shows the time change of the electromotive voltage 34 induced across the resonance coil 43a, FIG. 3E shows the time change of the voltage 35 across the resonance coil 43a, and FIG. FIG. 3 (g) shows the time change of the digital voltage 36 output from the digitizing means 49a of the digital signal generating means 49. FIG. 3G shows the digital reference signal output from the means 49b of the digital signal generating means 49 which is advanced by 90 degrees. The output from the generating means 417 The time variation of the digital signal 37 obtained by advancing the phase of the digital voltage 36 by 90 degrees based on the count number of the total reference signal 417a, FIG. 3 (h) shows the correction resonance capacitor of the correction resonance capacitor switching means 418. The resonance capacitor connection switching signal 38 for correction to the analog switches AS1 and 43d for connecting 43c to the reference resonance capacitor 43b (the phase of the electromotive voltage 34 is from 30 degrees to 150 degrees from H, 210 degrees from 38 degrees, respectively) Similarly, FIG. 3 (i) shows the correction resonance capacitor connection switching means 418 to analog switches AS2 and 43f for connecting the correction resonance capacitor 43e to the reference resonance capacitor 43b. Resonance capacitor connection switching signal 39 (39a, 39b, respectively) Phase voltage 34 indicates the time variation of H) from 60 degrees to 300 degrees from H, 240 degrees to 120 degrees.

図4に示す本発明の第2の無線充電装置41の無線充電時の動作を図2に示す無線充電時のフローチャートと、図3に示す無線充電時の各信号の時間変化を使用して説明する。前記外部電力発振装置42の1次コイル42cと前記第1の無線充電装置41の共振回路43の有する共振コイル43aが近接、対向して配置される。その後、前記外部電力発振装置42の発振を開始させる。前記充電制御器46はレベルHの充電開始信号46aを前記補正用共振コンデンサ接続切り換え手段418とデジタル基準信号発生手段417に出力する(S2)。レギュレータ48の出力が基準電圧を超えると(S3)、該補正用共振コンデンサ接続切り換え手段418は基準共振コンデンサ43bへの補正用共振コンデンサ43c,43eの接続の切り換えを開始する(S4)。該補正用共振コンデンサ接続切り換え手段418はデジタル信号37の立ち上がりを検出すると(S5)、前記デジタル基準信号発生手段417の出力するデジタル基準信号417aのカウント数に基づいて、まず、t10後に、該補正用共振コンデンサ接続切り換え手段418の出力38aがレベルHとなって、AS1,43dをオンし(S6)、t20後に、該補正用共振コンデンサ接続切り換え手段418の出力39aがレベルHとなって、AS2,43fをオンし(S7)、t11後に、該補正用共振コンデンサ接続切り換え手段418の出力38aがレベルLとなって、AS1,43dをオフし(S8)、t21後に、該補正用共振コンデンサ接続切り換え手段418の出力39aがレベルLとなって、AS2,43fをオフする(S9)。 充電制御器46はレベルLの充電終了信号46aをまだ出していないので、ステップS5に戻り、該補正用共振コンデンサ接続切り換え手段418はデジタル信号37の立ち下がりを検出すると(S5)、前記デジタル基準信号発生手段417の出力するデジタル基準信号417aのカウント数に基づいて、まず、t10後に、該補正用共振コンデンサ接続切り換え手段418の出力38bがレベルHとなって、AS1,43dをオンし(S6)、t20後に、該補正用共振コンデンサ接続切り換え手段418の出力39bがレベルHとなって、AS2,43fをオンし(S7)、t11後に、該補正用共振コンデンサ接続切り換え手段418の出力38bがレベルLとなって、AS1,43dをオフし(S8)、t21後に、該補正用共振コンデンサ接続切り換え手段418の出力39bがレベルLとなって、AS2,43fをオフする(S9)。このシーケンスを繰り返し、その後、S10で、前記外部電力発振装置42が発振を終了し、充電制御器46がレベルLの充電終了信号46aを出すと、該補正用共振コンデンサ切り換え手段418は前記基準共振コンデンサ43bへの該補正用共振コンデンサ43c,43の接続の切り換えを停止し(S11)、無線充電が終了する。 The operation at the time of wireless charging of the second wireless charging device 41 of the present invention shown in FIG. 4 will be described using the flowchart at the time of wireless charging shown in FIG. 2 and the time change of each signal at the time of wireless charging shown in FIG. To do. A primary coil 42c of the external power oscillation device 42 and a resonance coil 43a included in the resonance circuit 43 of the first wireless charging device 41 are disposed close to and opposed to each other. Thereafter, the external power oscillator 42 starts to oscillate. The charge controller 46 outputs a charge start signal 46a of level H to the correcting resonance capacitor connection switching means 418 and the digital reference signal generating means 417 (S2). When the output of the regulator 48 exceeds the reference voltage (S3), the correction resonance capacitor connection switching means 418 starts switching the connection of the correction resonance capacitors 43c and 43e to the reference resonance capacitor 43b (S4). When the correcting resonant capacitor connection switching means 418 detects the rising edge of the digital signal 37 (S5), first, after t10, the correction is made based on the count number of the digital reference signal 417a output from the digital reference signal generating means 417. The output 38a of the resonance capacitor connection switching means 418 for level 418 becomes level H and AS1 and 43d are turned on (S6). After t20, the output 39a of the resonance capacitor connection switching means 418 for correction becomes level H and AS2 43f are turned on (S7), and after t11, the output 38a of the correcting resonance capacitor connection switching means 418 becomes level L, AS1 and 43d are turned off (S8), and after t21, the correcting resonance capacitor connection is made. The output 39a of the switching means 418 becomes level L, and AS2 and 43f are turned off (S ). Since the charge controller 46 has not yet issued the level L charge end signal 46a, the process returns to step S5, and when the correcting resonance capacitor connection switching means 418 detects the fall of the digital signal 37 (S5), the digital reference Based on the count number of the digital reference signal 417a output from the signal generating means 417, first, after t10, the output 38b of the correcting resonance capacitor connection switching means 418 becomes the level H, and the AS1 and 43d are turned on (S6). ), After t20, the output 39b of the correcting resonance capacitor connection switching means 418 becomes level H, turns on AS2 and 43f (S7), and after t11, the output 38b of the correcting resonance capacitor connection switching means 418 becomes At level L, AS1 and 43d are turned off (S8). The output 39b of the capacitors connected switching means 418 becomes level L, turning off the AS2,43f (S9). This sequence is repeated, and then, in S10, when the external power oscillation device 42 finishes oscillating and the charge controller 46 outputs a charge end signal 46a of level L, the correcting resonance capacitor switching means 418 makes the reference resonance. Switching of the connection of the correcting resonance capacitors 43c and 43 to the capacitor 43b is stopped (S11), and the wireless charging is finished.

図2に示す無線充電時にフローチャートでは、前記過充電過放電検出信号出力手段419が動作しない場合であった。該過充電過放電検出信号出力手段419がレベルHの過充電検出信号419aを前記充電制御器46に出力した場合は、該充電制御器46は該過充電検出信号419aがレベルLになるまで、充電制御機能を停止する。該過充電過放電検出信号出力手段419がレベルHの過放電検出信号419bを前記レギュレータ48に出力した場合は、該レギュレータ48は該過放電検出信号419bがレベルLになるまで、前記無線充電装置41の外部への出力(出力電圧48a,48b)を停止する。 In the flowchart at the time of wireless charging shown in FIG. 2, the overcharge / overdischarge detection signal output means 419 does not operate. When the overcharge / overdischarge detection signal output means 419 outputs an overcharge detection signal 419a of level H to the charge controller 46, the charge controller 46 waits until the overcharge detection signal 419a becomes level L. Stop the charge control function. When the overcharge / overdischarge detection signal output means 419 outputs an overdischarge detection signal 419b of level H to the regulator 48, the regulator 48 keeps the wireless charging device until the overdischarge detection signal 419b becomes level L. The output to 41 outside (output voltages 48a and 48b) is stopped.

図1において、2個の前記補正用共振コンデンサ3c,3eは、前記基準共振コンデンサ3bに並列に接続し、図4において、2個の前記補正用共振コンデンサ43c,43eは前記基準共振コンデンサ43bに直列に接続するが、1個または3個以上の補正用共振コンデンサを使用できる、また、基準共振コンデンサに補正用共振コンデンサを並列と直列を混在して接続できることは明らかであるので、説明を省略する。 In FIG. 1, two correction resonance capacitors 3c and 3e are connected in parallel to the reference resonance capacitor 3b. In FIG. 4, two correction resonance capacitors 43c and 43e are connected to the reference resonance capacitor 43b. Although it is connected in series, it is clear that one or three or more correction resonance capacitors can be used, and it is clear that correction resonance capacitors can be connected in parallel and in series to the reference resonance capacitor, so the description is omitted. To do.

以上の詳細な説明により示されたように、本発明の無線充電装置とそれを用いた無線充電方法を使用することによって、金属筐体または筐体の一部が金属である、携帯電話、無線充電心臓ペースメーカや電気自動車などの無線で充電する電子機器あるいは電子装置をより効率よく充電できる、または、電子機器あるいは電子装置の小型化や薄型化に効果がる。 As shown in the above detailed description, by using the wireless charging device of the present invention and the wireless charging method using the same, a mobile phone, a wireless phone in which a metal casing or a part of the casing is metal is used. An electronic device or an electronic device that is charged wirelessly, such as a charging heart pacemaker or an electric vehicle, can be charged more efficiently, or the electronic device or the electronic device can be reduced in size and thickness.

本発明の第1の無線充電装置のブロック図である。It is a block diagram of the 1st wireless charging device of this invention. 無線充電時のフローチャートである。It is a flowchart at the time of wireless charging. 無線充電時の各信号の時間変化である。It is a time change of each signal at the time of wireless charging. 本発明の第2の無線充電装置のブロック図である。It is a block diagram of the 2nd wireless charging device of the present invention. 本発明で使用する外部電力発振装置の第1の1次コイルと本発明の無線充電装置の第1の共振コイルの平面配置図である。It is a plane arrangement view of the first primary coil of the external power oscillation device used in the present invention and the first resonance coil of the wireless charging device of the present invention. 本発明で使用する外部電力発振装置の第2の1次コイルと本発明の無線充電装置の第2の共振コイルの断面配置図である。It is a cross-sectional arrangement view of the second primary coil of the external power oscillation device used in the present invention and the second resonance coil of the wireless charging device of the present invention. 従来の無線充電装置である。It is a conventional wireless charging device. 従来において使用する外部電力発振装置の1次コイルと従来の無線充電装置の2次コイルの平面配置図である。It is a plane arrangement view of a primary coil of an external power oscillation device used in the related art and a secondary coil of a conventional wireless charging device. 従来において使用する外部電力発振装置の他の1次コイルと従来の無線充電装置の他の2次コイルの断面配置図である。It is a cross-sectional arrangement view of another primary coil of an external power oscillation device used in the related art and another secondary coil of a conventional wireless charging device.

1,41,71 無線充電装置
2,42,72 外部電力発振装置
2a,42a,72a 交流電源
2b,42b,72b 1次コンデンサ
2c,32c,72c 1次コイル
3, 43,73 共振回路
3a,43a,73a 共振コイル
3b,43b,73b 基準共振コンデンサ
3c,3e,43c,43e 補正用共振コンデンサ
3d,3f,43d,43f アナログスイッチ
4, 44,74 全波整流回路
4a、4b、4c、4d、44a,44b,44c,44d,
74a,74b,74c,74d ダイオード
5, 45,75 充電コンデンサ
6, 46,76 充電制御器
6a,46a 充電開始終了信号
7, 47,77 リチウムイオン2次電池
8, 48,78 レギュレータ
8a,8b,48a,48b,78a,78b レギュレータ出力電圧
9, 49,79 デジタル信号発生手段
9a,49a デジタル化手段
9b,49b 位相90度進ませ手段
17,417 デジタル基準信号発生手段
17a,417a デジタル基準信号
18,418 補正用共振コンデンサ接続切り換え手段
19,419,79 過充電過放電検出信号出力手段
19a,419a 過充電検出信号
19b,419b 過放電検出信号
19c,419c 電圧充電容量特性データ
1, 41, 71 Wireless charging devices 2, 42, 72 External power oscillators 2a, 42a, 72a AC power supplies 2b, 42b, 72b Primary capacitors 2c, 32c, 72c Primary coils 3, 43, 73 Resonant circuits 3a, 43a , 73a Resonant coils 3b, 43b, 73b Reference resonant capacitors 3c, 3e, 43c, 43e Correction resonant capacitors 3d, 3f, 43d, 43f Analog switches 4, 44, 74 Full-wave rectifier circuits 4a, 4b, 4c, 4d, 44a , 44b, 44c, 44d,
74a, 74b, 74c, 74d Diode 5, 45, 75 Charging capacitor 6, 46, 76 Charge controller 6a, 46a Charging start end signal 7, 47, 77 Lithium ion secondary battery 8, 48, 78 Regulator 8a, 8b, 48a, 48b, 78a, 78b Regulator output voltage 9, 49, 79 Digital signal generation means 9a, 49a Digitization means 9b, 49b Phase advancement means 17, 417 Digital reference signal generation means 17a, 417a Digital reference signal 18, 418 Correction resonance capacitor connection switching means 19, 419, 79 Overcharge overdischarge detection signal output means 19a, 419a Overcharge detection signals 19b, 419b Overdischarge detection signals 19c, 419c Voltage charge capacity characteristic data

Claims (6)

お互いに直列に接続する、共振コンデンサと、巻線のない磁心の一部の断面積が巻線部の断面積より小さい閉ループの磁心を有する共振コイルから構成され、外部から無線で伝送する外部電力の周波数に共振する共振回路と、該共振回路を介して外部電力を充電する二次電池からなり、筐体が金属または筐体の一部が金属からなる無線充電装置において、前記共振コンデンサには、基準共振コンデンサと、該基準共振コンデンサに接続可能な1個以上の、前記共振回路を前記外部電力の周波数に共振させるために使用する補正用共振コンデンサが用意されていることを特徴とする無線充電装置。 External power that consists of a resonant capacitor connected in series with each other and a resonant coil that has a closed-loop magnetic core whose partial cross-sectional area of the magnetic core without winding is smaller than the cross-sectional area of the winding part. In the wireless charging device, which includes a resonance circuit that resonates at a frequency of and a secondary battery that charges external power via the resonance circuit, and the casing is made of metal or part of the casing is made of metal, the resonance capacitor includes And a reference resonance capacitor, and one or more correction resonance capacitors that can be connected to the reference resonance capacitor and are used to resonate the resonance circuit to the frequency of the external power. Charging device. 前記補正用共振コンデンサはアナログスイッチによって前記基準共振コンデンサに直列あるいは並列に接続される、あるいは、該基準共振コンデンサから切り離されることを特徴とする請求項1に記載の無線充電装置。 The wireless charging apparatus according to claim 1, wherein the correction resonance capacitor is connected in series or in parallel to the reference resonance capacitor by an analog switch, or is disconnected from the reference resonance capacitor. 前記無線充電装置は、前記外部電力の周波数に比べ十分大きい周波数のデジタル基準信号を発生するデジタル基準信号発生手段を有することを特徴とする請求項1または2に記載の無線充電装置。 The wireless charging apparatus according to claim 1, wherein the wireless charging apparatus includes a digital reference signal generating unit that generates a digital reference signal having a frequency sufficiently higher than a frequency of the external power. 前記無線充電装置は、前記共振コイルの両端間の電圧を、該外部電力の周波数と同じ周波数のデジタル電圧にデジタル化するデジタル化手段と、その位相を90度進ませ、デジタル信号を発生する、位相90度進ませ手段からなるデジタル信号発生手段を有することを特徴とする請求項1乃至3のいずれかに記載の無線充電装置。 The wireless charging device generates a digital signal by digitizing means for digitizing the voltage between both ends of the resonance coil into a digital voltage having the same frequency as the frequency of the external power, and by advancing its phase by 90 degrees. 4. The wireless charging device according to claim 1, further comprising a digital signal generating means comprising means for advancing the phase by 90 degrees. 請求項1乃至4のいずれかに記載の無線充電装置において、前記共振電流が大きくなることに対応して、前記基準共振コンデンサに前記補正用共振コンデンサを並列に接続し、あるいは、該基準共振コンデンサから該補正用共振コンデンサをその直列の接続から切り離し、前記共振コンデンサを、その容量が大きくなるように切り換えことによって、また、前記共振電流が小さくなることに対応して、前記基準共振コンデンサから前記補正用共振コンデンサをその並列の接続から切り離し、あるいは、該基準共振コンデンサに該補正用共振コンデンサを直列に接続し、前記共振コンデンサを、その容量が小さくなるように切り換えことによって、前記共振回路を前記外部電力の周波数に共振させることを特徴とする無線充電方法。 5. The wireless charging device according to claim 1, wherein the correction resonance capacitor is connected in parallel to the reference resonance capacitor in response to an increase in the resonance current, or the reference resonance capacitor. Disconnecting the correcting resonant capacitor from the series connection and switching the resonant capacitor to increase its capacitance, and in response to a decrease in the resonant current from the reference resonant capacitor. By disconnecting the correcting resonant capacitor from the parallel connection, or by connecting the correcting resonant capacitor in series to the reference resonant capacitor and switching the resonant capacitor so that its capacitance is reduced, the resonant circuit is A wireless charging method comprising resonating with a frequency of the external power. 前記位相90度進ませ手段による前記デジタル電圧の90度進ませは、前記デジタル基準信号発生手段の出力するデジタル基準信号のカウント数に基づいて行われ、また、前記共振コンデンサの切り換えのタイミングは、前記デジタル信号の立ち上がりあるいは立下りからの該デジタル基準信号のカウント数に基づいて行われることを特徴とする請求項5に記載の無線充電方法。 The 90-degree advancement of the digital voltage by the phase advancement means is performed based on the count number of the digital reference signal output from the digital reference signal generation means, and the switching timing of the resonance capacitor is: The wireless charging method according to claim 5, wherein the wireless charging method is performed based on a count number of the digital reference signal from a rising edge or a falling edge of the digital signal.
JP2010245052A 2010-11-01 2010-11-01 Wireless charging apparatus and wireless charging method thereof Expired - Fee Related JP5041610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245052A JP5041610B2 (en) 2010-11-01 2010-11-01 Wireless charging apparatus and wireless charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245052A JP5041610B2 (en) 2010-11-01 2010-11-01 Wireless charging apparatus and wireless charging method thereof

Publications (3)

Publication Number Publication Date
JP2012100406A true JP2012100406A (en) 2012-05-24
JP2012100406A5 JP2012100406A5 (en) 2012-07-05
JP5041610B2 JP5041610B2 (en) 2012-10-03

Family

ID=46391688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245052A Expired - Fee Related JP5041610B2 (en) 2010-11-01 2010-11-01 Wireless charging apparatus and wireless charging method thereof

Country Status (1)

Country Link
JP (1) JP5041610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149292A1 (en) * 2020-01-23 2021-07-29

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187916A (en) * 1996-12-27 1998-07-21 Rohm Co Ltd Responder for contactless ic card communication system
WO2002015124A1 (en) * 2000-08-15 2002-02-21 Omron Corporation Noncontact communication medium and noncontact communication system
JP2006010542A (en) * 2004-06-28 2006-01-12 Norio Miyauchi Radio controlled time piece
JP2008225927A (en) * 2007-03-13 2008-09-25 Nec Corp Portable terminal with built-in noncontact ic card, and control method
JP2009072011A (en) * 2007-09-14 2009-04-02 Shinko Electric Co Ltd Power supply system
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187916A (en) * 1996-12-27 1998-07-21 Rohm Co Ltd Responder for contactless ic card communication system
WO2002015124A1 (en) * 2000-08-15 2002-02-21 Omron Corporation Noncontact communication medium and noncontact communication system
JP2006010542A (en) * 2004-06-28 2006-01-12 Norio Miyauchi Radio controlled time piece
JP2008225927A (en) * 2007-03-13 2008-09-25 Nec Corp Portable terminal with built-in noncontact ic card, and control method
JP2009072011A (en) * 2007-09-14 2009-04-02 Shinko Electric Co Ltd Power supply system
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof

Also Published As

Publication number Publication date
JP5041610B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP6471971B2 (en) Wireless power transmission system and power transmission device for wireless power transmission system
EP2525461B1 (en) Wireless power receiver and method for controlling the same
CN108347087B (en) Power transmission device and power transmission system
EP2587613B1 (en) Wireless power receiver for adjusting magnitude of wireless power
US20110260532A1 (en) Power-supplying device, control method for the same, and power-supplying system
EP3360233B1 (en) Resonant power transfer systems having efficiency optimization based on receiver impedance
JP6059522B2 (en) Wireless power supply system, power supply device, power reception device, and magnetic field space forming method
EP2993677A1 (en) Wireless power transmission device, heat generation control method for wireless power transmission device, and production method for wireless power transmission device
US11303157B2 (en) Power transmitting device and power receiving device
JP6520929B2 (en) Power receiving device and contactless power transmission device having the same
US20230016332A1 (en) Wireless power feeding system having tuning adjustment circuit
EP2985861A1 (en) Wireless power transmission apparatus, supply power control method for wireless power transmission apparatus, and manufacturing method for wireless power transmission apparatus
US20160126751A1 (en) Electricity supply module using wireless power transmission and power supply method of electricity supply module
JP5041610B2 (en) Wireless charging apparatus and wireless charging method thereof
JP6981480B2 (en) Power receiver, power transmission system, and power receiving method
JP6565809B2 (en) Power transmission device and power transmission system
Qiu et al. Coupling-dependent data flipping in wireless power and data transfer system
KR101822213B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
KR101920216B1 (en) Wireless power transmitter and wireless power receiver
JP7261506B2 (en) Wireless power supply system and power receiver with circular, spherical, and multifaceted shapes
JP2022039624A (en) Contactless charging system
JP2019213365A (en) Non-contact power transmission system
JP2017131073A (en) Power transmission device and power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5041610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees