JP2012099449A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2012099449A
JP2012099449A JP2011031675A JP2011031675A JP2012099449A JP 2012099449 A JP2012099449 A JP 2012099449A JP 2011031675 A JP2011031675 A JP 2011031675A JP 2011031675 A JP2011031675 A JP 2011031675A JP 2012099449 A JP2012099449 A JP 2012099449A
Authority
JP
Japan
Prior art keywords
thickness
dye
sealing portion
electrolyte
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011031675A
Other languages
Japanese (ja)
Other versions
JP4793954B1 (en
Inventor
Katsuhiro Doi
克浩 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011031675A priority Critical patent/JP4793954B1/en
Priority to EP11830728.9A priority patent/EP2626948A4/en
Priority to CN201180018575.0A priority patent/CN102834965B/en
Priority to PCT/JP2011/073065 priority patent/WO2012046796A1/en
Application granted granted Critical
Publication of JP4793954B1 publication Critical patent/JP4793954B1/en
Publication of JP2012099449A publication Critical patent/JP2012099449A/en
Priority to US13/764,490 priority patent/US10128056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell ensuring sufficient durability even under high-temperature environments.SOLUTION: The dye-sensitized solar cell 100 comprises a pair of electrodes 1 and 2 facing each other, a sealing part 4 connecting the pair of electrodes 1 and 2, and an electrolyte 3 filled into a cell space S formed by the pair of electrodes 1 and 2 and the sealing part 4. The sealing part 4 comprises a resin sealing portion 4A containing a resin, and the resin sealing portion 4A comprises a thickness decreasing portion 14b where the thickness decreases with increasing distance from the electrolyte 3 and touches the electrode 2 among the pair of electrodes 1 and 2 facing a tilted face of the thickness decreasing portion 14b along the tilted face.

Description

本発明は、色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

光電変換素子として、安価で、高い光電変換効率が得られることから色素増感太陽電池が注目されており、色素増感太陽電池に関して種々の開発が行われている。   As a photoelectric conversion element, a dye-sensitized solar cell is attracting attention because it is inexpensive and high photoelectric conversion efficiency can be obtained, and various developments have been made regarding the dye-sensitized solar cell.

色素増感太陽電池は一般に、多孔質酸化物半導体層を有する作用極と、対極と、作用極の多孔質酸化物半導体層に担持される光増感色素と、作用極と対極とを連結する封止部と、作用極、対極及び封止部によって包囲される空間(以下、「セル空間」と呼ぶ)に配置される電解質とを備えている。   In general, a dye-sensitized solar cell connects a working electrode having a porous oxide semiconductor layer, a counter electrode, a photosensitizing dye supported on the porous oxide semiconductor layer of the working electrode, and the working electrode and the counter electrode. The sealing part and the electrolyte arrange | positioned in the space (henceforth "cell space") enclosed by a working electrode, a counter electrode, and a sealing part are provided.

このような色素増感太陽電池においては、封止部は樹脂で構成されることが多く、その封止部の厚さは一般には一定とされている(例えば下記特許文献1、2参照)。   In such a dye-sensitized solar cell, the sealing part is often made of resin, and the thickness of the sealing part is generally constant (see, for example, Patent Documents 1 and 2 below).

特開2008−153180号公報JP 2008-153180 A 特開2006−4827号公報JP 2006-4827 A

しかし、上述した特許文献1に記載の色素増感太陽電池は、高湿環境下で使用される場合、耐久性の点で未だ改善の余地があった。   However, the dye-sensitized solar cell described in Patent Document 1 described above still has room for improvement in terms of durability when used in a high humidity environment.

即ち、特許文献1記載の色素増感太陽電池が高湿環境下で使用される場合に、封止部の厚さが大きいと、水分が封止部を通過する通過断面積が大きくなるため、封止部を通して電解質中に侵入しやすく、光電変換効率が低下する可能性がある。   That is, when the dye-sensitized solar cell described in Patent Document 1 is used in a high-humidity environment, if the thickness of the sealing portion is large, the cross-sectional area through which moisture passes through the sealing portion increases. It may easily enter the electrolyte through the sealing portion, and the photoelectric conversion efficiency may be reduced.

一方、封止部において水分の侵入を抑制するためには、封止部の厚さを小さくすればよい。しかし、この場合、封止部全体の厚さが小さくなるため、作用極及び対極に対する封止部の接着力が弱くなる。このため、色素増感太陽電池が高湿環境下で使用されると、作用極または対極と封止部との界面から水分が侵入しやすくなる。   On the other hand, in order to suppress the intrusion of moisture in the sealing portion, the thickness of the sealing portion may be reduced. However, in this case, since the thickness of the entire sealing portion is reduced, the adhesive force of the sealing portion to the working electrode and the counter electrode is weakened. For this reason, when the dye-sensitized solar cell is used in a high humidity environment, moisture easily enters from the interface between the working electrode or the counter electrode and the sealing portion.

従って、光電変換効率の低下や電解質の漏洩を十分に抑制でき、十分な耐久性を確保することができる色素増感太陽電池が望まれていた。   Therefore, there has been a demand for a dye-sensitized solar cell that can sufficiently suppress a decrease in photoelectric conversion efficiency and leakage of an electrolyte and can ensure sufficient durability.

本発明は、上記事情に鑑みてなされたものであり、高湿環境下で使用されても、十分な耐久性を確保できる色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dye-sensitized solar cell that can ensure sufficient durability even when used in a high humidity environment.

本発明者は上記課題を解決するため、樹脂を含む樹脂封止部の厚さに着目して鋭意検討を重ねた。ここで、上記課題を解決するには、樹脂封止部の厚さを厚すぎず薄すぎない値に調整することも考えられるが、それでも十分な耐久性を確保できなかった。そこで、本発明者は、樹脂封止部の厚さを一定にするのではなく、樹脂封止部において電解質からの位置によって厚さを変えることにより上記課題を解決し得るのではないかと考えた。そして、本発明者はさらに鋭意研究を重ねた結果、以下の発明により上記課題を効果的に解決し得ることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied paying attention to the thickness of the resin sealing portion containing resin. Here, in order to solve the above-mentioned problem, it is conceivable to adjust the thickness of the resin sealing portion to a value that is neither too thick nor too thin. However, sufficient durability could not be secured. Therefore, the present inventor thought that the above problem could be solved by changing the thickness depending on the position from the electrolyte in the resin sealing portion instead of making the thickness of the resin sealing portion constant. . As a result of further earnest research, the present inventor has found that the above-described problems can be effectively solved by the following invention.

即ち本発明は、互いに対向する一対の電極と、前記一対の電極を連結する封止部と、前記一対の電極と前記封止部とによって囲まれるセル空間に充填される電解質とを備えており、前記封止部が、樹脂を含む樹脂封止部を有し、前記樹脂封止部が、前記一対の電極の少なくとも一方の電極に接触し且つ前記電解質から離れるにつれて厚さが減少する厚さ減少部を有し、前記厚さ減少部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触することを特徴とする色素増感太陽電池である。   That is, the present invention includes a pair of electrodes facing each other, a sealing portion that connects the pair of electrodes, and an electrolyte that fills a cell space surrounded by the pair of electrodes and the sealing portion. The sealing portion has a resin sealing portion containing a resin, and the resin sealing portion is in contact with at least one electrode of the pair of electrodes and has a thickness that decreases as the distance from the electrolyte increases. It is a dye-sensitized solar cell which has a reduction | decrease part and contacts the electrode which opposes the said inclined surface among said pair of electrodes along the inclined surface of the said thickness decreasing part.

この色素増感太陽電池によれば、樹脂封止部が、電解質から離れるにつれて厚さが減少する厚さ減少部を有し、厚さ減少部の傾斜面に沿って、一対の電極のうち傾斜面に対向する電極に接触している。このため、厚さ減少部の電解質と反対側で厚さを十分に小さくして、外部雰囲気に対する樹脂封止部の露出面積をより小さくすることができる。従って、色素増感太陽電池が高湿環境下で使用されても、水分の侵入を十分に抑制することができる。一方、厚さ減少部では電解質から離れるにつれて厚さが減少している。即ち、厚さ減少部において、電解質に近づくにつれて厚さが増大している。このため、厚さ減少部により電極に対する樹脂封止部の接着力が十分に強化される。従って、本発明の色素増感太陽電池が高湿環境下で使用されても、電極に対する樹脂封止部の接着力の低下を十分に抑制することができ、電極と樹脂封止部との界面からの水分の侵入を十分に抑制することができる。よって、本発明の色素増感太陽電池によれば、高湿環境下で使用されても、十分な耐久性を確保することができる。   According to this dye-sensitized solar cell, the resin sealing portion has a thickness decreasing portion that decreases in thickness as it is separated from the electrolyte, and is inclined among the pair of electrodes along the inclined surface of the thickness decreasing portion. It is in contact with the electrode facing the surface. For this reason, it is possible to sufficiently reduce the thickness on the side opposite to the electrolyte of the thickness reducing portion, and to further reduce the exposed area of the resin sealing portion with respect to the external atmosphere. Therefore, even when the dye-sensitized solar cell is used in a high humidity environment, the intrusion of moisture can be sufficiently suppressed. On the other hand, in the thickness decreasing portion, the thickness decreases as the distance from the electrolyte increases. That is, the thickness increases as the thickness approaches the electrolyte. For this reason, the adhesive force of the resin sealing part with respect to an electrode is fully strengthened by the thickness reduction part. Therefore, even when the dye-sensitized solar cell of the present invention is used in a high-humidity environment, it is possible to sufficiently suppress a decrease in the adhesive force of the resin sealing portion to the electrode, and the interface between the electrode and the resin sealing portion. Invasion of moisture from can be sufficiently suppressed. Therefore, according to the dye-sensitized solar cell of this invention, sufficient durability can be ensured even if it is used in a high humidity environment.

なお、前記厚さ減少部は、樹脂封止部中の少なくとも一部にあればよい。例えば樹脂封止部の最も外側に電解質から離れるに従って厚さが増大する厚さ増大部が設けられていてもよい。換言すれば、厚さ減少部は樹脂封止部のいかなる位置にあってもよい。この場合、色素増感太陽電池が高湿環境下で使用されても、十分な耐久性を確保することができる。これは以下の理由によるものである。すなわち、樹脂封止部が厚さ減少部を有してさえいれば、厚さ減少部により、厚さ減少部の電解質と反対側で厚さが十分に小さくされ、外部雰囲気に対する樹脂封止部の露出面積をより小さくすることができ、水分や空気の侵入を十分に抑制することができる。従って、色素増感太陽電池が高湿環境下で使用されても、水分や空気の侵入を十分に抑制することができる。一方、厚さ減少部では電解質から離れるにつれて厚さが減少している。即ち、厚さ減少部において、電解質に近づくにつれて厚さが増大している。即ち、電解質側(水分や空気が届きにくい側)に厚さが大きい部分がある。別言すると、水分や空気の影響が小さい位置で厚さを確保することができる。このため、厚さ減少部により電極に対する樹脂封止部の接着力が十分に強化される。従って、色素増感太陽電池が高湿環境下で使用されても、電極に対する樹脂封止部の接着力の低下を十分に抑制することができる。   In addition, the said thickness reduction | decrease part should just be in at least one part in a resin sealing part. For example, a thickness increasing portion that increases in thickness as it moves away from the electrolyte may be provided on the outermost side of the resin sealing portion. In other words, the thickness reducing portion may be located at any position of the resin sealing portion. In this case, even when the dye-sensitized solar cell is used in a high humidity environment, sufficient durability can be ensured. This is due to the following reason. That is, as long as the resin sealing portion has a thickness reduction portion, the thickness reduction portion makes the thickness sufficiently small on the side opposite to the electrolyte of the thickness reduction portion, and the resin sealing portion with respect to the external atmosphere The exposed area can be further reduced, and entry of moisture and air can be sufficiently suppressed. Therefore, even when the dye-sensitized solar cell is used in a high humidity environment, the intrusion of moisture and air can be sufficiently suppressed. On the other hand, in the thickness decreasing portion, the thickness decreases as the distance from the electrolyte increases. That is, the thickness increases as the thickness approaches the electrolyte. That is, there is a portion with a large thickness on the electrolyte side (side on which moisture and air are difficult to reach). In other words, the thickness can be secured at a position where the influence of moisture and air is small. For this reason, the adhesive force of the resin sealing part with respect to an electrode is fully strengthened by the thickness reduction part. Therefore, even when the dye-sensitized solar cell is used in a high-humidity environment, it is possible to sufficiently suppress a decrease in the adhesive strength of the resin sealing portion to the electrode.

また上記色素増感太陽電池においては、前記樹脂封止部が、前記電解質から離れるにつれて厚さが増大する厚さ増大部を更に有し、前記厚さ増大部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触することが好ましい。   Further, in the dye-sensitized solar cell, the resin sealing portion further includes a thickness increasing portion that increases in thickness as the distance from the electrolyte increases, and the pair of the resin-encapsulated solar cells along the inclined surface of the thickness increasing portion. Of these electrodes, it is preferable to contact the electrode facing the inclined surface.

この場合、厚さ増大部のうち、電解質側で厚さが十分に小さくなる。即ち厚さ増大部のうち、電解質側で、電解質の通過断面積を狭めることができる。このため、電解質の漏洩を十分に抑制することができる。   In this case, the thickness becomes sufficiently small on the electrolyte side in the thickness increasing portion. That is, the passage cross-sectional area of the electrolyte can be narrowed on the electrolyte side in the increased thickness portion. For this reason, leakage of the electrolyte can be sufficiently suppressed.

ここで、前記樹脂封止部が、前記厚さ増大部に対して前記電解質側に、前記電解質から離れるにつれて厚さが減少する厚さ減少部を更に有し、前記厚さ減少部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触することが好ましい。   Here, the resin sealing portion further includes a thickness decreasing portion on the electrolyte side with respect to the thickness increasing portion, the thickness decreasing portion decreasing in thickness as the distance from the electrolyte increases, and the inclined surface of the thickness decreasing portion It is preferable to contact an electrode facing the inclined surface of the pair of electrodes.

この色素増感太陽電池によれば、厚さ増大部に対して電解質側に設けられる厚さ減少部により、電極に対する樹脂封止部の接着力がさらに強化される。   According to this dye-sensitized solar cell, the adhesive force of the resin sealing portion to the electrode is further strengthened by the thickness decreasing portion provided on the electrolyte side with respect to the thickness increasing portion.

上記色素増感太陽電池において、前記樹脂封止部が、前記厚さ減少部及び前記厚さ増大部をそれぞれ複数有し、前記厚さ減少部及び前記厚さ増大部が、前記電解質に近づく方向に向かって交互に配列されていることが好ましい。   In the dye-sensitized solar cell, the resin sealing portion includes a plurality of the thickness reduction portions and the thickness increase portions, respectively, and the thickness reduction portions and the thickness increase portions approach the electrolyte. It is preferable that they are arranged alternately toward.

この場合、封止部が複数の厚さ減少部と複数の厚さ増大部とを有することになるため、より十分な耐久性を確保できる。また色素増感太陽電池が高温環境下で使用されてセル空間の内圧が上昇することにより、樹脂封止部に対してその内周面から外周面に向かう方向の応力が加わっても、その方向への樹脂封止部の動きをより十分に規制することができる。   In this case, since the sealing portion has a plurality of thickness decreasing portions and a plurality of thickness increasing portions, more sufficient durability can be ensured. In addition, when the dye-sensitized solar cell is used in a high-temperature environment and the internal pressure of the cell space increases, even if stress in the direction from the inner peripheral surface to the outer peripheral surface is applied to the resin sealing portion, that direction The movement of the resin sealing portion to the can be more sufficiently regulated.

上記色素増感太陽電池では、前記樹脂封止部の最大厚さが10μm以上であることが好ましい。   In the said dye-sensitized solar cell, it is preferable that the maximum thickness of the said resin sealing part is 10 micrometers or more.

この場合、樹脂封止部の最大厚さが10μm以上になることで、樹脂封止部の厚さが十分に確保され、電極に対する樹脂封止部の接着力が十分に確保される。このため、電解質の漏洩や、外部からの水分の侵入を効果的に抑制することができる。   In this case, when the maximum thickness of the resin sealing portion is 10 μm or more, the thickness of the resin sealing portion is sufficiently secured, and the adhesive force of the resin sealing portion to the electrode is sufficiently secured. For this reason, leakage of the electrolyte and entry of moisture from the outside can be effectively suppressed.

上記色素増感太陽電池では、前記厚さ減少部と前記電極との接触面と、前記厚さ増大部と前記電極との接触面とにより、前記電解質から離れる方向に交差するように延びる溝が形成されていることが好ましい。   In the dye-sensitized solar cell, a groove extending so as to intersect in a direction away from the electrolyte is formed by a contact surface between the thickness decreasing portion and the electrode and a contact surface between the thickness increasing portion and the electrode. Preferably it is formed.

この色素増感太陽電池では、厚さ減少部と電極との接触面、厚さ増大部と電極との接触面とにより溝が形成されている。即ち厚さ減少部および厚さ増大部は一体となって溝に食い込んでいる。このため、色素増感太陽電池が高温環境下で使用されてセル空間の内圧が上昇することにより、樹脂封止部に対して、その内周面から外周面に向かう方向の応力が加わっても、その方向への樹脂封止部の動きを十分に規制することができる。さらに電極に溝が形成されることにより、電極と樹脂封止部との界面を通ってセル空間に向かう電解質、外部から侵入してセル空間に向かう酸素や水分の通過経路をより長くすることができる。また電解質や外部からの水分が溝を通過する際、電解質又は外部からの酸素や水分の一部が溝に入り込み、溝に沿って進みやすくなる。その結果、樹脂封止部からセル空間への酸素や水分の侵入、樹脂封止部から外部への電解質の漏洩が十分に抑制される。   In this dye-sensitized solar cell, a groove is formed by the contact surface between the reduced thickness portion and the electrode, and the contact surface between the increased thickness portion and the electrode. That is, the thickness decreasing portion and the thickness increasing portion are integrated into the groove. For this reason, even if the stress in the direction from the inner peripheral surface toward the outer peripheral surface is applied to the resin sealing portion, the dye-sensitized solar cell is used in a high temperature environment and the internal pressure of the cell space is increased. The movement of the resin sealing portion in that direction can be sufficiently restricted. Furthermore, by forming a groove in the electrode, it is possible to lengthen the passage path of the electrolyte that goes to the cell space through the interface between the electrode and the resin sealing portion, and the oxygen and moisture that penetrates from the outside and goes to the cell space. it can. In addition, when the electrolyte or moisture from the outside passes through the groove, a part of the electrolyte or the oxygen or moisture from the outside enters the groove and easily travels along the groove. As a result, entry of oxygen and moisture from the resin sealing portion into the cell space and leakage of the electrolyte from the resin sealing portion to the outside are sufficiently suppressed.

上記色素増感太陽電池では、前記一対の電極のうち少なくとも一方の電極が可撓性を有することが好ましい。   In the dye-sensitized solar cell, it is preferable that at least one of the pair of electrodes has flexibility.

この場合、色素増感太陽電池が高温環境下で使用されてセル空間の内圧が上昇しても、一対の電極のうち少なくとも一方の電極は撓むことが可能である。このため、樹脂封止部と、可撓性を有する電極との界面にかかる応力を十分に緩和することができる。   In this case, even when the dye-sensitized solar cell is used in a high temperature environment and the internal pressure of the cell space increases, at least one of the pair of electrodes can be bent. For this reason, the stress applied to the interface between the resin sealing portion and the flexible electrode can be sufficiently relaxed.

上記色素増感太陽電池では、例えば前記一対の電極のうち一方の電極が、導電性基板と、前記導電性基板上に設けられる多孔質酸化物半導体層とを有し、前記導電性基板の前記多孔質酸化物半導体層側の表面が平坦面であり、前記厚さ減少部と前記一対の電極のうち他方の電極との接触面が前記平坦面に対して傾斜していてもよい。   In the dye-sensitized solar cell, for example, one of the pair of electrodes includes a conductive substrate and a porous oxide semiconductor layer provided on the conductive substrate, The surface on the porous oxide semiconductor layer side may be a flat surface, and a contact surface between the thickness reducing portion and the other electrode of the pair of electrodes may be inclined with respect to the flat surface.

上記色素増感太陽電池は、前記封止部に対して前記電解質と反対側に、前記封止部と前記一対の電極との境界を少なくとも覆う被覆部を更に備え、前記被覆部が樹脂を含むことが好ましい。   The dye-sensitized solar cell further includes a covering portion that covers at least a boundary between the sealing portion and the pair of electrodes on a side opposite to the electrolyte with respect to the sealing portion, and the covering portion includes a resin. It is preferable.

この場合、電解質の漏洩又は外部からの電解質への酸素や水分の侵入が、封止部のみならず被覆部によっても抑制されることになる。特に、封止部と一方の電極との界面、封止部と他方の電極との界面での漏洩又は外部から電解質への酸素や水分の侵入が被覆部によって効果的に抑制される。   In this case, leakage of the electrolyte or penetration of oxygen and moisture from the outside into the electrolyte is suppressed not only by the sealing portion but also by the covering portion. In particular, leakage at the interface between the sealing portion and one electrode, the interface between the sealing portion and the other electrode, or intrusion of oxygen and moisture from the outside into the electrolyte is effectively suppressed by the covering portion.

また本発明は、互いに対向する一対の電極と、前記一対の電極を連結する封止部と、前記一対の電極と前記封止部とによって囲まれるセル空間に充填される電解質とを備えており、前記封止部が、樹脂を含む樹脂封止部を有し、前記樹脂封止部が、前記一対の電極の少なくとも一方の電極に接触し且つ前記電解質から離れるにつれて厚さが減少する厚さ減少部を有することを特徴とする色素増感太陽電池であってもよい。   The present invention also includes a pair of electrodes facing each other, a sealing portion that connects the pair of electrodes, and an electrolyte that fills a cell space surrounded by the pair of electrodes and the sealing portion. The sealing portion has a resin sealing portion containing a resin, and the resin sealing portion is in contact with at least one electrode of the pair of electrodes and has a thickness that decreases as the distance from the electrolyte increases. It may be a dye-sensitized solar cell having a decreasing portion.

なお、本発明において、電極について「可撓性を有する」とは、20℃の環境下で50mm×200mmのシート状電極の長辺側の両縁部(それぞれ幅5mm)を張力1Nで水平に固定し、電極の中央に20g重の荷重をかけた際の電極の撓みの最大変形率が20%を超えるものを言うものとする。ここで、最大変形率とは、下記式:
最大変形率(%)=100×(最大変位量/シート状電極の厚さ)
に基づいて算出される値を言う。従って、例えば厚さ0.04mmのシート状電極が上記のようにして荷重をかけることにより撓み、最大変位量が0.01mmとなった場合、最大変形率は25%となり、このシート状電極は「可撓性を有する」こととなる。
In the present invention, “flexible” for an electrode means that both edges (5 mm width each) of a long side of a sheet-like electrode of 50 mm × 200 mm are horizontally placed at a tension of 1 N under an environment of 20 ° C. The maximum deformation rate of the deflection of the electrode when a load of 20 g weight is applied to the center of the electrode is over 20%. Here, the maximum deformation rate is the following formula:
Maximum deformation rate (%) = 100 × (maximum displacement / sheet electrode thickness)
The value calculated based on Therefore, for example, when a sheet-like electrode having a thickness of 0.04 mm is bent by applying a load as described above, and the maximum displacement is 0.01 mm, the maximum deformation rate is 25%. It has “flexibility”.

本発明によれば、高湿環境下で使用されても、十分な耐久性を確保できる色素増感太陽電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses in a high humidity environment, the dye-sensitized solar cell which can ensure sufficient durability is provided.

本発明の色素増感太陽電池の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the dye-sensitized solar cell of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図2の厚さ増大部を示す部分拡大図である。It is the elements on larger scale which show the thickness increase part of FIG. 図2の厚さ減少部を示す部分拡大図である。FIG. 3 is a partial enlarged view showing a thickness reducing portion of FIG. 2. 図1の作用極を示す断面図である。It is sectional drawing which shows the working electrode of FIG. 図1の対極を示す断面図である。It is sectional drawing which shows the counter electrode of FIG. 図5の作用極を示す平面図である。It is a top view which shows the working electrode of FIG. 図1の色素増感太陽電池の製造工程における無機封止部形成工程を示す断面図である。It is sectional drawing which shows the inorganic sealing part formation process in the manufacturing process of the dye-sensitized solar cell of FIG. 図6の対極を示す平面図である。It is a top view which shows the counter electrode of FIG. 図1の色素増感太陽電池の製造工程における樹脂封止部形成工程を示す断面図である。It is sectional drawing which shows the resin sealing part formation process in the manufacturing process of the dye-sensitized solar cell of FIG. 図1の色素増感太陽電池の製造工程における電解質配置工程を示す断面図である。It is sectional drawing which shows the electrolyte arrangement | positioning process in the manufacturing process of the dye-sensitized solar cell of FIG. 図1の色素増感太陽電池の製造工程における重合せ工程を示す断面図である。It is sectional drawing which shows the superposition | polymerization process in the manufacturing process of the dye-sensitized solar cell of FIG. 図1の色素増感太陽電池の製造工程における封止部形成工程を示す断面図である。It is sectional drawing which shows the sealing part formation process in the manufacturing process of the dye-sensitized solar cell of FIG. 本発明の色素増感太陽電池の第2実施形態を示す部分拡大断面図である。It is a partial expanded sectional view which shows 2nd Embodiment of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の第3実施形態を示す部分拡大断面図である。It is a partial expanded sectional view which shows 3rd Embodiment of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の第4実施形態を示す部分拡大断面図である。It is a partial expanded sectional view which shows 4th Embodiment of the dye-sensitized solar cell of this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施形態>
まず本発明に係る色素増感太陽電池の第1実施形態について図1〜図4を用いて説明する。図1は、本発明に係る色素増感太陽電池の第1実施形態を示す断面図、図2は、図1の部分拡大断面図、図3は、図2の厚さ増大部を示す部分拡大図、図4は、図2の厚さ減少部を示す部分拡大図である。
<First Embodiment>
First, a first embodiment of a dye-sensitized solar cell according to the present invention will be described with reference to FIGS. 1 is a sectional view showing a first embodiment of the dye-sensitized solar cell according to the present invention, FIG. 2 is a partially enlarged sectional view of FIG. 1, and FIG. 3 is a partially enlarged view showing a thickness increasing portion of FIG. 4 and 4 are partially enlarged views showing the thickness reducing portion of FIG.

図1及び図2に示すように、色素増感太陽電池100は、作用極1と、作用極1に対向するように配置される対極2とを備えている。作用極1と対極2とは封止部4によって連結されている。そして、作用極1と対極2と封止部4とによって包囲されるセル空間S内には電解質3が充填されている。   As shown in FIGS. 1 and 2, the dye-sensitized solar cell 100 includes a working electrode 1 and a counter electrode 2 disposed so as to face the working electrode 1. The working electrode 1 and the counter electrode 2 are connected by a sealing portion 4. The cell space S surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 is filled with an electrolyte 3.

作用極1は、透明基板6と、透明基板6の対極2側に設けられる透明導電膜7と、透明導電膜7の上に設けられる多孔質酸化物半導体層8とを備えている。ここで、封止部4は、透明導電膜7の表面1aに接着されている。なお、透明導電膜7の表面1aは透明導電膜7を構成する材料の結晶の大きさ程度の凹凸(概ね1μm程度)を有していてもよいが、そのような凹凸を有していなくてもよい。以下、結晶の大きさ程度以上の凹凸を有していない表面1aについては平坦面として記述する。   The working electrode 1 includes a transparent substrate 6, a transparent conductive film 7 provided on the counter electrode 2 side of the transparent substrate 6, and a porous oxide semiconductor layer 8 provided on the transparent conductive film 7. Here, the sealing portion 4 is bonded to the surface 1 a of the transparent conductive film 7. The surface 1a of the transparent conductive film 7 may have irregularities (approximately 1 μm) of the size of the material constituting the transparent conductive film 7, but it does not have such irregularities. Also good. Hereinafter, the surface 1a that does not have irregularities of about the size of the crystal is described as a flat surface.

作用極1のうちの多孔質酸化物半導体層8には光増感色素が担持されている。なお、色素増感太陽電池100においては、透明基板6と透明導電膜7とにより導電性基板が構成されている。   A photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1. In the dye-sensitized solar cell 100, the transparent substrate 6 and the transparent conductive film 7 constitute a conductive substrate.

対極2は、対極基板と、対極基板のうち作用極1側に設けられて対極2の表面における還元反応を促進する導電性の触媒膜とを備えており、可撓性を有している。   The counter electrode 2 includes a counter electrode substrate and a conductive catalyst film that is provided on the working electrode 1 side of the counter electrode substrate and promotes the reduction reaction on the surface of the counter electrode 2 and has flexibility.

封止部4は、対極2に接着される樹脂封止部4Aと、樹脂封止部4Aと作用極1とを連結する無機封止部4Bとから構成されている。樹脂封止部4Aは、対極2の第2環状部位C2で対極2に接着され、無機封止部4Bは、作用極1の第1環状部位C1に接着されている。無機封止部4Bは、透明導電膜7上に固定される集電配線11と、集電配線11を覆って保護する配線保護層12とを備えている。   The sealing portion 4 includes a resin sealing portion 4A that is bonded to the counter electrode 2 and an inorganic sealing portion 4B that connects the resin sealing portion 4A and the working electrode 1. The resin sealing portion 4A is bonded to the counter electrode 2 at the second annular portion C2 of the counter electrode 2, and the inorganic sealing portion 4B is bonded to the first annular portion C1 of the working electrode 1. The inorganic sealing portion 4 </ b> B includes a current collecting wiring 11 fixed on the transparent conductive film 7 and a wiring protective layer 12 that covers and protects the current collecting wiring 11.

樹脂封止部4Aは、電解質3から離れるにつれて厚さが増大する複数(例えば4つ)の環状の厚さ増大部14aと、複数の厚さ増大部14aの各々に対して電解質3と反対側に設けられ、電解質3から離れるにつれて厚さが減少する複数(例えば4つ)の環状の厚さ減少部14bとを有している。即ち、樹脂封止部4Aは、その最も外側に厚さ減少部14bを有し、その最も内側に電解質3と接触するように厚さ増大部14aを有している。なお、厚さ増大部14a及び厚さ減少部14bは図2〜図4において二点鎖線で示されるものである。   The resin sealing portion 4A has a plurality of (for example, four) annular thickness increasing portions 14a that increase in thickness as they move away from the electrolyte 3, and a side opposite to the electrolyte 3 with respect to each of the plurality of thickness increasing portions 14a. And a plurality of (for example, four) annular thickness reducing portions 14b whose thickness decreases as the distance from the electrolyte 3 increases. That is, the resin sealing portion 4A has a thickness decreasing portion 14b on the outermost side, and has a thickness increasing portion 14a on the innermost side so as to come into contact with the electrolyte 3. In addition, the thickness increasing part 14a and the thickness decreasing part 14b are shown with a dashed-two dotted line in FIGS.

厚さ増大部14aの厚さは、図3に示すように、電解質3側でHA0となっており、HA0が厚さ増大部14aの最小厚さである。そして、厚さ増大部14aの厚さは、電解質3から離れるにつれて増加し、電解質3から最も離れた位置でHA1となっている。このHA1は厚さ増大部14aの最大の厚さとなる。 As shown in FIG. 3, the thickness of the thickness increasing portion 14a is H A0 on the electrolyte 3 side, and H A0 is the minimum thickness of the thickness increasing portion 14a. Then, the thickness of the thickness increasing portion 14 a increases as the distance from the electrolyte 3 increases, and becomes HA 1 at the position farthest from the electrolyte 3. This HA1 is the maximum thickness of the thickness increasing portion 14a.

一方、厚さ減少部14bの厚さは、図4に示すように、電解質3側でHA1となっており、HA1が厚さ減少部14bの最大厚さである。そして、厚さ減少部14bの厚さは、電解質3から離れるにつれて減少し、電解質3から最も離れた位置でHA0となっている。このHA0は厚さ減少部14bの最小の厚さとなる。 On the other hand, the thickness of the reduced thickness portion 14b, as shown in FIG. 4, has a H A1 with electrolyte 3 side, H A1 is the maximum thickness of the reduced thickness portion 14b. The thickness of the thickness reducing portion 14b decreases as the distance from the electrolyte 3 increases, and is HA0 at the position farthest from the electrolyte 3. This HA0 is the minimum thickness of the thickness reducing portion 14b.

複数の環状の厚さ増大部14aおよび複数の環状の厚さ減少部14bはそれぞれ、封止部4に沿って連続状に形成されており、電解質3に近づく方向に向かって交互に配列されている。ここで、樹脂封止部4Aのうち最も内側にあるのが厚さ増大部14aであり、最も外側にあるのが厚さ減少部14bであり、最も内側にある厚さ増大部14aは電解質3と接触している。   Each of the plurality of annular thickness increasing portions 14 a and the plurality of annular thickness decreasing portions 14 b is formed continuously along the sealing portion 4, and is alternately arranged in a direction approaching the electrolyte 3. Yes. Here, among the resin sealing portions 4A, the innermost portion is the thickness increasing portion 14a, the outermost portion is the thickness decreasing portion 14b, and the innermost thickness increasing portion 14a is the electrolyte 3 In contact with.

色素増感太陽電池100では、厚さ増大部14aは、電解質3からの距離の増加に比例するように厚さが増大している。即ち厚さ増大部14aの傾斜面14cは平坦面となっている。そして、樹脂封止部4Aは、厚さ増大部14aの傾斜面14cに沿って対極2の厚さ増大部対向接触面2aに接触している。このため、厚さ増大部対向接触面2aも平坦面となっている。厚さ減少部14bは、電解質3からの距離の増加に比例するように厚さが減少している。即ち厚さ減少部14bの傾斜面14dは平坦面となっている。そして、樹脂封止部4Aは、厚さ増大部14aの傾斜面14dに沿って対極2の厚さ減少部対向接触面2bに接触している。このため、厚さ減少部対向接触面2bも平坦面となっている。   In the dye-sensitized solar cell 100, the thickness of the thickness increasing portion 14a is increased in proportion to the increase in the distance from the electrolyte 3. That is, the inclined surface 14c of the thickness increasing portion 14a is a flat surface. And 4A of resin sealing parts are contacting the thickness increasing part opposing contact surface 2a of the counter electrode 2 along the inclined surface 14c of the thickness increasing part 14a. For this reason, the thickness increasing portion facing contact surface 2a is also a flat surface. The thickness decreasing part 14b is decreasing in thickness so as to be proportional to the increase in the distance from the electrolyte 3. That is, the inclined surface 14d of the thickness reducing portion 14b is a flat surface. The resin sealing portion 4A is in contact with the thickness decreasing portion facing contact surface 2b of the counter electrode 2 along the inclined surface 14d of the thickness increasing portion 14a. For this reason, the thickness reducing portion facing contact surface 2b is also a flat surface.

厚さ増大部14a及び厚さ減少部14bの厚さが上記のように変化しており、樹脂封止部4Aは、複数の厚さ増大部14a及び複数の厚さ減少部14bを有する。このため、樹脂封止部4Aの対極2側の表面においては、複数の環状突起部が電解質3から離れる方向に向かって配列され、各環状突起部は、電解質3から離れる方向に交差するように形成されることになる。このため、対極2の第2環状部位C2は、複数の突起部に対して相補的な形状を有している。即ち、対極2の第2環状部位C2には、複数の環状溝15が電解質3から離れる方向に向かって配列され、各環状溝15は、電解質3から離れる方向に交差するように形成されている。言い換えると、各環状溝15は、対極2の第2環状部位C2において、環状の厚さ増大部14aに沿って延びている。   The thicknesses of the thickness increasing portion 14a and the thickness decreasing portion 14b are changed as described above, and the resin sealing portion 4A includes a plurality of thickness increasing portions 14a and a plurality of thickness decreasing portions 14b. For this reason, on the surface on the counter electrode 2 side of the resin sealing portion 4A, a plurality of annular protrusions are arranged in a direction away from the electrolyte 3, and the annular protrusions intersect in a direction away from the electrolyte 3. Will be formed. For this reason, the second annular portion C2 of the counter electrode 2 has a shape complementary to the plurality of protrusions. That is, in the second annular portion C2 of the counter electrode 2, a plurality of annular grooves 15 are arranged in a direction away from the electrolyte 3, and each annular groove 15 is formed to intersect in a direction away from the electrolyte 3. . In other words, each annular groove 15 extends along the annular thickness increasing portion 14a in the second annular portion C2 of the counter electrode 2.

なお、厚さ増大部14a、厚さ減少部14bは、それらの厚さの増減のみを規定する。従って、厚さ増大部14a、厚さ減少部14bがそれぞれ複数存在する場合には、複数の厚さ増大部14a同士、及び厚さ減少部14b同士の形状は必ずしも同一である必要はない。   In addition, the thickness increase part 14a and the thickness decrease part 14b prescribe | regulate only the increase / decrease in those thickness. Accordingly, when there are a plurality of thickness increasing portions 14a and thickness decreasing portions 14b, the shapes of the plurality of thickness increasing portions 14a and the thickness decreasing portions 14b are not necessarily the same.

ここで、環状溝15は、厚さ増大部14aに対向して接触する対極2の厚さ増大部対向接触面2aと、厚さ減少部14bに対向して接触する対極2の厚さ減少部対向接触面2bとによって形成されている。厚さ増大部対向接触面2aは、作用極1の平坦な表面1aに対して、電解質3から離れるにつれて樹脂封止部4Aの厚さを増大させるように傾斜している。厚さ減少部対向接触面2bは、作用極1の平坦な表面1aに対して、樹脂封止部4Aの厚さを減少させるように傾斜している。   Here, the annular groove 15 includes a thickness increasing portion facing contact surface 2a of the counter electrode 2 that contacts the thickness increasing portion 14a and a thickness decreasing portion of the counter electrode 2 that contacts the thickness decreasing portion 14b. It is formed by the opposing contact surface 2b. The thickness increasing portion facing contact surface 2a is inclined with respect to the flat surface 1a of the working electrode 1 so as to increase the thickness of the resin sealing portion 4A as the distance from the electrolyte 3 increases. The thickness reducing portion facing contact surface 2b is inclined with respect to the flat surface 1a of the working electrode 1 so as to reduce the thickness of the resin sealing portion 4A.

上述した色素増感太陽電池100によれば、樹脂封止部4Aが、厚さ減少部14bを有し、厚さ減少部14bの傾斜面14dに沿って、傾斜面14dに対向する対極2に接触している。このため、厚さ減少部14bの電解質3と反対側で厚さを十分に小さくして、外部雰囲気に対する樹脂封止部4Aの露出面積をより小さくすることができる。従って、色素増感太陽電池100が高湿環境下で使用されても、水分の侵入を十分に抑制することができる。一方、厚さ減少部14bでは電解質3から離れるにつれて厚さが減少している。即ち、厚さ減少部14bにおいて、電解質3に近づくにつれて厚さが増大している。このため、厚さ減少部14bにより対極2に対する樹脂封止部4Aの接着力が十分に強化される。従って、色素増感太陽電池100が高湿環境下で使用されても、対極2に対する樹脂封止部4Aの接着力の低下を十分に抑制することができ、対極2と樹脂封止部4Aとの界面からの水分の侵入を十分に抑制することができる。よって、色素増感太陽電池100によれば、高湿環境下で使用されても、十分な耐久性を確保することができる。   According to the dye-sensitized solar cell 100 described above, the resin sealing portion 4A has the thickness reducing portion 14b, and the counter electrode 2 facing the inclined surface 14d along the inclined surface 14d of the thickness reducing portion 14b. In contact. For this reason, it is possible to make the thickness sufficiently small on the opposite side of the thickness reducing portion 14b from the electrolyte 3, and to further reduce the exposed area of the resin sealing portion 4A to the external atmosphere. Therefore, even if the dye-sensitized solar cell 100 is used in a high-humidity environment, the intrusion of moisture can be sufficiently suppressed. On the other hand, the thickness of the thickness reducing portion 14b decreases as the distance from the electrolyte 3 increases. In other words, the thickness of the thickness decreasing portion 14b increases as it approaches the electrolyte 3. For this reason, the adhesive force of the resin sealing portion 4A to the counter electrode 2 is sufficiently strengthened by the thickness reducing portion 14b. Therefore, even when the dye-sensitized solar cell 100 is used in a high humidity environment, it is possible to sufficiently suppress a decrease in the adhesive force of the resin sealing portion 4A to the counter electrode 2, and the counter electrode 2 and the resin sealing portion 4A Invasion of moisture from the interface can be sufficiently suppressed. Therefore, according to the dye-sensitized solar cell 100, sufficient durability can be ensured even when used in a high humidity environment.

また色素増感太陽電池100では、樹脂封止部4Aが、電解質3から離れるにつれて厚さが増大する厚さ増大部14aを有し、厚さ増大部14aの傾斜面14cに沿って、傾斜面14cに対向する対極2に接触している。このため、厚さ増大部14aはその電解質3側で厚さを十分に小さくして電解質3の通過断面積を小さくすることが可能となる。その結果、電解質3の漏洩を抑制することができる。また色素増感太陽電池100では、封止部4が、樹脂封止部4Aと、樹脂封止部4Aよりも高い封止能を有する無機封止部4Bとで構成されているため、封止部4において無機封止部4Bが樹脂封止部に置換される場合に比べて、電解質3の漏洩をより十分に抑制することができる。一方、厚さ増大部14aは電解質3から離れるにつれて厚さが増大しているため、厚さ増大部14aにより対極2に対する樹脂封止部4Aの接着力が強化される。従って、色素増感太陽電池100が高温環境下で使用されセル空間Sの圧力が上昇して厚さ増大部14aと対極2との界面に過大な応力が加わっても、対極2からの樹脂封止部4Aの剥離を十分に抑制することができ、電解質3の漏洩を十分に抑制することができる。よって、色素増感太陽電池100によれば、高温環境下で使用されても、十分な耐久性を確保することができる。   Further, in the dye-sensitized solar cell 100, the resin sealing portion 4A has the thickness increasing portion 14a that increases in thickness as the distance from the electrolyte 3 increases, and the inclined surface along the inclined surface 14c of the thickness increasing portion 14a. It contacts the counter electrode 2 facing 14c. Therefore, the thickness increasing portion 14a can be sufficiently reduced in thickness on the electrolyte 3 side to reduce the passage cross-sectional area of the electrolyte 3. As a result, leakage of the electrolyte 3 can be suppressed. Moreover, in the dye-sensitized solar cell 100, since the sealing part 4 is comprised by the resin sealing part 4A and the inorganic sealing part 4B which has higher sealing ability than the resin sealing part 4A, sealing is performed. Compared with the case where the inorganic sealing portion 4B is replaced with the resin sealing portion in the portion 4, the leakage of the electrolyte 3 can be more sufficiently suppressed. On the other hand, since the thickness increasing portion 14a increases with distance from the electrolyte 3, the adhesive strength of the resin sealing portion 4A to the counter electrode 2 is enhanced by the thickness increasing portion 14a. Accordingly, even when the dye-sensitized solar cell 100 is used in a high temperature environment and the pressure of the cell space S increases and an excessive stress is applied to the interface between the thickness increasing portion 14a and the counter electrode 2, the resin sealing from the counter electrode 2 is performed. Separation of the stop portion 4A can be sufficiently suppressed, and leakage of the electrolyte 3 can be sufficiently suppressed. Therefore, according to the dye-sensitized solar cell 100, sufficient durability can be ensured even when used in a high-temperature environment.

特に、色素増感太陽電池100では、樹脂封止部4Aの最も内側に厚さ増大部14aが設けられ、この厚さ増大部14aが電解質3に接触している。即ち、色素増感太陽電池100が高温環境下で使用されてセル空間Sの内圧が上昇する際、最も大きな応力が加えられ樹脂封止部が最も剥離しやすい箇所が、電解質3に接触する位置であり、この位置に厚さ増大部14aが設けられる。このため、対極2に対する樹脂封止部4Aの十分な接着力が確保され、対極2からの樹脂封止部4Aの剥離をより効果的に抑制することができる。また、厚さ増大部14aが電解質3に接触しているため、電解質3に対する樹脂封止部4Aの露出面積をより小さくすることが可能となり、電解質3の漏洩断面積を小さくすることが可能となる。従って、電解質3の外部への漏洩をより十分に抑制できる。   In particular, in the dye-sensitized solar cell 100, the thickness increasing portion 14a is provided on the innermost side of the resin sealing portion 4A, and the thickness increasing portion 14a is in contact with the electrolyte 3. That is, when the dye-sensitized solar cell 100 is used in a high temperature environment and the internal pressure of the cell space S rises, the position where the greatest stress is applied and the resin-sealed portion is most likely to peel off is the position where the electrolyte 3 is in contact. The thickness increasing portion 14a is provided at this position. For this reason, sufficient adhesive force of 4 A of resin sealing parts with respect to the counter electrode 2 is ensured, and peeling of 4 A of resin sealing parts from the counter electrode 2 can be suppressed more effectively. Further, since the increased thickness portion 14a is in contact with the electrolyte 3, the exposed area of the resin sealing portion 4A with respect to the electrolyte 3 can be further reduced, and the leakage cross-sectional area of the electrolyte 3 can be reduced. Become. Therefore, leakage of the electrolyte 3 to the outside can be more sufficiently suppressed.

また色素増感太陽電池100においては、樹脂封止部4Aにおいて、複数の環状の厚さ増大部14aおよび複数の環状の厚さ減少部14bが、樹脂封止部4Aの最も外側に厚さ減少部14bを配置して、電解質3に近づく方向に向かって交互に配列されている。このため、厚さ減少部14bにおいては、電解質3から最も離れた位置で厚さが十分に小さくなる。即ち厚さ減少部14bのうち、電解質3から最も離れた位置で、外部から侵入する酸素や水分の通過断面積を狭めることができる。このため、厚さ減少部14bが樹脂封止部4Aの最も外側にない場合と比べて、外部からの酸素や水分の侵入をより十分に抑制することができる。またこの色素増感太陽電池100では、対極2の厚さ増大部対向接触面2aと、対極2の厚さ減少部対向接触面2bとにより環状溝15が形成されている。即ち厚さ増大部14aおよび厚さ減少部14bは、一体となって環状溝15に食い込んでいる。このため、色素増感太陽電池100が高温環境下で使用されてセル空間Sの内圧が上昇することにより、樹脂封止部4Aに対して、その内周面から外周面に向かう方向の応力が加わっても、内周面から外周面に向かう方向への樹脂封止部4Aの動きを十分に規制することができる。また、温度変化に伴い、夕方から夜間にかけてなどのように温度が低下するような環境下では、セル空間Sの内圧が下降することにより、樹脂封止部4Aに対して、その外周面から内周面に向かう方向の応力が加わる。この場合にも、外周面から内周面に向かう方向への樹脂封止部4Aの動きを十分に規制することができる。また、電解質3に最も近い位置で、電解質3の漏洩断面積を小さくすることが可能となり、電解質3の外部への漏洩を効果的に抑制することができる。   In the dye-sensitized solar cell 100, in the resin sealing portion 4A, the plurality of annular thickness increasing portions 14a and the plurality of annular thickness decreasing portions 14b decrease in thickness to the outermost side of the resin sealing portion 4A. The portions 14 b are arranged and are alternately arranged in a direction approaching the electrolyte 3. For this reason, in the thickness reduction part 14b, thickness becomes small enough in the position most distant from the electrolyte 3. FIG. That is, the cross-sectional area of oxygen and moisture that enter from the outside can be reduced at the position farthest from the electrolyte 3 in the thickness reducing portion 14b. For this reason, compared with the case where the thickness reduction part 14b is not in the outermost part of the resin sealing part 4A, the penetration | invasion of oxygen from the exterior and a water | moisture content can be suppressed more fully. Further, in this dye-sensitized solar cell 100, an annular groove 15 is formed by the thickness increasing portion facing contact surface 2 a of the counter electrode 2 and the thickness decreasing portion facing contact surface 2 b of the counter electrode 2. That is, the thickness increasing portion 14 a and the thickness decreasing portion 14 b are integrated into the annular groove 15. For this reason, when the dye-sensitized solar cell 100 is used in a high-temperature environment and the internal pressure of the cell space S increases, the stress in the direction from the inner peripheral surface to the outer peripheral surface is applied to the resin sealing portion 4A. Even if added, the movement of the resin sealing portion 4A in the direction from the inner peripheral surface toward the outer peripheral surface can be sufficiently restricted. Further, in an environment where the temperature decreases as the temperature changes from evening to night, etc., the internal pressure of the cell space S decreases, so that the resin sealing portion 4A is exposed from the outer peripheral surface thereof. Stress in the direction toward the peripheral surface is applied. Also in this case, the movement of the resin sealing portion 4A in the direction from the outer peripheral surface toward the inner peripheral surface can be sufficiently restricted. In addition, the leakage cross-sectional area of the electrolyte 3 can be reduced at the position closest to the electrolyte 3, and leakage of the electrolyte 3 to the outside can be effectively suppressed.

さらに対極2に環状溝15が形成されることにより、対極2と樹脂封止部4Aとの界面を通ってセル空間Sに向かう電解質3、外部から対極2と樹脂封止部4Aとの界面を通って侵入する酸素や水分の通過経路をより長くすることができる。しかも、電解質3又は外部からの酸素や水分が環状溝15を通過する際、電解質3又は外部からの酸素や水分の一部が環状溝15に入り込み、環状溝15に沿って進みやすくなる。その結果、封止部4からセル空間Sへの酸素や水分の侵入、封止部4から外部への電解質Sの漏洩が十分に抑制される。特に外部からの水分については、環状溝15で捕捉され易くなり、捕捉された水分は環状溝15に沿って進みやすくなるため、電解質3に向かう水分の量を十分に低減させることができる。しかも、色素増感太陽電池100では、対極2の表面に形成されているのは、連続状に形成された環状溝15であるため、水分が環状溝15に捕捉されると、環状溝15に沿って進むことになる。このため、捕捉された水分を環状溝15に閉じ込めることができる。   Further, by forming the annular groove 15 in the counter electrode 2, the electrolyte 3 that goes to the cell space S through the interface between the counter electrode 2 and the resin sealing portion 4A, and the interface between the counter electrode 2 and the resin sealing portion 4A from the outside The passage route of oxygen and moisture entering through can be made longer. In addition, when oxygen or moisture from the electrolyte 3 or the outside passes through the annular groove 15, part of oxygen or moisture from the electrolyte 3 or the outside enters the annular groove 15 and easily travels along the annular groove 15. As a result, intrusion of oxygen and moisture from the sealing portion 4 to the cell space S and leakage of the electrolyte S from the sealing portion 4 to the outside are sufficiently suppressed. In particular, moisture from the outside is easily captured by the annular groove 15, and the captured moisture easily travels along the annular groove 15, so that the amount of moisture toward the electrolyte 3 can be sufficiently reduced. In addition, in the dye-sensitized solar cell 100, what is formed on the surface of the counter electrode 2 is the annular groove 15 formed in a continuous manner. Therefore, when moisture is trapped in the annular groove 15, Will go along. For this reason, the trapped moisture can be confined in the annular groove 15.

さらに本実施形態では、対極2が可撓性を有している。このため、色素増感太陽電池100が高温環境下で使用されてセル空間Sの内圧が上昇しても、対極2が撓むため、樹脂封止部4Aと対極2との界面にかかる応力を十分に緩和することができる。   Furthermore, in this embodiment, the counter electrode 2 has flexibility. For this reason, even if the dye-sensitized solar cell 100 is used in a high-temperature environment and the internal pressure of the cell space S rises, the counter electrode 2 bends, so that the stress applied to the interface between the resin sealing portion 4A and the counter electrode 2 is increased. It can be relaxed sufficiently.

なお、色素増感太陽電池100では、樹脂封止部4Aの最大厚さ、即ちHA1は特に制限されるものではないが、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。樹脂封止部4Aの最大厚さが10μm以上になると、樹脂封止部4Aの厚さが十分に確保され、対極2に対する樹脂封止部4Aの接着力が十分に確保される。このため、電解質3の漏洩を効果的に抑制することができ、色素増感太陽電池100の耐久性をより十分に向上させることができる。 In the dye-sensitized solar cell 100, the maximum thickness of the resin sealing portion 4A, that is, H A1 is not particularly limited, preferably at 10μm or more, more preferably 20μm or more, More preferably, it is 30 μm or more. When the maximum thickness of the resin sealing portion 4A is 10 μm or more, the thickness of the resin sealing portion 4A is sufficiently secured, and the adhesive force of the resin sealing portion 4A to the counter electrode 2 is sufficiently secured. For this reason, the leakage of the electrolyte 3 can be effectively suppressed, and the durability of the dye-sensitized solar cell 100 can be more sufficiently improved.

但し、樹脂封止部4Aの最大厚さは、1000μm以下であることが、電解質3の透過断面積を小さくするという理由から好ましい。   However, the maximum thickness of the resin sealing portion 4A is preferably 1000 μm or less because the transmission cross-sectional area of the electrolyte 3 is reduced.

また樹脂封止部4Aの厚さの最大値と最小値との差、即ち、(HA1−HA0)は0μmより大きければいかなる値でもよいが、1〜95μmであることが好ましく、5〜90μmであることがより好ましい。 Further, the difference between the maximum value and the minimum value of the thickness of the resin sealing portion 4A, that is, (H A1 −H A0 ) may be any value as long as it is larger than 0 μm, but is preferably 1 to 95 μm, More preferably, it is 90 μm.

この場合、(HA1−HA0)が上記範囲を外れる場合に比べて、色素増感太陽電池100の耐久性をより向上させることができる。 In this case, the durability of the dye-sensitized solar cell 100 can be further improved as compared with the case where (H A1 -H A0 ) is out of the above range.

次に、色素増感太陽電池100の製造方法について図5〜図13を用いて説明する。   Next, the manufacturing method of the dye-sensitized solar cell 100 is demonstrated using FIGS.

[準備工程]
まず作用極1及び対極2を準備する。
[Preparation process]
First, the working electrode 1 and the counter electrode 2 are prepared.

(作用極)
作用極1は以下のようにして得ることができる(図5)。
(Working electrode)
The working electrode 1 can be obtained as follows (FIG. 5).

はじめに透明基板6の上に透明導電膜7を形成して積層体を形成する。透明導電膜7の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。   First, a transparent conductive film 7 is formed on the transparent substrate 6 to form a laminate. As a method for forming the transparent conductive film 7, a sputtering method, a vapor deposition method, a spray pyrolysis (SPD) method, a CVD method, or the like is used. Of these, the spray pyrolysis method is preferable from the viewpoint of apparatus cost.

透明基板6を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板6の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm〜10000μmの範囲にすればよい。   The material which comprises the transparent substrate 6 should just be a transparent material, for example, As such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES) and the like. The thickness of the transparent substrate 6 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be in the range of 50 μm to 10000 μm, for example.

透明導電膜7を構成する材料としては、例えばスズ添加酸化インジウム(Indium−Tin−Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine−doped−Tin−Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜7は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜7が単層で構成される場合、透明導電膜7は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜7として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜7が実現できる。透明導電膜7の厚さは例えば0.01μm〜2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive film 7 include tin-doped indium oxide (Indium-Tin-Oxide: ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (Fluorine-doped-Tin-Oxide: FTO). Examples include conductive metal oxides. The transparent conductive film 7 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 7 is composed of a single layer, the transparent conductive film 7 is preferably composed of FTO because it has high heat resistance and chemical resistance. Moreover, it is preferable to use a laminated body composed of a plurality of layers as the transparent conductive film 7 because the characteristics of each layer can be reflected. Among these, it is preferable to use a laminate of a layer made of ITO and a layer made of FTO. In this case, the transparent conductive film 7 having high conductivity, heat resistance and chemical resistance can be realized. The thickness of the transparent conductive film 7 may be in the range of 0.01 μm to 2 μm, for example.

次に、上記のようにして得られた積層体の透明導電膜7上に、多孔質酸化物半導体層形成用ペーストを印刷する。多孔質酸化物半導体層形成用ペーストは、酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。酸化物半導体粒子としては、例えば酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化ニオブ(Nb25)、チタン酸ストロンチウム(SrTiO3)、酸化スズ(SnO2)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)及び酸化アルミニウム(Al)などが挙げられる。これらは単独で又は2種以上を組み合わせて用いることが可能である。多孔質酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。 Next, a porous oxide semiconductor layer forming paste is printed on the transparent conductive film 7 of the laminate obtained as described above. The paste for forming a porous oxide semiconductor layer contains a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles. Examples of the oxide semiconductor particles include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), tin oxide (SnO 2 ). ), Indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho 2) O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), and the like. These can be used alone or in combination of two or more. As a printing method of the paste for forming the porous oxide semiconductor layer, for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.

次に、多孔質酸化物半導体層形成用ペーストを焼成して透明導電膜7上に多孔質酸化物半導体層8を形成する。焼成温度は酸化物半導体粒子により異なるが、通常は350℃〜600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1〜5時間である。   Next, the porous oxide semiconductor layer forming paste is baked to form the porous oxide semiconductor layer 8 on the transparent conductive film 7. The firing temperature varies depending on the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C., and the firing time also varies depending on the oxide semiconductor particles, but is usually 1 to 5 hours.

多孔質酸化物半導体層8は、多孔質酸化物半導体で構成される。多孔質酸化物半導体は、例えば上述した酸化物半導体粒子で構成される。これら酸化物半導体粒子の平均粒径は1〜1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質酸化物半導体層8が、粒度分布の異なる酸化物半導体粒子を積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質酸化物半導体層8の厚さは、例えば0.5〜50μmとすればよい。なお、多孔質酸化物半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。   The porous oxide semiconductor layer 8 is composed of a porous oxide semiconductor. A porous oxide semiconductor is comprised by the oxide semiconductor particle mentioned above, for example. The average particle diameter of these oxide semiconductor particles is 1-1000 nm, the surface area of the oxide semiconductor covered with the dye is increased, that is, the field for photoelectric conversion is increased, and more electrons are generated. Is preferable. Here, it is preferable that the porous oxide semiconductor layer 8 is configured by a stacked body in which oxide semiconductor particles having different particle size distributions are stacked. In this case, it becomes possible to cause reflection of light repeatedly in the laminated body, and light can be efficiently converted into electrons without escaping incident light to the outside of the laminated body. The thickness of the porous oxide semiconductor layer 8 may be, for example, 0.5 to 50 μm. In addition, the porous oxide semiconductor layer 8 can also be comprised with the laminated body of the several semiconductor layer which consists of a different material.

(対極)
一方、対極2は、以下のようにして得ることができる(図6)。
(Counter electrode)
On the other hand, the counter electrode 2 can be obtained as follows (FIG. 6).

即ちまず対極基板を準備する。そして、対極基板の上に触媒膜を形成する。触媒膜の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。   That is, first, a counter electrode substrate is prepared. Then, a catalyst film is formed on the counter electrode substrate. As a method for forming the catalyst film, a sputtering method, a vapor deposition method, or the like is used. Of these, sputtering is preferred from the viewpoint of film uniformity.

対極基板としては、例えばチタン、ニッケル、白金、モリブデン、タングステン等の耐食性の金属材料や、ITO、FTO等の導電性酸化物や、炭素、導電性高分子を用いることができる。   As the counter electrode substrate, for example, a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, or tungsten, a conductive oxide such as ITO or FTO, carbon, or a conductive polymer can be used.

触媒膜は、白金、炭素系材料又は導電性高分子などから構成される。   The catalyst film is made of platinum, a carbon-based material, a conductive polymer, or the like.

対極2の厚さは例えば0.005mm〜0.1mmの範囲内で、対極2が可撓性を有する厚さを適宜決定すればよい。   The thickness of the counter electrode 2 is, for example, within a range of 0.005 mm to 0.1 mm, and the thickness at which the counter electrode 2 has flexibility may be appropriately determined.

例えば対極基板が金属材料である場合には、対極2に可撓性を付与しうる対極基板の厚さは通常500μm以下であり、好ましくは200μm以下である。下限は、ピンホールの発生が十分少ない厚みであればよく、この厚みは箔を製造する方法や金属の種類により異なる。例えば、圧延チタン箔を対極基板として用いる場合には対極基板の厚さは通常、20μm以上であればよいが、ピンホールの発生が十分少ない薄い箔が得られる場合にはこの限りではない。   For example, when the counter electrode substrate is a metal material, the thickness of the counter electrode substrate that can impart flexibility to the counter electrode 2 is usually 500 μm or less, and preferably 200 μm or less. The lower limit may be a thickness that does not generate pinholes sufficiently, and this thickness varies depending on the method of manufacturing the foil and the type of metal. For example, when a rolled titanium foil is used as the counter electrode substrate, the thickness of the counter electrode substrate is usually 20 μm or more, but this is not limited to the case where a thin foil with sufficiently few pinholes can be obtained.

[無機封止部形成工程]
次に、図7及び図8に示すように、作用極1のうち透明導電膜7の表面上の部位であって多孔質酸化物半導体層8を包囲する第1環状部位C1に無機封止部4Bを形成する。具体的には、無機封止部4Bは、透明導電膜7の第1環状部位C1に集電配線11を形成した後、集電配線11を配線保護層12で被覆することによって得ることができる。
[Inorganic sealing part forming step]
Next, as shown in FIGS. 7 and 8, the inorganic sealing portion is formed in the first annular portion C1 of the working electrode 1 on the surface of the transparent conductive film 7 and surrounding the porous oxide semiconductor layer 8. 4B is formed. Specifically, the inorganic sealing part 4 </ b> B can be obtained by forming the current collecting wiring 11 in the first annular portion C <b> 1 of the transparent conductive film 7 and then covering the current collecting wiring 11 with the wiring protective layer 12. .

ここで、集電配線11は、銀などの金属材料を含むペーストを塗布し焼成することによって得ることができる。配線保護層12は、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料を含むペーストを集電配線11に塗布し焼成することによって得ることができる。   Here, the current collector wiring 11 can be obtained by applying and baking a paste containing a metal material such as silver. The wiring protective layer 12 can be obtained, for example, by applying a paste containing an inorganic insulating material such as a lead-free transparent low melting point glass frit to the current collecting wiring 11 and baking it.

[樹脂封止部形成工程]
一方、図9及び図10に示すように、対極2の表面上の部位である第2環状部位C2に樹脂封止部4Aを形成する。樹脂封止部4Aを構成する樹脂としては、例えばアイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体などの熱可塑性樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などが挙げられる。樹脂封止部4Aが熱可塑性樹脂からなる場合には、例えば熱可塑性樹脂からなる環状のシートを準備し、このシートを第2環状部位C2に配置し加熱溶融させることによって得ることができる。樹脂封止部4Aが紫外線硬化樹脂である場合には、樹脂封止部4Aは、紫外線硬化樹脂の前駆体である紫外線硬化性樹脂を対極2の第2環状部位C2に塗布することによって得ることができる。
[Resin sealing part forming step]
On the other hand, as shown in FIGS. 9 and 10, the resin sealing portion 4 </ b> A is formed in the second annular portion C <b> 2 that is a portion on the surface of the counter electrode 2. Examples of the resin constituting the resin sealing portion 4A include thermoplastic resins such as ionomers, ethylene-vinyl acetic anhydride copolymers, ethylene-methacrylic acid copolymers, ethylene-vinyl alcohol copolymers, ultraviolet curable resins, And a vinyl alcohol polymer etc. are mentioned. When the resin sealing portion 4A is made of a thermoplastic resin, it can be obtained by preparing an annular sheet made of, for example, a thermoplastic resin, placing the sheet in the second annular portion C2, and heating and melting it. When the resin sealing portion 4A is an ultraviolet curable resin, the resin sealing portion 4A is obtained by applying an ultraviolet curable resin, which is a precursor of the ultraviolet curable resin, to the second annular portion C2 of the counter electrode 2. Can do.

[色素担持工程]
次に、作用極1の多孔質酸化物半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する溶液の中に浸漬させ、その色素を多孔質酸化物半導体層8に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質酸化物半導体層8に吸着させればよい。但し、光増感色素を含有する溶液を多孔質酸化物半導体層8に塗布した後、乾燥させることによって光増感色素を酸化物半導体多孔膜に吸着させることによっても、光増感色素を多孔質酸化物半導体層8に担持させることが可能である。
[Dye support process]
Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1. For this purpose, the working electrode 1 is immersed in a solution containing a photosensitizing dye, the dye is adsorbed on the porous oxide semiconductor layer 8, and then the excess dye is washed away with the solvent component of the solution. The photosensitizing dye may be adsorbed on the porous oxide semiconductor layer 8 by drying. However, the photosensitizing dye can be made porous by adsorbing the photosensitizing dye to the oxide semiconductor porous film by applying a solution containing the photosensitizing dye to the porous oxide semiconductor layer 8 and then drying it. It can be supported on the oxide semiconductor layer 8.

光増感色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。   Examples of the photosensitizing dye include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, and organic dyes such as porphyrin, eosin, rhodamine, and merocyanine.

[電解質層配置工程]
次に、図11に示すように、作用極1上であって無機封止部4Bの内側に電解質3を配置する。電解質3は、作用極1上であって無機封止部4Bの内側に注入したり、印刷したりすることによって得ることができる。
[Electrolyte layer placement process]
Next, as shown in FIG. 11, the electrolyte 3 is disposed on the working electrode 1 and inside the inorganic sealing portion 4B. The electrolyte 3 can be obtained by pouring or printing on the working electrode 1 and inside the inorganic sealing portion 4B.

ここで、電解質3が液状である場合は、電解質3を、無機封止部4Bを超えて無機封止部4Bの外側に溢れるまで注入することができる。この場合、無機封止部4Bの内側に電解質3を十分に注入することが可能となる。また無機封止部4Bと樹脂封止部4Aとを接着して封止部4を形成するに際し、作用極1と対極2と封止部4とによって囲まれるセル空間Sから空気を十分に排除することができ、光電変換効率を十分に向上させることができる。   Here, when the electrolyte 3 is in a liquid state, the electrolyte 3 can be injected until it overflows beyond the inorganic sealing portion 4B and overflows to the outside of the inorganic sealing portion 4B. In this case, the electrolyte 3 can be sufficiently injected inside the inorganic sealing portion 4B. In addition, when the sealing portion 4 is formed by bonding the inorganic sealing portion 4B and the resin sealing portion 4A, air is sufficiently removed from the cell space S surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4. And the photoelectric conversion efficiency can be sufficiently improved.

電解質3は通常、電解液で構成され、この電解液は例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオンなどの対が挙げられる。色素増感太陽電池100は、酸化還元対としてI/I のような揮発性溶質及び、高温下で揮発しやすいアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリルのような有機溶媒を含む電解液を電解質として用いた場合に特に有効である。この場合、色素増感太陽電池100の周囲の環境温度の変化によりセル空間Sの内圧の変化が特に大きくなり、封止部4と対極2との界面、および封止部4と作用極1との界面から電解質3が漏洩しやすくなるからである。なお、上記揮発性溶媒にはゲル化剤を加えてもよい。また電解質3は、イオン液体と揮発性成分との混合物からなるイオン液体電解質で構成されてもよい。この場合も、色素増感太陽電池100の周囲の環境温度の変化によりセル空間Sの内圧の変化が大きくなるためである。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドが好適に用いられる。また揮発性成分としては、上記の有機溶媒や、1−メチル−3−メチルイミダゾリウムヨーダイド、LiI、I、4−t−ブチルピリジンなどが挙げられる。さらに電解質3としては、上記イオン液体電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットイオンゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化したイオン液体電解質を用いてもよい。 The electrolyte 3 is usually composed of an electrolytic solution, and this electrolytic solution contains a redox couple such as I / I 3 and an organic solvent. As the organic solvent, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like can be used. Examples of the redox pair include I / I 3 and bromine / bromide ion pairs. The dye-sensitized solar cell 100 is an electrolytic solution that includes a volatile solute such as I / I 3 as an oxidation-reduction pair and an organic solvent such as acetonitrile, methoxyacetonitrile, and methoxypropionitrile that easily volatilizes at high temperatures. This is particularly effective when used as an electrolyte. In this case, the change in the internal pressure of the cell space S becomes particularly large due to the change in the ambient temperature around the dye-sensitized solar cell 100, and the interface between the sealing portion 4 and the counter electrode 2, and the sealing portion 4 and the working electrode 1 This is because the electrolyte 3 easily leaks from the interface. A gelling agent may be added to the volatile solvent. Moreover, the electrolyte 3 may be comprised with the ionic liquid electrolyte which consists of a mixture of an ionic liquid and a volatile component. This is also because the change in the internal pressure of the cell space S increases due to the change in the ambient temperature around the dye-sensitized solar cell 100. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. As such a room temperature molten salt, for example, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is preferably used. As the volatile component, the above and an organic solvent, 1-methyl-3-methyl imidazolium iodide, LiI, and the like I 2, 4-t-butylpyridine. Further, as the electrolyte 3, a nanocomposite ionic gel electrolyte, which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes in the ionic liquid electrolyte, may be used. An ionic liquid electrolyte gelled using an organic gelling agent such as vinylidene chloride, polyethylene oxide derivative, or amino acid derivative may be used.

[重合せ工程]
次に、図12に示すように、作用極1と対極2とを対向させて、無機封止部4Bと樹脂封止部4Aとを重ね合わせる。
[Polymerization process]
Next, as shown in FIG. 12, the working electrode 1 and the counter electrode 2 are opposed to each other, and the inorganic sealing portion 4B and the resin sealing portion 4A are overlapped.

[封止部形成工程]
次に、樹脂封止部4Aを、無機封止部4B及び対極2に接着させる。
[Sealing part forming step]
Next, the resin sealing portion 4 </ b> A is bonded to the inorganic sealing portion 4 </ b> B and the counter electrode 2.

このとき、樹脂封止部4Aを構成する樹脂として、例えば熱可塑性樹脂を用いる場合は、樹脂封止部4Aを加圧しながら溶融させる。具体的には図13に示すように、枠状部材20を用い、対極2を介して樹脂封止部4Aを加圧しながら加熱して溶融させる。ここで、枠状部材20としては、その環状の加圧面21に、対極2に形成しようとする環状溝15と同様の形状の環状溝21aが形成されたものを用いる。具体的には、複数の環状溝21aが加圧面21に沿って形成されたものを用いる。ここで、枠状部材20の材料は、良好な熱伝導性を有するものであることが好ましく、このような材料としては、例えば真鍮、銅などが挙げられる。このような加圧面21を有する枠状部材20を用いて樹脂封止部4Aを加熱及び加圧すると、対極2は可撓性を有するため、対極2の周縁部は容易に変形し、ジグザグ構造を有することとなる。即ち、対極2の第2環状部位C2に、複数の環状溝15が、電解質3から離れる方向に沿って形成され、対極2の第2環状部位C2と反対側の表面にも、複数の環状溝15が形成される。このとき、各環状溝15は、電解質3から離れる方向に交差するように延びることになる。そして、対極2の第2環状部位C2に複数の環状溝15が形成されると同時に、樹脂封止部4Aには、対極2側に複数の環状突起部が形成されることになる。   At this time, for example, when a thermoplastic resin is used as the resin constituting the resin sealing portion 4A, the resin sealing portion 4A is melted while being pressurized. Specifically, as shown in FIG. 13, the frame-shaped member 20 is used to heat and melt the resin sealing portion 4 </ b> A through the counter electrode 2 while applying pressure. Here, as the frame-shaped member 20, a member in which an annular groove 21 a having the same shape as the annular groove 15 to be formed in the counter electrode 2 is formed on the annular pressure surface 21 is used. Specifically, a structure in which a plurality of annular grooves 21 a are formed along the pressing surface 21 is used. Here, the material of the frame-shaped member 20 is preferably a material having good thermal conductivity, and examples of such a material include brass and copper. When the resin sealing portion 4A is heated and pressed using the frame-shaped member 20 having such a pressing surface 21, the counter electrode 2 has flexibility, so that the peripheral portion of the counter electrode 2 is easily deformed, and has a zigzag structure. It will have. That is, a plurality of annular grooves 15 are formed in the second annular portion C2 of the counter electrode 2 along a direction away from the electrolyte 3, and a plurality of annular grooves are also formed on the surface opposite to the second annular portion C2 of the counter electrode 2. 15 is formed. At this time, each annular groove 15 extends so as to intersect in a direction away from the electrolyte 3. A plurality of annular grooves 15 are formed in the second annular portion C2 of the counter electrode 2, and at the same time, a plurality of annular protrusions are formed on the counter electrode 2 side in the resin sealing portion 4A.

なお、上記ジグザグ構造は、対極2を介して加圧面21の形状が転写される。このため、加圧面21の形状が必ずしもそのまま転写されて形成されるのではなく、通常は加圧面21の形状を基に変形した形状となる。例えば、加圧面21の環状溝21aが先端角度60°の規則正しい形状を有していても、そのまま先端角度60°の溝形状が対極2の第2環状部位C2に転写されるものではない。例えば第2環状部位C2が、先端角度が少し大きくなった溝形状、例えば、先端角度が63°程度の溝を有する場合がある。さらにこの先端角度は、場所により異なり、62°の溝や70°の溝が第2環状部位C2に形成されることも起こり得る。また加圧面21には溝ではなく、曲面が形成されていてもよい。この場合、第2環状部位C2には、加圧面21の形状を基に変形した形状が形成される。加圧面21に溝、曲面のいずれが形成されている場合でも、厚さ増大部14aと厚さ減少部14bを形成することが可能である。   In the zigzag structure, the shape of the pressing surface 21 is transferred via the counter electrode 2. For this reason, the shape of the pressure surface 21 is not necessarily formed by being transferred as it is, but is usually a deformed shape based on the shape of the pressure surface 21. For example, even if the annular groove 21a of the pressing surface 21 has a regular shape with a tip angle of 60 °, the groove shape with a tip angle of 60 ° is not directly transferred to the second annular portion C2 of the counter electrode 2. For example, the second annular portion C2 may have a groove shape with a slightly increased tip angle, for example, a groove with a tip angle of about 63 °. Furthermore, the tip angle varies depending on the location, and a 62 ° groove or a 70 ° groove may be formed in the second annular portion C2. The pressurizing surface 21 may be formed with a curved surface instead of a groove. In this case, a shape deformed based on the shape of the pressure surface 21 is formed in the second annular portion C2. Regardless of whether a groove or a curved surface is formed on the pressing surface 21, the thickness increasing portion 14a and the thickness decreasing portion 14b can be formed.

こうして、作用極1と対極2とを貼り合せ、作用極1と対極2との間に封止部4を形成する。このとき、封止部4は、樹脂封止部4Aと無機封止部4Bとからなり、樹脂封止部4Aが最も外側に厚さ減少部14bを有し、電解質3に近づく方向に向かって、厚さ減少部14bと厚さ増大部14aとを交互に配置させ、樹脂封止部4Aの最も内側に厚さ増大部14aを有するものとなる。無機封止部4Bと樹脂封止部4Aとの貼合せは、例えば大気圧下で行うことができる。   Thus, the working electrode 1 and the counter electrode 2 are bonded together, and the sealing portion 4 is formed between the working electrode 1 and the counter electrode 2. At this time, the sealing part 4 is composed of a resin sealing part 4A and an inorganic sealing part 4B, and the resin sealing part 4A has a thickness decreasing part 14b on the outermost side, toward the direction approaching the electrolyte 3. The thickness decreasing portions 14b and the thickness increasing portions 14a are alternately arranged, and the thickness increasing portion 14a is provided on the innermost side of the resin sealing portion 4A. The bonding of the inorganic sealing portion 4B and the resin sealing portion 4A can be performed, for example, under atmospheric pressure.

このとき、無機封止部4B及び樹脂封止部4Aの加圧は通常、1〜50MPaで行い、好ましくは2〜30MPa、より好ましくは3〜20MPaで行う。   At this time, pressurization of the inorganic sealing portion 4B and the resin sealing portion 4A is normally performed at 1 to 50 MPa, preferably 2 to 30 MPa, more preferably 3 to 20 MPa.

樹脂封止部4Aを構成する樹脂として、例えば熱可塑性樹脂を用いる場合は、樹脂封止部4Aを溶融させるときの温度は、樹脂封止部4Aの融点以上とする。   For example, when a thermoplastic resin is used as the resin constituting the resin sealing portion 4A, the temperature at which the resin sealing portion 4A is melted is equal to or higher than the melting point of the resin sealing portion 4A.

但し、樹脂封止部4Aを溶融させるときの温度は、(樹脂封止部4Aに含まれる樹脂の融点+200℃)以下であることが好ましい。上記温度が(樹脂封止部4Aに含まれる樹脂の融点+200℃)を超えると、樹脂封止部4Aに含まれる樹脂が熱によって分解するおそれがある。   However, the temperature at which the resin sealing portion 4A is melted is preferably (melting point of resin contained in the resin sealing portion 4A + 200 ° C.) or less. If the temperature exceeds (the melting point of the resin contained in the resin sealing portion 4A + 200 ° C.), the resin contained in the resin sealing portion 4A may be decomposed by heat.

なお、樹脂封止部4Aが紫外線硬化樹脂である場合は、樹脂封止部4Aを加圧しながら紫外線を照射することによって樹脂封止部4Aを、無機封止部4B及び対極2に接着させる。このとき、枠状部材20と同様の形状を有する枠状部材を用い、対極2を介して樹脂封止部4Aを加圧しながら、枠状部材を通して樹脂封止部4Aに紫外線を照射する。ここで、枠状部材を構成する材料としては、紫外線を透過するガラス等が用いられる。この枠状部材を用いて樹脂封止部4Aを加圧すると、対極2は可撓性を有するため、対極2の周縁部は容易に変形し、ジグザグ構造を有することとなる。即ち、対極2の第2環状部位C2に、複数の環状溝15が、電解質3から離れる方向に沿って形成され、対極2の第2環状部位C2と反対側の表面にも、複数の環状溝15が形成される。このとき、各環状溝15は、電解質3から離れる方向に交差するように延びることとなる。そして、対極2の第2環状部位C2に複数の環状溝15が形成されると同時に、樹脂封止部4Aには、対極2側に複数の環状突起部が形成されることになる。   When the resin sealing portion 4A is an ultraviolet curable resin, the resin sealing portion 4A is bonded to the inorganic sealing portion 4B and the counter electrode 2 by irradiating the resin sealing portion 4A with ultraviolet rays while applying pressure. At this time, a frame-shaped member having the same shape as the frame-shaped member 20 is used, and the resin sealing portion 4A is irradiated with ultraviolet rays through the frame-shaped member while pressing the resin sealing portion 4A through the counter electrode 2. Here, as a material constituting the frame member, glass or the like that transmits ultraviolet rays is used. When the resin sealing portion 4A is pressed using this frame-shaped member, the counter electrode 2 has flexibility, so that the peripheral portion of the counter electrode 2 is easily deformed and has a zigzag structure. That is, a plurality of annular grooves 15 are formed in the second annular portion C2 of the counter electrode 2 along a direction away from the electrolyte 3, and a plurality of annular grooves are also formed on the surface opposite to the second annular portion C2 of the counter electrode 2. 15 is formed. At this time, each annular groove 15 extends so as to intersect in a direction away from the electrolyte 3. A plurality of annular grooves 15 are formed in the second annular portion C2 of the counter electrode 2, and at the same time, a plurality of annular protrusions are formed on the counter electrode 2 side in the resin sealing portion 4A.

こうして、色素増感太陽電池100が得られ、色素増感太陽電池100の製造が完了する。   Thus, the dye-sensitized solar cell 100 is obtained, and the manufacture of the dye-sensitized solar cell 100 is completed.

<第2実施形態>
次に、本発明に係る色素増感太陽電池の第2実施形態について図14を用いて説明する。図14は、本発明に係る色素増感太陽電池の第2実施形態を示す部分拡大断面図である。なお、図14において、第1実施形態と同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。
<Second Embodiment>
Next, a second embodiment of the dye-sensitized solar cell according to the present invention will be described with reference to FIG. FIG. 14 is a partially enlarged cross-sectional view showing a second embodiment of the dye-sensitized solar cell according to the present invention. In FIG. 14, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図14に示すように、本実施形態の色素増感太陽電池200は、封止部4及び作用極1の境界13と、封止部4及び対極2の境界14と、封止部4の外周面と、対極2のうち封止部4と反対側の表面とを覆う被覆部5を更に備える点で第1実施形態の色素増感太陽電池100と相違する。   As shown in FIG. 14, the dye-sensitized solar cell 200 of the present embodiment includes a boundary 13 between the sealing portion 4 and the working electrode 1, a boundary 14 between the sealing portion 4 and the counter electrode 2, and an outer periphery of the sealing portion 4. It differs from the dye-sensitized solar cell 100 of the first embodiment in that it further includes a covering portion 5 that covers the surface and the surface of the counter electrode 2 opposite to the sealing portion 4.

この場合、電解質3の漏洩又は外部からの電解質3への酸素や水分の侵入が、封止部4のみならず被覆部5によっても抑制されることになる。特に、封止部4と対極2との境界14、封止部4と作用極1との境界13での漏洩又は外部からの電解質3への酸素や水分の侵入が被覆部5によって効果的に抑制される。また被覆部5は、対極2のうち封止部4と反対側の表面をも覆っているため、封止部4と対極2との界面および被覆部5と対極2との界面を通る電解質3の漏洩、外部から封止部4と対極2との界面および被覆部5と対極2との界面を通ってくる水分や酸素の侵入をも抑制することもできる。特に対極2の封止部4と反対側の表面には環状溝が形成されているため、対極2の封止部4と反対側の表面には環状溝が形成されていない場合に比べて、電解質3や水分、酸素等の通過距離がより長くなる。このため、電解質3の界面漏洩や、外部からの水分や酸素の侵入をより効果的に抑制できる。   In this case, leakage of the electrolyte 3 or intrusion of oxygen and moisture into the electrolyte 3 from the outside is suppressed not only by the sealing portion 4 but also by the covering portion 5. In particular, leakage at the boundary 14 between the sealing portion 4 and the counter electrode 2, and at the boundary 13 between the sealing portion 4 and the working electrode 1, or intrusion of oxygen or moisture from the outside into the electrolyte 3 is effectively performed by the covering portion 5. It is suppressed. Since the covering portion 5 also covers the surface of the counter electrode 2 opposite to the sealing portion 4, the electrolyte 3 that passes through the interface between the sealing portion 4 and the counter electrode 2 and the interface between the covering portion 5 and the counter electrode 2. It is also possible to suppress the leakage of moisture and oxygen from the outside through the interface between the sealing portion 4 and the counter electrode 2 and the interface between the covering portion 5 and the counter electrode 2 from the outside. In particular, since the annular groove is formed on the surface opposite to the sealing portion 4 of the counter electrode 2, compared to the case where the annular groove is not formed on the surface opposite to the sealing portion 4 of the counter electrode 2, The passing distance of the electrolyte 3, moisture, oxygen and the like becomes longer. For this reason, the interfacial leakage of the electrolyte 3 and the entry of moisture and oxygen from the outside can be more effectively suppressed.

ここで、被覆部5は樹脂を含む。樹脂としては、酸変性ポリオレフィン、紫外線硬化樹脂、ポリビニルアルコール、エポキシ樹脂またはエチレン−ビニルアルコール共重合体を用いることができる。特に、樹脂として、酸変性ポリオレフィンまたは紫外線硬化樹脂を用いた場合、被覆部5と作用極1、対極2、封止部4との接着が強固になり、それぞれの界面において、電解質3の漏洩及び外部からの電解質3への酸素や水分の侵入をより十分に抑制できる。   Here, the coating | coated part 5 contains resin. As the resin, acid-modified polyolefin, ultraviolet curable resin, polyvinyl alcohol, epoxy resin, or ethylene-vinyl alcohol copolymer can be used. In particular, when an acid-modified polyolefin or an ultraviolet curable resin is used as the resin, the adhesion between the covering portion 5 and the working electrode 1, the counter electrode 2, and the sealing portion 4 is strengthened. Invasion of oxygen and moisture from the outside to the electrolyte 3 can be more sufficiently suppressed.

なお、被覆部5は樹脂のほか、金属、ガラスなどの無機材料を含んでもよい。この場合、被覆部5は、樹脂中に無機材料を分散させたものであってもよく、樹脂からなる樹脂層と、無機材料からなる無機層との積層体で構成するようにしてもよい。   In addition, the coating | coated part 5 may contain inorganic materials, such as a metal and glass other than resin. In this case, the covering portion 5 may be one in which an inorganic material is dispersed in a resin, and may be configured by a laminate of a resin layer made of resin and an inorganic layer made of an inorganic material.

本発明は、上記第1及び第2実施形態に限定されるものではない。例えば上記第1及び第2実施形態では、封止部4が樹脂封止部4Aと無機封止部4Bとによって構成され、樹脂封止部4Aは対極2のみに接着されているが、図15に示す色素増感太陽電池300のように、封止部304が樹脂封止部4Aのみからなり、樹脂封止部4Aが作用極1及び対極2の両方に接着されていてもよい。即ち色素増感太陽電池300においては、封止部304が無機封止部4Bを有していなくてもよい。この場合、厚さ増大部14aの厚さがそのまま封止部304の厚さとなり、この厚さは電解質3から離れるにつれて増大することになる。   The present invention is not limited to the first and second embodiments. For example, in the first and second embodiments, the sealing portion 4 is constituted by the resin sealing portion 4A and the inorganic sealing portion 4B, and the resin sealing portion 4A is bonded only to the counter electrode 2, but FIG. Like the dye-sensitized solar cell 300 shown in FIG. 4, the sealing portion 304 may be composed of only the resin sealing portion 4A, and the resin sealing portion 4A may be bonded to both the working electrode 1 and the counter electrode 2. That is, in the dye-sensitized solar cell 300, the sealing portion 304 may not have the inorganic sealing portion 4B. In this case, the thickness of the thickness increasing portion 14 a becomes the thickness of the sealing portion 304 as it is, and this thickness increases as the distance from the electrolyte 3 increases.

また上記第1及び第2実施形態においては、作用極1の第1環状部位C1が平坦面となっているが、第1環状部位C1は必ずしも平坦面である必要はない。例えば第1環状部位C1に、第2環状部位C2と同様に環状溝15が1つ又は複数形成されていてもよい。   In the first and second embodiments, the first annular portion C1 of the working electrode 1 is a flat surface, but the first annular portion C1 is not necessarily a flat surface. For example, one or a plurality of annular grooves 15 may be formed in the first annular portion C1 similarly to the second annular portion C2.

さらに上記第1及び第2実施形態では、厚さ減少部14bが樹脂封止部4Aの最も外側に設けられているが、厚さ減少部14bは樹脂封止部4Aの最も外側に設けられていなくてもよい。例えば樹脂封止部4Aの最も外側に厚さ増大部14aが設けられていてもよい。換言すれば、厚さ減少部14bは樹脂封止部4A内のいかなる位置にあってもよい。この場合、色素増感太陽電池が高湿環境下で使用されても、十分な耐久性を確保することができる。これは以下の理由によるものである。すなわち、樹脂封止部4Aが厚さ減少部14bを有してさえいれば、厚さ減少部14bにより、厚さ減少部14bの電解質3と反対側で厚さが十分に小さくされ、外部雰囲気に対する樹脂封止部4Aの露出面積をより小さくすることができ、水分や空気の侵入を十分に抑制することができる。従って、色素増感太陽電池が高湿環境下で使用されても、水分や空気の侵入を十分に抑制することができる。一方、厚さ減少部14bでは電解質3から離れるにつれて厚さが減少している。即ち、厚さ減少部14bにおいて、電解質3に近づくにつれて厚さが増大している。即ち、電解質3側(水分や空気が届きにくい側)に厚さが大きい部分がある。別言すると、水分や空気の影響が小さい位置で厚さを確保することができる。このため、厚さ減少部14bにより対極2に対する樹脂封止部4Aの接着力が十分に強化される。従って、色素増感太陽電池が高湿環境下で使用されても、対極2に対する樹脂封止部4Aの接着力の低下を十分に抑制することができる。   Further, in the first and second embodiments, the thickness reducing portion 14b is provided on the outermost side of the resin sealing portion 4A, but the thickness reducing portion 14b is provided on the outermost side of the resin sealing portion 4A. It does not have to be. For example, the thickness increasing portion 14a may be provided on the outermost side of the resin sealing portion 4A. In other words, the thickness reduction part 14b may be in any position within the resin sealing part 4A. In this case, even when the dye-sensitized solar cell is used in a high humidity environment, sufficient durability can be ensured. This is due to the following reason. That is, as long as the resin sealing portion 4A has the thickness reduction portion 14b, the thickness reduction portion 14b can sufficiently reduce the thickness on the side opposite to the electrolyte 3 of the thickness reduction portion 14b. The exposed area of the resin sealing portion 4A can be further reduced, and entry of moisture and air can be sufficiently suppressed. Therefore, even when the dye-sensitized solar cell is used in a high humidity environment, the intrusion of moisture and air can be sufficiently suppressed. On the other hand, the thickness of the thickness reducing portion 14b decreases as the distance from the electrolyte 3 increases. In other words, the thickness of the thickness decreasing portion 14b increases as it approaches the electrolyte 3. That is, there is a portion with a large thickness on the electrolyte 3 side (side on which moisture and air are difficult to reach). In other words, the thickness can be secured at a position where the influence of moisture and air is small. For this reason, the adhesive force of the resin sealing portion 4A to the counter electrode 2 is sufficiently strengthened by the thickness reducing portion 14b. Therefore, even if the dye-sensitized solar cell is used in a high humidity environment, it is possible to sufficiently suppress a decrease in the adhesive force of the resin sealing portion 4A with respect to the counter electrode 2.

また上記第1及び第2実施形態では、厚さ増大部14aが電解質3に接触しているが、厚さ増大部14aは電解質3に接触していなくてもよい。即ち、封止部4は、厚さ増大部14aよりも電解質3側に、厚さが一定で且つ電解質3に接触する部分や、電解質3から離れるにつれて厚さが減少する厚さ減少部14bを有していてもよい。   In the first and second embodiments, the thickness increasing portion 14 a is in contact with the electrolyte 3, but the thickness increasing portion 14 a may not be in contact with the electrolyte 3. In other words, the sealing portion 4 includes a portion having a constant thickness and in contact with the electrolyte 3 relative to the thickness increasing portion 14a, and a thickness decreasing portion 14b that decreases in thickness as the distance from the electrolyte 3 decreases. You may have.

また上記第1及び第2実施形態では、対極2の第2環状部位C2のみならず、対極2の第2環状部位C2と反対側にも環状溝15が形成されているが、対極2の第2環状部位C2と反対側の環状溝15は必ずしも必要なものでない。例えば対極2が可撓性を有しない場合には、樹脂封止部4Aを加圧する前に、対極2の第2環状部位C2に予め環状溝15を形成しておき、樹脂封止部4Aの加圧は、平坦な加圧面を有する枠状部材を用いて行えばよい。なお、この場合には、対極2の第2環状部位C2の構成要素である、対極2の厚さ増大部対向接触面2aと対極2の厚さ減少部対向接触面2bを予め形成する必要があるが、これらは、サンドブラストまたはウォータブラスト等により対極2の表面を切削することにより形成することができる。   In the first and second embodiments, the annular groove 15 is formed not only on the second annular portion C2 of the counter electrode 2 but also on the opposite side of the second annular portion C2 of the counter electrode 2. The annular groove 15 opposite to the two annular portions C2 is not necessarily required. For example, when the counter electrode 2 is not flexible, an annular groove 15 is formed in advance in the second annular portion C2 of the counter electrode 2 before pressurizing the resin sealing portion 4A. Pressurization may be performed using a frame-like member having a flat pressure surface. In this case, it is necessary to previously form the thickness increasing portion facing contact surface 2a of the counter electrode 2 and the thickness decreasing portion facing contact surface 2b of the counter electrode 2, which are components of the second annular portion C2 of the counter electrode 2. However, these can be formed by cutting the surface of the counter electrode 2 by sandblasting or water blasting.

さらに上記第1及び第2実施形態では、樹脂封止部4Aは、複数の厚さ増大部14aと複数の厚さ減少部14bを有しているが、樹脂封止部4Aは、図16に示す色素増感太陽電池400のように、厚さ減少部14bを1つのみ有していればよく、必ずしも厚さ増大部14aを有していなくてもよい。   Further, in the first and second embodiments, the resin sealing portion 4A includes a plurality of thickness increasing portions 14a and a plurality of thickness decreasing portions 14b. The resin sealing portion 4A is illustrated in FIG. Like the dye-sensitized solar cell 400 shown, it is sufficient to have only one thickness decreasing portion 14b, and it is not always necessary to have the thickness increasing portion 14a.

また上記第1及び第2実施形態では、厚さ増大部14aと対極2の厚さ増大部対向接触面2a、及び厚さ減少部14bと対極2の厚さ減少部対向接触面2bは平坦面となっているが、この厚さ増大部対向接触面2a、厚さ減少部対向接触面2bは必ずしも平坦面である必要はなく、電解質3から離れるにつれて厚さ増大部14aの厚さを増大させ又は厚さ減少部14bの厚さを減少させることが可能であれば曲面であってもよい。   In the first and second embodiments, the thickness increasing portion 14a and the thickness increasing portion facing contact surface 2a of the counter electrode 2 and the thickness decreasing portion 14b and the thickness decreasing portion facing contact surface 2b of the counter electrode 2 are flat surfaces. However, the thickness increasing portion facing contact surface 2a and the thickness decreasing portion facing contact surface 2b are not necessarily flat surfaces, and the thickness of the thickness increasing portion 14a increases as the distance from the electrolyte 3 increases. Alternatively, it may be a curved surface as long as the thickness of the thickness reducing portion 14b can be reduced.

また上記第1および第2実施形態では、環状の厚さ増大部14aおよび環状の厚さ減少部14bはそれぞれ連続状に形成されているが、不連続に形成されていてもよい。   Moreover, in the said 1st and 2nd embodiment, although the cyclic | annular thickness increase part 14a and the cyclic | annular thickness decrease part 14b are each formed continuously, you may form discontinuously.

さらに上記第1および第2実施形態では、対極2のみならず、作用極1が可撓性を有していてもよい。あるいは、対極2に代えて、作用極1が可撓性を有していてもよい。   Furthermore, in the said 1st and 2nd embodiment, not only the counter electrode 2 but the working electrode 1 may have flexibility. Alternatively, the working electrode 1 may be flexible instead of the counter electrode 2.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
はじめに、10cm×10cm×4mmのFTO基板を準備した。続いて、FTO基板の上に、ドクターブレード法によって酸化チタンペースト(Solaronix社製、Ti nanoixide
T/sp)を、その厚さが10μmとなるように塗布した後、熱風循環タイプのオーブンに入れて500℃で3時間焼成し、FTO基板上に多孔質酸化物半導体層を形成し、5cm×5cmの作用極を得た。
Example 1
First, a 10 cm × 10 cm × 4 mm FTO substrate was prepared. Subsequently, titanium oxide paste (manufactured by Solaronix, Ti nanoixide) is formed on the FTO substrate by the doctor blade method.
T / sp) is applied to a thickness of 10 μm, and then placed in a hot air circulation type oven and baked at 500 ° C. for 3 hours to form a porous oxide semiconductor layer on the FTO substrate. A working electrode of 5 cm was obtained.

一方、6cm×6cm×2mmのチタンからなる対極基板を準備した。そして、対極基板上に、スパッタリング法により、厚さ10nmの白金触媒膜を形成し、対極を得た。   Meanwhile, a counter electrode substrate made of titanium of 6 cm × 6 cm × 2 mm was prepared. Then, a platinum catalyst film having a thickness of 10 nm was formed on the counter electrode substrate by sputtering to obtain a counter electrode.

こうして作用極及び対極を準備した。   Thus, a working electrode and a counter electrode were prepared.

次に、アイオノマーであるハイミラン(商品名、三井・デュポンポリケミカル社製)からなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。そして、この樹脂シートを、作用極の多孔質酸化物半導体層を包囲する環状の部位に配置した。この樹脂シートを180℃で5分間加熱し溶融させることによって環状部位に接着し、FTO基板上における環状部位に第1樹脂封止部を形成した。   Next, a square annular resin sheet was prepared in which an opening of 5 cm × 5 cm × 100 μm was formed in the center of a 6 cm × 6 cm × 100 μm sheet made of ionomer Himiran (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.). . And this resin sheet was arrange | positioned in the cyclic | annular site | part surrounding the porous oxide semiconductor layer of a working electrode. The resin sheet was heated and melted at 180 ° C. for 5 minutes to adhere to the annular portion, and the first resin sealing portion was formed at the annular portion on the FTO substrate.

次に、この作用極を、光増感色素であるN719色素を0.2mM溶かした脱水エタノール液中に一昼夜浸漬して作用極に光増感色素を担持させた。   Next, the working electrode was immersed in a dehydrated ethanol solution in which 0.2 mM of N719 dye, which is a photosensitizing dye, was dissolved for 24 hours to support the photosensitizing dye on the working electrode.

一方、上記と同一の樹脂シートを準備し、この樹脂シートを対極の白金触媒膜上における環状の部位に配置した。そして、この樹脂シートを180℃で5分間加熱し溶融させることによって環状部位に接着し、対極の白金触媒膜上における環状部位に第2樹脂封止部を形成した。   On the other hand, the same resin sheet as described above was prepared, and this resin sheet was disposed at an annular portion on the platinum catalyst film of the counter electrode. Then, the resin sheet was heated and melted at 180 ° C. for 5 minutes to adhere to the annular portion, and the second resin sealing portion was formed at the annular portion on the platinum catalyst film of the counter electrode.

次いで、第1樹脂封止部を設けた作用極を、FTO基板の多孔質酸化物半導体層側の表面が水平になるように配置し、第1樹脂封止部の内側に、メトキシアセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4−tert−ブチルピリジンを0.5M含む揮発系電解質を注入した。   Next, the working electrode provided with the first resin sealing portion is arranged so that the surface of the FTO substrate on the porous oxide semiconductor layer side is horizontal, and is made of methoxyacetonitrile inside the first resin sealing portion. A volatile electrolyte containing 0.1M lithium iodide, 0.05M iodine, and 0.5M 4-tert-butylpyridine was injected using a volatile solvent as the main solvent.

次に、第2樹脂封止部を設けた対極を、作用極に対向させ、大気圧下で、第1樹脂封止部と第2樹脂封止部とを重ね合わせた。そして、大気圧下で、第1樹脂封止部と同じ大きさの真鍮製の枠状部材を加熱し、この枠状部材を対極の第2樹脂封止部とは反対側に配置し、プレス機を用いて、5MPaで第1樹脂封止部及び第2樹脂封止部を加圧しながら148℃で加熱して溶融させ、1つの厚さ減少部からなる封止部を得た。このとき、枠状部材としては、環状の加圧面を有し、環状の加圧面が切欠き面となっているものを用いた。具体的には、枠状部材を平坦面上に、加圧面を平坦面側に向けて置いたときに、環状の加圧面の最外周縁が平坦面に接し、環状の加圧面の最内周縁の平坦面からの高さが5μmとなるように且つ加圧面が平坦面となるように加工された枠状部材を用いた。このとき、厚さ減少部は、最小厚さが10μmで、最大厚さと最小厚さとの差が5μmとなるように形成した。こうして色素増感太陽電池を得た。   Next, the counter electrode provided with the second resin sealing portion was opposed to the working electrode, and the first resin sealing portion and the second resin sealing portion were superposed under atmospheric pressure. Then, under atmospheric pressure, a brass frame-shaped member having the same size as the first resin sealing portion is heated, and this frame-shaped member is disposed on the side opposite to the second resin sealing portion of the counter electrode. Using a machine, the first resin sealing portion and the second resin sealing portion were heated and melted at 148 ° C. while pressurizing at 5 MPa to obtain a sealing portion consisting of one thickness reduction portion. At this time, a frame-shaped member having an annular pressure surface and the annular pressure surface being a notch surface was used. Specifically, when the frame-shaped member is placed on the flat surface and the pressure surface faces the flat surface, the outermost peripheral edge of the annular pressure surface is in contact with the flat surface, and the innermost peripheral edge of the annular pressure surface A frame-shaped member was used that was processed so that the height from the flat surface was 5 μm and the pressure surface was a flat surface. At this time, the thickness reducing portion was formed so that the minimum thickness was 10 μm and the difference between the maximum thickness and the minimum thickness was 5 μm. Thus, a dye-sensitized solar cell was obtained.

(実施例2)
厚さ減少部に対して電解質側に、電解質から離れるにつれて厚さが増大する厚さ増大部をさらに設け、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように且つ第1及び第2樹脂封止部として、エチレン−メタクリル酸共重合体であるニュクレル(三井・デュポンポリケミカル社製)を用いて封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μm、幅50μmの1つのV字状の溝で構成されているものを用いた。
(Example 2)
A thickness increasing portion that increases in thickness with increasing distance from the electrolyte is further provided on the electrolyte side with respect to the thickness decreasing portion, and the minimum thickness of the thickness decreasing portion and the thickness increasing portion is 20 μm. Other than having formed the sealing part using Nukurel (Mitsui / DuPont Polychemical Co., Ltd.) which is an ethylene-methacrylic acid copolymer as the first and second resin sealing parts so that the difference between the two is 5 μm Prepared a dye-sensitized solar cell in the same manner as in Example 1. At this time, as the brass frame-like member, a member having an annular pressure surface, the annular pressure surface being constituted by one V-shaped groove having a depth of 5 μm and a width of 50 μm was used.

(実施例3)
2つの厚さ減少部と1つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅50μmの1つのV字状の環状溝とそれらの内側に環状溝に沿って形成された1つの切欠き面とで構成されているものを用いた。
(Example 3)
It has two thickness decreasing portions and one thickness increasing portion, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed so that the minimum thickness was 20 μm and the difference between the maximum thickness and the minimum thickness was 5 μm. At this time, the brass frame-shaped member has an annular pressure surface, and the annular pressure surface has a depth of 5 μm and a width of 50 μm and a V-shaped annular groove inside thereof along the annular groove. What was comprised with one formed notch surface was used.

(実施例4)
2つの厚さ減少部と2つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が電解質に近づく方向に向かって交互に形成され且つ厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅が50μmの2つのV字状の環状溝で構成されているものを用いた。
Example 4
Two thickness decreasing portions and two thickness increasing portions, the thickness decreasing portions and the thickness increasing portions are alternately formed toward the direction of approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed so that the minimum thickness was 20 μm and the difference between the maximum thickness and the minimum thickness was 5 μm. At this time, a brass frame-shaped member having an annular pressure surface, the annular pressure surface being composed of two V-shaped annular grooves having a depth of 5 μm and a width of 50 μm was used. .

(実施例5)
3つの厚さ減少部と3つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように且つ第1樹脂封止部及び第2樹脂封止部として、エチレン−メタクリル酸共重合体であるニュクレル(三井・デュポンポリケミカル社製)を用いて封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅が50μmの3つのV字状の環状溝で構成されているものを用いた。
(Example 5)
There are three thickness decreasing portions and three thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are Nucleel (Mitsui / DuPont), which is an ethylene-methacrylic acid copolymer, has a minimum thickness of 20 μm, a difference between the maximum thickness and the minimum thickness of 5 μm, and the first resin sealing portion and the second resin sealing portion. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing part was formed using Polychemical Co., Ltd. At this time, a brass frame-shaped member having an annular pressure surface, the annular pressure surface being composed of three V-shaped annular grooves having a depth of 5 μm and a width of 50 μm was used. .

(実施例6)
5つの厚さ減少部と5つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように且つ第1樹脂封止部及び第2樹脂封止部として、エチレン−ビニル酢酸無水物共重合体であるバイネル(デュポン社製)を用いて封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅が50μmの5つのV字状の環状溝で構成されているものを用いた。
(Example 6)
It has five thickness decreasing portions and five thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte. A binel (DuPont) which is an ethylene-vinyl acetate anhydride copolymer so that the minimum thickness is 20 μm, the difference between the maximum thickness and the minimum thickness is 5 μm, and as the first resin sealing portion and the second resin sealing portion. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed using the same method. At this time, a brass frame-shaped member having an annular pressure surface, the annular pressure surface being composed of five V-shaped annular grooves having a depth of 5 μm and a width of 50 μm was used. .

(実施例7)
6つの厚さ減少部と5つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように且つ第1樹脂封止部及び第2樹脂封止部として、エチレン−ビニル酢酸無水物共重合体であるバイネル(デュポン社製)を用いて封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅が50μmの5つのV字状の環状溝とそれらの内側に環状溝に沿って形成された1つの切欠き面とを有する加圧面を持ったものを用いた。
(Example 7)
It has six thickness decreasing portions and five thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are A binel (DuPont) which is an ethylene-vinyl acetate anhydride copolymer so that the minimum thickness is 20 μm, the difference between the maximum thickness and the minimum thickness is 5 μm, and as the first resin sealing portion and the second resin sealing portion. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed using the same method. At this time, the brass frame-like member has an annular pressure surface, the annular pressure surface is 5 μm deep and 50 μm wide, and V-shaped annular grooves inside the annular groove along the annular groove. The one having a pressing surface having one notch surface formed in this manner was used.

(実施例8)
まず実施例1と同様にして作用極及び対極を準備した。
(Example 8)
First, a working electrode and a counter electrode were prepared in the same manner as in Example 1.

次に、光増感色素であるN719色素を0.2mM溶かした脱水エタノール液中に一昼夜浸漬して作用極に光増感色素を担持させた。   Next, the photosensitizing dye was supported on the working electrode by being immersed in a dehydrated ethanol solution in which 0.2 mM of N719 dye as a photosensitizing dye was dissolved for 24 hours.

次に、作用極の多孔質酸化物半導体層を包囲する環状の部位にUV硬化性樹脂である31x−101(スリーボンド社製)を塗布し乾燥させて第1樹脂封止部を形成した。   Next, 31x-101 (manufactured by Three Bond Co., Ltd.), which is a UV curable resin, was applied to an annular portion surrounding the porous oxide semiconductor layer of the working electrode and dried to form a first resin sealing portion.

次に、対極の白金薄膜上における環状部位に、UV硬化性樹脂である31x−101を塗布し乾燥させ、第2樹脂封止部を形成した。   Next, 31x-101 which is UV curable resin was apply | coated and dried to the cyclic | annular site | part on the platinum thin film of a counter electrode, and the 2nd resin sealing part was formed.

次いで、第2樹脂封止部を設けた対極を、白金薄膜の表面が水平になるように配置し、第2樹脂封止部の内側に、メトキシアセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4−tert−ブチルピリジンを0.5M含む揮発系電解質を注入した。   Next, the counter electrode provided with the second resin sealing portion is arranged so that the surface of the platinum thin film is horizontal, and inside the second resin sealing portion, a volatile solvent made of methoxyacetonitrile is used as a main solvent, and iodine A volatile electrolyte containing 0.1 M lithium iodide, 0.05 M iodine, and 0.5 M 4-tert-butylpyridine was injected.

次に、第1樹脂封止部を設けた作用極を、対極に対向させ、大気圧下で作用極と対極とを重ね合わせた。そして、大気圧下で、第1樹脂封止部と同じ大きさの真鍮製の枠状部材を作用極の第1樹脂封止部とは反対側に配置し、プレス機を用いて、5MPaで第1樹脂封止部及び第2樹脂封止部を加圧しながら第2樹脂封止部に紫外線を照射させた。こうして、樹脂封止部の最も外側に厚さ減少部を配置し、電解質に近づく方向に向かって8つ厚さ減少部及び8つの厚さ増大部を交互に配列してなる封止部を形成した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が深さ5μmで幅が50μmの8つのV字状の溝で構成されているものを用いた。またこのとき、厚さ減少部及び厚さ増大部はそれぞれ、最小厚さが20μmで、最大厚さと最小厚さとの差が5μmとなるように形成した。こうして色素増感太陽電池を得た。   Next, the working electrode provided with the first resin sealing portion was opposed to the counter electrode, and the working electrode and the counter electrode were superposed under atmospheric pressure. Then, under atmospheric pressure, a brass frame-like member having the same size as the first resin sealing portion is arranged on the side opposite to the first resin sealing portion of the working electrode, and at 5 MPa using a press machine. The second resin sealing part was irradiated with ultraviolet rays while pressurizing the first resin sealing part and the second resin sealing part. In this way, the thickness decreasing portion is arranged on the outermost side of the resin sealing portion, and the sealing portion is formed by alternately arranging the eight thickness decreasing portions and the eight thickness increasing portions in the direction approaching the electrolyte. did. At this time, as the brass frame-like member, a member having an annular pressure surface, the annular pressure surface being composed of eight V-shaped grooves having a depth of 5 μm and a width of 50 μm was used. At this time, each of the thickness decreasing portion and the thickness increasing portion was formed so that the minimum thickness was 20 μm and the difference between the maximum thickness and the minimum thickness was 5 μm. Thus, a dye-sensitized solar cell was obtained.

(実施例9)
封止部を形成した後、UV硬化性樹脂である31x−101中にガラスを混入してなる樹脂組成物を、封止部と作用極との境界、封止部と対極との境界を覆うように塗布し、この樹脂組成物に紫外線を照射することによって被覆部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
Example 9
After forming the sealing part, a resin composition obtained by mixing glass in 31x-101, which is a UV curable resin, covers the boundary between the sealing part and the working electrode and the boundary between the sealing part and the counter electrode. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the coating portion was formed by irradiating the resin composition with ultraviolet rays.

(実施例10)
封止部を形成した後、UV硬化性樹脂である31x−101中にガラスを混入してなる樹脂組成物を、封止部と作用極との境界、封止部と対極との境界を覆うように塗布し、この樹脂組成物に紫外線を照射することによって被覆部を形成したこと以外は実施例4と同様にして色素増感太陽電池を作製した。
(Example 10)
After forming the sealing part, a resin composition obtained by mixing glass in 31x-101, which is a UV curable resin, covers the boundary between the sealing part and the working electrode and the boundary between the sealing part and the counter electrode. A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the coating portion was formed by irradiating the resin composition with ultraviolet rays.

(実施例11)
封止部を形成した後、以下のように被覆部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 11)
After forming the sealing part, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the covering part was formed as follows.

即ちまず酸変性ポリオレフィンであるニュクレル(三井・デュポンポリケミカル社製)中にガラスを混入してなる複合フィルムを準備した。次いで、この複合フィルムを、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように配置し、複合フィルムを覆うようにテフロンフィルムをかぶせた。そして、テフロンフィルム越しに複合フィルムを加熱溶融させ、室温で自然冷却させた後、テフロンフィルムを除去した。こうして被覆部を形成した。   That is, first, a composite film was prepared by mixing glass in acid-modified polyolefin Nucrel (Mitsui / DuPont Polychemical Co., Ltd.). Next, the composite film is covered so as to cover the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode. The Teflon film was covered so that a composite film might be covered. Then, the composite film was heated and melted through the Teflon film and allowed to cool naturally at room temperature, and then the Teflon film was removed. Thus, a covering portion was formed.

(実施例12)
封止部を形成した後、以下のように被覆部を形成したこと以外は実施例3と同様にして色素増感太陽電池を作製した。
(Example 12)
After forming the sealing part, a dye-sensitized solar cell was produced in the same manner as in Example 3 except that the covering part was formed as follows.

即ちまず酸変性ポリオレフィンであるバイネル(デュポン社製)中にガラスを混入してなる複合フィルムを準備した。次いで、この複合フィルムを、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように配置し、複合フィルムを覆うようにテフロンフィルムをかぶせた。そして、テフロンフィルムを越しに複合フィルムを加熱溶融させ、室温で自然冷却させた後、テフロンフィルムを除去した。こうして被覆部を形成した。   That is, first, a composite film was prepared by mixing glass in an acid-modified polyolefin, Binnel (manufactured by DuPont). Next, the composite film is covered so as to cover the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode. The Teflon film was covered so that a composite film might be covered. Then, the composite film was heated and melted over the Teflon film and allowed to cool naturally at room temperature, and then the Teflon film was removed. Thus, a covering portion was formed.

(実施例13)
厚さ減少部及び厚さ増大部の最小厚さが20μmで、最大厚さと最小厚さとの差が5μmとなるように且つ第1及び第2樹脂封止部としてハイミランを用いて封止部を形成した後、以下のようにして被覆部を形成したこと以外は実施例2と同様にして色素増感太陽電池を作製した。
(Example 13)
The minimum thickness of the thickness decreasing portion and the thickness increasing portion is 20 μm, the difference between the maximum thickness and the minimum thickness is 5 μm, and the sealing portion is made of high-milan as the first and second resin sealing portions. After the formation, a dye-sensitized solar cell was produced in the same manner as in Example 2 except that the covering portion was formed as follows.

即ちまずブチルゴムとアルミ板との積層板を準備した。次いで、この積層板を、ブチルゴム層を封止部側に向けて、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように配置し、積層体を覆うようにテフロンフィルムをかぶせた。そして、テフロンフィルム越しに積層板を加熱溶融させ、室温で自然冷却させた後、テフロンフィルムを除去した。こうして被覆部を形成した。   That is, first, a laminate of butyl rubber and an aluminum plate was prepared. Next, the laminated plate, with the butyl rubber layer facing the sealing portion side, the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode And a Teflon film so as to cover the laminate. Then, the laminate was heated and melted through the Teflon film and allowed to cool naturally at room temperature, and then the Teflon film was removed. Thus, a covering portion was formed.

(実施例14)
3つの厚さ減少部と2つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が、電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが40μmで、最大厚さと最小厚さとの差が5μmとなるように且つ第1樹脂封止部及び第2樹脂封止部として、エチレン−ビニル酢酸無水物共重合体であるバイネルを用いて封止部を形成し、その後、以下のようにして被覆部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 14)
It has three thickness decreasing portions and two thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion Binel, an ethylene-vinyl acetate anhydride copolymer, having a minimum thickness of 40 μm, a difference between the maximum thickness and the minimum thickness of 5 μm, and as the first resin sealing portion and the second resin sealing portion A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a sealing part was formed using and then a covering part was formed as follows.

即ちまずブチルゴムとアルミ板との積層板を準備した。次いで、この積層板を、ブチルゴム層を封止部側に向けて、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように配置し、積層板を覆うようにテフロンフィルムをかぶせた。そして、テフロンフィルム越しに積層板を加熱溶融させ、室温で自然冷却させた後、テフロンフィルムを除去した。こうして被覆部を形成した。   That is, first, a laminate of butyl rubber and an aluminum plate was prepared. Next, the laminated plate, with the butyl rubber layer facing the sealing portion side, the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode And a Teflon film so as to cover the laminate. Then, the laminate was heated and melted through the Teflon film and allowed to cool naturally at room temperature, and then the Teflon film was removed. Thus, a covering portion was formed.

(実施例15)
厚さ減少部及び厚さ増大部の最小厚さが60μmで、最大厚さと最小厚さとの差が5μmとなるように且つ第1及び第2樹脂封止部として、エチレン−ビニル酢酸無水物共重合体であるバイネルを用いて封止部を形成した後、以下のようにして被覆部を形成したこと以外は実施例4と同様にして色素増感太陽電池を作製した。
(Example 15)
The minimum thickness of the thickness decreasing portion and the thickness increasing portion is 60 μm, the difference between the maximum thickness and the minimum thickness is 5 μm, and the first and second resin sealing portions are made of ethylene-vinyl acetate anhydride. A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the sealing part was formed using the polymer binel and the covering part was formed as follows.

即ちまずエポキシ樹脂組成物であるマクシーブ(三菱瓦斯化学社製)を準備した。次いで、このエポキシ樹脂組成物を、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように塗布した。その後、エポキシ樹脂組成物を加熱硬化させた。こうして被覆部を形成した。   That is, first, Maxive (Mitsubishi Gas Chemical Co., Ltd.), which is an epoxy resin composition, was prepared. Next, the epoxy resin composition is covered with the sealing portion so as to cover the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode. It was applied so as to surround it. Thereafter, the epoxy resin composition was cured by heating. Thus, a covering portion was formed.

(実施例16)
厚さ減少部及び厚さ増大部の最小厚さが30μmで、最大厚さと最小厚さとの差が90μmとなるように封止部を形成したこと以外は実施例15と同様にして色素増感太陽電池を作製した。
(Example 16)
Dye sensitization in the same manner as in Example 15 except that the sealing portion was formed so that the minimum thickness of the reduced thickness portion and the increased thickness portion was 30 μm, and the difference between the maximum thickness and the minimum thickness was 90 μm. A solar cell was produced.

(実施例17)
厚さ減少部及び厚さ増大部の最小厚さが30μmで、最大厚さと最小厚さとの差が95μmとなるように封止部を形成したこと以外は実施例15と同様にして色素増感太陽電池を作製した。
(Example 17)
Dye sensitization in the same manner as in Example 15 except that the sealing portion was formed so that the minimum thickness of the reduced thickness portion and the increased thickness portion was 30 μm, and the difference between the maximum thickness and the minimum thickness was 95 μm. A solar cell was produced.

(実施例18)
厚さ減少部及び厚さ増大部の最小厚さが100μmで、最大厚さと最小厚さとの差が50μmとなるように封止部を形成したこと以外は実施例15と同様にして色素増感太陽電池を作製した。
(Example 18)
Dye sensitization in the same manner as in Example 15 except that the sealing portion was formed so that the minimum thickness of the reduced thickness portion and the increased thickness portion was 100 μm, and the difference between the maximum thickness and the minimum thickness was 50 μm. A solar cell was produced.

(実施例19)
3つの厚さ減少部と3つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が、電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部は、最小厚さが60μmで、最大厚さと最小厚さとの差が5μmとなるように封止部を形成し、その後、以下のようにして被覆部を形成したこと以外は実施例8と同様にして色素増感太陽電池を作製した。
(Example 19)
There are three thickness decreasing portions and three thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are formed. Is the same as in Example 8 except that the sealing portion was formed so that the minimum thickness was 60 μm and the difference between the maximum thickness and the minimum thickness was 5 μm, and then the covering portion was formed as follows. Thus, a dye-sensitized solar cell was produced.

即ちまずエポキシ樹脂組成物であるEP51Fl−2(MASTER BOND)を準備した。次いで、このエポキシ樹脂組成物を、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように塗布した。その後、エポキシ樹脂組成物を加熱硬化させた。こうして被覆部を形成した。   That is, first, EP51Fl-2 (MASTER BOND), which is an epoxy resin composition, was prepared. Next, the epoxy resin composition is covered with the sealing portion so as to cover the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode. It was applied so as to surround it. Thereafter, the epoxy resin composition was cured by heating. Thus, a covering portion was formed.

(実施例20)
封止部における最小厚さと最大厚さとの差が1μmとなるように封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 20)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed so that the difference between the minimum thickness and the maximum thickness in the sealing portion was 1 μm.

(実施例21)
封止部における最小厚さと最大厚さとの差が1μmとなるように封止部を形成したこと以外は実施例3と同様にして色素増感太陽電池を作製した。
(Example 21)
A dye-sensitized solar cell was produced in the same manner as in Example 3 except that the sealing portion was formed so that the difference between the minimum thickness and the maximum thickness in the sealing portion was 1 μm.

(実施例22)
封止部における最小厚さと最大厚さとの差が1μmとなるように封止部を形成したこと以外は実施例9と同様にして色素増感太陽電池を作製した。
(Example 22)
A dye-sensitized solar cell was produced in the same manner as in Example 9 except that the sealing portion was formed so that the difference between the minimum thickness and the maximum thickness in the sealing portion was 1 μm.

(実施例23)
1つの厚さ減少部と1つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が、電解質に近づく方向に向かって交互に形成され、封止部における最小厚さと最大厚さとの差が1μmとなるように封止部を形成したこと以外は実施例11と同様にして色素増感太陽電池を作製した。
(Example 23)
It has one thickness decreasing portion and one thickness increasing portion, and the thickness decreasing portion and the thickness increasing portion are alternately formed in the direction approaching the electrolyte, and the minimum thickness and the maximum thickness in the sealing portion A dye-sensitized solar cell was produced in the same manner as in Example 11 except that the sealing portion was formed so that the difference between the two was 1 μm.

(実施例24)
3つの厚さ減少部と3つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が、電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが40μm、最小厚さと最大厚さとの差が1μmとなるように封止部を形成すると共に、封止部を形成した後、以下のようにして被覆部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 24)
There are three thickness decreasing portions and three thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are formed. In addition to forming the sealing portion so that the minimum thickness is 40 μm and the difference between the minimum thickness and the maximum thickness is 1 μm, and after forming the sealing portion, the covering portion is formed as follows. A dye-sensitized solar cell was produced in the same manner as in Example 1.

即ちまずブチルゴムとアルミ板との積層板を準備した。次いで、この積層板を、ブチルゴム層を封止部側に向けて、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように配置し、積層板を覆うようにテフロンフィルムをかぶせた。そして、テフロンフィルム越しに積層板を加熱溶融させ、室温で自然冷却させた後、テフロンフィルムを除去した。こうして被覆部を形成した。   That is, first, a laminate of butyl rubber and an aluminum plate was prepared. Next, the laminated plate, with the butyl rubber layer facing the sealing portion side, the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode And a Teflon film so as to cover the laminate. Then, the laminate was heated and melted through the Teflon film and allowed to cool naturally at room temperature, and then the Teflon film was removed. Thus, a covering portion was formed.

(実施例25)
3つの厚さ減少部と3つの厚さ増大部とを有し、厚さ減少部と厚さ増大部が、電解質に近づく方向に向かって交互に形成され、厚さ減少部及び厚さ増大部の最小厚さが40μm、最小厚さと最大厚さとの差が1μmとなるように封止部を形成すると共に、封止部を形成した後、以下のようにして被覆部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 25)
There are three thickness decreasing portions and three thickness increasing portions, and the thickness decreasing portions and the thickness increasing portions are alternately formed in the direction approaching the electrolyte, and the thickness decreasing portion and the thickness increasing portion are formed. In addition to forming the sealing portion so that the minimum thickness is 40 μm and the difference between the minimum thickness and the maximum thickness is 1 μm, and after forming the sealing portion, the covering portion is formed as follows. A dye-sensitized solar cell was produced in the same manner as in Example 1.

即ちまずエポキシ樹脂組成物であるEP008(米山化学社製)を準備した。次いで、このエポキシ樹脂組成物を、封止部及び対極の境界と、封止部及び作用極の境界と、対極の外周面と、対極の背面の一部とを覆うように且つ封止部を包囲するように塗布した。その後、エポキシ樹脂組成物を加熱硬化させた。こうして被覆部を形成した。   That is, first, EP008 (made by Yoneyama Chemical Co., Ltd.), which is an epoxy resin composition, was prepared. Next, the epoxy resin composition is covered with the sealing portion so as to cover the boundary between the sealing portion and the counter electrode, the boundary between the sealing portion and the working electrode, the outer peripheral surface of the counter electrode, and a part of the back surface of the counter electrode. It was applied so as to surround it. Thereafter, the epoxy resin composition was cured by heating. Thus, a covering portion was formed.

(実施例26)
PETフィルムの上にスパッタ法でFTO膜を形成した厚さ75μmの対極基板を用いたこと以外は実施例6と同様にして色素増感太陽電池を作製した。
(Example 26)
A dye-sensitized solar cell was produced in the same manner as in Example 6 except that a 75 μm-thick counter electrode substrate in which an FTO film was formed on a PET film by sputtering was used.

(実施例27)
PENフィルムの上にスパッタ法でFTO膜を形成した厚さ75μmの対極基板を用いたこと以外は実施例6と同様にして色素増感太陽電池を作製した。
(Example 27)
A dye-sensitized solar cell was produced in the same manner as in Example 6 except that a 75 μm-thick counter electrode substrate in which an FTO film was formed on a PEN film by sputtering was used.

(実施例28)
厚さ減少部に対して電解質と反対側に、電解質から離れるにつれて厚さが増大する厚さ増大部をさらに設け、厚さ減少部及び厚さ増大部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように且つ第1及び第2樹脂封止部として、エチレン−メタクリル酸共重合体であるニュクレル(三井・デュポンポリケミカル社製)を用いて封止部を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が高さ5μm、幅50μmの1つのクサビ状の突起で構成されているものを用いた。
(Example 28)
A thickness increasing portion that increases in thickness with increasing distance from the electrolyte is provided on the side opposite to the electrolyte with respect to the thickness decreasing portion, and the minimum thickness of the thickness decreasing portion and the thickness increasing portion is 20 μm, and the maximum thickness and the minimum As the first and second resin sealing portions, the sealing portion was formed using Nucrel (Mitsui / DuPont Polychemical Co., Ltd.), which is an ethylene-methacrylic acid copolymer, so that the difference from the thickness was 5 μm. Except for this, a dye-sensitized solar cell was produced in the same manner as in Example 1. At this time, as the brass frame-like member, a member having an annular pressure surface, the annular pressure surface being composed of one wedge-shaped protrusion having a height of 5 μm and a width of 50 μm was used.

(実施例29)
1つの厚さ減少部と2つの厚さ増大部とを有し、電解質から離れるにつれて厚さが増大する厚さ増大部から電解質から離れる方向に向かって厚さ減少部と厚さ増大部が形成され、厚さ増大部及び厚さ減少部の最小厚さが20μm、最大厚さと最小厚さとの差が5μmとなるように封止部を形成したこと以外は実施例28と同様にして色素増感太陽電池を作製した。このとき真鍮製の枠状部材としては、環状の加圧面を有し、環状の加圧面が、深さ5μmで幅50μmの1つのV字状の溝とその外側にV字状の溝に沿って形成された1つの切欠き面とで構成されているものを用いた。
(Example 29)
It has one thickness reduction part and two thickness increase parts, and a thickness reduction part and a thickness increase part are formed in the direction away from the electrolyte from the thickness increase part where the thickness increases as the distance from the electrolyte increases. In the same manner as in Example 28 except that the sealing portion was formed so that the minimum thickness of the thickness increasing portion and the thickness decreasing portion was 20 μm, and the difference between the maximum thickness and the minimum thickness was 5 μm. A solar cell was prepared. At this time, the brass frame-shaped member has an annular pressure surface, and the annular pressure surface extends along one V-shaped groove having a depth of 5 μm and a width of 50 μm and a V-shaped groove on the outside thereof. What was comprised with one notch surface formed in this way was used.

(比較例1)
封止部を、最小厚さが5μmで、最小厚さと最大厚さとの差が0μmとなるように形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、枠状部材を平坦面上に、加圧面を平坦面側に向けて置いたときに、環状の加圧面の最内周縁も最外周縁も平坦面に接するように且つ加圧面が平坦面となるように加工された枠状部材を用いた。
(Comparative Example 1)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the sealing portion was formed so that the minimum thickness was 5 μm and the difference between the minimum thickness and the maximum thickness was 0 μm. At this time, as the frame member made of brass, the innermost peripheral edge and the outermost peripheral edge of the annular pressure surface are both flat when the frame member is placed on a flat surface and the pressure surface faces the flat surface side. A frame-shaped member processed so as to be in contact with the pressure surface and to be a flat surface was used.

(比較例2)
封止部を、最小厚さが20μmで、最小厚さと最大厚さとの差が0μmとなるように形成したこと以外は実施例8と同様にして色素増感太陽電池を作製した。このとき、ガラス製の枠状部材としては、枠状部材を平坦面上に、加圧面を平坦面側に向けて置いたときに、環状の加圧面の最内周縁も最外周縁も平坦面に接するように且つ加圧面が平坦面となるように加工された枠状部材を用いた。
(Comparative Example 2)
A dye-sensitized solar cell was produced in the same manner as in Example 8 except that the sealing portion was formed so that the minimum thickness was 20 μm and the difference between the minimum thickness and the maximum thickness was 0 μm. At this time, as the frame member made of glass, when the frame member is placed on a flat surface and the pressure surface faces the flat surface side, the innermost peripheral edge and the outermost peripheral edge of the annular pressure surface are both flat surfaces. A frame-shaped member processed so as to be in contact with the pressure surface and to be a flat surface was used.

(比較例3)
封止部を、最小厚さが40μmで、最小厚さと最大厚さとの差が0μmとなるように形成したこと以外は実施例2と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、枠状部材を平坦面上に、加圧面を平坦面側に向けて置いたときに、環状の加圧面の最内周縁も最外周縁も平坦面に接するように且つ加圧面が平坦面となるように加工された枠状部材を用いた。
(Comparative Example 3)
A dye-sensitized solar cell was produced in the same manner as in Example 2 except that the sealing portion was formed so that the minimum thickness was 40 μm and the difference between the minimum thickness and the maximum thickness was 0 μm. At this time, as the frame member made of brass, the innermost peripheral edge and the outermost peripheral edge of the annular pressure surface are both flat when the frame member is placed on a flat surface and the pressure surface faces the flat surface side. A frame-shaped member processed so as to be in contact with the pressure surface and to be a flat surface was used.

(比較例4)
封止部を、最小厚さが60μmで、最小厚さと最大厚さとの差が0μmとなるように形成したこと以外は実施例6と同様にして色素増感太陽電池を作製した。このとき、真鍮製の枠状部材としては、枠状部材を平坦面上に、加圧面を平坦面側に向けて置いたときに、環状の加圧面の最内周縁も最外周縁も平坦面に接するように且つ加圧面が平坦面となるように加工された枠状部材を用いた。
(Comparative Example 4)
A dye-sensitized solar cell was produced in the same manner as in Example 6 except that the sealing portion was formed so that the minimum thickness was 60 μm and the difference between the minimum thickness and the maximum thickness was 0 μm. At this time, as the frame member made of brass, the innermost peripheral edge and the outermost peripheral edge of the annular pressure surface are both flat when the frame member is placed on a flat surface and the pressure surface faces the flat surface side. A frame-shaped member processed so as to be in contact with the pressure surface and to be a flat surface was used.

[常温・高湿・大気圧環境下での色素増感太陽電池の耐久性評価:評価1]
実施例1〜29及び比較例1〜4で得られた色素増感太陽電池について、光電変換効率(η)を測定した。続いて、色素増感太陽電池について、大気圧下、40℃で、90%RHの高湿環境下で1000h放置した後の光電変換効率(η)も測定した。そして、下記式:
光電変換効率の保持率(%)=η/η×100
に基づき、光電変換効率の保持率(光電変換保持率)を算出した。結果を表1に示す。
[Durability evaluation of dye-sensitized solar cell under normal temperature, high humidity and atmospheric pressure environment: Evaluation 1]
About the dye-sensitized solar cell obtained in Examples 1-29 and Comparative Examples 1-4, the photoelectric conversion efficiency ((eta) 0 ) was measured. Subsequently, the photoelectric conversion efficiency (η) of the dye-sensitized solar cell after being left at 1000 ° C. in a high humidity environment of 90% RH at 40 ° C. under atmospheric pressure was also measured. And the following formula:
Retention rate of photoelectric conversion efficiency (%) = η / η 0 × 100
Based on the above, the retention rate of photoelectric conversion efficiency (photoelectric conversion retention rate) was calculated. The results are shown in Table 1.

[常温・高湿・低圧環境下での色素増感太陽電池の耐久性評価:評価2]
実施例1〜29及び比較例1〜4で得られた色素増感太陽電池について、1500hPaの低圧下、40℃で、90%RHの高湿環境下で1000h放置した後の光電変換効率(η)を測定し、上記と同様にして光電変換効率の保持率を算出した。結果を表1に示す。
[Durability evaluation of dye-sensitized solar cell under normal temperature, high humidity and low pressure environment: Evaluation 2]
About the dye-sensitized solar cells obtained in Examples 1 to 29 and Comparative Examples 1 to 4, the photoelectric conversion efficiency (η after leaving for 1000 h in a high humidity environment of 90% RH at 40 ° C. under a low pressure of 1500 hPa ) Was measured, and the retention rate of photoelectric conversion efficiency was calculated in the same manner as described above. The results are shown in Table 1.

[高温・高湿・大気圧環境下での色素増感太陽電池の耐久性評価:評価3]
実施例1〜29及び比較例1〜4で得られた色素増感太陽電池について、大気圧下、85℃で、85%RHの高湿環境下で1000h放置した後の光電変換効率(η)を測定し、上記と同様にして光電変換効率の保持率を算出した。結果を表1に示す。

Figure 2012099449
[Durability evaluation of dye-sensitized solar cell under high temperature, high humidity and atmospheric pressure environment: Evaluation 3]
About the dye-sensitized solar cells obtained in Examples 1 to 29 and Comparative Examples 1 to 4, the photoelectric conversion efficiency (η) after being left for 1000 hours under a high humidity environment of 85% RH at 85 ° C. under atmospheric pressure The photoelectric conversion efficiency retention was calculated in the same manner as described above. The results are shown in Table 1.
Figure 2012099449

表1に示す結果より、実施例1〜29の色素増感太陽電池は、比較例1〜4の色素増感太陽電池に比べて、高湿環境下での光電変換効率の保持率が高いことが分かった。特に、実施例1〜29の色素増感太陽電池は、低圧環境下では、比較例1〜4の色素増感太陽電池に比べて、光電変換効率の保持率がより一層高くなることが分かった。また実施例1〜29の色素増感太陽電池は、比較例1〜4の色素増感太陽電池に比べると、高温・高湿環境下での光電変換効率の保持率も高いことが分かった。さらに、実施例2、実施例28及び実施例29の結果より、樹脂封止部が厚さ減少部を最も外側に有していなくても、高湿環境下での光電変換効率の保持率が高いことが分かった。   From the results shown in Table 1, the dye-sensitized solar cells of Examples 1 to 29 have a higher retention rate of photoelectric conversion efficiency in a high humidity environment than the dye-sensitized solar cells of Comparative Examples 1 to 4. I understood. In particular, it was found that the dye-sensitized solar cells of Examples 1 to 29 have a higher photoelectric conversion efficiency retention rate than the dye-sensitized solar cells of Comparative Examples 1 to 4 in a low-pressure environment. . In addition, it was found that the dye-sensitized solar cells of Examples 1 to 29 have a higher retention of photoelectric conversion efficiency in a high temperature and high humidity environment than the dye-sensitized solar cells of Comparative Examples 1 to 4. Furthermore, from the results of Example 2, Example 28, and Example 29, even when the resin sealing portion does not have the thickness reduction portion on the outermost side, the retention rate of the photoelectric conversion efficiency in the high humidity environment is I found it expensive.

よって、本発明の色素増感太陽電池によれば、高湿環境下で使用されても、十分な耐久性を確保できることが確認された。   Therefore, according to the dye-sensitized solar cell of this invention, even if it used in a high-humidity environment, it was confirmed that sufficient durability can be ensured.

1…作用極(電極)
2…対極(電極)
3…電解質
4…封止部
4A…樹脂封止部
4B…無機封止部
5…被覆部
13…作用極と封止部との境界
14…対極と封止部との境界
14a…厚さ増大部
14b…厚さ減少部
14c…傾斜面
14d…傾斜面
15…環状溝
100,200,300,400…色素増感太陽電池
S…セル空間
1 ... Working electrode (electrode)
2 ... Counter electrode (electrode)
DESCRIPTION OF SYMBOLS 3 ... Electrolyte 4 ... Sealing part 4A ... Resin sealing part 4B ... Inorganic sealing part 5 ... Covering part 13 ... Boundary between working electrode and sealing part 14 ... Boundary between counter electrode and sealing part 14a ... Thickness increase Part 14b ... Thickness reducing part 14c ... Inclined surface 14d ... Inclined surface 15 ... Annular groove 100, 200, 300, 400 ... Dye-sensitized solar cell S ... Cell space

また上記色素増感太陽電池においては、前記樹脂封止部が、前記厚さ減少部に対して前記電解質と反対側に、前記電解質から離れるにつれて厚さが増大する厚さ増大部を更に有し、前記厚さ増大部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触することが好ましい。
Further, in the dye-sensitized solar cell, the resin sealing portion further includes a thickness increasing portion that increases in thickness as it is separated from the electrolyte , on a side opposite to the electrolyte with respect to the thickness decreasing portion. It is preferable that the electrode facing the inclined surface of the pair of electrodes is in contact with the inclined surface of the thickness increasing portion.

ここで、前記樹脂封止部が、前記厚さ増大部に対して前記電解質と反対側に、前記電解質から離れるにつれて厚さが減少する厚さ減少部を更に有し、前記厚さ減少部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触することが好ましい。
Here, the resin sealing portion further includes a thickness reduction portion on the opposite side to the electrolyte with respect to the thickness increase portion. It is preferable to contact the electrode facing the inclined surface of the pair of electrodes along the inclined surface.

この色素増感太陽電池によれば、厚さ増大部に対して電解質と反対側に設けられる厚さ減少部により、電極に対する樹脂封止部の接着力がさらに強化される。 According to this dye-sensitized solar cell, the adhesive force of the resin sealing portion to the electrode is further strengthened by the thickness decreasing portion provided on the side opposite to the electrolyte with respect to the thickness increasing portion.

Claims (9)

互いに対向する一対の電極と、
前記一対の電極を連結する封止部と、
前記一対の電極と前記封止部とによって囲まれるセル空間に充填される電解質とを備えており、
前記封止部が、樹脂を含む樹脂封止部を有し、
前記樹脂封止部が、前記電解質から離れるにつれて厚さが減少する厚さ減少部を有し、前記厚さ減少部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触すること
を特徴とする色素増感太陽電池。
A pair of electrodes facing each other;
A sealing portion connecting the pair of electrodes;
An electrolyte that fills a cell space surrounded by the pair of electrodes and the sealing portion;
The sealing part has a resin sealing part containing resin,
The resin sealing portion has a thickness reducing portion that decreases in thickness as it moves away from the electrolyte, and is opposed to the inclined surface of the pair of electrodes along the inclined surface of the thickness reducing portion. A dye-sensitized solar cell, which is in contact with
前記樹脂封止部が、前記厚さ減少部に対して前記電解質側に、前記電解質から離れるにつれて厚さが増大する厚さ増大部を更に有し、前記厚さ増大部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触する請求項1に記載の色素増感太陽電池。   The resin sealing portion further includes a thickness increasing portion on the electrolyte side with respect to the thickness decreasing portion, the thickness increasing portion increasing in thickness as the distance from the electrolyte increases, and along the inclined surface of the thickness increasing portion. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is in contact with an electrode facing the inclined surface of the pair of electrodes. 前記樹脂封止部が、前記厚さ増大部に対して前記電解質側に、前記電解質から離れるにつれて厚さが減少する厚さ減少部を更に有し、前記厚さ減少部の傾斜面に沿って、前記一対の電極のうち前記傾斜面に対向する電極に接触する、請求項2に記載の色素増感太陽電池。   The resin sealing portion further includes a thickness reduction portion on the electrolyte side with respect to the thickness increase portion. The thickness reduction portion decreases in thickness as the distance from the electrolyte increases, and along the inclined surface of the thickness reduction portion. The dye-sensitized solar cell according to claim 2, wherein the dye-sensitized solar cell is in contact with an electrode facing the inclined surface of the pair of electrodes. 前記樹脂封止部が、前記厚さ減少部及び前記厚さ増大部をそれぞれ複数有し、
前記厚さ減少部及び前記厚さ増大部が、前記電解質に近づく方向に向かって交互に配列されている、請求項2に記載の色素増感太陽電池。
The resin sealing portion has a plurality of the thickness decreasing portion and the thickness increasing portion, respectively.
The dye-sensitized solar cell according to claim 2, wherein the thickness decreasing portion and the thickness increasing portion are alternately arranged in a direction approaching the electrolyte.
前記樹脂封止部の最大厚さが10μm以上である請求項1〜4のいずれか一項に記載の色素増感太陽電池。   5. The dye-sensitized solar cell according to claim 1, wherein the resin sealing portion has a maximum thickness of 10 μm or more. 前記厚さ減少部と前記電極との接触面と、前記厚さ増大部と前記電極との接触面とにより、前記電解質から離れる方向に交差するように延びる溝が形成されている、請求項2〜4のいずれか一項に記載の色素増感太陽電池。   The groove | channel extended so that it may cross | intersect in the direction away from the said electrolyte is formed by the contact surface of the said thickness decreasing part and the said electrode, and the contact surface of the said thickness increasing part and the said electrode. The dye-sensitized solar cell as described in any one of -4. 前記一対の電極のうち少なくとも一方の電極が可撓性を有する、請求項1〜6のいずれか一項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 6, wherein at least one of the pair of electrodes has flexibility. 前記一対の電極のうち一方の電極が、導電性基板と、前記導電性基板上に設けられる多孔質酸化物半導体層とを有し、
前記導電性基板の前記多孔質酸化物半導体層側の表面が平坦面であり、
前記厚さ減少部と前記一対の電極のうち他方の電極との接触面が、前記平坦面に対して傾斜している、請求項1〜7のいずれか一項に記載の色素増感太陽電池。
One electrode of the pair of electrodes has a conductive substrate and a porous oxide semiconductor layer provided on the conductive substrate,
The surface of the conductive substrate on the porous oxide semiconductor layer side is a flat surface;
The dye-sensitized solar cell according to any one of claims 1 to 7, wherein a contact surface between the thickness reducing portion and the other electrode of the pair of electrodes is inclined with respect to the flat surface. .
前記封止部に対して前記電解質と反対側に、前記封止部と前記一対の電極との境界を少なくとも覆う被覆部を更に備え、前記被覆部が樹脂を含む、請求項1〜8のいずれか一項に記載の色素増感太陽電池。   Any one of Claims 1-8 further provided with the coating | coated part which covers at least the boundary of the said sealing part and a pair of said electrode on the opposite side to the said electrolyte with respect to the said sealing part, and the said coating | coated part contains resin. A dye-sensitized solar cell according to claim 1.
JP2011031675A 2010-10-06 2011-02-17 Dye-sensitized solar cell Expired - Fee Related JP4793954B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011031675A JP4793954B1 (en) 2010-10-06 2011-02-17 Dye-sensitized solar cell
EP11830728.9A EP2626948A4 (en) 2010-10-06 2011-10-06 Dye-sensitized solar cell
CN201180018575.0A CN102834965B (en) 2010-10-06 2011-10-06 Dye-sensitized solar cell
PCT/JP2011/073065 WO2012046796A1 (en) 2010-10-06 2011-10-06 Dye-sensitized solar cell
US13/764,490 US10128056B2 (en) 2010-10-06 2013-02-11 Dye-sensitized solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010227055 2010-10-06
JP2010227055 2010-10-06
JP2011031675A JP4793954B1 (en) 2010-10-06 2011-02-17 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP4793954B1 JP4793954B1 (en) 2011-10-12
JP2012099449A true JP2012099449A (en) 2012-05-24

Family

ID=44881982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031675A Expired - Fee Related JP4793954B1 (en) 2010-10-06 2011-02-17 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4793954B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380619B1 (en) * 2013-03-30 2014-01-08 株式会社フジクラ Dye-sensitized solar cell element
JP2014529365A (en) * 2011-07-18 2014-11-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Construction of antistatic and antireflection coatings and corresponding stacked layers
WO2018012392A1 (en) * 2016-07-12 2018-01-18 株式会社フジクラ Photoelectric conversion element
WO2018092739A1 (en) * 2016-11-15 2018-05-24 株式会社フジクラ Photoelectric conversion element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606780B2 (en) * 2004-06-08 2011-01-05 株式会社フジクラ Method for manufacturing photoelectric conversion element
JP5246541B2 (en) * 2008-04-25 2013-07-24 Nok株式会社 Dye-sensitized solar cell
JP5240652B2 (en) * 2008-05-13 2013-07-17 Nok株式会社 Dye-sensitized solar cell
JP2009295406A (en) * 2008-06-05 2009-12-17 Sekisui Jushi Co Ltd Dye-sensitized solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529365A (en) * 2011-07-18 2014-11-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Construction of antistatic and antireflection coatings and corresponding stacked layers
JP5380619B1 (en) * 2013-03-30 2014-01-08 株式会社フジクラ Dye-sensitized solar cell element
WO2018012392A1 (en) * 2016-07-12 2018-01-18 株式会社フジクラ Photoelectric conversion element
WO2018092739A1 (en) * 2016-11-15 2018-05-24 株式会社フジクラ Photoelectric conversion element

Also Published As

Publication number Publication date
JP4793954B1 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5241912B2 (en) Method for producing dye-sensitized solar cell
JP4793954B1 (en) Dye-sensitized solar cell
JP4793953B1 (en) Dye-sensitized solar cell
US10128056B2 (en) Dye-sensitized solar cell
US10049823B2 (en) Photoelectric conversion element
WO2011125843A1 (en) Electronic device and method for manufacturing same
JP5465446B2 (en) Photoelectric conversion element
JP5422224B2 (en) Photoelectric conversion element
JP4759646B1 (en) Electronic device and manufacturing method thereof
JP4759647B1 (en) Electronic device and manufacturing method thereof
JP5422225B2 (en) Photoelectric conversion element
JP5680996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2012186032A (en) Dye-sensitized solar battery
JP2013080568A (en) Dye-sensitized solar cell
JP2013054827A (en) Dye-sensitized solar cell module
JP5785618B2 (en) Electronics
WO2013145975A1 (en) Dye-sensitized solar battery
JP6076016B2 (en) Dye-sensitized solar cell
JP2013051143A (en) Electrode for photoelectric conversion element and photoelectric conversion element
US9536677B2 (en) Dye-sensitized solar cell and method for manufacturing same
JP5689773B2 (en) Photoelectric conversion element electrode, photoelectric conversion element, and silver paste used for manufacturing photoelectric conversion element electrode
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2016181568A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

R150 Certificate of patent or registration of utility model

Ref document number: 4793954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees