JP2012100042A - Oscillation device and electronic apparatus - Google Patents

Oscillation device and electronic apparatus Download PDF

Info

Publication number
JP2012100042A
JP2012100042A JP2010245658A JP2010245658A JP2012100042A JP 2012100042 A JP2012100042 A JP 2012100042A JP 2010245658 A JP2010245658 A JP 2010245658A JP 2010245658 A JP2010245658 A JP 2010245658A JP 2012100042 A JP2012100042 A JP 2012100042A
Authority
JP
Japan
Prior art keywords
oscillation device
resin member
piezoelectric element
oscillation
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245658A
Other languages
Japanese (ja)
Other versions
JP5771952B2 (en
Inventor
Yasuharu Onishi
康晴 大西
Atsushi Kuroda
淳 黒田
Motoyoshi Komoda
元喜 菰田
Shigeo Sato
重夫 佐藤
Yukio Murata
行雄 村田
Yuichiro Kishinami
雄一郎 岸波
Nobuhiro Kawashima
信弘 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010245658A priority Critical patent/JP5771952B2/en
Publication of JP2012100042A publication Critical patent/JP2012100042A/en
Application granted granted Critical
Publication of JP5771952B2 publication Critical patent/JP5771952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact oscillation device capable of reproducing a large volume of sound.SOLUTION: A piezoelectric element 10 is fixed by a first resin member 41 being an elastic member, so that a movable range in vibration is enlarged and also amplitude is enlarged. A second resin member 42 with rigidity lower than that of the first resin member 41 is interposed between the first resin member 41 and a support body 45, so that impedance matching in rigidity is obtained. Consequently, audible sound is reproduced by oscillating an ultrasonic wave restricted to a specified frequency through the use of a high mechanical quality factor Q being the feature of the piezoelectric element 10, so that a large volume of sound is reproduced.

Description

本発明は、圧電素子を備えた発振装置、この発振装置を有する電子機器、に関する。   The present invention relates to an oscillation device provided with a piezoelectric element, and an electronic apparatus having the oscillation device.

近年、携帯電話機やノート型コンピュータなどの携帯型の電子機器の需要が拡大している。このような電子機器では、テレビ電話や動画再生、ハンズフリー電話などの音響機能を商品価値とした薄型の携帯端末の開発が進められている。このような開発の中、音響部品である発振装置(スピーカ装置)に対して、高音質でかつ小型・薄型化への要求が高まっている。   In recent years, demand for portable electronic devices such as mobile phones and notebook computers has been increasing. In such an electronic device, development of a thin portable terminal whose commercial value is an acoustic function such as a videophone, a video playback, and a hands-free phone is being promoted. Under such development, there is an increasing demand for a high-quality sound and a small and thin oscillator device (speaker device) that is an acoustic component.

従来、携帯電話等の電子機器には、発振装置として動電型発振装置が利用されてきた。この動電型発振装置は、永久磁石とボイスコイルと振動膜から構成されている。しかし、動電型発振装置は、その動作原理および構造から、薄型化には限界がある。一方、特許文献1、2には、圧電素子を発振装置として使用することが記載されている。   Conventionally, an electrodynamic oscillation device has been used as an oscillation device in an electronic device such as a mobile phone. This electrodynamic oscillation device includes a permanent magnet, a voice coil, and a diaphragm. However, there is a limit to reducing the thickness of an electrodynamic oscillator due to its operating principle and structure. On the other hand, Patent Documents 1 and 2 describe using a piezoelectric element as an oscillation device.

また、圧電素子を用いる発振装置の他の例としては、スピーカ装置のほか、圧電素子から発振された音波を用いて対象物までの距離などを検出する音波センサ(特許文献3を参照)など、種々の発振装置や電子機器が知られている。例えば、同一形状で同一材料の二個の圧電素子を弾性部材に二段に積層することで、バイモルフの発振装置を実現する提案がある(特許文献4)。また、平面形状のサイズが相違する二個の圧電素子を弾性部材の両面に一個ずつ配置することで、バイモルフの発振装置を実現する提案もある(特許文献5)   Other examples of the oscillation device using a piezoelectric element include a speaker device, a sound wave sensor that detects a distance to an object using a sound wave oscillated from the piezoelectric element (see Patent Document 3), and the like. Various oscillation devices and electronic devices are known. For example, there is a proposal for realizing a bimorph oscillation device by stacking two piezoelectric elements of the same shape and the same material on an elastic member in two stages (Patent Document 4). There is also a proposal for realizing a bimorph oscillation device by arranging two piezoelectric elements having different planar shapes on both sides of an elastic member (Patent Document 5).

特表2007−026736号公報Japanese translation of PCT publication No. 2007-026736 特表2007−083497号公報Special table 2007-083497 特開平03−270282号公報Japanese Patent Laid-Open No. 03-270282 特開2002−112391号公報JP 2002-112391 A 特開2008−28593号公報JP 2008-28593 A

圧電素子を用いる発振装置は、圧電層の圧電効果を利用して、電気信号の入力による電歪作用により、振動振幅を発生させるものである。そして、動電型発振装置がピストン型の進退運動によって振動を発生させるのに対して、圧電素子を用いる発振装置は屈曲型の振動姿態をとるために振幅が小さくなる。このため、上記した動電型の発振装置に対して薄型化に優位である。   An oscillating device using a piezoelectric element generates a vibration amplitude by an electrostrictive action by inputting an electric signal by using a piezoelectric effect of a piezoelectric layer. The electrodynamic oscillation device generates vibration by a piston-type advance / retreat motion, whereas the oscillation device using a piezoelectric element has a bending-type vibration state and thus has a small amplitude. For this reason, it is superior in reducing the thickness of the above-described electrodynamic oscillator.

しかしながら、セラミック材料は脆性材料である上に、機械損失が小さいため、機械品質係数Qが、有機フィルムから振幅を発生させる動電型電気音響変換器に比べ、高い傾向にある。例えば、動電型は機械品質係数Qが3〜5程度に対して、圧電型では約50程度となる。機械品質係数Qは共振時に先鋭度を示すため、要約すれは、圧電型電気音響変換器では、基本共振周波数近傍では音圧が高く、それ以外の帯域では音圧が減衰することを意味する。   However, since the ceramic material is a brittle material and has a small mechanical loss, the mechanical quality factor Q tends to be higher than that of an electrodynamic electroacoustic transducer that generates an amplitude from an organic film. For example, the electrodynamic type has a mechanical quality factor Q of about 3 to 5, while the piezoelectric type has about 50. Since the mechanical quality factor Q indicates sharpness at the time of resonance, the summary means that in the piezoelectric electroacoustic transducer, the sound pressure is high near the fundamental resonance frequency and the sound pressure is attenuated in other bands.

すなわち、音圧レベル周波数特性において、音響特性の山谷が発生し、特定周波数の音が強調されたり、消失されたりして、音楽再生などに十分な音質が得られない問題点を持つ。また、音響特性と同様に放射面積に対しての問題点を持つ。圧電型の電気音響変換器においても、電磁型の変換器と同様に、音圧レベルは、体積排除量(放射面積と振幅との積)に依存するため、薄型化は可能であっても放射面積の低減には限界があり、携帯電話用の電気音響変換器として十分な機能を満たしていない。このため、高音質で小型な電気音響変換器を生み出す画期的な技術が要求されていた。   That is, in the sound pressure level frequency characteristic, there is a problem that the sound characteristic level peaks and valleys occur, and the sound of a specific frequency is emphasized or lost, so that sufficient sound quality for music reproduction or the like cannot be obtained. In addition, there is a problem with respect to the radiation area as well as acoustic characteristics. In piezoelectric electroacoustic transducers, as with electromagnetic transducers, the sound pressure level depends on the volume exclusion amount (the product of the radiation area and amplitude). There is a limit to the reduction of the area, and it does not satisfy a sufficient function as an electroacoustic transducer for a mobile phone. For this reason, an epoch-making technology for producing a small electroacoustic transducer with high sound quality has been required.

本発明は上述のような課題に鑑みてなされたものであり、小型でも大音量の再生が可能な発振装置、この発振装置を利用した電子機器、を提供するものである。   The present invention has been made in view of the above-described problems, and provides an oscillation device capable of reproducing a large volume even with a small size, and an electronic apparatus using the oscillation device.

本発明の発振装置は、電界の印加により伸縮運動する平板状の圧電素子と、圧電素子の二つの主面の一方を拘束している平板状の弾性部材と、少なくとも圧電素子を支持している第一樹脂部材と、第一樹脂部材より縦弾性係数が小さく第一樹脂部材を支持している第二樹脂部材と、少なくとも第二樹脂部材を支持している枠状の支持体と、を有する。   The oscillation device of the present invention supports at least a piezoelectric element, a flat piezoelectric element that expands and contracts by application of an electric field, a flat elastic member that constrains one of the two main surfaces of the piezoelectric element, and the piezoelectric element. A first resin member; a second resin member having a smaller longitudinal elastic modulus than the first resin member and supporting the first resin member; and a frame-shaped support member supporting at least the second resin member. .

本発明の第一の電子機器は、本発明の発振装置と、発振装置に可聴域の音波を出力させる発振駆動部と、を有する。   A first electronic device of the present invention includes the oscillation device of the present invention and an oscillation drive unit that causes the oscillation device to output an audible sound wave.

本発明の第二の電子機器は、本発明の発振装置と、発振装置から発振されて測定対象物で反射した超音波を検知する超音波検知部と、検知された超音波から測定対象物までの距離を算出する測距部と、を有する。   A second electronic device according to the present invention includes an oscillation device according to the present invention, an ultrasonic detection unit that detects an ultrasonic wave oscillated from the oscillation device and reflected by the measurement object, and from the detected ultrasonic wave to the measurement object. And a distance measuring unit for calculating the distance.

本発明の発振装置では、圧電素子が弾性部材である第一樹脂部材で固定されているため、振動時の可動範囲が大きく、振幅が拡大する。また、第一樹脂部材と支持体の間に、第一樹脂部材より低剛性の第二樹脂部材が介在しているため、剛性のインピーダンス整合がとれる。このため、圧電素子の特長である高い機械品質係数Qを利用して、特定周波数に限定した超音波を発振させることで可聴音を再生させることができ、大音量の再生が可能である。   In the oscillation device of the present invention, since the piezoelectric element is fixed by the first resin member that is an elastic member, the movable range during vibration is large and the amplitude is enlarged. In addition, since the second resin member having lower rigidity than the first resin member is interposed between the first resin member and the support, rigidity impedance matching can be achieved. For this reason, audible sound can be reproduced by oscillating an ultrasonic wave limited to a specific frequency using the high mechanical quality factor Q that is a feature of the piezoelectric element, and reproduction at a large volume is possible.

本発明の実施の第一の形態の発振装置の構造を示す模式的な縦断正面図である。1 is a schematic longitudinal sectional front view showing a structure of an oscillation device according to a first embodiment of the present invention. 発振装置の外観を示す模式的な平面図である。It is a typical top view which shows the external appearance of an oscillation apparatus. 圧電素子の構造を示す模式的な縦断正面図である。It is a typical longitudinal section front view showing the structure of a piezoelectric element. 一変形例の発振装置の構造を示す模式的な平面図である。It is a typical top view which shows the structure of the oscillation apparatus of one modification. 発振装置の要部の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the principal part of an oscillation apparatus. 発振装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of an oscillation apparatus. 発振装置の要部の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the principal part of an oscillation apparatus. 本発明の実施の第二の形態の発振装置の構造を示す模式的な縦断正面図である。It is a typical longitudinal cross-sectional front view which shows the structure of the oscillation apparatus of 2nd Embodiment of this invention. バイモルフ型圧電素子の動作を示す模式図である。It is a schematic diagram which shows operation | movement of a bimorph type piezoelectric element. 本発明の実施の第三の形態の発振装置の圧電素子の組立構造を示す分解斜視図である。It is a disassembled perspective view which shows the assembly structure of the piezoelectric element of the oscillation apparatus of 3rd Embodiment of this invention. 本発明の実施の第四の形態の発振装置の構造を示す模式的な平面図である。It is a typical top view which shows the structure of the oscillation apparatus of the 4th embodiment of this invention. 本発明の実施の第五の形態の発振装置の構造を示す模式的な平面図である。It is a typical top view which shows the structure of the oscillation apparatus of the 5th embodiment of this invention. 一従来例の発振装置の構造を示す縦断正面図である。It is a vertical front view which shows the structure of the oscillator of one prior art example. 電子機器である携帯電話機の外観を示す模式的な正面図である。It is a typical front view which shows the external appearance of the mobile telephone which is an electronic device.

[実施の第一の形態]
本発明の実施形態について図1、図2を参照して説明する。図1は本実施形態の電気音響変換器を示す概略断面図であり、図2は概略上面図である。図1に示すように、本実施形態の動電式電気音響変換器である発振装置50は、電界の印加により伸縮運動する平板状の圧電素子10と、圧電素子10の二つの主面の一方を拘束している平板状の弾性部材20と、少なくとも圧電素子10を支持している第一樹脂部材41と、第一樹脂部材41より縦弾性係数が小さく少なくとも第一樹脂部材41を支持している第二樹脂部材42と、少なくとも第二樹脂部材42を支持している枠状の支持体45と、を有する。
[First embodiment]
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing an electroacoustic transducer of the present embodiment, and FIG. 2 is a schematic top view. As shown in FIG. 1, an oscillation device 50 that is an electrodynamic electroacoustic transducer according to this embodiment includes a plate-like piezoelectric element 10 that expands and contracts by application of an electric field, and one of two main surfaces of the piezoelectric element 10. A flat elastic member 20 that restrains the first resin member 41, a first resin member 41 that supports at least the piezoelectric element 10, and a longitudinal elastic coefficient that is smaller than that of the first resin member 41, and supports at least the first resin member 41. And a frame-like support body 45 supporting at least the second resin member 42.

より具体的には、圧電素子10の下側の主面は弾性部材20により拘束されて振動子を形成しており、その両端が第一樹脂部材41で支持されている。この第一樹脂部材41の下面と支持体45の底面とに第二樹脂部材42が介在している。圧電素子10と弾性部材20は互いの弾性率が異なる二つの第一樹脂部材41と第二樹脂部材42とを介して接合している。また、リード線46は、圧電素子10と弾性部材20の端部に接合されており、第一樹脂部材41と第二樹脂部材42との中に固着されており、支持体45の外淵部の端子47に接続されている。   More specifically, the lower main surface of the piezoelectric element 10 is restrained by the elastic member 20 to form a vibrator, and both ends thereof are supported by the first resin member 41. A second resin member 42 is interposed between the lower surface of the first resin member 41 and the bottom surface of the support body 45. The piezoelectric element 10 and the elastic member 20 are joined via two first resin members 41 and a second resin member 42 having different elastic moduli. The lead wire 46 is bonded to the end portions of the piezoelectric element 10 and the elastic member 20, and is fixed to the first resin member 41 and the second resin member 42. The terminal 47 is connected.

本発明の圧電素子10は図3で示される構成であり、圧電材料3−bは、その上下主面が電極材料3−a、3−cで拘束されている。圧電材料3−bは、圧電効果を有する材料であれば、無機材料、有機材料ともに特に限定されないが、電気機械変換効率が高い材料、例えば、ジルコン酸チタン酸鉛(PZT)や、チタン酸バリウム(BaTiO)などの材料が使用可能である。また、厚みは特に限定されないが、10μm〜1mmであることが好ましい。 The piezoelectric element 10 of the present invention has the configuration shown in FIG. 3, and the piezoelectric material 3-b has its upper and lower main surfaces constrained by electrode materials 3-a and 3-c. The piezoelectric material 3-b is not particularly limited as long as it is a material having a piezoelectric effect, but it is not particularly limited, but a material having high electromechanical conversion efficiency, for example, lead zirconate titanate (PZT) or barium titanate. Materials such as (BaTiO 3 ) can be used. Moreover, although thickness is not specifically limited, It is preferable that they are 10 micrometers-1 mm.

脆性材料であるセラミック材料として厚み10μm未満の薄膜を使用した場合、取り扱い時に機械強度の弱さから、欠けや破損などが生じて、取り扱いが困難となる。また、厚み1mmを超えるセラミックを使用した場合は電気エネルギから機械エネルギに変換する変換効率が著しく低下し、発振装置50として十分な性能が得られない。一般的に、電気信号の入力により電歪効果を発生させる圧電セラミックにおいては、その変換効率は電界強度に依存する。この電界強度は分極方向に対する厚み/入力電圧で表されることから、厚みの増加は必然的に変換効率の低下を招いてしまう問題がある。   When a thin film having a thickness of less than 10 μm is used as a ceramic material which is a brittle material, chipping or breakage occurs due to weak mechanical strength during handling, making handling difficult. In addition, when a ceramic having a thickness exceeding 1 mm is used, the conversion efficiency for converting electrical energy into mechanical energy is remarkably reduced, and sufficient performance as the oscillation device 50 cannot be obtained. In general, in a piezoelectric ceramic that generates an electrostrictive effect by inputting an electric signal, the conversion efficiency depends on the electric field strength. Since the electric field strength is expressed by the thickness / input voltage with respect to the polarization direction, an increase in thickness inevitably causes a decrease in conversion efficiency.

本発明の圧電素子10には電界を発生させるために主面に電極層が形成されている。その材料は特に限定されないが、例えば、銀や銀/パラジウムを使用することが可能である。銀は低抵抗な汎用的な電極材料して使用されており、製造プロセスやコストなどに利点があり、銀/パラジウムは耐酸化に優れた低抵抗材料であるため、信頼性の観点から利点がある。   In the piezoelectric element 10 of the present invention, an electrode layer is formed on the main surface in order to generate an electric field. Although the material is not particularly limited, for example, silver or silver / palladium can be used. Silver is used as a general-purpose electrode material with low resistance, which has advantages in manufacturing process and cost. Silver / palladium is a low-resistance material with excellent oxidation resistance, so it has advantages from the viewpoint of reliability. is there.

また、電極材料の厚みは特に限定されないが、その厚みが1〜50μmであるのが好ましい。厚み1μm未満では、膜厚が薄いため、電極上に均一に成形できず、変換効率が低下する可能性がある。また、電極の膜厚が100μmを超える場合は、製造上に特に問題はないが、電極層が圧電セラミック材料に対して拘束面となり、エネルギ変換効率を低下させてしまう問題点がある。   Moreover, although the thickness of electrode material is not specifically limited, It is preferable that the thickness is 1-50 micrometers. If the thickness is less than 1 μm, the film thickness is so thin that it cannot be uniformly formed on the electrode, and conversion efficiency may be reduced. Moreover, when the film thickness of the electrode exceeds 100 μm, there is no particular problem in manufacturing, but there is a problem that the electrode layer becomes a constraining surface with respect to the piezoelectric ceramic material and energy conversion efficiency is lowered.

本発明の圧電素子10は、その片側の主面が弾性部材20によって拘束されている。弾性部材20は、圧電素子10から発生した振動を支持体45に伝播させる機能を持つ。また、同時に弾性部材20には、圧電素子10の基本共振周波数を調整する機能を持つ。機械振動子の基本共振周波数は、以下の数式で示されるように、負荷重量と、コンプライアンスに依存する。言い換えれば、コンプライアンスは振動子の機械剛性であるため、このことは圧電素子10の剛性を制御することで基本共振周波数を制御できることを意味する。   The piezoelectric element 10 of the present invention has a principal surface on one side constrained by an elastic member 20. The elastic member 20 has a function of propagating vibration generated from the piezoelectric element 10 to the support body 45. At the same time, the elastic member 20 has a function of adjusting the basic resonance frequency of the piezoelectric element 10. The fundamental resonance frequency of the mechanical vibrator depends on the load weight and compliance, as shown by the following formula. In other words, since the compliance is the mechanical rigidity of the vibrator, this means that the fundamental resonance frequency can be controlled by controlling the rigidity of the piezoelectric element 10.

[数1]
f=1/(2πL√(mC))
なお、"m"は質量、"C"はコンプライアンス、である。
[Equation 1]
f = 1 / (2πL√ (mC))
“M” is mass and “C” is compliance.

弾性率の高い材料の選択や、弾性部材20の厚みを低減することで、基本共振周波数は低域にシフトさせることが可能となる。弾性部材20には、金属や樹脂など脆性材料であるセラミックに対して高い弾性率を持つ材料であれば特に限定されないが、加工性やコストの観点からリン青銅やステンレスなどの汎用材料が使用される。また、厚みについては、5〜1000μmであることが好ましい。厚みが5μm未満の場合、機械強度が弱く、拘束部材として機能を損なうことや、加工精度による低下により、製造ロット間で振動子の機械振動特性のばらつきが生じてしまう問題点がある。   By selecting a material having a high elastic modulus and reducing the thickness of the elastic member 20, the fundamental resonance frequency can be shifted to a low frequency range. The elastic member 20 is not particularly limited as long as it is a material having a high elastic modulus with respect to a ceramic that is a brittle material such as metal or resin, but general-purpose materials such as phosphor bronze and stainless steel are used from the viewpoint of workability and cost. The Moreover, about thickness, it is preferable that it is 5-1000 micrometers. When the thickness is less than 5 μm, there is a problem that mechanical strength is weak, the function as a restraining member is impaired, and the mechanical vibration characteristics of the vibrators vary between manufacturing lots due to a decrease in processing accuracy.

また、厚みが1000μmを超える場合は、剛性増による圧電素子10への拘束が強まり、振動変位量の減衰を生じさせてしまう問題点がある。また、本実施形態の弾性部材20は、材料の剛性を示す指標である縦弾性係数が、1〜500GPaであることが好ましい。上述のように、弾性部材20の剛性が過度に低い場合や、過度に高い場合は、機械振動子として特性や信頼性を損なう問題点がある。   In addition, when the thickness exceeds 1000 μm, there is a problem in that the restraint on the piezoelectric element 10 due to the increase in rigidity is strengthened and the vibration displacement amount is attenuated. Moreover, it is preferable that the elastic member 20 of this embodiment has a longitudinal elastic modulus, which is an index indicating the rigidity of the material, of 1 to 500 GPa. As described above, when the rigidity of the elastic member 20 is excessively low or excessively high, there is a problem that characteristics and reliability are impaired as a mechanical vibrator.

本発明の発振装置50では、圧電素子10と弾性部材20の端部が二種類の第一樹脂部材41と第二樹脂部材42とを介して支持体45に接合している。第一樹脂部材41は圧電材料や弾性部材20に接合しており、振動を拡大する機構として機能する。従来の圧電型の発振装置50では、圧電素子10を拘束する弾性部材20は支持体45に直接接合されていた。しかしながら、撓み振動においては、図5に示すように、支持体45と弾性部材20に応力が集中するため、この構成では固定端の機能を果たすため、撓み変形の理論から低剛性の方が変位拡大の観点から優位である。   In the oscillation device 50 of the present invention, the end portions of the piezoelectric element 10 and the elastic member 20 are joined to the support body 45 via two types of first resin members 41 and second resin members 42. The first resin member 41 is bonded to the piezoelectric material or the elastic member 20 and functions as a mechanism for expanding vibration. In the conventional piezoelectric oscillation device 50, the elastic member 20 that restrains the piezoelectric element 10 is directly bonded to the support body 45. However, in bending vibration, stress concentrates on the support body 45 and the elastic member 20, as shown in FIG. 5, and this structure functions as a fixed end. Therefore, the lower rigidity is displaced from the theory of bending deformation. It is advantageous from the viewpoint of expansion.

また、本発明では、第一樹脂部材41と支持体45の底部との間に、第二樹脂部材42が介在している。この第二樹脂部材42は、第一樹脂部材41と比較して低剛性の材料であり、弾性率が低いことを特徴とし、振動変位を拡大する機能と、落下衝撃安定性を向上させる機能を有する。第二樹脂部材42の弾性率は、第一樹脂部材41の弾性率に対して、1/10以下が好ましい。   In the present invention, the second resin member 42 is interposed between the first resin member 41 and the bottom of the support body 45. This second resin member 42 is a low-rigidity material compared to the first resin member 41 and has a low elastic modulus, and has a function of expanding vibration displacement and a function of improving drop impact stability. Have. The elastic modulus of the second resin member 42 is preferably 1/10 or less with respect to the elastic modulus of the first resin member 41.

また、第二樹脂部材42と第一樹脂部材41とは、接着材により接合されており、その接着にはエポキシ系接着材などが使用できる。第二樹脂部材42と第一樹脂部材41ともにエポキシ接着に対して接合強度が高い材料であることが好ましい。さらに、接合部での振動エネルギロスを低減するために、その接着材厚みは20μm以下であることが好ましい。図6で示されるように、圧電素子10の撓み振動は圧電素子10の厚み方向に変換される。すなわち、発振装置50の厚み方向への振幅運動が発生し、図7で示されるように、厚み方向に対して、圧電素子10からの駆動力と慣性が作用する。   Moreover, the 2nd resin member 42 and the 1st resin member 41 are joined by the adhesive material, and an epoxy-type adhesive material etc. can be used for the adhesion | attachment. Both the second resin member 42 and the first resin member 41 are preferably materials having high bonding strength with respect to epoxy adhesion. Furthermore, in order to reduce vibration energy loss at the joint, the thickness of the adhesive is preferably 20 μm or less. As shown in FIG. 6, the flexural vibration of the piezoelectric element 10 is converted in the thickness direction of the piezoelectric element 10. That is, an amplitude motion in the thickness direction of the oscillation device 50 is generated, and the driving force and inertia from the piezoelectric element 10 act on the thickness direction as shown in FIG.

そこで、弾性変形率が高い第二樹脂部材42の復元力を利用して変形量を拡大させるのが本発明の特徴である。また、落下時の衝撃安定性についても、第二樹脂部材42で衝撃時のエネルギを吸収するため、信頼性が向上する。なお、第一樹脂部材41と第二樹脂部材42とについては、縦弾性係数が、100GPa以下の高分子材料であれば特に限定されないが、汎用性の観点から、ポリエチレンテレフタレートや、ポリエチレン、ウレタン、シリコンゴム、天然ゴム、合成ゴム、などの使用が可能である。   Therefore, it is a feature of the present invention that the amount of deformation is increased by utilizing the restoring force of the second resin member 42 having a high elastic deformation rate. Further, regarding the impact stability at the time of dropping, the energy at the time of impact is absorbed by the second resin member 42, so the reliability is improved. The first resin member 41 and the second resin member 42 are not particularly limited as long as the longitudinal elastic modulus is a polymer material of 100 GPa or less, but from the viewpoint of versatility, polyethylene terephthalate, polyethylene, urethane, Silicon rubber, natural rubber, synthetic rubber, etc. can be used.

本発明の発振装置50の製造方法を以下に説明する。まず、圧電素子10は、圧電材料の外径=5×3mm、厚み=200μm(0.2mm)の圧電板であり、その両面に、それぞれ厚み8μmの上部電極材料3−aおよび下部電極材料3−bが形成されている。弾性部材20は、外径=7×3mm、厚み=300μm(0.3mm)のリン青銅である。支持体45は、その材質がSUS304であり、弾性部材20と直接接合している。支持体45は、外径=10×5mm、内径=8×3.5mmのバスタブ状のケースであり、SUS304で形成されている。   A method for manufacturing the oscillation device 50 of the present invention will be described below. First, the piezoelectric element 10 is a piezoelectric plate having an outer diameter of the piezoelectric material = 5 × 3 mm and a thickness = 200 μm (0.2 mm), and an upper electrode material 3-a and a lower electrode material 3 each having a thickness of 8 μm are formed on both surfaces thereof. -B is formed. The elastic member 20 is phosphor bronze having an outer diameter = 7 × 3 mm and a thickness = 300 μm (0.3 mm). The support 45 is made of SUS304 and is directly bonded to the elastic member 20. The support body 45 is a bathtub-shaped case having an outer diameter = 10 × 5 mm and an inner diameter = 8 × 3.5 mm, and is made of SUS304.

圧電材料および弾性部材20は、中央に同心状に配置した。また、圧電材料には、ジルコン酸チタン酸鉛系セラミックを用い、電極層には銀/パラジウム合金(重量比70%:30%)を使用した。この圧電セラミックの製造はグリーンシート法で行い、大気中で1100℃−2時間にわたって焼成し、その後、圧電材料層に分極処理を施した。圧電素子10と弾性部材20との接着には、何れもエポキシ系接着剤を用いた。また、第一樹脂部材41には、ポリエチレンを、第二樹脂部材42には天然ゴムを使用した。   The piezoelectric material and the elastic member 20 were arranged concentrically at the center. The piezoelectric material was a lead zirconate titanate ceramic, and the electrode layer was a silver / palladium alloy (weight ratio 70%: 30%). The piezoelectric ceramic was manufactured by a green sheet method, fired in the atmosphere at 1100 ° C. for 2 hours, and then subjected to polarization treatment on the piezoelectric material layer. An epoxy adhesive was used for bonding the piezoelectric element 10 and the elastic member 20 to each other. The first resin member 41 is made of polyethylene, and the second resin member 42 is made of natural rubber.

以下に本発明の発振装置50の動作原理を説明する。本発明の発振装置50は、並列に配置された複数の振動子から放射面に向かった音波を発生させる。その周波数は特に限定されないが、ここで発振される超音波は変調波の輸送体として利用されるため、可聴帯域外が好ましく、例えば、100KHzなどが適している。また、本発明の発振装置50による音響再生方法を述べる。   The operation principle of the oscillation device 50 of the present invention will be described below. The oscillating device 50 of the present invention generates sound waves from a plurality of transducers arranged in parallel toward a radiation surface. Although the frequency is not particularly limited, since the ultrasonic wave oscillated here is used as a carrier for modulated waves, it is preferably outside the audible band, for example, 100 KHz is suitable. In addition, a sound reproduction method using the oscillation device 50 of the present invention will be described.

本構成では、超音波を変調波の輸送体として利用する音響再生器であるパラメトリックスピーカの動作原理を利用している。ここでは、AM(Amplitude Modulation)変調やDSB(Double Side Band amplitude modulation)変調、SSB(Single-Sideband Modulation)変調、FM(Frequency Modulation)変調をかけた超音波を空気中に放射し、超音波が空気中に伝播する際の非線形特性により、可聴音が出現する原理で音響再生を行っている。   In this configuration, the operating principle of a parametric speaker, which is an acoustic regenerator that uses ultrasonic waves as a modulated wave transporter, is used. Here, AM (Amplitude Modulation) modulation, DSB (Double Side Band amplitude modulation) modulation, SSB (Single-Sideband Modulation) modulation, FM (Frequency Modulation) modulated ultrasonic waves are emitted into the air, and the ultrasonic waves Sound reproduction is performed on the principle that audible sound appears due to nonlinear characteristics when propagating in the air.

非線形とは、流れの慣性作用と粘性作用の比で示されるレイノルズ数が大きくなると、層流から乱流に推移する現象が挙げられる。すなわち、音波は流体内で微少にじょう乱しているため、音波は非線形で伝播している。しかしながら、低周波数帯域での音波の振幅は非線形でありがら、振幅差が非常に小さく、通常、線形理論の現象として取り扱っている。   Non-linearity includes a phenomenon in which the flow changes from laminar flow to turbulent flow when the Reynolds number indicated by the ratio between the inertial action and viscous action of the flow increases. That is, since the sound wave is slightly disturbed in the fluid, the sound wave propagates nonlinearly. However, the amplitude of the sound wave in the low frequency band is non-linear, but the amplitude difference is very small, and is usually handled as a phenomenon of linear theory.

これに対して、超音波では非線形性が容易に観察でき、空気中に放射した場合、非線形性を伴う高調波が顕著に発生する。概略すれば、音波が空気中は分子集団が濃淡に混在する疎密状態であり、空気分子が圧縮よりも復元するのに時間が生じた場合、圧縮後に復元できない空気が、連続的に伝播する空気分子と衝突し、衝撃波が生じて可聴音が発生する原理である。   On the other hand, nonlinearity can be easily observed with ultrasonic waves, and when radiated into the air, harmonics with nonlinearity are remarkably generated. In general, when sound waves are in a dense state where molecular groups are mixed in the air in the air, and it takes time for the air molecules to recover rather than compress, the air that cannot be recovered after compression is continuously propagated air. This is the principle that an audible sound is generated by colliding with a molecule and generating a shock wave.

以上のように、本発明に係る発振装置50は、信頼性が高く、小型で大音量の再生ができる。また、超音波を利用しているため、指向性が狭く、ユーザのプライバシー保護などの点で、工業的な価値は大きい。   As described above, the oscillation device 50 according to the present invention is highly reliable, and can be reproduced in a small size and a large volume. Further, since ultrasonic waves are used, directivity is narrow, and industrial value is great in terms of protecting user privacy.

以上をまとめると、本発明の発振装置50は、電子機器(例えば、携帯電話機、ラップトップ型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。発振装置50全体が大型化せず、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。   In summary, the oscillation device 50 of the present invention can also be used as a sound source of an electronic device (for example, a mobile phone, a laptop personal computer, a small game device, etc.). Since the entire oscillation device 50 is not increased in size and the acoustic characteristics are improved, it can be suitably used for a portable electronic device.

なお、上記形態では圧電素子10と弾性部材20と支持体45とが平面形状で矩形の発振装置50を例示した。しかし、図4に示すように、圧電素子10と弾性部材20と支持体45とが円形の発振装置も実施可能である。   In the above embodiment, the oscillating device 50 in which the piezoelectric element 10, the elastic member 20, and the support body 45 are planar and rectangular is illustrated. However, as shown in FIG. 4, an oscillation device in which the piezoelectric element 10, the elastic member 20, and the support body 45 are circular can also be implemented.

[実施の第二の形態]
本発明の実施の第二の形態を、図8を参照し説明する。本実施形態では、実施の第一の形態に対して、弾性部材20を二つの圧電素子10a,10bで拘束していることが特徴である。すなわち、二つの圧電素子10a,10bを利用したバイモルフ構造である。このバイモルフ型圧電素子10a,10bは、図9で示すように、分極方向を逆にした二枚の圧電セラミックを張り合わせ、一方を長手方向に伸ばし、もう一方を縮めることにより屈曲させることで、実施の第一の形態の一枚の圧電素子10a,10bからなるユニモルフ構造に比べて、より大きな変位を得ることが可能となる。なお、二つの圧電素子10a,10bについては、実施の第一の形態と同様の圧電性材料を使用することができる。また、二つの圧電素子10a,10bが互いに同一形状であっても、互いに異なる形状であってもよい。
[Second embodiment]
A second embodiment of the present invention will be described with reference to FIG. The present embodiment is characterized in that the elastic member 20 is constrained by two piezoelectric elements 10a and 10b with respect to the first embodiment. That is, it is a bimorph structure using two piezoelectric elements 10a and 10b. As shown in FIG. 9, the bimorph type piezoelectric elements 10a and 10b are formed by bonding two piezoelectric ceramics whose polarization directions are reversed and bending them by extending one in the longitudinal direction and shrinking the other. Compared to a unimorph structure composed of a single piezoelectric element 10a, 10b in the first form, a larger displacement can be obtained. For the two piezoelectric elements 10a and 10b, the same piezoelectric material as in the first embodiment can be used. Further, the two piezoelectric elements 10a and 10b may have the same shape or different shapes.

以上、本実施形態に発振装置は、電子機器(例えば、携帯電話機、ラップトップ型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。発振装置全体が大型化せず、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。   As described above, the oscillation device according to the present embodiment can be used as a sound source of an electronic device (for example, a mobile phone, a laptop personal computer, a small game device, or the like). Since the entire oscillation device is not increased in size and the acoustic characteristics are improved, it can be suitably used for portable electronic devices.

[実施の第三の形態]
本発明の実施の第三の形態について図10を参照して説明する。本実施形態では、積層型圧電素子から構成されている。図10で示されるように、圧電素子12は、圧電材料からなる圧電板13a〜13eが5層に積層された多層構造である。圧電板同士の間には電極層(導体層)14a〜14dが一層ずつ形成されている。各圧電板13a〜13eの分極方向は一層ごとに逆向きとなっており、また、電界の向きも交互に逆向きとなるように構成されている。このような積層構造の圧電素子12によれば、電極層14a〜14d間に生じる電界強度が高いため、圧電板13a〜13eの積層数に応じた分だけ、圧電素子全体としての駆動力が向上する。
[Third embodiment]
A third embodiment of the present invention will be described with reference to FIG. In this embodiment, it is composed of a multilayer piezoelectric element. As shown in FIG. 10, the piezoelectric element 12 has a multilayer structure in which piezoelectric plates 13a to 13e made of a piezoelectric material are laminated in five layers. Between the piezoelectric plates, electrode layers (conductor layers) 14a to 14d are formed one by one. The polarization directions of the piezoelectric plates 13a to 13e are opposite to each other, and the direction of the electric field is also alternately opposite. According to the piezoelectric element 12 having such a laminated structure, since the electric field strength generated between the electrode layers 14a to 14d is high, the driving force of the piezoelectric element as a whole is improved by an amount corresponding to the number of laminated piezoelectric plates 13a to 13e. To do.

以上、本実施形態に係る発振装置は、電子機器(例えば、携帯電話機、ラップトップ型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。発振装置全体が大型化せず、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。   As described above, the oscillation device according to the present embodiment can also be used as a sound source of an electronic device (for example, a mobile phone, a laptop personal computer, a small game device, etc.). Since the entire oscillation device is not increased in size and the acoustic characteristics are improved, it can be suitably used for portable electronic devices.

[実施の第四の形態]
本発明の実施の第四の形態について、図11を参照して説明する。本実施形態では、実施の第一の形態に対して圧電素子10の形状が変化している。このように圧電素子10の形状を変更することで、量産工程が確立された任意の材料を使用することができ、設計自由度が向上する。形状については、矩形や楕円形、円形などいかなる形状の材料も使用できる。
[Fourth embodiment]
A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the shape of the piezoelectric element 10 is changed with respect to the first embodiment. By changing the shape of the piezoelectric element 10 in this way, any material for which a mass production process has been established can be used, and the degree of freedom in design is improved. Regarding the shape, any shape material such as a rectangle, an ellipse, and a circle can be used.

以上、本実施形態に発振装置は、電子機器(例えば、携帯電話機、ラップトップ型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。発振装置全体が大型化せず、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。   As described above, the oscillation device according to the present embodiment can be used as a sound source of an electronic device (for example, a mobile phone, a laptop personal computer, a small game device, or the like). Since the entire oscillation device is not increased in size and the acoustic characteristics are improved, it can be suitably used for portable electronic devices.

[実施の第五の形態]
本発明の実施の第五の形態について、図12を参照して説明する。本実施形態では、実施の第一の形態に対して圧電素子10の形状と数が変化している。本構成では、小型の圧電素子10を二個使用している。このように圧電素子10の数や形状を変更することで、実施の第四の形態と同様に、量産工程が確立された任意の材料を使用するにことができ、設計自由度が向上する。
[Fifth embodiment]
A fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the shape and number of the piezoelectric elements 10 are changed with respect to the first embodiment. In this configuration, two small piezoelectric elements 10 are used. By changing the number and shape of the piezoelectric elements 10 in this way, any material for which a mass production process has been established can be used as in the fourth embodiment, and the degree of freedom in design is improved.

以上、本実施形態に発振装置は、電子機器(例えば、携帯電話機、ラップトップ型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。発振装置全体が大型化せず、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。   As described above, the oscillation device according to the present embodiment can be used as a sound source of an electronic device (for example, a mobile phone, a laptop personal computer, a small game device, or the like). Since the entire oscillation device is not increased in size and the acoustic characteristics are improved, it can be suitably used for portable electronic devices.

[発明の他の実施例]
本発明の発振装置の特性評価を、以下、評価1〜評価2の評価項目で行った。
[Other embodiments of the invention]
The characteristic evaluation of the oscillation device of the present invention was performed using evaluation items 1 to 2 below.

(評価1)音圧レベル周波数特性の測定:交流電圧1V入力時の音圧レベルを、圧電素子から所定距離だけ離れた位置に配置したマイクロホンにより測定した。なお、この所定距離は、特に明記しない限り10cmであり、周波数の測定範囲は10Hz〜10kHzとした。   (Evaluation 1) Measurement of sound pressure level frequency characteristics: The sound pressure level when an AC voltage of 1 V was input was measured with a microphone placed at a position away from the piezoelectric element by a predetermined distance. The predetermined distance is 10 cm unless otherwise specified, and the frequency measurement range is 10 Hz to 10 kHz.

(評価2)落下衝撃試験:発振装置を搭載した携帯電話を50cm直上から、5回自然落下させ、落下衝撃安定性試験を行った。具体的には、落下衝撃試験後の割れ等の破壊を目視で確認し、さらに、試験後の音圧特性を測定した。その結果、音圧レベル差(試験前の音圧レベルと試験後の音圧レベルとの差のことを指す)が3dB以内を○とし、3dB以上を×とした。   (Evaluation 2) Drop impact test: A mobile phone equipped with an oscillation device was naturally dropped 5 times from directly above 50 cm, and a drop impact stability test was performed. Specifically, breakage such as cracks after the drop impact test was visually confirmed, and the sound pressure characteristics after the test were further measured. As a result, the difference in sound pressure level (referring to the difference between the sound pressure level before the test and the sound pressure level after the test) was 3 dB or less, and 3 dB or more was evaluated as x.

[実施例1]
本発明の第一の実施の形態で記載した発振装置の特性評価を実施した。
[比較例1]
比較例1として、図13の従来の動電型発振装置を作製した。
[実施例2]
実施例2として、実施の第二の形態の発振装置を作成した。
[実施例3]
実施例3として、実施の第三の形態の発振装置を作成した。
[実施例4]
実施例4として、実施の第四の形態の発振装置を作成した。
[実施例5]
実施例5として、実施の第五の形態の発振装置を作成した。
[Example 1]
The characteristics of the oscillation device described in the first embodiment of the present invention were evaluated.
[Comparative Example 1]
As Comparative Example 1, the conventional electrodynamic oscillation device of FIG.
[Example 2]
As Example 2, the oscillation device of the second embodiment was created.
[Example 3]
As Example 3, the oscillation device of the third embodiment was created.
[Example 4]
As Example 4, the oscillation device according to the fourth embodiment was produced.
[Example 5]
As Example 5, the oscillation device according to the fifth embodiment was produced.

Figure 2012100042
上記の結果より明らかのように、実施例1〜5の発振装置によれば、小型でかつ高い音圧レベルを有し、音圧レベル周波数特性は平坦である。
Figure 2012100042
As is clear from the above results, according to the oscillation devices of Examples 1 to 5, it is small and has a high sound pressure level, and the sound pressure level frequency characteristic is flat.

[実施例6]
実施例6として、図14に示すような携帯電話機を用意し、その筐体内に実施例1の発振装置を搭載した。具体的には、携帯電話機の筐体内側面に、発振装置を貼り付ける構成とした。
[実施例7]
実施例7として、図14に示すような携帯電話機を用意し、その筐体内に実施例2の発振装置を搭載した。具体的には、携帯電話機の筐体内側面に、発振装置を貼り付ける構成とした。
[実施例8]
実施例8として、図14に示すような携帯電話機を用意し、その筐体内に実施例3の発振装置を搭載した。具体的には、携帯電話機の筐体内側面に、発振装置を貼り付ける構成とした。
[実施例9]
実施例9として、図14に示すような携帯電話機を用意し、その筐体内に実施例4の発振装置を搭載した。具体的には、携帯電話機の筐体内側面に、発振装置を貼り付ける構成とした。
[実施例10]
実施例10として、図14に示すような携帯電話機を用意し、その筐体内に実施例5の発振装置を搭載した。具体的には、携帯電話機の筐体内側面に、発振装置を貼り付ける構成とした。
[Example 6]
As Example 6, a mobile phone as shown in FIG. 14 was prepared, and the oscillation device of Example 1 was mounted in the casing. Specifically, the oscillation device is attached to the inner side surface of the casing of the mobile phone.
[Example 7]
As Example 7, a mobile phone as shown in FIG. 14 was prepared, and the oscillation device of Example 2 was mounted in the casing. Specifically, the oscillation device is attached to the inner side surface of the casing of the mobile phone.
[Example 8]
As Example 8, a mobile phone as shown in FIG. 14 was prepared, and the oscillation device of Example 3 was mounted in the casing. Specifically, the oscillation device is attached to the inner side surface of the casing of the mobile phone.
[Example 9]
As Example 9, a mobile phone as shown in FIG. 14 was prepared, and the oscillation device of Example 4 was mounted in the casing. Specifically, the oscillation device is attached to the inner side surface of the casing of the mobile phone.
[Example 10]
As Example 10, a mobile phone as shown in FIG. 14 was prepared, and the oscillation device of Example 5 was mounted in the casing. Specifically, the oscillation device is attached to the inner side surface of the casing of the mobile phone.

Figure 2012100042
上記の結果より明らかのように、実施例6〜10の発振装置によれば、小型でかつ高い音圧レベルを有することが確認された。
Figure 2012100042
As is clear from the above results, it was confirmed that the oscillators of Examples 6 to 10 were small and had a high sound pressure level.

なお、本発明は本実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容する。例えば、上記形態では発振装置50を携帯電話機の発音装置として利用することを例示した。しかし、発振装置50と、発振装置50から発振されて測定対象物で反射した超音波を検知する超音波検知部と、検知された超音波から測定対象物までの距離を算出する測距部と、を有する電子機器(図示せず)なども実施可能である。   The present invention is not limited to the present embodiment, and various modifications are allowed without departing from the scope of the present invention. For example, in the above embodiment, the use of the oscillation device 50 as a sound generator for a mobile phone has been exemplified. However, the oscillation device 50, an ultrasonic detection unit that detects ultrasonic waves that are oscillated from the oscillation device 50 and reflected by the measurement object, and a distance measurement unit that calculates a distance from the detected ultrasonic wave to the measurement object It is also possible to implement an electronic device (not shown) having.

3−a 電極材料
3−b 圧電材料
3−c 弾性材料
10 圧電素子
12 圧電素子
20 弾性部材
41 第一樹脂部材
42 第二樹脂部材
45 支持体
46 リード線
47 端子
50 発振装置
3-a Electrode material 3-b Piezoelectric material 3-c Elastic material 10 Piezoelectric element 12 Piezoelectric element 20 Elastic member 41 First resin member 42 Second resin member 45 Support body 46 Lead wire 47 Terminal 50 Oscillator

Claims (10)

電界の印加により伸縮運動する平板状の圧電素子と、
前記圧電素子の二つの主面の一方を拘束している平板状の弾性部材と、
少なくとも前記圧電素子を支持している第一樹脂部材と、
前記第一樹脂部材より縦弾性係数が小さく少なくとも前記第一樹脂部材を支持している第二樹脂部材と、
少なくとも前記第二樹脂部材を支持している枠状の支持体と、
を有する発振装置。
A plate-like piezoelectric element that expands and contracts by application of an electric field;
A plate-like elastic member that restrains one of the two main surfaces of the piezoelectric element;
A first resin member supporting at least the piezoelectric element;
A second resin member supporting at least the first resin member having a smaller longitudinal elastic modulus than the first resin member;
A frame-like support body supporting at least the second resin member;
An oscillation device having
前記第一樹脂部材と前記第二樹脂部材との縦弾性係数が100GPa以下である請求項1に記載の発振装置。   The oscillation device according to claim 1, wherein a longitudinal elastic modulus of the first resin member and the second resin member is 100 GPa or less. 前記第一樹脂部材が前記圧電材料と前記弾性部材とに直接接合されており、
前記第二樹脂部材が前記支持体と前記第一樹脂部材とに介在している請求項1または2に記載の発振装置。
The first resin member is directly bonded to the piezoelectric material and the elastic member;
The oscillation device according to claim 1, wherein the second resin member is interposed between the support and the first resin member.
前記圧電素子の発振周波数が20kHz以上である請求項1ないし3の何れか一項に記載の発振装置。   The oscillation device according to any one of claims 1 to 3, wherein an oscillation frequency of the piezoelectric element is 20 kHz or more. 前記圧電素子の主面の平面形状が矩形である請求項1ないし4の何れか一項に記載の発振装置。   The oscillation device according to any one of claims 1 to 4, wherein a planar shape of a main surface of the piezoelectric element is a rectangle. 前記圧電素子の主面の平面形状が円形である請求項1ないし4の何れか一項に記載の発振装置。   The oscillation device according to any one of claims 1 to 4, wherein a planar shape of a main surface of the piezoelectric element is circular. 前記圧電素子は、セラミック層と電極層とが交互に積層された積層構造からなる請求項1ないし6の何れか一項に記載の発振装置。   The oscillation device according to any one of claims 1 to 6, wherein the piezoelectric element has a laminated structure in which ceramic layers and electrode layers are alternately laminated. 前記圧電素子が可聴波の超音波変調波を発振する請求項1ないし7の何れか一項に記載の発振装置。   The oscillation device according to any one of claims 1 to 7, wherein the piezoelectric element oscillates an ultrasonically modulated ultrasonic wave. 請求項1ないし8の何れか一項に記載の発振装置と、
前記発振装置に可聴域の音波を出力させる発振駆動部と、
を有する電子機器。
An oscillation device according to any one of claims 1 to 8,
An oscillation drive unit for outputting an audible sound wave to the oscillation device;
Electronic equipment having
請求項1ないし8の何れか一項に記載の発振装置と、
前記発振装置から発振されて測定対象物で反射した超音波を検知する超音波検知部と、
検知された前記超音波から前記測定対象物までの距離を算出する測距部と、
を有する電子機器。
An oscillation device according to any one of claims 1 to 8,
An ultrasonic detector for detecting ultrasonic waves oscillated from the oscillation device and reflected by the measurement object;
A distance measuring unit for calculating a distance from the detected ultrasonic wave to the measurement object;
Electronic equipment having
JP2010245658A 2010-11-01 2010-11-01 Oscillator and electronic device Expired - Fee Related JP5771952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245658A JP5771952B2 (en) 2010-11-01 2010-11-01 Oscillator and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245658A JP5771952B2 (en) 2010-11-01 2010-11-01 Oscillator and electronic device

Publications (2)

Publication Number Publication Date
JP2012100042A true JP2012100042A (en) 2012-05-24
JP5771952B2 JP5771952B2 (en) 2015-09-02

Family

ID=46391474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245658A Expired - Fee Related JP5771952B2 (en) 2010-11-01 2010-11-01 Oscillator and electronic device

Country Status (1)

Country Link
JP (1) JP5771952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076908A1 (en) * 2012-11-13 2014-05-22 パナソニック株式会社 Ultrasonic sensor
JP2014108426A (en) * 2012-12-03 2014-06-12 Samsung Electro-Mechanics Co Ltd Apparatus for generating vibrations
JP2014127974A (en) * 2012-12-27 2014-07-07 Kyocera Corp Acoustic generator, acoustic generation apparatus, and electronic apparatus
CN113329284A (en) * 2021-06-22 2021-08-31 王守长 Sound equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251695A (en) * 1996-02-05 1996-09-27 Taiyo Yuden Co Ltd Attaching structure for piezoelectric sounding body
JPH10200994A (en) * 1997-01-06 1998-07-31 Murata Mfg Co Ltd Piezoelectric type electroacoustic transducer
JP2002315096A (en) * 2001-04-09 2002-10-25 Nippon Soken Inc Ultrasonic sensor
JP2003070096A (en) * 2001-01-25 2003-03-07 Matsushita Electric Ind Co Ltd Compound piezoelectric material, ultrasonic probe for ultrasonic diagnostic device, the ultrasonic diagnostic device, and manufacturing method for composite piezoelectric body
JP2003153371A (en) * 2001-11-15 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic wave reproducing method and apparatus thereof
JP2004266643A (en) * 2003-03-03 2004-09-24 Sony Corp Piezoelectric sounding element and its manufacturing method
JP2005057555A (en) * 2003-08-06 2005-03-03 Murata Mfg Co Ltd Inspection method of piezoelectric diaphragm
WO2005094121A1 (en) * 2004-03-25 2005-10-06 Nec Corporation Piezoelectric acoustic element, acoustic device and portable terminal device
JP2006080825A (en) * 2004-09-09 2006-03-23 Seiko Epson Corp Electro-optical device and electronic equipment
WO2007145073A1 (en) * 2006-06-13 2007-12-21 Konica Minolta Medical & Graphic, Inc. Array ultrasonic probe and its manufacturing method and array ultrasonic probe drive method
JP2008055818A (en) * 2006-09-01 2008-03-13 Ricoh Co Ltd Liquid discharging head, method for manufacturing liquid discharging head and image forming apparatus
JP2010109528A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251695A (en) * 1996-02-05 1996-09-27 Taiyo Yuden Co Ltd Attaching structure for piezoelectric sounding body
JPH10200994A (en) * 1997-01-06 1998-07-31 Murata Mfg Co Ltd Piezoelectric type electroacoustic transducer
JP2003070096A (en) * 2001-01-25 2003-03-07 Matsushita Electric Ind Co Ltd Compound piezoelectric material, ultrasonic probe for ultrasonic diagnostic device, the ultrasonic diagnostic device, and manufacturing method for composite piezoelectric body
JP2002315096A (en) * 2001-04-09 2002-10-25 Nippon Soken Inc Ultrasonic sensor
JP2003153371A (en) * 2001-11-15 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic wave reproducing method and apparatus thereof
JP2004266643A (en) * 2003-03-03 2004-09-24 Sony Corp Piezoelectric sounding element and its manufacturing method
JP2005057555A (en) * 2003-08-06 2005-03-03 Murata Mfg Co Ltd Inspection method of piezoelectric diaphragm
WO2005094121A1 (en) * 2004-03-25 2005-10-06 Nec Corporation Piezoelectric acoustic element, acoustic device and portable terminal device
JP2006080825A (en) * 2004-09-09 2006-03-23 Seiko Epson Corp Electro-optical device and electronic equipment
WO2007145073A1 (en) * 2006-06-13 2007-12-21 Konica Minolta Medical & Graphic, Inc. Array ultrasonic probe and its manufacturing method and array ultrasonic probe drive method
JP2008055818A (en) * 2006-09-01 2008-03-13 Ricoh Co Ltd Liquid discharging head, method for manufacturing liquid discharging head and image forming apparatus
JP2010109528A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076908A1 (en) * 2012-11-13 2014-05-22 パナソニック株式会社 Ultrasonic sensor
JP2014098579A (en) * 2012-11-13 2014-05-29 Panasonic Corp Ultrasonic sensor
US9823341B2 (en) 2012-11-13 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic sensor
JP2014108426A (en) * 2012-12-03 2014-06-12 Samsung Electro-Mechanics Co Ltd Apparatus for generating vibrations
US9123882B2 (en) 2012-12-03 2015-09-01 Samsung Electro-Mechanics Co., Ltd. Apparatus for generating vibrations
JP2014127974A (en) * 2012-12-27 2014-07-07 Kyocera Corp Acoustic generator, acoustic generation apparatus, and electronic apparatus
CN113329284A (en) * 2021-06-22 2021-08-31 王守长 Sound equipment

Also Published As

Publication number Publication date
JP5771952B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5761192B2 (en) Oscillator and electronic device
JP5741580B2 (en) Oscillator
JP5682973B2 (en) Oscillator and electronic device
JP5771952B2 (en) Oscillator and electronic device
JP2012015755A (en) Oscillation device and electronic equipment
JP2012015758A (en) Oscillator, method for manufacturing the same and electronic device
JP5803917B2 (en) Oscillator and electronic device
JP2012100040A (en) Oscillator and electronic apparatus
JP5637211B2 (en) Oscillator
JP5617412B2 (en) Oscillator and electronic device
JP5527083B2 (en) Oscillator
JP5440422B2 (en) Oscillator
JP2012015757A (en) Oscillation device and electronic equipment
JP5750865B2 (en) Oscillator and electronic device
JP2012029104A (en) Oscillator and electronic apparatus
JP2012029087A (en) Oscillation device
JP5505165B2 (en) Oscillator
JP5659701B2 (en) Oscillator and electronic device
JP2012029078A (en) Oscillation device
JP5488266B2 (en) Oscillator
JP2011223478A (en) Polymer actuator, electroacoustic transducer using the same, and electronic equipment
JP2012029108A (en) Oscillation device and electronic apparatus
JP2012015756A (en) Electronic apparatus and oscillation unit
JP2012015759A (en) Oscillator and electronic apparatus
JP2012029098A (en) Oscillation device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5771952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees