JP2012099293A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery Download PDF

Info

Publication number
JP2012099293A
JP2012099293A JP2010244870A JP2010244870A JP2012099293A JP 2012099293 A JP2012099293 A JP 2012099293A JP 2010244870 A JP2010244870 A JP 2010244870A JP 2010244870 A JP2010244870 A JP 2010244870A JP 2012099293 A JP2012099293 A JP 2012099293A
Authority
JP
Japan
Prior art keywords
sodium
sulfur battery
electrolyte
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010244870A
Other languages
Japanese (ja)
Inventor
Shoku Chiba
植 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010244870A priority Critical patent/JP2012099293A/en
Publication of JP2012099293A publication Critical patent/JP2012099293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sodium-sulfur battery having shock-resistant and high current density.SOLUTION: In a sodium-sulfur battery 1 using sodium 4, sulfur 11, and sodium sulfide 12 as an active material, the outer shape of an electrolyte 14 that separates the positive electrode from the negative electrode is rod-shaped or plate-shaped, one or more narrow rod-shaped sodium flow paths 13 or thin plate-shaped sodium flow paths 13 are provided around the center of the electrolyte 14, and the area size of the electrolyte 14 is increased by arranging the plurality of electrolytes 14 or arranging the electrolyte 14 in a honeycomb, thereby obtaining the high current density, and is vibration proof and impact resistance.

Description

ナトリウム硫黄電池。
Sodium sulfur battery.

負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池は、正極と負極の分離にナトリウムイオンを透過するベータアルミナ固体電解質が用いられる。
ナトリウム硫黄電池は、負極のナトリウムが電解質を透過して正極に移動し硫黄と結合して硫化ナトリウムになることで放電し、正極の硫化ナトリウムからナトリウムが分離して電解質を透過して負極にナトリウムが移動して充電される。
ナトリウム硫黄電池の構造は、絶縁性の隔壁と隔壁に接合した袋管や平板状の電解質で電池内を正極室と負極室とに分け、隔壁に正極缶を接合して内部は正極室になりナトリウムを収容し、隔壁に負極缶を接合して内部は負極室になり硫黄や硫化ナトリウムを収容している。
A sodium-sulfur battery using sodium as a negative electrode active material and sulfur and sodium sulfide as a positive electrode active material uses a beta alumina solid electrolyte that permeates sodium ions to separate the positive electrode and the negative electrode.
The sodium-sulfur battery discharges when sodium in the negative electrode permeates the electrolyte, moves to the positive electrode, combines with sulfur and becomes sodium sulfide, discharges from the sodium sulfide of the positive electrode, permeates the electrolyte, and passes through the electrolyte to sodium into the negative electrode Moves and charges.
The structure of the sodium-sulfur battery is divided into a positive electrode chamber and a negative electrode chamber with an insulating partition wall and a bag tube or flat electrolyte joined to the partition wall, and a positive electrode can is joined to the partition wall to become a positive electrode chamber. Sodium is accommodated, a negative electrode can is joined to the partition wall, and the inside becomes a negative electrode chamber and contains sulfur and sodium sulfide.

特開2003−068356号公報JP 2003-068356 A 特開2005−149773号公報JP 2005-149773 A

自動車等の動力源にナトリウム硫黄電池を採用するためには短時間での充放電が必要であり、従来の電池では電流密度が不足している。また長期にわたる多様な振動に耐え、衝突事故等での衝撃でも破損しない、安全性の高い電池とする必要がある。
In order to employ a sodium-sulfur battery as a power source for automobiles and the like, charging / discharging in a short time is required, and current density is insufficient in conventional batteries. In addition, it is necessary to provide a highly safe battery that can withstand various vibrations over a long period of time and that will not be damaged by an impact caused by a collision.

ナトリウムを負極活物質に硫黄と硫化ナトリウムを正極活物質とするナトリウム硫黄電池において、正極と負極を分離する電解質の外形を棒状もしくは板状とし、電解質の中心に単一か複数の棒状の細いナトリウム流路もしくは板状の薄いナトリウム流路を設ける。
ナトリウム硫黄電池の板状の電解質を曲げたり分岐させたり接合させたりする。
ナトリウム硫黄電池の内部を隔壁で負極室と正極室に区切り、任意数の電解質を隔壁に接合して正極室に保持し、負極室とナトリウム流路とは隔壁に開けた複数の穴で接続する。
In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, the outer shape of the electrolyte separating the positive electrode and the negative electrode is made into a rod shape or plate shape, and single or multiple rod-like thin sodium at the center of the electrolyte A channel or a thin plate-like sodium channel is provided.
The plate-like electrolyte of a sodium-sulfur battery is bent, branched, or joined.
The inside of the sodium-sulfur battery is divided into a negative electrode chamber and a positive electrode chamber by a partition, and an arbitrary number of electrolytes are joined to the partition and held in the positive electrode chamber, and the negative electrode chamber and the sodium channel are connected by a plurality of holes formed in the partition. .

ナトリウム硫黄電池の電解質の負極側に多孔質の支持層を設ける。
ナトリウム硫黄電池の電解質の正極側に多孔質の絶縁層を設け、さらにその上に絶縁性の素材と導電性の素材とを混合した多孔質の接続層を設ける。
ナトリウム硫黄電池の支持層や接続層に、靭性が高い素材や熱伝導率の高い素材を採用する。
A porous support layer is provided on the negative electrode side of the electrolyte of the sodium sulfur battery.
A porous insulating layer is provided on the positive electrode side of the electrolyte of the sodium-sulfur battery, and a porous connection layer in which an insulating material and a conductive material are mixed is further provided thereon.
Materials with high toughness and high thermal conductivity are used for the support layer and connection layer of sodium-sulfur batteries.

ナトリウム硫黄電池のナトリウム流路と支持層と電解質と絶縁層と接続層の全てもしくは一部を押出し加工で一度に成型し、焼結して一体とする。
ナトリウム硫黄電池の電解質と隔壁とを同時に焼結して一体とする。
ナトリウム硫黄電池の電解質と平行な正極板を設け、正極板に電流の流れる方向と平行な多数の間隙を設ける。
ナトリウム硫黄電池の負極室に隔壁と平行に導電性の負極板を設ける。
All or part of the sodium flow path, the support layer, the electrolyte, the insulating layer, and the connection layer of the sodium-sulfur battery are formed at one time by extrusion, and sintered to be integrated.
The electrolyte of the sodium-sulfur battery and the partition walls are simultaneously sintered and integrated.
A positive electrode plate parallel to the electrolyte of the sodium sulfur battery is provided, and a number of gaps parallel to the direction of current flow are provided in the positive electrode plate.
A conductive negative electrode plate is provided in the negative electrode chamber of the sodium sulfur battery in parallel with the partition.

ナトリウム硫黄電池の負極板を導電性の柱や板により負極缶に接続し、正極板を正極缶の底に接合する。
ナトリウム硫黄電池の負極板を負極缶に接合し、負極缶の外側面に正極缶とは絶縁され正極缶の端まで延びる負電極を接合し、正極板を正極缶の側面に接合する。
ナトリウム硫黄電池の隔壁と負極缶をL字型とし、ナトリウム流路と負極室を隔壁の側面に開けた穴で接続し、正極板を正極缶の側面に接合する。
The negative electrode plate of the sodium sulfur battery is connected to the negative electrode can by a conductive column or plate, and the positive electrode plate is joined to the bottom of the positive electrode can.
The negative electrode plate of the sodium-sulfur battery is joined to the negative electrode can, the negative electrode that is insulated from the positive electrode can and extended to the end of the positive electrode can is joined to the outer surface of the negative electrode can, and the positive electrode plate is joined to the side surface of the positive electrode can.
The partition wall and the negative electrode can of the sodium-sulfur battery are L-shaped, the sodium flow path and the negative electrode chamber are connected by a hole formed in the side surface of the partition wall, and the positive electrode plate is joined to the side surface of the positive electrode can.

ナトリウム硫黄電池の缶に鉄系金属や鉄アルミ合板を採用する。
ナトリウム硫黄電池の隔壁の端面にメタライズ層を作成し、缶と隔壁のメタライズ層とを溶接する。
ナトリウム硫黄電池の缶の組立て後に、正極室の内部に鍍金を施す。
ナトリウム硫黄電池の外形を方形とし、電池の電極となる面以外の外周に絶縁を施す。
Use iron-based metal or iron-aluminum plywood for sodium-sulfur battery cans.
A metallized layer is formed on the end face of the partition wall of the sodium-sulfur battery, and the can and the metallized layer of the partition wall are welded.
After assembling the sodium-sulfur battery can, the inside of the positive electrode chamber is plated.
The outer shape of the sodium-sulfur battery is rectangular, and insulation is applied to the outer periphery other than the surface to be the battery electrode.

ナトリウムを負極活物質に硫黄と硫化ナトリウムを正極活物質とするナトリウム硫黄電池において、正極と負極を分離する電解質の外形を棒状もしくは板状とし、電解質の中心に単一か複数の棒状の細いナトリウム流路もしくは板状の薄いナトリウム流路を設けることで、電解質の単位面積当りの容積を少なくできる。そのため、電解質の面積を広げて電池の電流密度を増やしても、電池の容積に占める電解質の容積は極端に増えず、電池の電気容量の減少は少なくなる。
ナトリウム硫黄電池の板状の電解質を曲げたり分岐させたり接合させたりすることで、多様な形状の電解質とすることができ、多方向からの応力に電解質が耐えられ、電池の耐衝撃性を高めることができる。
In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, the outer shape of the electrolyte separating the positive electrode and the negative electrode is made into a rod shape or plate shape, and single or multiple rod-like thin sodium at the center of the electrolyte By providing a channel or a thin plate-like sodium channel, the volume per unit area of the electrolyte can be reduced. Therefore, even if the area of the electrolyte is increased to increase the current density of the battery, the volume of the electrolyte occupying the volume of the battery does not increase extremely, and the decrease in the electric capacity of the battery is reduced.
By bending, branching, or joining the plate-shaped electrolyte of a sodium-sulfur battery, it can be made into various shapes of electrolyte, and the electrolyte can withstand stress from multiple directions, increasing the impact resistance of the battery. be able to.

ナトリウム硫黄電池の内部を隔壁で負極室と正極室に区切り、任意数の電解質を隔壁に接合して正極室に保持し、負極室とナトリウム流路とは隔壁に開けた複数の穴で接続すると、上部が負極室に下部が正極室となるよう電池を設置できれば、ナトリウムは隔壁に開けた穴を通り、正極室に保持された電解質のナトリウム流路に重力により自然に供給される。
また正極室と負極室は隔壁で区切られているので、電解質が大破しても電池の活物質が急激に混ざり合わず、電池が一気に高温になることは避けられる。
また複雑な形状の電解質としたり複数の電解質を併設して電解質の面積を増やすことができ、電解質の面積に比例して電池の電流密度を稼げる。また電解質を多数並設したり複雑に区間に区切るような形状に電解質を組上げることで、一枚の電解質に掛かわる正極活物質の容積が減少し、電解質の受ける振動や衝撃を分散することができる。
The interior of the sodium-sulfur battery is divided into a negative electrode chamber and a positive electrode chamber by a partition, an arbitrary number of electrolytes are joined to the partition and held in the positive electrode chamber, and the negative electrode chamber and the sodium channel are connected by a plurality of holes opened in the partition If the battery can be installed so that the upper part becomes the negative electrode chamber and the lower part becomes the positive electrode chamber, sodium is naturally supplied by gravity to the sodium flow path of the electrolyte held in the positive electrode chamber through the hole formed in the partition wall.
In addition, since the positive electrode chamber and the negative electrode chamber are separated by a partition wall, even if the electrolyte is severely damaged, the active material of the battery does not mix rapidly, and the battery can be prevented from being heated to a high temperature.
In addition, the electrolyte can have a complex shape or a plurality of electrolytes can be provided to increase the area of the electrolyte, and the current density of the battery can be increased in proportion to the area of the electrolyte. In addition, by arranging electrolytes in a shape that allows many electrolytes to be juxtaposed or intricately divided into sections, the volume of positive electrode active material applied to a single electrolyte is reduced, and vibrations and shocks received by the electrolyte are dispersed. Can do.

ナトリウム硫黄電池の電解質の負極側に多孔質の支持層を設けると、電解質に掛かる硫黄の蒸気圧を支持層で受け止め、電解質単独で蒸気圧に耐える必要はなくなるため電解質の厚さを薄くでき、電解質の抵抗値が下がって電池の電流密度を稼げる。
ナトリウム硫黄電池の電解質の正極側に多孔質の絶縁層を設け、さらにその上に絶縁性の素材と導電性の素材とを混合した多孔質の接続層を設けると、硫化ナトリウムの移動は接続層の絶縁性の素材も担い、そのため絶縁層は絶縁の機能のみに限定でき絶縁層の厚さを薄くできる。
また硫黄の移動も接続層の導電性の素材が担い、絶縁層が薄いため接続層の硫黄と電解質が近づいてナトリウムイオンの拡散距離が短くなる。また接続層が実質的な正極になり、接続層の導電性の素材により絶縁層と正極板間の抵抗値が下がる。これらの効果で電解質と正極板との間の抵抗値が下がって電池の電流密度を稼げる。
If a porous support layer is provided on the negative electrode side of the electrolyte of the sodium sulfur battery, the support layer receives the vapor pressure of sulfur applied to the electrolyte, and it is not necessary to withstand the vapor pressure alone, so the thickness of the electrolyte can be reduced. The resistance value of the electrolyte decreases and the current density of the battery can be increased.
When a porous insulating layer is provided on the positive electrode side of the electrolyte of a sodium-sulfur battery, and a porous connecting layer in which an insulating material and a conductive material are further mixed is provided thereon, the movement of sodium sulfide is connected to the connecting layer. Therefore, the insulating layer can be limited only to the insulating function, and the thickness of the insulating layer can be reduced.
In addition, the conductive material of the connection layer is also responsible for the movement of sulfur, and since the insulating layer is thin, the sulfur of the connection layer and the electrolyte approach each other and the diffusion distance of sodium ions is shortened. Further, the connection layer becomes a substantial positive electrode, and the resistance value between the insulating layer and the positive electrode plate is lowered by the conductive material of the connection layer. With these effects, the resistance value between the electrolyte and the positive electrode plate decreases, and the current density of the battery can be increased.

ナトリウム硫黄電池の電解質の負極側に多孔質の支持層を設け、かつ電解質の正極側に多孔質の絶縁層を挟んで多孔質の接続層を設けると、電解質が支持層と絶縁層や接続層に挟まれているため、電解質に亀裂が入っても電解質は離散せず亀裂は広がらない。その結果、亀裂から進入する正極活物質の容積は限られ、ナトリウムと反応して生成される溶解温度の高い硫化ナトリウムは支持層に捕らえられ、亀裂はやがて塞がる。
ナトリウム硫黄電池の支持層や接続層に靭性の高い素材を採用すると、支持層や接続層で衝撃に耐えることで、薄くても衝撃に強い電解質が得られる。また支持層や接続層に熱伝導率の高い素材を採用すると、電池の放電末期等に電解質の局部に電流が集中し発熱しても、熱が分散されて高い電流密度にも耐えられ電池が得られる。
When a porous support layer is provided on the negative electrode side of the electrolyte of a sodium-sulfur battery, and a porous connection layer is provided on the positive electrode side of the electrolyte with a porous insulating layer sandwiched therebetween, the electrolyte becomes a support layer, an insulating layer, or a connection layer. Therefore, even if a crack occurs in the electrolyte, the electrolyte does not scatter and the crack does not spread. As a result, the volume of the positive electrode active material entering from the crack is limited, and the sodium sulfide having a high melting temperature generated by reaction with sodium is captured by the support layer, and the crack is eventually closed.
When a tough material is used for the support layer and connection layer of the sodium-sulfur battery, an electrolyte that is resistant to impact can be obtained even if it is thin by withstanding the impact in the support layer and connection layer. In addition, if a material with high thermal conductivity is used for the support layer and the connection layer, even if the current concentrates locally on the electrolyte at the end of discharge of the battery and heat is generated, the heat is dispersed and the battery can withstand high current density. can get.

ナトリウム硫黄電池のナトリウム流路と支持層と電解質と絶縁層と接続層の全てまたは一部を押出し加工で一度に成型し、焼結して一体とすることで、高い剛性の電解質が得られ電解質の生産性も改善される。
ナトリウム硫黄電池の電解質と隔壁とを同時に焼結して一体とすると、後で電解質と隔壁を組立てて接合する手間が省略できる。
All or part of the sodium flow path, support layer, electrolyte, insulating layer, and connection layer of a sodium-sulfur battery are formed at one time by extrusion, and sintered to form a single unit, resulting in a highly rigid electrolyte. Productivity is also improved.
If the electrolyte and partition walls of the sodium-sulfur battery are simultaneously sintered and integrated, it is possible to eliminate the trouble of assembling and joining the electrolyte and partition walls later.

ナトリウム硫黄電池の電解質と平行な正極板を設け、正極板に電流の流れる方向と平行な間隙を設けると、正極板の抵抗値を上げずに正極板に活物質の通過できる間隙を設けられる。
ナトリウム硫黄電池の負極室に隔壁と平行に導電性の負極板を設けると、負極室のナトリウムが消費され電池が多少傾斜しても、負極板と隔壁の隙間の毛細管現象で隔壁の周囲にナトリウムが最後まで残り、放電末期でも負極室の抵抗値が低い値に抑えられる。
When a positive electrode plate parallel to the electrolyte of the sodium-sulfur battery is provided and a gap parallel to the direction of current flow is provided in the positive electrode plate, a gap through which the active material can pass is provided in the positive electrode plate without increasing the resistance value of the positive electrode plate.
When a conductive negative electrode plate is provided in the negative electrode chamber of a sodium-sulfur battery in parallel with the partition, even if the sodium in the negative electrode chamber is consumed and the battery is inclined slightly, sodium is surrounded around the partition by capillary action between the negative electrode plate and the partition. Remains until the end, and the resistance value of the negative electrode chamber is suppressed to a low value even at the end of discharge.

ナトリウム硫黄電池の負極板を導電性の柱や板により負極缶に接続し、正極板を正極缶の底に接合すると、負極缶と隔壁間の抵抗値は常に低く抑えられる。負極室の負極板の柱や板と電解質とを直線上に並ぶように中心線を合わせると、電池内を負極缶から正極缶まで直線状に貫いて電流を流すことができ、電池の抵抗値が低くなり、電池は縦に直列に接続できる。
ナトリウム硫黄電池の負極板を負極缶に接合し、負極缶の外側面に正極缶とは絶縁され正極缶の端まで延びる負電極を接合し、正極板を正極缶の側面に接合すると、電池を横に直列に接続できる。
When the negative electrode plate of the sodium-sulfur battery is connected to the negative electrode can by a conductive column or plate and the positive electrode plate is joined to the bottom of the positive electrode can, the resistance value between the negative electrode can and the partition wall can always be kept low. By aligning the center line of the negative electrode plate and plate of the negative electrode chamber and the electrolyte so that they are aligned in a straight line, the current can flow through the battery in a straight line from the negative electrode can to the positive electrode can, and the resistance of the battery The battery can be connected vertically in series.
When the negative electrode plate of the sodium sulfur battery is joined to the negative electrode can, the negative electrode extending from the positive electrode can to the end of the positive electrode can is joined to the outer surface of the negative electrode can, and the positive electrode plate is joined to the side surface of the positive electrode can. Can be connected in series horizontally.

ナトリウム硫黄電池の隔壁と負極缶をL字型とし、ナトリウム流路と負極室を隔壁の側面に開けた穴で接続し、正極板を正極缶の側面に接合すると、電池の一側面は負極になり、電池内を直線状に横に電流が流れて低い抵抗値の電池が得られ、電池を横に直列に接続できる。
ナトリウム硫黄電池の缶に鉄系金属や鉄アルミ合板を採用すると、缶を薄くしても高い強度が得られ、結果的に電池の缶の重量をアルミ等の缶と同等以下にできる。また鉄アルミ合板を採用すると、強度を維持しながら缶の電気抵抗を減らせる。
When the partition and the negative electrode can of the sodium-sulfur battery are L-shaped, the sodium channel and the negative electrode chamber are connected by a hole formed in the side of the partition, and the positive electrode plate is joined to the side of the positive electrode can, one side of the battery becomes the negative electrode Thus, a current flows in a straight line in the battery and a battery having a low resistance value is obtained, and the batteries can be connected in series in the horizontal direction.
When iron-based metal or iron-aluminum plywood is used for a sodium-sulfur battery can, a high strength can be obtained even if the can is thinned, and as a result, the weight of the battery can can be equal to or less than that of a can such as aluminum. In addition, using iron-aluminum plywood can reduce the electrical resistance of the can while maintaining strength.

ナトリウム硫黄電池の隔壁の端面にメタライズ層を作成し、缶と隔壁のメタライズ層とを溶接すると、接合強度が高く耐衝撃性のあるナトリウム硫黄電池が得られる。
ナトリウム硫黄電池の缶の組立て後に、正極室の内部に鍍金を施すと、溶接箇所等の組立てで破損した部分が鍍金層で補修される。また接続層と正極板が鍍金で繋がり固定され抵抗値も下がる。
ナトリウム硫黄電池の外形を方形とし、電池の電極となる面以外の外周に絶縁を施すと、他の絶縁材無しで多数の電池を高密度に各方向に積層することができる。また積層した電池が剛体として一体になりより振動しにくくなる。
When a metallized layer is formed on the end face of the partition wall of the sodium-sulfur battery and the can and the metallized layer of the partition wall are welded, a sodium-sulfur battery having high joint strength and impact resistance can be obtained.
After the assembly of the sodium-sulfur battery can be plated, the inside of the positive electrode chamber is plated, so that the damaged portion of the welded portion or the like is repaired by the plating layer. Further, the connection layer and the positive electrode plate are connected and fixed by plating, and the resistance value is also lowered.
If the outer shape of the sodium-sulfur battery is rectangular and the outer periphery other than the surface that serves as the electrode of the battery is insulated, a large number of batteries can be stacked in each direction at high density without other insulating materials. In addition, the laminated batteries are integrated as a rigid body and are less likely to vibrate.

電池の断面図。 (実施例1)Sectional drawing of a battery. (Example 1) 電解質の形状図。 (実施例1)Electrolyte shape diagram. (Example 1) 電解質の部分断面図。 (実施例1)The fragmentary sectional view of electrolyte. (Example 1) 隔壁の端面断面図。 (実施例1)The end surface sectional drawing of a partition. (Example 1) L字型電池の断面図。 (実施例2)Sectional drawing of an L-shaped battery. (Example 2) 電解質押出しノズルの断面図。 (実施例3)Sectional drawing of an electrolyte extrusion nozzle. Example 3 横接続電池の断面図。 (実施例4)Sectional drawing of a horizontal connection battery. Example 4

当発明の電池の実施例を図とともに説明する。
Embodiments of the battery of the present invention will be described with reference to the drawings.

図1はナトリウム硫黄電池の断面図である。
電池1はアルミナ等を焼結して作成した絶縁体の隔壁7に、上から負極缶3を下から正極缶10を溶接して電池1の容器としている。負極缶3内は負極室になりナトリウム4を収容し、正極缶10内は正極室になり硫黄11と硫化ナトリウム12を収容する。硫黄11は硫化ナトリウム12と分離し比重が軽いので硫化ナトリウム12の上に浮かぶ。
隔壁7には板状の電解質14が4枚接合されていて、電解質14は従来の袋管の電解質と比較して2倍程度の面積になる。隔壁7にはナトリウム通過穴6が開いていて、電解質14の中心にあるナトリウム流路13に繋がっていて、充放電に伴うナトリウム4の負極室と電解質14間の移動を可能にし、電流の経路にもなる。
FIG. 1 is a cross-sectional view of a sodium sulfur battery.
The battery 1 is a container for the battery 1 by welding a negative electrode can 3 from above and a positive electrode can 10 from below to an insulating partition 7 made by sintering alumina or the like. The negative electrode can 3 becomes a negative electrode chamber and contains sodium 4, and the positive electrode can 10 becomes a positive electrode chamber and contains sulfur 11 and sodium sulfide 12. The sulfur 11 is separated from the sodium sulfide 12 and has a low specific gravity, so that it floats on the sodium sulfide 12.
Four plate-like electrolytes 14 are joined to the partition wall 7, and the electrolyte 14 has an area about twice that of a conventional bag tube electrolyte. The partition wall 7 has a sodium passage hole 6 and is connected to a sodium flow path 13 at the center of the electrolyte 14 to enable movement between the negative electrode chamber of the sodium 4 and the electrolyte 14 due to charge / discharge, and a current path. It also becomes.

電池1では大部分のナトリウム4は隔壁7で遮られた負極室内に収容されていて、電解質14の容積は最小限に抑えられている。
負極缶3内部の上底には複数の柱2が溶接され、柱2の他端には負極板5が隔壁7と接するように溶接されている。柱2と負極板5は負極室内の充放電電流の最短経路となる。負極室内の電流は負極缶3の外周に沿って流れないので、負極缶3は鉄等の導電率の低い金属を採用できる。
負極板5は僅かに湾曲させていて、柱2を支えるバネ機構と毛細管現象を利用したナトリウム4の流路としている。負極室のナトリウム4が減少し電池1が傾斜していても、負極板5と隔壁7に挟まれた領域には毛細管現象でナトリウム4が消費尽くされる最後まで供給される。
In the battery 1, most of the sodium 4 is accommodated in the negative electrode chamber blocked by the partition wall 7, and the volume of the electrolyte 14 is minimized.
A plurality of pillars 2 are welded to the upper bottom inside the negative electrode can 3, and a negative electrode plate 5 is welded to the other end of the pillar 2 so as to contact the partition wall 7. The column 2 and the negative electrode plate 5 are the shortest path of charge / discharge current in the negative electrode chamber. Since the current in the negative electrode chamber does not flow along the outer periphery of the negative electrode can 3, the negative electrode can 3 can employ a metal having low conductivity such as iron.
The negative electrode plate 5 is slightly curved to serve as a flow path for sodium 4 utilizing a spring mechanism for supporting the column 2 and capillary action. Even if the sodium 4 in the negative electrode chamber is reduced and the battery 1 is inclined, the region sandwiched between the negative electrode plate 5 and the partition wall 7 is supplied until the end of consumption of sodium 4 by capillary action.

電池1の正極室の硫黄11の蒸気圧を柱2で受け止める事になり、隔壁7は柱2が支えるので隔壁7の繰返し疲労は軽減され隔壁7の厚さを薄くすることができる。
電解質14の両面と平行に正極板15を設けて、正極缶10の底に正極板15を折り曲げて溶接してあり、正極缶10と電解質14間の抵抗値を下げている。正極板15には電流の流れる方向と平行な多数の間隙を、正極板15を互い違いの波型に加工することで設け、硫黄11や硫化ナトリウム12が間隙により正極板15を通過でき、正極板15の抵抗値を増やさないで間隙を形成にしている。
The vapor pressure of sulfur 11 in the positive electrode chamber of the battery 1 is received by the pillar 2, and the partition wall 7 supports the pillar 2, so that repeated fatigue of the partition wall 7 is reduced and the thickness of the partition wall 7 can be reduced.
A positive electrode plate 15 is provided in parallel with both surfaces of the electrolyte 14, and the positive electrode plate 15 is bent and welded to the bottom of the positive electrode can 10 to reduce the resistance value between the positive electrode can 10 and the electrolyte 14. A large number of gaps parallel to the direction of current flow are provided in the positive electrode plate 15 by processing the positive electrode plate 15 into alternate corrugations, so that sulfur 11 and sodium sulfide 12 can pass through the positive electrode plate 15 through the gap. The gap is formed without increasing the resistance value of 15.

正極室内の電流は正極缶10の外周に沿って流れないので、正極缶10は鉄等の導電率の低い金属を採用できる。
柱2と電解質14とを直線上に沿って並べることで、電池1の縦方向の抵抗値が最小になり、電池1を縦に低い抵抗値で積層することができる。
Since the current in the positive electrode chamber does not flow along the outer periphery of the positive electrode can 10, the positive electrode can 10 can employ a metal having low conductivity such as iron.
By arranging the pillar 2 and the electrolyte 14 along a straight line, the resistance value in the vertical direction of the battery 1 is minimized, and the battery 1 can be stacked vertically with a low resistance value.

電池1に収容するナトリウム4の量を増やすと、硫黄11がなくなっても電流密度は減少するが放電が継続し、電池1の重量当りの電気容量を増やすことができる。
電池1の缶の電極以外の外周は絶縁体16で絶縁され、追加の絶縁材なしで直列に接続された電池1を立体的に並べて配置できる。また電池1は方型で、隣接する電池1間で缶が広く接触するので低い熱抵抗で接続されて、配置された電池1の温度が均一化される。方型の電池1は空間内に密接して収容でき、高い容積当りの電気容量が実現でき、同時に全体として高い剛性を維持できる。
When the amount of sodium 4 accommodated in the battery 1 is increased, the current density is reduced even if the sulfur 11 is exhausted, but the discharge continues and the electric capacity per weight of the battery 1 can be increased.
The outer periphery of the battery 1 other than the electrode of the can is insulated by an insulator 16, and the batteries 1 connected in series without any additional insulating material can be arranged in three dimensions. Moreover, since the battery 1 is rectangular and the cans are in wide contact between the adjacent batteries 1, they are connected with a low thermal resistance, and the temperature of the arranged batteries 1 is made uniform. The rectangular battery 1 can be closely accommodated in the space, can realize a high electric capacity per volume, and at the same time can maintain high rigidity as a whole.

図2は電池1を下から見た各種形状の電解質14と隔壁7の図である。
図1では電解質14は図2−A型を前提としているが、電解質14は図2にあるように多様な形状とすることができる。図2−C型のように蜂の巣型とすると高い強度を実現できるが、正極板15も複雑になる。
直線状や円筒形の電解質14を採用すると正極板15の形状を単純化できて電池1の組立ても容易になる。円筒形の電解質14は正極板15を円管状に端面を接続加工することで、電解質14と正極板15との接触をより維持しやすくできる。
FIG. 2 is a view of the electrolyte 14 and the partition wall 7 having various shapes when the battery 1 is viewed from below.
In FIG. 1, the electrolyte 14 is premised on the type shown in FIG. 2-A, but the electrolyte 14 can have various shapes as shown in FIG. When a honeycomb type is used as shown in FIG. 2C, high strength can be realized, but the positive electrode plate 15 is also complicated.
When the linear or cylindrical electrolyte 14 is employed, the shape of the positive electrode plate 15 can be simplified and the battery 1 can be easily assembled. The cylindrical electrolyte 14 makes it easier to maintain the contact between the electrolyte 14 and the positive electrode plate 15 by connecting the end face of the positive electrode plate 15 in a circular tube shape.

図2−E型のように、円筒状の電解質14の一部を切り欠くことで、硫黄11や硫化ナトリウム12の正極室上部における流動を容易にでき、電解質14の特性差にともなう硫化ナトリウム12の深度差を解消できる。
図2−G型は、単一のナトリウム流路13をもつ棒状の電解質14を多数並べたものである。棒状の電解質14は、電解質14の単位面積当りの容積を最小にできる。
隔壁7と電解質14は同時に焼結する事もできるし、個別に焼結して組立ててガラス等で接合する事もできる。
As shown in FIG. 2E, a part of the cylindrical electrolyte 14 is notched to facilitate the flow of sulfur 11 and sodium sulfide 12 in the upper part of the positive electrode chamber, and the sodium sulfide 12 due to the characteristic difference of the electrolyte 14. Can eliminate the depth difference.
In FIG. 2G, a large number of rod-shaped electrolytes 14 having a single sodium channel 13 are arranged. The rod-shaped electrolyte 14 can minimize the volume per unit area of the electrolyte 14.
The partition wall 7 and the electrolyte 14 can be sintered at the same time, or can be separately sintered and assembled and joined together with glass or the like.

図3は電解質14と正極板15の部分断面図である。
電解質14はより詳細には、ベータアルミナの電解質14aの周囲に多孔質の絶縁層14bを設け、絶縁層14bの外側に多孔質の接続層14cを設けている。電解質14aの内側には多孔質の支持層14dを設けている。支持層14dの中に複数のナトリウム流路13があり、ナトリウム流路13は支持層14dの脚部14eにより分離されている。
板状のナトリウム流路13は脚部14eを連続した壁ではなく円柱状にしたものである。また単一のナトリウム流路13のみとすると棒状の電解質14になる。
ベータアルミナの電解質14a内をナトリウムイオンが電解質14aにかかる電界に従って透過でき、硫黄11や硫化ナトリウム12は電解質14aで阻止されて正極と負極が分離される。ナトリウムイオンの移動度は電解質14aの厚さに反比例する。
FIG. 3 is a partial cross-sectional view of the electrolyte 14 and the positive electrode plate 15.
More specifically, the electrolyte 14 is provided with a porous insulating layer 14b around the beta alumina electrolyte 14a, and a porous connecting layer 14c outside the insulating layer 14b. A porous support layer 14d is provided inside the electrolyte 14a. There are a plurality of sodium channels 13 in the support layer 14d, and the sodium channels 13 are separated by the legs 14e of the support layer 14d.
The plate-like sodium channel 13 is formed by forming the leg portion 14e into a columnar shape instead of a continuous wall. If only a single sodium channel 13 is used, a rod-shaped electrolyte 14 is obtained.
Sodium ions can pass through the beta alumina electrolyte 14a according to the electric field applied to the electrolyte 14a, and the sulfur 11 and sodium sulfide 12 are blocked by the electrolyte 14a to separate the positive electrode and the negative electrode. The mobility of sodium ions is inversely proportional to the thickness of the electrolyte 14a.

絶縁層14bはアルミナ等の絶縁材を焼結した多孔質の層で、電解質14aと接続層14cとを絶縁する。絶縁層14bの空隙は硫化ナトリウム12で満たされ、導電率の低い硫化ナトリウム12が電流の流路になるため、絶縁層14bを薄くして抵抗値を抑える。
接続層14cはセラミック等の絶縁材と黒鉛や高融点金属等の導電材とを混合し焼結した多孔質の層で、絶縁材は硫化ナトリウム12の流路になり、導電材は硫黄11の流路になる。接続層14cの導電材は正極板15と電解質14a間の抵抗値を下げる役割も担っている。
The insulating layer 14b is a porous layer obtained by sintering an insulating material such as alumina, and insulates the electrolyte 14a from the connection layer 14c. The gap of the insulating layer 14b is filled with sodium sulfide 12, and the low-conductivity sodium sulfide 12 serves as a current flow path. Therefore, the insulating layer 14b is thinned to suppress the resistance value.
The connection layer 14c is a porous layer obtained by mixing and sintering an insulating material such as ceramic and a conductive material such as graphite or a refractory metal. The insulating material is a flow path of sodium sulfide 12, and the conductive material is made of sulfur 11. It becomes a flow path. The conductive material of the connection layer 14c also plays a role of reducing the resistance value between the positive electrode plate 15 and the electrolyte 14a.

支持層14dはセラミックや黒鉛や高融点金属等を焼結した多孔質の層でナトリウム4が自由に通過でき、電解質14aが受ける硫黄の蒸気圧を支持層14dが受け止める。そのため、電解質14aの厚さは耐久性の維持できる範囲で極限まで薄くでき、電解質14aの抵抗値を大幅に削減できる。支持層14dの多層化等によりナトリウム4の流動性を確保し、ナトリウム流路13をなくし全体を支持層14dとすこともできる。
支持層14dや接続層14cには電解質14aより熱膨張率の高いジルコニアやチタンやチタン合金等を採用すると、焼結後に支持層14dや接続層14cが収縮して電解質14aに圧縮応力が働き、電解質14aの亀裂成長を抑制できる。
The support layer 14d is a porous layer obtained by sintering ceramic, graphite, refractory metal or the like, and sodium 4 can freely pass through. The support layer 14d receives the vapor pressure of sulfur received by the electrolyte 14a. Therefore, the thickness of the electrolyte 14a can be reduced to the limit as long as durability can be maintained, and the resistance value of the electrolyte 14a can be greatly reduced. The fluidity of the sodium 4 can be secured by multilayering of the support layer 14d, etc., and the sodium flow path 13 can be eliminated to make the support layer 14d as a whole.
When zirconia, titanium, titanium alloy or the like having a higher thermal expansion coefficient than the electrolyte 14a is adopted for the support layer 14d or the connection layer 14c, the support layer 14d or the connection layer 14c contracts after sintering, and compressive stress acts on the electrolyte 14a. Crack growth of the electrolyte 14a can be suppressed.

支持層14dや接続層14cに靭性の高い素材を採用すると、支持層14dや接続層14cで衝撃を受け止め、自動車等の衝突時の衝撃にも耐えられる電解質14が得られ、従来のナトリウム硫黄電池と比較してより安全性が高まる。放電末期の電解質14には電流が上部に集中し発熱する、そのため支持層14dや接続層14cには熱伝導率と靭性の高い素材が好ましく、焼結に耐えられる素材として酸化ベリリュームやグラファイトやモリブデンやタングステン等がある。
電解質14aに亀裂が入っても、電解質14aは周囲を支持層14dや絶縁層14bや接続層14cで囲まれているため、電解質14aが離散して急激に亀裂が広がりことはない。また亀裂から進入してきた硫黄11や硫化ナトリウム12は、ナトリウム4と反応して溶解温度の高い硫化ナトリウム12に変化して固まり、支持層14dやナトリウム流路13に溜まり、やがて亀裂箇所も塞がれて電池1の安全性に寄与する。
When a material having high toughness is used for the support layer 14d and the connection layer 14c, an electrolyte 14 that can receive an impact at the support layer 14d and the connection layer 14c and can withstand an impact at the time of a collision of an automobile is obtained. Compared with, safety is increased. In the electrolyte 14 at the end of discharge, current concentrates on the upper part and generates heat. Therefore, a material having high thermal conductivity and toughness is preferable for the support layer 14d and the connection layer 14c, and beryllium oxide, graphite, molybdenum and the like as materials that can withstand sintering. And tungsten.
Even if the electrolyte 14a is cracked, the electrolyte 14a is surrounded by the support layer 14d, the insulating layer 14b, and the connection layer 14c, so that the electrolyte 14a is not dispersed and the crack does not spread rapidly. Moreover, the sulfur 11 and the sodium sulfide 12 that have entered from the crack react with the sodium 4 to change into the sodium sulfide 12 having a high melting temperature and solidify, accumulate in the support layer 14d and the sodium flow path 13, and eventually close the cracked portion. This contributes to the safety of the battery 1.

接続層14cに並接して正極板15があり、正極板15は交互に直交する波型に加工して間隙を設けて活物質の流路とし、波型の各頂点で接続層14cと接している。
接続層14cを厚くしたり電気抵抗の低い素材を採用して接続層14cの抵抗値を下げると、電解質14に並接する正極板15は不要に成り、正極板15は電解質14の先端と正極缶10とを連絡する機能に絞るか、正極板15なしで直接正極缶10に電解質14を勘合して接続することもできる。
There is a positive electrode plate 15 juxtaposed to the connection layer 14c. The positive electrode plate 15 is processed into alternately orthogonal corrugations to provide a gap to form an active material flow path, and in contact with the connection layer 14c at each apex of the corrugation. Yes.
When the connection layer 14c is thickened or a material having a low electric resistance is used to lower the resistance value of the connection layer 14c, the positive electrode plate 15 in parallel with the electrolyte 14 becomes unnecessary, and the positive electrode plate 15 has the tip of the electrolyte 14 and the positive electrode can. It is also possible to focus on the function of communicating with 10 or connect the electrolyte 14 directly to the positive electrode can 10 without using the positive electrode plate 15.

図4は隔壁7の端面の断面図である。
隔壁7の端面には凸部20を設けて缶の位置合わせを容易にし、凸部20の麓には隔壁7の焼結前にモリブデン粒子等を塗り焼結してメタライズ部21としている。メタライズ部21と正極缶10にはクロム溶射やクロム鍍金を施し、負極缶3と正極缶10とをメタライズ部21にクロム合金等で溶接すると、高い耐衝撃性と高い耐食性が得られる。
負極缶3と正極缶10の端面に細かな間隔の波型の凹凸を持たせ、缶の線膨張を局部に収めて溶接8の破損を避ける。また隔壁7への缶の溶接時に隔壁7と缶を200℃以上に予熱してから溶接して、電池作動時の温度での溶接8の残留歪を低減する。
電池1の缶の組立て時の溶接8でクロム保護膜が破損するので、組立て後に硫黄注入口からクロム鍍金液を正極室に注ぎこみ、鍍金電極を硫黄注入口から挿入して追加の鍍金を施して補修する。また追加の鍍金を施すと、図3の接続層14cと正極板15が鍍金で繋がり、固定されて安定し抵抗値も下がる。
FIG. 4 is a sectional view of the end face of the partition wall 7.
Protrusions 20 are provided on the end faces of the partition walls 7 to facilitate alignment of the can. Moisture of the protrusions 20 is coated with molybdenum particles or the like before the partition walls 7 are sintered to form metallized portions 21. When the metallized portion 21 and the positive electrode can 10 are subjected to chromium spraying or chrome plating, and the negative electrode can 3 and the positive electrode can 10 are welded to the metallized portion 21 with a chromium alloy or the like, high impact resistance and high corrosion resistance are obtained.
The end surfaces of the negative electrode can 3 and the positive electrode can 10 are provided with corrugated irregularities with fine intervals, and the linear expansion of the can is accommodated locally to prevent the weld 8 from being damaged. Further, when the can is welded to the partition wall 7, the partition wall 7 and the can are preheated to 200 ° C. or more and then welded to reduce the residual strain of the weld 8 at the temperature during battery operation.
Since the chromium protective film is damaged by welding 8 when assembling the battery 1 can, the chromium plating solution is poured into the positive electrode chamber from the sulfur inlet after assembly, and the plating electrode is inserted through the sulfur inlet and subjected to additional plating. To repair. Further, when additional plating is applied, the connection layer 14c and the positive electrode plate 15 of FIG. 3 are connected by plating, and are fixed and stable, and the resistance value is also reduced.

図5は隔壁7がL字型の電池1の断面図である。
図5は電解質14の中央位置での断面図である。電池1はL字型の隔壁7で正極室と負極室が区切られていて、負極缶3と負極室もL字型になる。電解質14はL字型の隔壁7に接合されていて、電解質14内部には薄い板状のナトリウム流路13があり、ナトリウム流路13を挟む形で電解質14がナトリウム流路13の周囲を覆っている。
電解質14には複数の脚部14eがあり、ナトリウム流路13を覆う電解質14相互の間隔を一定に保っている。
FIG. 5 is a cross-sectional view of the battery 1 having the L-shaped partition wall 7.
FIG. 5 is a cross-sectional view of the electrolyte 14 at the center position. In the battery 1, the positive electrode chamber and the negative electrode chamber are separated by an L-shaped partition wall 7, and the negative electrode can 3 and the negative electrode chamber are also L-shaped. The electrolyte 14 is joined to the L-shaped partition wall 7, and there is a thin plate-like sodium channel 13 inside the electrolyte 14, and the electrolyte 14 covers the periphery of the sodium channel 13 so as to sandwich the sodium channel 13. ing.
The electrolyte 14 has a plurality of legs 14 e and keeps the distance between the electrolytes 14 covering the sodium flow path 13 constant.

ナトリウム流路13は隔壁7のナトリウム通過穴6で負極室と連絡していて、充放電に伴うナトリウム4の電解質14と負極室間の移動が可能になっている。
正極板15が正極缶10の右辺に接合されていて、電解質14に正極板15が接触し、充放電の電流は負極缶3の左辺から正極缶10の右辺の間で横方向に流れる。
隔壁7の水平部の全体や一部を傾斜させるか溝を掘るか板やマットを敷くと、ナトリウム4が消費され電池1が傾斜していてもナトリウム通過穴6にナトリウム4を供給することができる。図5の電池1では隔壁7の右端にもナトリウム通過穴6を設けて対応している。
The sodium flow path 13 communicates with the negative electrode chamber through the sodium passage hole 6 of the partition wall 7 so that movement between the electrolyte 14 of the sodium 4 and the negative electrode chamber accompanying charging / discharging is possible.
The positive electrode plate 15 is joined to the right side of the positive electrode can 10, the positive electrode plate 15 is in contact with the electrolyte 14, and a charge / discharge current flows laterally between the left side of the negative electrode can 3 and the right side of the positive electrode can 10.
When the whole or a part of the horizontal portion of the partition wall 7 is inclined, or a groove is dug or a plate or mat is laid, the sodium 4 is consumed and the sodium 4 is supplied to the sodium passage hole 6 even when the battery 1 is inclined. it can. In the battery 1 of FIG. 5, a sodium passage hole 6 is also provided at the right end of the partition wall 7.

ワックス等でナトリウム流路13の形を作成し、ワックスの周囲に電解質14の各素材を塗布し、塗布後の電解質14と隔壁7とを組み立て、暖めてワックスを流失してから焼結して隔壁7に接合した電解質14を作成する。電解質14と隔壁7は分離して焼結し後で組み立ててガラス等で接合することもできる。
隔壁7と負極缶3との左辺の間隔は狭めることができ、その空間はナトリウム4で常時満たされるので、ナトリウム通過穴6を複数設けると、電解質14と負極缶3の左辺との抵抗値は低い値に抑えられる。
電池1の缶の電極以外の外周を絶縁体16で絶縁してある。隣接する電池1間で正極缶10の右辺と負極缶3の左辺が接触して横方向に電池1を直列に接続できる。
The shape of the sodium flow path 13 is made with wax or the like, each material of the electrolyte 14 is applied around the wax, the applied electrolyte 14 and the partition wall 7 are assembled, heated, and the wax is washed away and then sintered. An electrolyte 14 bonded to the partition wall 7 is prepared. The electrolyte 14 and the partition wall 7 can be separated and sintered, and then assembled and joined with glass or the like.
The space between the left side of the partition wall 7 and the negative electrode can 3 can be narrowed, and the space is always filled with sodium 4. Therefore, when a plurality of sodium passage holes 6 are provided, the resistance value between the electrolyte 14 and the left side of the negative electrode can 3 is It can be suppressed to a low value.
The outer periphery of the battery 1 other than the electrodes of the can is insulated by an insulator 16. Between the adjacent batteries 1, the right side of the positive electrode can 10 and the left side of the negative electrode can 3 are in contact, and the batteries 1 can be connected in series in the lateral direction.

図6は電解質14の押出しノズルの断面図である。
有機添加剤等で流動化した電解質14の各材料を、材料の容積に合った複数の同期したスクリュー圧縮機等で圧力をかけ、ノズル17から押出して電解質14を成型し、乾燥後に切断し一方の端面を封じ焼結する。
ナトリウム流路13はパラフィン等の焼結中に溶解蒸発する材料で作成し焼結後には空洞になり、ナトリウム4の注入後はナトリウム流路13をナトリウムが占める。
FIG. 6 is a cross-sectional view of the extrusion nozzle for the electrolyte 14.
Each material of the electrolyte 14 fluidized with an organic additive or the like is pressed with a plurality of synchronized screw compressors or the like that match the volume of the material, extruded from the nozzle 17 to form the electrolyte 14, and cut after drying. Seal and sinter the end face.
The sodium channel 13 is made of a material that dissolves and evaporates during sintering, such as paraffin, and becomes a cavity after sintering. After the sodium 4 is injected, sodium occupies the sodium channel 13.

電解質14aは焼結後に緻密な組織となるよう細かな粒子を素材とする。電解質14a以外の部分は大きめの粒子を素材とし、塩化ナトリウム等の犠牲素材を材料に含めて成型し、焼結中に犠牲素材は溶解蒸発して多孔質になる。
電解質14を押出す際に、隔壁7の焼結前の成型品を受け皿にして電解質14を押出し切断すると両者を組立てる手間が省ける。
The electrolyte 14a is made of fine particles so as to have a dense structure after sintering. The parts other than the electrolyte 14a are made of large particles, and a sacrificial material such as sodium chloride is included in the material, and the sacrificial material is dissolved and evaporated during sintering to become porous.
When extruding the electrolyte 14, if the electrolyte 14 is extruded and cut using a molded product before sintering of the partition walls 7 as a tray, the labor of assembling them can be saved.

図7は横接続の電池1の断面図である。
電解質14には細い棒状のナトリウム流路13が複数あり、隔壁7に開けられたナトリウム通過穴6で負極室と連絡している。電池1の負極板5は負極缶3に溶接されている。正極板15は正極缶10の右側面に溶接されている。負極缶3の左側面には負電極9が溶接され、負電極9は絶縁体16で正極缶10とは絶縁されている。アルミや銅製の缶を採用すると正極板15は正極缶10の底に溶接しても、正極缶10を伝って側面まで低い抵抗値で電流が流れる。
電池1の缶の電極以外の外周を絶縁体16で絶縁してある。隣接する電池1間で正極缶10の右側面と負電極9を接触させて横方向に電池1を直列に接続できる。
FIG. 7 is a cross-sectional view of the horizontally connected battery 1.
The electrolyte 14 has a plurality of thin rod-shaped sodium channels 13 and communicates with the negative electrode chamber through sodium passage holes 6 formed in the partition walls 7. The negative electrode plate 5 of the battery 1 is welded to the negative electrode can 3. The positive electrode plate 15 is welded to the right side surface of the positive electrode can 10. A negative electrode 9 is welded to the left side surface of the negative electrode can 3, and the negative electrode 9 is insulated from the positive electrode can 10 by an insulator 16. If an aluminum or copper can is employed, even if the positive electrode plate 15 is welded to the bottom of the positive electrode can 10, a current flows with a low resistance value through the positive electrode can 10 to the side surface.
The outer periphery of the battery 1 other than the electrodes of the can is insulated by an insulator 16. The batteries 1 can be connected in series in the lateral direction by contacting the right side surface of the positive electrode can 10 and the negative electrode 9 between the adjacent batteries 1.

当発明により、高い電流密度と信頼性が要請される自動車等の電力源にナトリウム硫黄電池が利用可能になる。
The present invention makes it possible to use a sodium-sulfur battery as a power source for automobiles and the like that require high current density and reliability.

1 電池、2 柱、3 負極缶、4 ナトリウム、5 負極板、6 ナトリウム通過穴
7 隔壁、8 溶接、9 負電極、10 正極缶、11 硫黄
12 硫化ナトリウム、13 ナトリウム流路、14 電解質、14a 電解質
14b 絶縁層、14c 接続層、14d 支持層、14e 脚部
15 正極板、16 絶縁体、17 ノズル、20 凸部、21 メタライズ部
1 battery, 2 columns, 3 negative electrode can, 4 sodium, 5 negative electrode plate, 6 sodium passage hole, 7 partition, 8 weld, 9 negative electrode, 10 positive electrode can, 11 sulfur, 12 sodium sulfide, 13 sodium channel, 14 electrolyte, 14a Electrolyte 14b Insulating layer, 14c Connection layer, 14d Support layer, 14e Leg 15 Positive electrode plate, 16 Insulator, 17 Nozzle, 20 Convex, 21 Metallized part

Claims (17)

ナトリウムを負極活物質に硫黄と硫化ナトリウムを正極活物質とするナトリウム硫黄電池において、正極と負極を分離する電解質の外形を棒状もしくは板状とし、電解質の中心に単一か複数の棒状の細いナトリウム流路もしくは板状の薄いナトリウム流路を設けることを特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, the outer shape of the electrolyte separating the positive electrode and the negative electrode is made into a rod shape or plate shape, and single or multiple rod-like thin sodium at the center of the electrolyte A sodium-sulfur battery comprising a flow path or a thin plate-shaped sodium flow path. 請求項1の板状の電解質を曲げたり分岐させたり接合させたりすることを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized in that the plate-like electrolyte according to claim 1 is bent, branched or joined. ナトリウム硫黄電池の内部を隔壁で負極室と正極室に区切り、任意数の請求項1や請求項2の電解質を隔壁に接合して正極室に保持し、負極室とナトリウム流路とは隔壁に開けた複数の穴で接続することを特徴とするナトリウム硫黄電池。   The interior of the sodium sulfur battery is divided into a negative electrode chamber and a positive electrode chamber by a partition, and an arbitrary number of the electrolytes of claim 1 and claim 2 are joined to the partition and held in the positive electrode chamber. A sodium-sulfur battery characterized by being connected through a plurality of holes. ナトリウム硫黄電池の電解質の負極側に多孔質の支持層を設けることを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery comprising a porous support layer on the negative electrode side of an electrolyte of a sodium-sulfur battery. ナトリウム硫黄電池の電解質の正極側に多孔質の絶縁層を設け、さらにその上に絶縁性の素材と導電性の素材とを混合した多孔質の接続層を設けることを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized in that a porous insulating layer is provided on the positive electrode side of an electrolyte of a sodium-sulfur battery, and further a porous connection layer obtained by mixing an insulating material and a conductive material is provided thereon. 請求項4の支持層や請求項5の接続層に、靭性が高い素材や熱伝導率の高い素材を採用することを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized by adopting a material having high toughness or a material having high thermal conductivity for the support layer of claim 4 or the connection layer of claim 5. ナトリウム硫黄電池のナトリウム流路と電解質と請求項4の支持層と請求項5の絶縁層と接続層の全てもしくは一部を押出し加工で一度に成型し、焼結して一体とすることを特徴とするナトリウム硫黄電池の電解質の製造方法。   The sodium flow path of the sodium sulfur battery, the electrolyte, the support layer of claim 4, the insulating layer of claim 5, and all or a part of the connection layer are formed at one time by extrusion, and sintered to be integrated. The manufacturing method of the electrolyte of a sodium sulfur battery. ナトリウム硫黄電池の電解質と隔壁とを同時に焼結して一体とすることを特徴とするナトリウム硫黄電池の電解質と隔壁の製造方法。   A method for producing an electrolyte and partition walls of a sodium sulfur battery, wherein the electrolyte and partition walls of a sodium sulfur battery are simultaneously sintered and integrated. ナトリウム硫黄電池の電解質と平行な正極板を設け、正極板に電流の流れる方向と平行な多数の間隙を設けることを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery comprising: a positive electrode plate parallel to an electrolyte of a sodium-sulfur battery; and a plurality of gaps parallel to a direction of current flow in the positive electrode plate. ナトリウム硫黄電池の負極室に隔壁と平行に導電性の負極板を設けることを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery comprising a negative electrode chamber of a sodium-sulfur battery and a conductive negative electrode plate provided in parallel with a partition wall. 請求項10の負極板を導電性の柱や板により負極缶に接続し、正極板を正極缶の底に接合することを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery, wherein the negative electrode plate of claim 10 is connected to a negative electrode can by a conductive column or plate, and the positive electrode plate is joined to the bottom of the positive electrode can. 請求項10の負極板を負極缶に接合し、負極缶の外側面に正極缶とは絶縁され正極缶の端まで延びる負電極を接合し、正極板を正極缶の側面に接合することを特徴とするナトリウム硫黄電池。   The negative electrode plate of claim 10 is bonded to a negative electrode can, a negative electrode insulated from the positive electrode can and extending to the end of the positive electrode can is bonded to the outer surface of the negative electrode can, and the positive electrode plate is bonded to the side surface of the positive electrode can. Sodium sulfur battery. 請求項3の隔壁と負極缶をL字型とし、ナトリウム流路と負極室を隔壁の側面に開けた穴で接続し、正極板を正極缶の側面に接合することを特徴とするナトリウム硫黄電池。   4. The sodium sulfur battery according to claim 3, wherein the partition wall and the negative electrode can are L-shaped, the sodium channel and the negative electrode chamber are connected to each other through a hole formed in the side surface of the partition wall, and the positive electrode plate is joined to the side surface of the positive electrode can. . ナトリウム硫黄電池の缶に鉄系金属や鉄アルミ合板を採用することを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized by adopting iron-based metal or iron-aluminum plywood for the can of sodium-sulfur battery. ナトリウム硫黄電池の隔壁の端面にメタライズ層を作成し、缶と隔壁のメタライズ層とを溶接することを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized in that a metallized layer is formed on the end face of a partition wall of a sodium-sulfur battery, and the can and the metallized layer of the partition wall are welded. ナトリウム硫黄電池の缶の組立て後に、正極室の内部に鍍金を施すことを特徴とするナトリウム硫黄電池の鍍金方法。   A method for plating a sodium-sulfur battery, comprising: plating the interior of the positive electrode chamber after assembling the can of the sodium-sulfur battery. ナトリウム硫黄電池の外形を方形とし、電池の電極となる面以外の外周に絶縁を施すことを特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized in that the outer shape of the sodium-sulfur battery is rectangular, and insulation is applied to the outer periphery other than the surface to be the electrode of the battery.
JP2010244870A 2010-11-01 2010-11-01 Sodium-sulfur battery Pending JP2012099293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244870A JP2012099293A (en) 2010-11-01 2010-11-01 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244870A JP2012099293A (en) 2010-11-01 2010-11-01 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2012099293A true JP2012099293A (en) 2012-05-24

Family

ID=46390995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244870A Pending JP2012099293A (en) 2010-11-01 2010-11-01 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2012099293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711464A (en) * 2017-01-20 2017-05-24 江南山 Multi-tube type sodium and sulfur battery
CN106784623A (en) * 2017-01-20 2017-05-31 江南山 A kind of multitube lithium-sulfur cell
WO2017090636A1 (en) * 2015-11-24 2017-06-01 有限会社 中勢技研 Molten sodium battery and partition wall for molten sodium battery
JP2017103197A (en) * 2015-11-24 2017-06-08 大川 宏 Molten sodium battery and partition wall for molten sodium battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090636A1 (en) * 2015-11-24 2017-06-01 有限会社 中勢技研 Molten sodium battery and partition wall for molten sodium battery
JP2017103197A (en) * 2015-11-24 2017-06-08 大川 宏 Molten sodium battery and partition wall for molten sodium battery
KR20180063276A (en) * 2015-11-24 2018-06-11 유겐가이샤 쥬세이기켄 Molten sodium batteries and bulkheads for molten sodium batteries
RU2686089C1 (en) * 2015-11-24 2019-04-24 Югенкайся Тусейгикен Battery with molten sodium and battery partition with molten sodium
KR102033266B1 (en) 2015-11-24 2019-10-16 유겐가이샤 쥬세이기켄 Bulkhead for Molten Sodium Cells and Molten Sodium Cells
CN106711464A (en) * 2017-01-20 2017-05-24 江南山 Multi-tube type sodium and sulfur battery
CN106784623A (en) * 2017-01-20 2017-05-31 江南山 A kind of multitube lithium-sulfur cell

Similar Documents

Publication Publication Date Title
US10608212B2 (en) Electrochemical energy storage devices and housings
US10998537B2 (en) Battery
US3980496A (en) Energy conversion devices with improved electrode shapes
JP2012099293A (en) Sodium-sulfur battery
US7868524B2 (en) Piezoelectric component
US11031645B2 (en) Device for storing electrical energy, method for assembling and starting up said device, and method for operating said device
KR20080069674A (en) Solid oxide fuel cell device and system, method of using and method of making
CN103155259B (en) Secondary battery
KR20130040946A (en) Solid electrolyte secondary battery
KR20090035428A (en) Seal for a fuel cell support
JP5546063B2 (en) Solid electrolyte secondary battery
JP6209164B2 (en) Module battery
TWI611617B (en) Electrode unit
KR20140137648A (en) Battery pack
JP5260937B2 (en) Fuel cell stack and fuel cell
WO2012031346A1 (en) Bi-polar electrochemical cell
JP5762265B2 (en) Bonded body of ceramic body and metal body
JP2018530144A (en) Battery system
JP2001243977A (en) Sodium sulfur battery, battery assembly and its module
KR102571364B1 (en) 3D connector structure, method and temperature sensor for manufacturing 3D connector structure
KR100729281B1 (en) an electrode for electrolyzer
KR101085938B1 (en) The electrode assembly for multi-layered batteries and that manufacturing method
JP6044376B2 (en) Resistance welding electrode
KR20120117412A (en) Electrochemical cell
JP5693726B2 (en) Sealing terminal and battery