JP2012098131A - Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method - Google Patents

Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method Download PDF

Info

Publication number
JP2012098131A
JP2012098131A JP2010245621A JP2010245621A JP2012098131A JP 2012098131 A JP2012098131 A JP 2012098131A JP 2010245621 A JP2010245621 A JP 2010245621A JP 2010245621 A JP2010245621 A JP 2010245621A JP 2012098131 A JP2012098131 A JP 2012098131A
Authority
JP
Japan
Prior art keywords
axis
light
light source
intensity
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010245621A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
章 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Bio Research Co Ltd
Original Assignee
Unitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitec Co Ltd filed Critical Unitec Co Ltd
Priority to JP2010245621A priority Critical patent/JP2012098131A/en
Publication of JP2012098131A publication Critical patent/JP2012098131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method in which a light distribution property of a light source that becomes a measuring target or an inspection target is instantaneously measured or determined to fast inspect the light source in a production line and to accurately measure a radiation intensity of the light source that may change with the passage of time.SOLUTION: A light distribution property measuring device 100 includes a hemispherical diffusion panel 30 which is formed in a hemispherical shape so as to cover a light source 10 and disposed in such a manner that an apex of the hemisphere matches a central axis of the light source 10, an imaging apparatus 50 which images light radiated from the light source 10 and transmitted through the hemispherical diffusion panel 30, vertical light intensity extraction means 61 which extracts an X-axis vertical light intensity and a Y-axis vertical light intensity, and radiation strength calculation means 63 which converts the X-axis vertical light intensity and the Y-axis vertical light intensity into an X-axis cross-sectional radiation strength and a Y-axis cross-sectional radiation strength.

Description

本発明は、光源の配光特性を測定または検査する配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法に関する。   The present invention relates to a light distribution characteristic measurement apparatus, a light distribution characteristic inspection apparatus, a light distribution characteristic measurement program, a light distribution characteristic measurement method, and a light distribution characteristic inspection method for measuring or inspecting a light distribution characteristic of a light source.

LED等の光源の放射強度と放射方向との関係、すなわち配光特性の良否を検査する場合、まず当該光源の放射強度を正確に測定する必要がある。そして、このような放射強度の測定では、測光上の考え方は一般的な光度測定と同様であり、色補正係数による視感度補正や、測光距離、周囲の反射光の除去等に注意すればよい。   When inspecting the relationship between the radiation intensity and the radiation direction of a light source such as an LED, that is, the quality of the light distribution characteristic, it is first necessary to accurately measure the radiation intensity of the light source. In such measurement of radiation intensity, the concept of photometry is the same as that of general photometry, and attention should be paid to visibility correction using color correction coefficients, photometry distance, removal of ambient reflected light, etc. .

但し、放射強度の測定では、光源から照射される光の放射強度を、順次に角度を変えた方向から測定する必要がある。従って、従来の配光特性の検査では、例えば特許文献1に記載されるように、光源を固定してその周囲を測光器が回転する手法を用いるか、あるいは、測光器を固定してその周囲を光源が回転する手法を用いて、光源の放射強度を測定していた。   However, in the measurement of the radiation intensity, it is necessary to measure the radiation intensity of the light emitted from the light source from the direction where the angles are sequentially changed. Therefore, in the conventional inspection of light distribution characteristics, for example, as described in Patent Document 1, a method in which a light source is fixed and a photometer rotates around the light source is used, or a photometer is fixed and its surroundings are used. The radiation intensity of the light source was measured using a method in which the light source was rotated.

特開2008−70290号公報JP 2008-70290 A

しかしながら、特許文献1を始めとする従来の配光特性の検査手法は、一つの光源に対して、角度を変えた複数の方向から放射強度を測定しなければならないため、生産ラインにおける全ての光源を高速かつ瞬時に検査するには不向きであった。また、光源として用いられるLEDは、長い時間点灯させると、自己発熱によって放射強度が変化してしまう。従って、従来のように角度を変えながら複数の方向から放射強度を測定すると、測定中に光源の放射強度が変化し、正確に測定することができないという問題があった。   However, the conventional light distribution characteristic inspection methods such as Patent Document 1 must measure the radiation intensity from a plurality of directions with different angles with respect to one light source. It was unsuitable for high-speed and instantaneous inspection. Further, when an LED used as a light source is lit for a long time, the radiation intensity changes due to self-heating. Therefore, when the radiation intensity is measured from a plurality of directions while changing the angle as in the prior art, there is a problem in that the radiation intensity of the light source changes during the measurement and cannot be measured accurately.

本発明は、前記問題点に鑑みてなされたものであり、測定対象または検査対象となる光源の配光特性を瞬時に測定または判定することで、生産ラインにおける光源を高速に検査することができるとともに、光源の放射強度を正確に測定することができる配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法を提供することを課題とする。   The present invention has been made in view of the above problems, and can quickly inspect a light source in a production line by measuring or determining a light distribution characteristic of a light source to be measured or inspected instantaneously. Another object is to provide a light distribution characteristic measurement device, a light distribution characteristic inspection device, a light distribution characteristic measurement program, a light distribution characteristic measurement method, and a light distribution characteristic inspection method capable of accurately measuring the radiation intensity of the light source. To do.

前記課題を解決するために本発明に係る配光特性測定置は、所定の測定位置に搬送された光源の上部および周囲を覆うように半球状に形成され、半球の頂点が前記光源の中心軸と一致するように配置される半球状拡散板と、前記半球状拡散板の上方に所定間隔を置いて設置されるとともに、光軸が前記光源の中心軸と一致するように配置され、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像装置と、前記撮像装置が撮像した画像に所定の処理を施す画像処理装置と、を備え、前記光源の配光特性を測定する配光特性測定装置であって、前記画像処理装置が、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出手段と、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出手段と、を備える構成とした。   In order to solve the above problems, the light distribution characteristic measurement device according to the present invention is formed in a hemispherical shape so as to cover the upper part and the periphery of the light source conveyed to a predetermined measurement position, and the vertex of the hemisphere is the central axis of the light source. A hemispherical diffuser plate disposed so as to coincide with the hemispherical diffuser plate, and disposed at a predetermined interval above the hemispherical diffuser plate, and disposed so that an optical axis coincides with a central axis of the light source. And an image processing device that performs predetermined processing on an image captured by the imaging device, and that measures light distribution characteristics of the light source. An optical characteristic measurement device, wherein the image processing device is on an X-axis and a Y-axis on the basis of a central pixel of the image among vertical light intensities corresponding to pixel values of an image captured by the imaging device. X-axis vertical light showing the vertical light intensity at Vertical light intensity extracting means for extracting a predetermined number of degrees and Y axis vertical light intensity, and X indicating a position corresponding to the pixel from which the X axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device The X-axis vertical light intensity according to the vertical distance to the axis-corresponding position, the distance from the X-axis corresponding position to the light source, and the distance from the X-axis corresponding position to the installation surface of the light source. Y-axis correspondence indicating the position corresponding to the pixel from which the Y-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device while converting to the X-axis sectional radiation intensity indicating the sectional radiation intensity at the X-axis corresponding position The Y-axis vertical light intensity is converted to the Y-axis according to the vertical distance to the position, the distance from the Y-axis corresponding position to the light source, and the distance from the Y-axis corresponding position to the installation surface of the light source. In corresponding position A radiation intensity calculating means for converting the Y-axis cross-sectional radiation intensity showing a kick sectional radiation intensity, and configured to include a.

このような構成によれば、配光特性測定装置は、放射強度算出手段によって、垂直光強度抽出手段で抽出されたX軸上およびY軸上における垂直方向の垂直光強度を、光源を基準とした所定角度の放射強度に変換することができる。従って、配光特性検査装置は、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができる。   According to such a configuration, the light distribution characteristic measuring apparatus uses the radiant intensity calculation means to calculate the vertical light intensity in the vertical direction on the X axis and the Y axis extracted by the vertical light intensity extraction means with reference to the light source. It is possible to convert the radiation intensity to a predetermined angle. Therefore, the light distribution characteristic inspection device can easily acquire the value of the radiation intensity of the light source simply by imaging the light emitted from the light source with the imaging device.

また、本発明に係る配光特性測定装置は、前記放射強度算出手段が、下記式(1)によって前記X軸断面放射強度を算出するとともに、下記式(2)によって前記Y軸断面放射強度を算出することが好ましい。   Further, in the light distribution characteristic measuring apparatus according to the present invention, the radiation intensity calculating means calculates the X-axis cross-sectional radiation intensity by the following formula (1), and the Y-axis cross-sectional radiation intensity by the following formula (2). It is preferable to calculate.

Figure 2012098131
Figure 2012098131

ここで、式(1)および式(2)において、WはX軸断面放射強度、WはY軸断面放射強度、wはX軸垂直光強度、wはY軸垂直光強度、dは撮像装置から半球状拡散板の頂点までの距離、rは半球状拡散板の半径、θはX軸対応位置またはY軸対応位置と光源とを結んだ仮想線が、X軸対応位置またはY軸対応位置と光源の設置面とを結んだ垂直線となす角度、を示している。 Here, in Formula (1) and Formula (2), W x is the X-axis cross-sectional radiation intensity, W y is the Y-axis cross-sectional radiation intensity, w x is the X-axis vertical light intensity, and w y is the Y-axis vertical light intensity, d is the distance from the imaging device to the apex of the hemispherical diffuser plate, r is the radius of the hemispherical diffuser plate, θ is the X-axis corresponding position or Y-axis corresponding position and the virtual line connecting the light source to the X-axis corresponding position or The angle between the vertical line connecting the Y-axis corresponding position and the light source installation surface is shown.

このような構成によれば、配光特性測定装置は、放射強度算出手段によって、撮像装置からX軸対応位置またはY軸対応位置までの垂直距離と、所定角度の余弦値(X軸対応位置またはY軸対応位置と光源とを結んだ仮想線が、X軸対応位置またはY軸対応位置と光源の設置面とを結んだ垂直線となす角度の余弦値)に基づいて、垂直光強度抽出手段で抽出された垂直光強度を、光源を基準とした所定角度の放射強度に変換するため、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができる。   According to such a configuration, the light distribution characteristic measurement device uses the radiation intensity calculation means to calculate the vertical distance from the imaging device to the X-axis corresponding position or the Y-axis corresponding position and the cosine value (X-axis corresponding position or Vertical light intensity extraction means based on the imaginary line connecting the Y-axis corresponding position and the light source to the X-axis corresponding position or the vertical line connecting the Y-axis corresponding position and the light source installation surface) In order to convert the vertical light intensity extracted in step 1 into a radiation intensity at a predetermined angle with respect to the light source, it is possible to easily obtain the value of the light intensity of the light source simply by imaging the light emitted from the light source with an imaging device. be able to.

また、前記課題を解決するために本発明に係る配光特性検査装置は、前記した配光特性測定装置と、当該配光特性測定装置によって測定された配光特性の良否を判定する配光特性判定手段と、を備える配光特性検査装置であって、配光特性判定手段が、前記配光特性測定装置の放射強度算出手段によって測定された前記X軸断面放射強度および前記Y軸断面放射強度が、予め用意されたX軸断面放射強度の上下限値およびY軸断面放射強度の上下限値の範囲内であるか否かを判定することで、前記光源のX軸上およびY軸上における配光特性の良否を判定する配光特性判定手段を備える構成とした。   In order to solve the above problems, a light distribution characteristic inspection apparatus according to the present invention includes a light distribution characteristic measuring apparatus and a light distribution characteristic for determining whether the light distribution characteristic measured by the light distribution characteristic measuring apparatus is good or bad. A light distribution characteristic inspection apparatus comprising: a determination means, wherein the light distribution characteristic determination means measures the X-axis cross-section radiation intensity and the Y-axis cross-section radiation intensity measured by the radiation intensity calculation means of the light distribution characteristic measurement device. Is determined to be within the range of the upper and lower limit values of the X-axis cross-sectional radiation intensity and the Y-axis cross-sectional radiation intensity prepared in advance, so that the light source on the X-axis and the Y-axis The light distribution characteristic determining means for determining the quality of the light distribution characteristic is provided.

このような構成によれば、配光特性検査装置は、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができるため、配光特性の良否をより精度良く判定することができる。   According to such a configuration, the light distribution characteristic inspection device can easily acquire the value of the light intensity of the light source simply by imaging the light emitted from the light source with the imaging device. The quality can be determined with higher accuracy.

また、前記課題を解決するために本発明に係る配光特性測定プログラムは、所定の測定位置に搬送された光源から照射され、当該光源の上部および周囲を覆う半球状拡散板を透過した光を撮像装置によって撮像し、当該撮像した画像から、前記光源の配光測定を測定するために、コンピュータを、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出手段、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出手段、として機能させる構成とした。   Further, in order to solve the above problems, a light distribution characteristic measurement program according to the present invention emits light transmitted from a light source conveyed to a predetermined measurement position and transmitted through a hemispherical diffusion plate covering the upper part and the periphery of the light source. In order to measure the light distribution measurement of the light source from the imaged image captured by the imaging device, a computer is used to detect the image of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device. Vertical light intensity extracting means for extracting a predetermined number of X-axis vertical light intensity and Y-axis vertical light intensity indicating vertical light intensity on the X-axis and Y-axis with respect to the central pixel, and the hemisphere from the imaging device A vertical distance to the X-axis corresponding position indicating a position corresponding to the pixel from which the X-axis vertical light intensity is extracted on the cylindrical diffuser, a distance from the X-axis corresponding position to the light source, and the X-axis correspondence The X-axis vertical light intensity is converted into an X-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the position corresponding to the X-axis according to the distance from the light source to the installation surface of the light source, and from the imaging device to the hemisphere From the vertical distance to the Y-axis corresponding position indicating the position corresponding to the pixel from which the Y-axis vertical light intensity is extracted on the cylindrical diffuser, the distance from the Y-axis corresponding position to the light source, and the Y-axis corresponding position A function to function as radiation intensity calculating means for converting the Y-axis vertical light intensity into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position according to the distance to the installation surface of the light source; did.

このような構成によれば、配光特性測定プログラムは、放射強度算出手段によって、垂直光強度抽出手段で抽出されたX軸上およびY軸上における垂直方向の垂直光強度を、光源を基準とした所定角度の放射強度に変換することができる。従って、配光特性検査装置は、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができる。   According to such a configuration, the light distribution characteristic measurement program uses the radiant intensity calculation unit to calculate the vertical light intensity in the vertical direction on the X axis and the Y axis extracted by the vertical light intensity extraction unit, using the light source as a reference. It is possible to convert the radiation intensity to a predetermined angle. Therefore, the light distribution characteristic inspection device can easily acquire the value of the radiation intensity of the light source simply by imaging the light emitted from the light source with the imaging device.

また、前記課題を解決するために本発明に係る配光特性測定方法は、測定対象となる光源の配光特性を測定する配光特性測定方法であって、ハンドラによって、前記光源の中心軸が半球状拡散板の半球の頂点と撮像装置の光軸とに一致するように、当該光源を搬送する光源搬送工程と、前記撮像装置によって、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像工程と、垂直光強度抽出手段によって、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出工程と、放射強度算出手段によって、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出工程と、を行う手順とした。   Further, in order to solve the above problems, a light distribution characteristic measuring method according to the present invention is a light distribution characteristic measuring method for measuring a light distribution characteristic of a light source to be measured, wherein a central axis of the light source is determined by a handler. A light source transporting step for transporting the light source so as to coincide with the vertex of the hemisphere of the hemispherical diffusion plate and the optical axis of the imaging device; and the light irradiated from the light source by the imaging device and transmitted through the hemispherical diffusion plate Of the vertical light intensity corresponding to each pixel value of the image picked up by the image pickup device by the vertical light intensity extraction means on the X axis and the Y axis on the basis of the central pixel of the image X-axis vertical light intensity and Y-axis vertical light intensity indicating the vertical light intensity in the image are extracted from the imaging device onto the hemispherical diffuser plate by a vertical light intensity extracting step for extracting a predetermined number of each and a radiation intensity calculating means. The vertical distance to the X-axis corresponding position indicating the position corresponding to the pixel from which the X-axis vertical light intensity is extracted, the distance from the X-axis corresponding position to the light source, and the installation surface of the light source from the X-axis corresponding position According to the distance to the X-axis, the X-axis vertical light intensity is converted into an X-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the X-axis corresponding position, and the Y on the hemispherical diffuser plate from the imaging device. The vertical distance to the Y-axis corresponding position indicating the position corresponding to the pixel from which the axis vertical light intensity is extracted, the distance from the Y-axis corresponding position to the light source, and the Y-axis corresponding position to the installation surface of the light source According to the distance, a radiation intensity calculation step of converting the Y-axis vertical light intensity into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position is performed.

このような手順によれば、配光特性測定方法は、放射強度算出手段によって、垂直光強度抽出手段で抽出されたX軸上およびY軸上における垂直方向の垂直光強度を、光源を基準とした所定角度の放射強度に変換することができる。従って、配光特性検査装置は、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができる。   According to such a procedure, in the light distribution characteristic measuring method, the vertical light intensity in the vertical direction on the X axis and the Y axis extracted by the vertical light intensity extracting means by the radiation intensity calculating means is used as a reference for the light source. It is possible to convert the radiation intensity to a predetermined angle. Therefore, the light distribution characteristic inspection device can easily acquire the value of the radiation intensity of the light source simply by imaging the light emitted from the light source with the imaging device.

また、前記課題を解決するために本発明に係る配光特性検査方法は、検査対象となる光源の配光特性を検査する配光特性検査方法であって、ハンドラによって、前記光源の中心軸が半球状拡散板の半球の頂点と撮像装置の光軸とに一致するように、当該光源を搬送する光源搬送工程と、前記撮像装置によって、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像工程と、垂直光強度抽出手段によって、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出工程と、放射強度算出手段によって、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出工程と、配光特性判定手段によって、変換された前記X軸断面放射強度が、予め用意されたX軸断面放射強度の上下限値の範囲内であるか否かを判定するとともに、変換された前記Y軸断面放射強度が、予め用意されたY軸断面放射強度の上下限値の範囲内であるか否かを判定することで、前記光源のX軸上およびY軸上における配光特性の良否を判定する配光特性判定工程と、を行う手順とした。   In order to solve the above problems, a light distribution characteristic inspection method according to the present invention is a light distribution characteristic inspection method for inspecting a light distribution characteristic of a light source to be inspected. A light source transporting step for transporting the light source so as to coincide with the vertex of the hemisphere of the hemispherical diffusion plate and the optical axis of the imaging device; and the light irradiated from the light source by the imaging device and transmitted through the hemispherical diffusion plate Of the vertical light intensity corresponding to each pixel value of the image picked up by the image pickup device by the vertical light intensity extraction means on the X axis and the Y axis on the basis of the central pixel of the image X-axis vertical light intensity and Y-axis vertical light intensity indicating the vertical light intensity in the image are extracted from the imaging device onto the hemispherical diffuser plate by a vertical light intensity extracting step for extracting a predetermined number of each and a radiation intensity calculating means. The vertical distance to the X-axis corresponding position indicating the position corresponding to the pixel from which the X-axis vertical light intensity is extracted, the distance from the X-axis corresponding position to the light source, and the installation surface of the light source from the X-axis corresponding position According to the distance to the X-axis, the X-axis vertical light intensity is converted into an X-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the X-axis corresponding position, and the Y on the hemispherical diffuser plate from the imaging device. The vertical distance to the Y-axis corresponding position indicating the position corresponding to the pixel from which the axis vertical light intensity is extracted, the distance from the Y-axis corresponding position to the light source, and the Y-axis corresponding position to the installation surface of the light source In accordance with the distance, the Y-axis vertical light intensity is converted into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position, and the light distribution characteristic determination unit converts the radiation intensity calculation step. X-axis cross section It is determined whether the radiant intensity is within the range of the upper and lower limits of the X-axis cross-sectional radiation intensity prepared in advance, and the converted Y-axis cross-sectional radiant intensity is the Y-axis cross-sectional radiant intensity prepared in advance. The light distribution characteristic determining step of determining whether the light distribution characteristic on the X axis and the Y axis of the light source is good or not is determined by determining whether or not the value is within the range of the upper and lower limit values.

このような手順によれば、配光特性検査方法は、放射強度算出手段によって、垂直光強度抽出手段で抽出されたX軸上およびY軸上における垂直方向の垂直光強度を、光源を基準とした所定角度の放射強度に変換することができる。従って、配光特性検査装置は、光源から照射された光を撮像装置で撮像するだけで、光源の放射強度の値を容易に取得することができるため、配光特性の良否をより精度良く判定することができる。   According to such a procedure, in the light distribution characteristic inspection method, the vertical light intensity in the vertical direction on the X axis and the Y axis extracted by the vertical light intensity extraction means by the radiation intensity calculation means is used as a reference for the light source. It is possible to convert the radiation intensity to a predetermined angle. Accordingly, the light distribution characteristic inspection device can easily obtain the value of the light intensity of the light source by simply capturing the light emitted from the light source with the image pickup device, and therefore, the quality of the light distribution characteristic can be determined with higher accuracy. can do.

本発明に係る配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法によれば、光源の放射強度を角度ごとに測定する必要がなく、一つの光源に対して一方向から一度の測定を行えばよいため、検査対象となる光源の配光特性を瞬時に判定することができ、生産ラインにおける光源を高速に検査することができる。また、本発明に係る配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法によれば、一定角度における光を撮像して放射強度を算出するため、光源の放射強度を正確に測定することができる。   According to the light distribution characteristic measurement device, the light distribution characteristic inspection device, the light distribution characteristic measurement program, the light distribution characteristic measurement method, and the light distribution characteristic inspection method according to the present invention, there is no need to measure the radiation intensity of the light source for each angle. Since it is only necessary to perform measurement once from one direction for one light source, the light distribution characteristic of the light source to be inspected can be determined instantaneously, and the light source in the production line can be inspected at high speed. In addition, according to the light distribution characteristic measurement device, the light distribution characteristic inspection device, the light distribution characteristic measurement program, the light distribution characteristic measurement method, and the light distribution characteristic inspection method according to the present invention, the radiation intensity is obtained by imaging light at a certain angle. Since it calculates, the radiation intensity of a light source can be measured correctly.

本発明の実施形態に係る配光特性測定装置および配光特性検査装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the light distribution characteristic measuring apparatus and light distribution characteristic inspection apparatus which concern on embodiment of this invention. 本発明の実施形態に係る配光特性測定装置が備える画像処理装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the image processing apparatus with which the light distribution characteristic measuring apparatus which concerns on embodiment of this invention is provided. 本発明の実施形態に係る配光特性測定装置および配光特性検査装置が備える垂直光強度抽出手段の処理内容を説明するための図である。It is a figure for demonstrating the processing content of the vertical light intensity extraction means with which the light distribution characteristic measuring apparatus and light distribution characteristic inspection apparatus which concern on embodiment of this invention are provided. 本発明の実施形態に係る配光特性測定装置および配光特性検査装置が備える放射強度算出手段の処理内容を説明するための図である。It is a figure for demonstrating the processing content of the radiation intensity calculation means with which the light distribution characteristic measuring apparatus and light distribution characteristic inspection apparatus which concern on embodiment of this invention are provided. 本発明の実施形態に係る配光特性測定装置および配光特性検査装置が備える放射強度算出手段によって算出された放射強度を放射角度ごとにプロットした放射強度分布図を示す概略図であり、(a)は、X軸断面放射強度分布図、(b)は、Y軸断面放射強度分布図、である。It is the schematic which shows the radiation intensity distribution figure which plotted the radiation intensity computed by the radiation intensity calculation means with which the light distribution characteristic measuring apparatus and light distribution characteristic inspection apparatus which concern on embodiment of this invention are equipped for every radiation angle, (a ) Is an X-axis cross-sectional radiation intensity distribution diagram, and (b) is a Y-axis cross-sectional radiation intensity distribution diagram. 本発明の実施形態に係る配光特性測定装置および配光特性検査装置によって測定した配光特性分布の一例を示す概略図である。It is the schematic which shows an example of the light distribution characteristic distribution measured by the light distribution characteristic measuring apparatus and light distribution characteristic inspection apparatus which concern on embodiment of this invention. 本発明の実施形態に係る配光特性測定装置が備える画像処理装置の内部構成と、配光特性判定手段の内部構成と、を示すブロック図である。It is a block diagram which shows the internal structure of the image processing apparatus with which the light distribution characteristic measuring apparatus which concerns on embodiment of this invention is provided, and the internal structure of a light distribution characteristic determination means. 本発明の実施形態に係る配光特性検査装置が備える配光特性判定手段による処理内容を説明するための図であり、(a)は、X軸上における配光特性の判定処理を示す図であり、(b)は、Y軸上における配光特性の判定処理を示す図である。It is a figure for demonstrating the processing content by the light distribution characteristic determination means with which the light distribution characteristic inspection apparatus which concerns on embodiment of this invention is provided, (a) is a figure which shows the determination process of the light distribution characteristic on an X-axis. (B) is a figure which shows the determination process of the light distribution characteristic on a Y-axis.

以下、本発明の実施形態に係る配光特性検査装置200について、図面を参照しながら説明する。なお、各図面が示す部材のサイズや位置関係等は、説明を明確にするため省略あるいは誇張していることがある。さらに以下の説明において、同一の名称、符号については、原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略する。   Hereinafter, a light distribution characteristic inspection apparatus 200 according to an embodiment of the present invention will be described with reference to the drawings. It should be noted that the size and positional relationship of the members shown in each drawing may be omitted or exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members in principle, and the detailed description will be omitted as appropriate.

配光特性検査装置200は、検査対象となる光源10の配光特性を検査するものである。配光特性検査装置200は、後記する図7に示すように、配光特性測定装置100と、配光特性判定手段110と、を独立の構成として備えている。以下の説明では、まず配光特性測定装置100の構成について説明した後に、配光特性判定手段110の構成について説明する。   The light distribution characteristic inspection apparatus 200 inspects the light distribution characteristic of the light source 10 to be inspected. As shown in FIG. 7 to be described later, the light distribution characteristic inspection apparatus 200 includes a light distribution characteristic measurement apparatus 100 and a light distribution characteristic determination unit 110 as independent components. In the following description, after first describing the configuration of the light distribution characteristic measuring apparatus 100, the configuration of the light distribution characteristic determination unit 110 will be described.

<配光特性測定装置>
配光特性測定装置は、測定対象となる光源の配光特性を測定するものである。配光特性測定装置100は、図1に示すように、ハンドラ20と、半球状拡散板30と、外光遮断箱40と、撮像装置50と、画像処理装置60と、点灯電源70と、PC80と、を主な構成として備えている。なお、図1では、説明の便宜上、半球状拡散板30と外光遮断箱40は断面図で示している。以下、各構成について、詳細に説明する。
<Light distribution characteristic measuring device>
The light distribution characteristic measuring device measures the light distribution characteristic of a light source to be measured. As shown in FIG. 1, the light distribution characteristic measuring apparatus 100 includes a handler 20, a hemispherical diffuser plate 30, an external light blocking box 40, an imaging device 50, an image processing device 60, a lighting power source 70, and a PC 80. And as a main configuration. In FIG. 1, for convenience of explanation, the hemispherical diffusion plate 30 and the external light blocking box 40 are shown in a cross-sectional view. Hereinafter, each configuration will be described in detail.

光源10は、配光特性測定装置100の測定対象となる光の照射源である。光源10は、具体的にはLED(Light Emitting Diode)で構成されるが、その形状、大きさ、波長等は特に限定されない。光源10は、図1に示すように、リードフレーム11が図示しない固定部材を介して搬送機構21に固定されており、当該搬送機構21によって、所定の測定位置に一つずつ搬送されるように構成されている。なお、所定の測定位置とは、図1に示すように、光源10の中心軸が半球状拡散板30の半球の頂点(天頂)と撮像装置50の光軸とに一致する位置のことを意味している。また、光源10は、図1に示すように、リードフレーム11が点灯電源70と電気的に接続されており、当該点灯電源70からの点灯電流に従って点灯するように構成されている。   The light source 10 is a light irradiation source to be measured by the light distribution characteristic measuring apparatus 100. The light source 10 is specifically composed of an LED (Light Emitting Diode), but its shape, size, wavelength, etc. are not particularly limited. As shown in FIG. 1, in the light source 10, the lead frame 11 is fixed to the transport mechanism 21 via a fixing member (not shown), and the transport mechanism 21 is transported one by one to a predetermined measurement position. It is configured. The predetermined measurement position means a position where the central axis of the light source 10 coincides with the hemispherical apex (zenith) of the hemispherical diffuser plate 30 and the optical axis of the imaging device 50, as shown in FIG. is doing. As shown in FIG. 1, the light source 10 is configured such that the lead frame 11 is electrically connected to a lighting power source 70 and is lit according to a lighting current from the lighting power source 70.

ハンドラ20は、光源10を所定の測定位置に搬送するとともに、測定後の光源10を配光特性別に分類するものである。ハンドラ20は、図1に示すように、搬送機構21と、図示しない把持部と、制御部22と、を備えている。   The handler 20 conveys the light source 10 to a predetermined measurement position, and classifies the measured light source 10 according to light distribution characteristics. As illustrated in FIG. 1, the handler 20 includes a transport mechanism 21, a grip unit (not shown), and a control unit 22.

搬送機構21は、制御部22の指示に従って、複数の光源10を一つずつ所定の測定位置へと搬送するものである。また、把持部は、制御部22の指示に従って、光源10が設置面(固定面)に対して垂直となるように、当該光源10を固定(クランプ)するものである。また、制御部22は、搬送装置21および把持部の動作を制御するとともに、光源10の点灯を指示するものである。   The transport mechanism 21 transports the plurality of light sources 10 one by one to a predetermined measurement position according to instructions from the control unit 22. In addition, the gripping unit fixes (clamps) the light source 10 according to an instruction from the control unit 22 so that the light source 10 is perpendicular to the installation surface (fixed surface). The control unit 22 controls the operations of the transport device 21 and the gripping unit, and instructs the light source 10 to turn on.

制御部22は、具体的には、配光特性測定装置100の動作が開始すると、図2に示すように、測定開始指示を生成し、これを点灯電源制御手段66に出力することで、光源10を点灯させる。また、制御部22は、搬送指示を生成し、これを搬送機構21に出力することで、測定対象となる光源10を所定の測定位置に搬送する。そして、制御部22は、光源10の配光特性の測定が終了し、図2に示すように、放射強度算出手段63からハンドラ20に対して測定結果が入力されると、次の光源10を測定位置に搬送するように、搬送機構21を制御する。また、制御部22は、前記した測定結果に従って、光源10を配光特性別にランク分けし、測定済みの光源10をランク別に収容する所定の収容場所まで搬送するように、搬送機構21を制御する。   Specifically, when the operation of the light distribution characteristic measuring apparatus 100 starts, the control unit 22 generates a measurement start instruction and outputs the measurement start instruction to the lighting power source control unit 66 as shown in FIG. 10 is turned on. Moreover, the control part 22 produces | generates a conveyance instruction | indication, and conveys the light source 10 used as a measuring object to a predetermined | prescribed measurement position by outputting this to the conveyance mechanism 21. FIG. When the measurement of the light distribution characteristics of the light source 10 is completed and the measurement result is input from the radiation intensity calculation means 63 to the handler 20 as shown in FIG. The transport mechanism 21 is controlled so as to transport to the measurement position. Further, the control unit 22 controls the transport mechanism 21 so as to rank the light sources 10 according to the light distribution characteristics according to the measurement results described above, and transport the measured light sources 10 to a predetermined storage location where the light sources 10 are stored according to rank. .

半球状拡散板30は、光源10から照射された光を投影するとともに、周囲に拡散させるためのものである。半球状拡散板30は、例えば、所定厚さのガラス製または樹脂製の板を半球状に湾曲させて形成される。また、図示は省略したものの、半球状拡散板30は、内部の全面にサンドブラストが施され、内部面に微細な凹凸が形成されている。そして、半球状拡散板30は、当該凹凸によって、光源10から照射された光を投影するだけでなく、周囲に拡散できるように構成されている。   The hemispherical diffusion plate 30 is for projecting the light emitted from the light source 10 and diffusing it around. The hemispherical diffusion plate 30 is formed, for example, by bending a glass or resin plate having a predetermined thickness into a hemispherical shape. Although not shown, the hemispherical diffuser plate 30 is sandblasted on the entire inner surface and has fine irregularities formed on the inner surface. The hemispherical diffuser plate 30 is configured not only to project the light emitted from the light source 10 but also to diffuse it around by the unevenness.

半球状拡散板30は、図1に示すように、半球状に形成され、搬送機構21によって所定の測定位置に搬送された光源10の上部と周囲とを覆うように設置される。また、半球状拡散板30は、図1に示すように、その半球の頂点が、搬送された光源10の測定位置において当該光源10の中心軸と一致するように配置される。なお、半球状拡散板30は、測定対象がLEDの場合は、指向性の角度が180°を超えることがないため、ここでは、搬送される光源10から所定間隔上方に配置されている   As shown in FIG. 1, the hemispherical diffusion plate 30 is formed in a hemispherical shape and is installed so as to cover the upper part and the periphery of the light source 10 conveyed to a predetermined measurement position by the conveyance mechanism 21. Further, as shown in FIG. 1, the hemispherical diffusion plate 30 is arranged so that the apex of the hemisphere coincides with the central axis of the light source 10 at the measurement position of the transported light source 10. Note that the hemispherical diffuser plate 30 is disposed above the light source 10 being conveyed by a predetermined distance because the directivity angle does not exceed 180 ° when the measurement target is an LED.

外光遮断箱40は、光源10の光の照射領域を外光から遮断するためのものである。外光遮断箱40は、例えば図1に示すように、箱状に形成され、半球状拡散板30の上部と周囲とを覆うように配置される。配光特定測定装置100は、このように外光遮断箱40によって外光を遮断することで、後記する撮像装置50によって、検査対象となる光源10の光のみを正確に撮像することができる。   The external light blocking box 40 is for blocking the light irradiation area of the light source 10 from external light. For example, as shown in FIG. 1, the external light blocking box 40 is formed in a box shape and is disposed so as to cover the upper part and the periphery of the hemispherical diffusion plate 30. The light distribution specific measuring apparatus 100 can accurately capture only the light of the light source 10 to be inspected by the imaging apparatus 50 described later by blocking the external light by the external light blocking box 40 in this way.

撮像装置50は、光源10から照射された光を撮像するものである。撮像装置50は、具体的には、図1に示すように、光源10から照射され半球状拡散板30を透過した光を撮像する。撮像装置50は、具体的には、CCDカメラ等の一般的なカラーカメラで構成され、図1に示すように、撮像した画像データを画像処理装置60に対して出力するように構成されている。   The imaging device 50 captures light emitted from the light source 10. Specifically, as shown in FIG. 1, the imaging device 50 images light that is emitted from the light source 10 and transmitted through the hemispherical diffusion plate 30. Specifically, the imaging device 50 is configured by a general color camera such as a CCD camera, and is configured to output captured image data to the image processing device 60 as shown in FIG. .

撮像装置50は、図1に示すように、半球状拡散板30の上方に所定間隔を置いて設置される。なお、撮像装置50と半球状拡散板30の頂点との間隔は、測定の条件に合わせて任意に設定することができる。撮像装置50は、図1に示すように、外光遮断箱40の上部を貫通して設置される。また、撮像装置50は、図1に示すように、その光軸が半球状拡散板30の頂点と、光源10の中心軸と、に一致するように配置される。   As shown in FIG. 1, the imaging device 50 is installed above the hemispherical diffusion plate 30 at a predetermined interval. The interval between the imaging device 50 and the apex of the hemispherical diffusion plate 30 can be arbitrarily set according to the measurement conditions. As shown in FIG. 1, the imaging device 50 is installed through the upper part of the external light blocking box 40. Further, as shown in FIG. 1, the imaging device 50 is arranged so that the optical axis thereof coincides with the apex of the hemispherical diffusion plate 30 and the central axis of the light source 10.

画像処理装置60は、撮像装置50が撮像した画像に所定の処理を施すことで、光源10の配光特性を測定するものである。画像処理装置60は、具体的には、図2に示すように、垂直光強度抽出手段61と、抽出条件記憶手段62と、放射強度算出手段63と、点灯電源制御手段66と、を主な構成として備えている。以下、各構成について、詳細に説明する。   The image processing device 60 measures light distribution characteristics of the light source 10 by performing predetermined processing on the image captured by the imaging device 50. Specifically, as shown in FIG. 2, the image processing device 60 mainly includes a vertical light intensity extraction unit 61, an extraction condition storage unit 62, a radiation intensity calculation unit 63, and a lighting power source control unit 66. It is provided as a configuration. Hereinafter, each configuration will be described in detail.

垂直光強度抽出手段61は、撮像装置50が撮像した画像から垂直光強度を抽出するものである。垂直光強度抽出手段61は、具体的には、図2に示すように、撮像装置50が撮像した画像データの各画素の画素値を参照することで、当該画素値に対応した垂直光強度を抽出する。また、垂直光強度抽出手段61は、各画素値に対応する垂直光強度のうち、画像の中心画素を基準とするX軸上における垂直光強度を示すX軸垂直光強度と、画像の中心画素を基準とするY軸上における垂直光強度を示すY軸垂直光強度と、をそれぞれ所定個数ずつ抽出する。   The vertical light intensity extraction means 61 is for extracting the vertical light intensity from the image captured by the imaging device 50. Specifically, as shown in FIG. 2, the vertical light intensity extraction unit 61 refers to the pixel value of each pixel of the image data captured by the imaging device 50 to obtain the vertical light intensity corresponding to the pixel value. Extract. Further, the vertical light intensity extraction means 61 includes an X-axis vertical light intensity indicating vertical light intensity on the X-axis with respect to the center pixel of the image, among the vertical light intensity corresponding to each pixel value, and the center pixel of the image. A predetermined number of Y-axis vertical light intensities indicating the vertical light intensity on the Y-axis are extracted.

垂直光強度抽出手段61は、図3に示すように、X軸垂直光強度として、X軸と所定角度間隔の放射強度等線との交点位置における垂直光強度を抽出することが好ましい。また、垂直光強度抽出手段61は、Y軸垂直光強度として、Y軸と所定角度間隔の放射強度等線との交点位置の垂直光強度を抽出することが好ましい。   As shown in FIG. 3, the vertical light intensity extracting means 61 preferably extracts the vertical light intensity at the intersection point between the X axis and the radiation intensity contour line at a predetermined angular interval as the X axis vertical light intensity. Further, it is preferable that the vertical light intensity extraction unit 61 extracts the vertical light intensity at the intersection point between the Y axis and the radiation intensity contour line at a predetermined angular interval as the Y-axis vertical light intensity.

ここで、図3の上方に示す図は、半球状拡散板30を上方から撮像した画像であり、等高線を同心円状に付加したものである。また、図3の下方に示す図は、図3の上方に示す図を立体視した場合におけるX軸断面(X軸上の放射強度等線)を示している。なお、図3の上方に示す図を立体視した場合におけるY軸断面(Y軸上の放射強度等線)も、図3の下方に示す図と同様の図となる。そして、例えば、図3の上方に示す図における「X+45°」は、X軸上かつ半球状拡散板30の頂点(天頂)からプラス方向に45°の位置を示している。   Here, the figure shown in the upper part of FIG. 3 is an image obtained by imaging the hemispherical diffuser plate 30 from above, with contour lines added concentrically. 3 shows an X-axis cross section (radiation intensity contour line on the X-axis) when the diagram shown in the upper part of FIG. 3 is stereoscopically viewed. In addition, the Y-axis cross section (radiation intensity contour line on the Y-axis) when the diagram shown in the upper part of FIG. For example, “X + 45 °” in the diagram shown in the upper part of FIG. 3 indicates a 45 ° position in the plus direction from the apex (zenith) of the hemispherical diffusion plate 30 on the X axis.

垂直光強度抽出手段61は、例えば図3の下方に示す図のように、放射強度等線の角度間隔を5°間隔とした場合、画像データからX軸垂直光強度およびY軸垂直光強度をそれぞれ35個ずつ抽出する。なお、放射強度等線の角度間隔は特に限定されず、測定の条件に合わせて任意に設定することができる。また、放射強度等線の角度間隔は、図2に示すように、抽出条件記憶手段62に抽出条件として予め記憶され、測定開始と同時に、当該抽出条件記憶手段62から垂直光強度抽出手段61に入力されるように構成されている。   For example, as shown in the lower part of FIG. 3, the vertical light intensity extracting unit 61 calculates the X-axis vertical light intensity and the Y-axis vertical light intensity from the image data when the angular interval of the radiation intensity contour is set to 5 °. Extract 35 each. The angular interval of the radiation intensity contour lines is not particularly limited, and can be arbitrarily set according to the measurement conditions. Further, as shown in FIG. 2, the angular interval between the radiation intensity contour lines is stored in advance in the extraction condition storage means 62 as an extraction condition, and simultaneously with the start of measurement, from the extraction condition storage means 62 to the vertical light intensity extraction means 61. It is configured to be entered.

垂直光強度抽出手段61には、図2に示すように、撮像装置50から画像データが入力されるとともに、抽出条件記憶手段62から抽出条件が入力される。そして、垂直光強度抽出手段61には、前記した手法によって画像データからX軸垂直光強度およびY軸垂直光強度を抽出し、図2に示すように、これらを放射強度算出手段63に出力する。なお、垂直光強度抽出手段61は、撮像装置50から入力された画像データを一時的に記憶する図示しない記憶手段を備えていてもよい。   As shown in FIG. 2, the vertical light intensity extraction unit 61 receives image data from the imaging device 50 and an extraction condition from the extraction condition storage unit 62. Then, the vertical light intensity extracting means 61 extracts the X-axis vertical light intensity and the Y-axis vertical light intensity from the image data by the method described above, and outputs them to the radiation intensity calculating means 63 as shown in FIG. . Note that the vertical light intensity extraction unit 61 may include a storage unit (not shown) that temporarily stores the image data input from the imaging device 50.

抽出条件記憶手段62は、放射強度等線の角度間隔を示す抽出条件を記憶するものである。抽出条件記憶手段62は、具体的には、データを記憶することができるメモリ、ハードディスク等で具現される。抽出条件記憶手段62には、図2に示すように、PC80からユーザが設定した抽出条件が入力され、測定開始と同時に、これを垂直光強度抽出手段61に出力する。   The extraction condition storage means 62 stores extraction conditions indicating the angular intervals of radiation intensity contour lines. Specifically, the extraction condition storage unit 62 is implemented by a memory, a hard disk, or the like that can store data. As shown in FIG. 2, extraction conditions set by the user from the PC 80 are input to the extraction condition storage means 62, and are output to the vertical light intensity extraction means 61 simultaneously with the start of measurement.

放射強度算出手段63は、垂直光強度を断面放射強度に変換するものである。放射強度算出手段63は、具体的には、図4に示すように、撮像装置50から半球状拡散板30上におけるX軸対応位置Pまでの垂直距離eと、X軸対応位置Pから光源10までの距離r(=半球状拡散板30の半径r)と、X軸対応位置Pから光源10の設置面fまでの距離b’と、に応じて、X軸垂直光強度を図5(a)に示すX軸断面放射強度に変換する。また、放射強度算出手段63は、同様に、撮像装置50から半球状拡散板30上におけるY軸対応位置Pまでの垂直距離eと、Y軸対応位置Pから光源10までの距離rと、Y軸対応位置Pから光源10の設置面fまでの距離b’と、に応じて、Y軸垂直光強度を図5(b)に示すY軸断面放射強度に変換する。 The radiant intensity calculation means 63 converts the vertical light intensity into the cross-sectional radiant intensity. Specifically, as shown in FIG. 4, the radiation intensity calculation means 63 is based on the vertical distance e from the imaging device 50 to the X axis corresponding position P x on the hemispherical diffusion plate 30 and the X axis corresponding position P x. The X-axis vertical light intensity is shown in accordance with the distance r to the light source 10 (= the radius r of the hemispherical diffuser plate 30) and the distance b ′ from the X-axis corresponding position Px to the installation surface f of the light source 10. It converts into the X-axis cross section radiation intensity shown to 5 (a). Further, the radiation intensity calculation unit 63, likewise, the distance r and the vertical distance e from the imaging device 50 to the Y-axis corresponding position P y in hemispherical diffuser 30 on, the Y axis corresponding position P y to the light source 10 and the distance b 'from the Y-axis corresponding position P y to the installation surface f of the light source 10, depending on, converts the Y-axis vertical light intensity in the Y-axis cross-sectional radiation intensity shown in Figure 5 (b).

なお、図4は、光源10と半球状拡散板30と撮像装置50との関係を模式的に示した図である。また、図5において、縦軸は断面放射強度を示し、横軸は光源10を基準とした+90°から−90°までの放射角度を示している。また、X軸対応位置Pとは、半球状拡散板30上におけるX軸垂直光強度を抽出した画素に対応する位置を示しており、Y軸対応位置Pとは、半球状拡散板30上におけるY軸垂直光強度を抽出した画素に対応する位置を示している。また、X軸断面放射強度とは、X軸対応位置Pにおける断面放射強度を示しており、Y軸断面放射強度とは、Y軸対応位置Pにおける断面放射強度を示している。そして、設置面fとは、図4に示すように、光源10の光出射面に接した水平面のことを示している。 FIG. 4 is a diagram schematically showing the relationship among the light source 10, the hemispherical diffuser plate 30, and the imaging device 50. In FIG. 5, the vertical axis represents the cross-sectional radiation intensity, and the horizontal axis represents the radiation angle from + 90 ° to −90 ° with respect to the light source 10. Further, the X-axis corresponding position P x indicates a position on the hemispherical diffusion plate 30 corresponding to the pixel from which the X-axis vertical light intensity is extracted, and the Y-axis corresponding position P y is the hemispherical diffusion plate 30. The position corresponding to the pixel from which the Y-axis vertical light intensity is extracted is shown. In addition, the X-axis cross-sectional radiation intensity, shows a cross-sectional radiation intensity in the X-axis corresponding position P x, and the Y-axis cross-sectional radiation intensity, shows a cross-sectional radiation intensity in the Y-axis corresponding position P y. And the installation surface f has shown the horizontal surface which contact | connected the light-projection surface of the light source 10, as shown in FIG.

放射強度算出手段63は、下記式(1)によってX軸断面放射強度Wを算出するとともに、下記式(2)によってY軸断面放射強度Wを算出することが好ましい。 The radiant intensity calculating means 63 preferably calculates the X-axis cross-sectional radiant intensity W x by the following formula (1) and calculates the Y-axis cross-sectional radiant intensity W y by the following formula (2).

Figure 2012098131
Figure 2012098131

ここで、前記式(1)および前記式(2)において、WはX軸断面放射強度、WはY軸断面放射強度、wはX軸垂直光強度、wはY軸垂直光強度、dは撮像装置50から半球状拡散板30の頂点までの距離、rは半球状拡散板30の半径、θはX軸対応位置PまたはY軸対応位置Pと光源10とを結んだ仮想線αが、X軸対応位置PまたはY軸対応位置Pと光源10の設置面とを結んだ垂直線βとなす角度、を示している。 Here, in the above formulas (1) and (2), W x is the X-axis cross-sectional radiation intensity, W y is the Y-axis cross-sectional radiation intensity, w x is the X-axis vertical light intensity, and w y is the Y-axis vertical light. Intensity, d is the distance from the imaging device 50 to the apex of the hemispherical diffuser plate 30, r is the radius of the hemispherical diffuser plate 30, and θ is the X axis corresponding position Px or Y axis corresponding position Py and the light source 10. The angle between the virtual line α and the vertical line β connecting the X-axis corresponding position Px or the Y-axis corresponding position Py and the installation surface of the light source 10 is shown.

前記式(1)は、所定のX軸対応位置PにおけるX軸垂直光強度wを、撮像装置50からX軸対応位置Pまでの垂直距離eの二乗に比例して増加させ、かつ、光源10からX軸対応位置Pまでの距離と光源10の設置面fからX軸対応位置Pまでの距離との距離比cosθに比例して減少させることで、X軸垂直光強度wをX軸断面放射強度Wに変換するものである。また、前記式(2)は、所定のY軸対応位置PにおけるY軸垂直光強度wを、撮像装置50からY軸対応位置Pまでの垂直距離eの二乗に比例して増加させ、かつ、光源10からY軸対応位置Pまでの距離と光源10の設置面fからY軸対応位置Pまでの距離との距離比cosθに比例して減少させることで、Y軸垂直光強度wをY軸断面放射強度Wに変換するものである。これらは、光源10から所定角度θ傾いた場合の放射強度が余弦値cosθに比例するという入射角の余弦の法則と、光源10からの放射強度が撮像装置50から測定点までの距離の二乗に逆比例するという逆二乗の法則と、を応用したものである。 Equation (1) increases the X-axis vertical light intensity w x at a predetermined X-axis corresponding position P x in proportion to the square of the vertical distance e from the imaging device 50 to the X-axis corresponding position P x , and The X-axis vertical light intensity w is reduced in proportion to the distance ratio cos θ between the distance from the light source 10 to the X-axis corresponding position P x and the distance from the installation surface f of the light source 10 to the X-axis corresponding position P x. x is converted into X-axis cross-sectional radiation intensity W x . Further, the formula (2), the Y-axis vertical light intensity w y in a given Y-axis corresponding position P y, increases in proportion to the square of the vertical distance e from the imaging device 50 to the Y-axis corresponding position P y and to decrease in proportion to the distance ratio cosθ and the distance from the installation surface f of the distance and the light source 10 from the light source 10 to the Y-axis corresponding position P y to Y-axis corresponding position P y, Y-axis vertical light The intensity w y is converted into the Y-axis cross-sectional radiation intensity W y . These are the cosine law that the incident intensity is proportional to the cosine value cos θ when tilted from the light source 10 by a predetermined angle θ, and the radiation intensity from the light source 10 is the square of the distance from the imaging device 50 to the measurement point. This is an application of the inverse square law that is inversely proportional.

このような構成によれば、配光特性測定装置100は、放射強度算出手段63によって、撮像装置50からX軸対応位置またはY軸対応位置までの垂直距離と、所定角度の余弦値cosθ(X軸対応位置PまたはY軸対応位置Pと光源10とを結んだ仮想線αが、X軸対応位置PまたはY軸対応位置Pと光源10の設置面fとを結んだ垂直線βとなす角度θの余弦値cosθ)に基づいて、垂直光強度抽出手段61で抽出された垂直光強度を、光源10を基準とした所定角度の放射強度に変換するため、光源10から照射された光を撮像装置50で撮像するだけで、光源10の放射強度の値を容易に取得することができる。 According to such a configuration, the light distribution characteristic measuring apparatus 100 uses the radiation intensity calculation unit 63 to determine the vertical distance from the imaging apparatus 50 to the X-axis corresponding position or the Y-axis corresponding position and the cosine value cos θ (X axis corresponding position P x or Y-axis corresponding position P y and the light source 10 and the imaginary line connecting the α is, X-axis position corresponding P x or Y-axis corresponding position P y and the vertical line connecting the installation surface f of the light source 10 Based on the cosine value cos θ) of the angle θ formed with β, the vertical light intensity extracted by the vertical light intensity extraction means 61 is converted from the light source 10 to a radiation intensity of a predetermined angle with the light source 10 as a reference. The value of the radiant intensity of the light source 10 can be easily acquired simply by imaging the collected light with the imaging device 50.

放射強度算出手段63には、図2に示すように、垂直光強度抽出手段61からX軸垂直光強度およびY軸垂直光強度が入力される。そして、放射強度算出手段63は、前記した手法によってX軸断面放射強度およびY軸断面放射強度を算出し、図2に示すように、これらをハンドラ20に出力する。   As shown in FIG. 2, the X-axis vertical light intensity and the Y-axis vertical light intensity are input to the radiation intensity calculation unit 63 from the vertical light intensity extraction unit 61. Then, the radiation intensity calculation means 63 calculates the X-axis cross-section radiation intensity and the Y-axis cross-section radiation intensity by the method described above, and outputs them to the handler 20 as shown in FIG.

点灯電源制御手段66は、点灯電源70に対して光源10の点灯指示を行うものである。点灯電源制御手段66には、図2に示すように、ハンドラ20から、測定開始指示力される。そして、点灯電源制御手段66は、図2に示すように、当該測定開始指示に基づいて点灯指示を生成し、これを点灯電源70に出力する。   The lighting power source control means 66 instructs the lighting power source 70 to turn on the light source 10. As shown in FIG. 2, the lighting power control means 66 is instructed to start measurement by the handler 20. Then, as shown in FIG. 2, the lighting power control means 66 generates a lighting instruction based on the measurement start instruction, and outputs this to the lighting power supply 70.

点灯電源70は、光源10を点灯あるいは消灯させるためのものである。点灯電源70には、図2に示すように、点灯電源制御手段66から点灯指示が入力される。そして、点灯電源70は、当該点灯指示に従って、測定対象となる光源10に対して点灯電流を供給する。   The lighting power supply 70 is for turning on or off the light source 10. As shown in FIG. 2, a lighting instruction is input to the lighting power source 70 from the lighting power source control unit 66. The lighting power supply 70 supplies a lighting current to the light source 10 to be measured in accordance with the lighting instruction.

PC80は、ユーザの操作に従って、抽出条件記憶手段62に対して抽出条件を入力するものである。また、PC80は、放射強度算出手段63から放射強度の測定結果が入力されることで、図示しない表示モニタによって、図5に示すようなX軸断面放射強度分布図およびY軸断面放射強度分布図によって、配光特性の測定結果を表示することもできる。   The PC 80 inputs extraction conditions to the extraction condition storage means 62 in accordance with user operations. Further, the PC 80 receives the measurement result of the radiation intensity from the radiation intensity calculation means 63, and the X-axis sectional radiation intensity distribution diagram and the Y-axis sectional radiation intensity distribution diagram as shown in FIG. Thus, the measurement result of the light distribution characteristic can be displayed.

また、PC80は、例えば、測定したX軸断面放射強度またはY軸断面放射強度を図6に示すような配光特性分布に変換し、これを図示しない表示モニタによって表示することもできる。ここで、図6において、半球の頂点を基準とした左右の外周方向は放射角度を示し、半球の中心点を基準とした半径方向は放射強度を示している。   Further, for example, the PC 80 can convert the measured X-axis cross-sectional radiation intensity or Y-axis cross-sectional radiation intensity into a light distribution characteristic distribution as shown in FIG. 6 and display it on a display monitor (not shown). Here, in FIG. 6, the left and right outer peripheral directions with respect to the vertex of the hemisphere indicate the radiation angle, and the radial direction with reference to the center point of the hemisphere indicates the radiation intensity.

以上のような構成を備える配光特性測定装置100は、放射強度算出手段63によって、垂直光強度抽出手段61で抽出されたX軸上およびY軸上における垂直方向の垂直光強度を、光源10を基準とした所定角度の放射強度に変換することができる。従って、配光特性検査装置100は、光源10から照射された光を撮像装置50で撮像するだけで、光源10の放射強度の値を容易に取得することができる。   The light distribution characteristic measuring apparatus 100 having the above-described configuration uses the light source 10 to calculate the vertical light intensity in the vertical direction on the X axis and the Y axis extracted by the vertical light intensity extracting means 61 by the radiation intensity calculating means 63. Can be converted into radiation intensity at a predetermined angle with reference to. Therefore, the light distribution characteristic inspection apparatus 100 can easily obtain the value of the radiation intensity of the light source 10 only by imaging the light emitted from the light source 10 with the imaging apparatus 50.

また、本発明に係る配光特性測定装置100によれば、光源10の放射強度を角度ごとに測定する必要がなく、一つの光源10に対して一方向から一度の測定を行えばよいため、検査対象となる光源10の配光特性を瞬時に判定することができ、生産ラインにおける光源10を高速に検査することができる。そして、配光特性測定装置100によれば、一定角度における光を撮像して放射強度を算出するため、光源10の放射強度を正確に測定することができる。   Further, according to the light distribution characteristic measuring apparatus 100 according to the present invention, it is not necessary to measure the radiation intensity of the light source 10 for each angle, and it is only necessary to perform a single measurement from one direction with respect to one light source 10, The light distribution characteristics of the light source 10 to be inspected can be determined instantaneously, and the light source 10 in the production line can be inspected at high speed. And according to the light distribution characteristic measuring apparatus 100, since the radiation intensity is calculated by imaging light at a certain angle, the radiation intensity of the light source 10 can be accurately measured.

<配光特性判定手段>
配光特性判定手段110は、配光特性測定装置100によって測定された配光特性の良否を判定するものである。配光特性判定手段110は、図7に示すように、配光特性測定装置100と協働することで、配光特性検査装置200として機能する。配光特性判定手段110は、図7に示すように、配光特性判定手段(配光特性比較手段)64と、判定条件記憶手段65と、を備えている。以下、各構成について、詳細に説明する。
<Light distribution characteristic judging means>
The light distribution characteristic determining unit 110 determines the quality of the light distribution characteristic measured by the light distribution characteristic measuring apparatus 100. As illustrated in FIG. 7, the light distribution characteristic determination unit 110 functions as a light distribution characteristic inspection apparatus 200 in cooperation with the light distribution characteristic measurement apparatus 100. As shown in FIG. 7, the light distribution characteristic determination unit 110 includes a light distribution characteristic determination unit (light distribution characteristic comparison unit) 64 and a determination condition storage unit 65. Hereinafter, each configuration will be described in detail.

配光特性判定手段(配光特性比較手段)64は、光源10の配光特性の良否を判定(比較)するものである。配光特性判定手段64は、具体的には、図8(a)に示すように、放射強度算出手段63によって算出されたX軸断面放射強度と、予め用意されたX軸断面放射強度の上下限値(上限値および下限値)とを比較し、X軸断面放射強度のそれぞれが上下限値の範囲内にあるか否かを判定する。また、配光特性判定手段64は、図8(b)に示すように、放射強度算出手段63によって算出されたY軸断面放射強度と、予め用意されたY軸断面放射強度の上下限値とを比較し、Y軸断面放射強度のそれぞれが上下限値の範囲内にあるか否かを判定する。   The light distribution characteristic determining means (light distribution characteristic comparing means) 64 determines (compares) the quality of the light distribution characteristics of the light source 10. Specifically, as shown in FIG. 8A, the light distribution characteristic determining means 64 is based on the X-axis sectional radiation intensity calculated by the radiation intensity calculating means 63 and the X-axis sectional radiation intensity prepared in advance. The lower limit values (upper limit value and lower limit value) are compared to determine whether each of the X-axis cross-sectional radiation intensities is within the range of the upper and lower limit values. Further, as shown in FIG. 8B, the light distribution characteristic determining unit 64 includes the Y-axis cross-sectional radiation intensity calculated by the radiation intensity calculating unit 63, and upper and lower limit values of the Y-axis cross-sectional radiation intensity prepared in advance. To determine whether each of the Y-axis cross-sectional radiation intensities is within the range of the upper and lower limit values.

なお、図8において、縦軸は断面放射強度を示し、横軸は光源10を基準とした+90°から−90°までの放射角度を示している。また、図8において、○でプロットしたものはX軸断面放射強度、×でプロットしたものはX軸断面放射強度の上限値、△でプロットしたものはX軸断面放射強度の下限値、を示している。また、上下限値は特に限定されず、検査の条件に合わせて任意に設定することができる。そして、上下限値は、図7に示すように、判定条件記憶手段65に判定条件として予め記憶され、検査開始と同時に、当該判定条件記憶手段65から配光特性判定手段64に入力されるように構成されている。   In FIG. 8, the vertical axis represents the cross-sectional radiation intensity, and the horizontal axis represents the radiation angle from + 90 ° to −90 ° with respect to the light source 10. In FIG. 8, those plotted with ◯ indicate the X-axis cross-sectional radiation intensity, those plotted with x indicate the upper limit of the X-axis cross-sectional radiation intensity, and those plotted with Δ indicate the lower limit of the X-axis cross-sectional radiation intensity. ing. Further, the upper and lower limit values are not particularly limited, and can be arbitrarily set according to the inspection conditions. Then, as shown in FIG. 7, the upper and lower limit values are stored in advance in the determination condition storage unit 65 as determination conditions, and are input from the determination condition storage unit 65 to the light distribution characteristic determination unit 64 simultaneously with the start of the inspection. It is configured.

X軸断面放射強度およびY軸断面照射強度のそれぞれの上下限値は、配光特性検査装置200による検査開始前に、図示しない放射強度測定装置によって、事前に基準LEDの角度ごとに変化する放射強度を測定することで定めることができる。例えば一例としては、まず光源10を設置面に対して垂直(設置面と半球状拡散板30を結ぶ直線に対して角度0°)に設置する。そして、半球状拡散板30の頂点を100%として、放射強度を測定する。次に、光源10を頂点から+5°(あるいは−5°)傾け、その地点を100%として放射強度を測定する。これを+90°から−90°までの範囲、およびX軸断面およびY軸断面において、繰り返し測定することで、X軸断面放射強度およびY軸断面照射強度のそれぞれの上下限値を定めることができる。   The upper and lower limit values of the X-axis cross-section radiation intensity and the Y-axis cross-section irradiation intensity are radiations that change in advance for each angle of the reference LED by a radiation intensity measurement device (not shown) before the inspection by the light distribution characteristic inspection device 200 is started. It can be determined by measuring the intensity. For example, as an example, the light source 10 is first installed perpendicularly to the installation surface (at an angle of 0 ° with respect to a straight line connecting the installation surface and the hemispherical diffusion plate 30). Then, the radiation intensity is measured with the top of the hemispherical diffusion plate 30 as 100%. Next, the light source 10 is tilted + 5 ° (or −5 °) from the apex, and the radiation intensity is measured with the point as 100%. By repeatedly measuring this in the range from + 90 ° to −90 °, and in the X-axis cross section and the Y-axis cross section, the upper and lower limit values of the X-axis cross-section radiation intensity and the Y-axis cross-section irradiation intensity can be determined. .

配光特性判定手段64には、図7に示すように、放射強度算出手段63からX軸断面放射強度およびY軸断面放射強度が入力される。そして、配光特性判定手段64は、前記した手法によってX軸断面放射強度およびY軸断面放射強度の良否を判定し、図7に示すように、その判定結果をハンドラ20に出力する。なお、配光特性判定手段64は、放射強度算出手段63から入力されたX軸断面放射強度およびY軸断面放射強度を一時的に記憶する図示しない記憶手段を備えていてもよい。   As shown in FIG. 7, the light distribution characteristic determining means 64 receives the X-axis cross-sectional radiation intensity and the Y-axis cross-sectional radiation intensity from the radiation intensity calculating means 63. Then, the light distribution characteristic determining means 64 determines the quality of the X-axis cross-sectional radiation intensity and the Y-axis cross-sectional radiation intensity by the above-described method, and outputs the determination result to the handler 20 as shown in FIG. The light distribution characteristic determining unit 64 may include a storage unit (not shown) that temporarily stores the X-axis sectional radiation intensity and the Y-axis sectional radiation intensity input from the radiation intensity calculating unit 63.

なお、配光特性検査装置200におけるPC80には、ハンドラ20から判定結果が入力されてもよい。この場合、PC80は、当該ハンドラ20から入力された判定結果として、図8に示すようなX軸断面放射強度分布の上下限値との判定結果図およびY軸断面放射強度分布の上下限値との判定結果図を、図示しない表示モニタによって表示することができる。   Note that the determination result may be input from the handler 20 to the PC 80 in the light distribution characteristic inspection apparatus 200. In this case, the PC 80, as the determination result input from the handler 20, determines the result of the determination of the upper and lower limit values of the X-axis cross-sectional radiation intensity distribution as shown in FIG. These determination result diagrams can be displayed on a display monitor (not shown).

以上のような構成を備える配光特性検査装置200は、光源10から照射された光を撮像装置50で撮像するだけで、光源10の放射強度の値を容易に取得することができるため、配光特性の良否をより精度良く判定することができる。   The light distribution characteristic inspection apparatus 200 having the above-described configuration can easily acquire the value of the radiation intensity of the light source 10 simply by imaging the light emitted from the light source 10 with the imaging device 50. The quality of the optical characteristics can be determined with higher accuracy.

<配光特性測定プログラムおよび配光特性検査プログラム>
配光特性測定装置100および配光特性検査装置200は、一般的なコンピュータを、前記した各手段および各部として機能させるプログラムにより動作させることで実現することができる。このプログラムは、通信回線を介して配布することも可能であるし、CD−ROM等の記録媒体に書き込んで配布することも可能である。
<Light distribution characteristic measurement program and light distribution characteristic inspection program>
The light distribution characteristic measurement apparatus 100 and the light distribution characteristic inspection apparatus 200 can be realized by operating a general computer by a program that functions as each of the above-described units and units. This program can be distributed via a communication line, or can be written on a recording medium such as a CD-ROM for distribution.

<配光特性測定方法>
以下、本発明の実施形態に係る配光特性測定装置100の動作、すなわち配光特性測定方法について、簡単に説明する。配光特性測定方法は、光源搬送工程と、撮像工程と、垂直光強度抽出工程と、放射強度算出工程と、を行う。
<Light distribution characteristics measurement method>
Hereinafter, the operation of the light distribution characteristic measuring apparatus 100 according to the embodiment of the present invention, that is, the light distribution characteristic measuring method will be briefly described. The light distribution characteristic measuring method includes a light source transport process, an imaging process, a vertical light intensity extraction process, and a radiation intensity calculation process.

光源搬送工程は、光源10を所定の測定位置まで搬送する工程である。光源搬送工程では、具体的には、ハンドラ20によって搬送機構21を制御し、光源10の中心軸が半球状拡散板30の半球の頂点と撮像装置50の光軸とに一致するように、光源10を搬送する。そして、この光源搬送工程の後に、撮像工程を行う。   The light source transport process is a process of transporting the light source 10 to a predetermined measurement position. In the light source transport step, specifically, the transport mechanism 21 is controlled by the handler 20, and the light source 10 is arranged so that the central axis of the light source 10 coincides with the hemispherical apex of the hemispherical diffuser plate 30 and the optical axis of the imaging device 50. 10 is conveyed. And after this light source conveyance process, an imaging process is performed.

撮像工程は、光源搬送工程によって所定の測定位置まで搬送された光源10から照射された光を撮像する工程である。撮像工程では、具体的には、撮像装置50によって、光源10から照射され半球状拡散板30を透過した光を撮像し、画像データを生成する。そして、この撮像工程の後に、垂直光強度抽出工程を行う。   The imaging step is a step of imaging light emitted from the light source 10 that has been transported to a predetermined measurement position in the light source transport step. Specifically, in the imaging step, the imaging device 50 captures the light emitted from the light source 10 and transmitted through the hemispherical diffuser plate 30 to generate image data. Then, after this imaging step, a vertical light intensity extraction step is performed.

垂直光強度抽出工程は、撮像工程で撮像された画像から垂直光強度を抽出する工程である。垂直光強度抽出工程では、具体的には、垂直光強度抽出手段61によって、撮像装置50が撮像した画像の各画素値に対応する垂直光強度のうち、X軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する。そして、この垂直光強度抽出工程の後に、放射強度算出工程を行なう。   The vertical light intensity extraction step is a step of extracting the vertical light intensity from the image captured in the imaging step. Specifically, in the vertical light intensity extraction step, the X-axis vertical light intensity and the Y-axis vertical light out of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device 50 by the vertical light intensity extraction unit 61. A predetermined number of intensities are extracted. Then, a radiation intensity calculation step is performed after the vertical light intensity extraction step.

なお、垂直光強度抽出工程では、前記したように、X軸垂直光強度として、X軸と所定角度間隔の放射強度等線との交点位置における垂直光強度を抽出することが好ましく、Y軸垂直光強度として、Y軸と所定角度間隔の放射強度等線との交点位置の垂直光強度を抽出することが好ましい(図3参照)。   In the vertical light intensity extraction step, as described above, it is preferable to extract the vertical light intensity at the intersection of the X axis and the radiation intensity contour line at a predetermined angular interval as the X axis vertical light intensity. As the light intensity, it is preferable to extract the vertical light intensity at the intersection point between the Y axis and the radiation intensity contour line at a predetermined angular interval (see FIG. 3).

放射強度算出工程は、垂直光強度抽出工程で抽出された垂直光強度を放射強度に変換する工程である。放射強度算出工程は、具体的には、放射強度算出手段63によって、撮像装置50からX軸対応位置までの垂直距離と、X軸対応位置から光源10までの距離とX軸対応位置から光源10の設置面までの距離との距離比と、に応じて、X軸垂直光強度をX軸断面放射強度に変換する。また、放射強度算出工程では、放射強度算出手段63によって、撮像装置50からY軸対応位置までの垂直距離と、Y軸対応位置から光源10までの距離と、Y軸対応位置から光源10の設置面までの距離と、に応じて、Y軸垂直光強度をY軸断面放射強度に変換する。   The radiation intensity calculation process is a process of converting the vertical light intensity extracted in the vertical light intensity extraction process into a radiation intensity. Specifically, in the radiation intensity calculation step, the radiation intensity calculation unit 63 uses the vertical distance from the imaging device 50 to the X-axis corresponding position, the distance from the X-axis corresponding position to the light source 10, and the X-axis corresponding position to the light source 10. The X-axis vertical light intensity is converted into the X-axis cross-sectional radiation intensity in accordance with the distance ratio to the distance to the installation surface. In the radiation intensity calculation step, the vertical intensity from the imaging device 50 to the Y axis corresponding position, the distance from the Y axis corresponding position to the light source 10, and the installation of the light source 10 from the Y axis corresponding position are performed by the radiation intensity calculating means 63. Depending on the distance to the surface, the Y-axis vertical light intensity is converted into the Y-axis cross-sectional radiation intensity.

なお、放射強度算出工程では、前記したように、放射強度算出手段63によって、下記式(1)でX軸断面放射強度Wを算出するとともに、下記式(2)でY軸断面放射強度Wを算出することが好ましい(図4参照)。 In the radiation intensity calculating step, as described above, the X-axis sectional radiation intensity W x is calculated by the following formula (1) by the radiation intensity calculating means 63, and the Y-axis sectional radiation intensity W by the following formula (2). It is preferable to calculate y (see FIG. 4).

Figure 2012098131
Figure 2012098131

ここで、前記式(1)および前記式(2)において、WはX軸断面放射強度、WはY軸断面放射強度、wはX軸垂直光強度、wはY軸垂直光強度、dは撮像装置50から半球状拡散板30の頂点までの距離、rは半球状拡散板30の半径、θはX軸対応位置PまたはY軸対応位置Pと光源10とを結んだ仮想線αが、X軸対応位置PまたはY軸対応位置Pと光源10の設置面とを結んだ垂直線βとなす角度、を示している。 Here, in the above formulas (1) and (2), W x is the X-axis cross-sectional radiation intensity, W y is the Y-axis cross-sectional radiation intensity, w x is the X-axis vertical light intensity, and w y is the Y-axis vertical light. Intensity, d is the distance from the imaging device 50 to the apex of the hemispherical diffuser plate 30, r is the radius of the hemispherical diffuser plate 30, and θ is the X axis corresponding position Px or Y axis corresponding position Py and the light source 10. The angle between the virtual line α and the vertical line β connecting the X-axis corresponding position Px or the Y-axis corresponding position Py and the installation surface of the light source 10 is shown.

<配光特性検査方法>
以下、本発明の実施形態に係る配光特性検査装置200の動作、すなわち配光特性検査方法について、簡単に説明する。配光特性検査方法は、前記した配光特性測定方法における光源搬送工程と、撮像工程と、垂直光強度抽出工程と、放射強度算出工程と、に加えて、配光特性判定工程を行うことを特徴としている。
<Light distribution characteristic inspection method>
Hereinafter, the operation of the light distribution characteristic inspection apparatus 200 according to the embodiment of the present invention, that is, the light distribution characteristic inspection method will be briefly described. The light distribution characteristic inspection method includes performing a light distribution characteristic determination step in addition to the light source conveyance step, the imaging step, the vertical light intensity extraction step, and the radiation intensity calculation step in the light distribution characteristic measurement method described above. It is a feature.

配光特性判定工程は、放射強度算出工程によって算出した光源10の配光特性の良否を判定する工程である。配光特性判定工程では、具体的には、配光特性判定手段64によって、X軸断面放射強度と予め用意されたX軸断面放射強度の上下限値とを比較することで、光源10のX軸上における配光特性の良否を判定する。また、配光特性判定工程では、配光特性判定手段64によって、Y軸断面放射強度と予め用意されたY軸断面放射強度の上下限値とを比較することで、光源10のY軸上における配光特性の良否を判定する。   The light distribution characteristic determination step is a step of determining whether or not the light distribution characteristic of the light source 10 calculated by the radiation intensity calculation step is good. Specifically, in the light distribution characteristic determination step, the light distribution characteristic determination means 64 compares the X-axis cross-sectional radiation intensity with the upper and lower limit values of the X-axis cross-sectional radiation intensity prepared in advance, so that X The quality of the light distribution characteristic on the axis is determined. In the light distribution characteristic determination step, the light distribution characteristic determination unit 64 compares the Y-axis cross-sectional radiation intensity with the upper and lower limit values of the Y-axis cross-sectional radiation intensity prepared in advance, so that the light source 10 on the Y-axis. The quality of the light distribution characteristic is judged.

以上、本発明に係る配光特性測定装置 配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   The light distribution characteristic measuring apparatus, the light distribution characteristic measuring apparatus, the light distribution characteristic measuring program, the light distribution characteristic measuring method, and the light distribution characteristic inspecting method according to the present invention have been specifically described above by the mode for carrying out the invention. The gist of the present invention is not limited to these descriptions, but should be broadly interpreted based on the description of the scope of claims. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.

例えば、前記した配光特性測定装置100および配光特性検査装置200は、放射強度算出手段63が前記式(1)によってX軸断面放射強度Wを算出するとともに、前記式(2)によってY軸断面放射強度Wを算出することが好ましいとしたが、前記式(1)および前記式(2)における「(d+(r−rcosθ))/cosθ」を、定数C(θ)およびC(θ)として予め算出しておき、放射強度算出手段63において、X軸垂直光強度wと定数C(θ)とを乗算することでX軸断面放射強度Wを算出し、Y軸垂直光強度wと定数C(θ)とを乗算することでY軸断面放射強度Wを算出する構成としてもよい。すなわち、放射強度算出手段63は、下記式(3)によってX軸断面放射強度Wを算出するとともに、下記式(4)によってY軸断面放射強度Wを算出してもよい。これにより、配光特性測定装置100および配光特性検査装置200は、生産ラインにおける光源10をより高速に検査することができる。 For example, in the light distribution characteristic measuring apparatus 100 and the light distribution characteristic inspection apparatus 200 described above, the radiation intensity calculating unit 63 calculates the X-axis cross-sectional radiation intensity W x by the expression (1) and Y by the expression (2). Although it is preferable to calculate the axial cross-sectional radiation intensity W y , “(d + (r−r cos θ)) 2 / cos θ” in the above formula (1) and the above formula (2) is expressed as a constant C x (θ) and C y (θ) is calculated in advance, and the radiant intensity calculating means 63 calculates the X-axis cross-sectional radiant intensity W x by multiplying the X-axis vertical light intensity w x and the constant C x (θ), The Y-axis cross-sectional radiation intensity W y may be calculated by multiplying the Y-axis vertical light intensity w y by a constant C y (θ). That is, the radiant intensity calculating means 63 may calculate the X-axis cross-sectional radiant intensity W x by the following formula (3), and may calculate the Y-axis cross-sectional radiant intensity W y by the following formula (4). Thereby, the light distribution characteristic measuring apparatus 100 and the light distribution characteristic inspection apparatus 200 can inspect the light source 10 in the production line at a higher speed.

Figure 2012098131
Figure 2012098131

また、例えば前記した配光特性測定装置100および配光特性検査装置200では、図2および図7に示すように、画像処理装置60が点灯電源制御手段66を備える構成としたが、例えばハンドラ20が点灯電源制御手段66を備え、点灯電源70を直接制御する構成としてもよい。   Further, for example, in the light distribution characteristic measuring apparatus 100 and the light distribution characteristic inspection apparatus 200 described above, as shown in FIGS. 2 and 7, the image processing apparatus 60 includes the lighting power source control unit 66. The lighting power supply control means 66 may be provided to directly control the lighting power supply 70.

また、例えば前記した配光特性検査装置200では、図7に示すように、配光特性測定装置100と、配光特性判定手段110と、を別個の構成として説明したが、当該配光特性判定手段110を配光特性測定装置100における画像処理装置60の内部に備える構成としてもよい。   For example, in the light distribution characteristic inspection apparatus 200 described above, the light distribution characteristic measurement apparatus 100 and the light distribution characteristic determination unit 110 have been described as separate configurations as shown in FIG. The means 110 may be configured to be provided inside the image processing apparatus 60 in the light distribution characteristic measuring apparatus 100.

また、前記した配光特性測定装置100および配光特性検査装置200では、図1に示すように、半球状拡散板30を光源10から所定間隔だけ上方に配置されているが、当該半球状拡散板30によって光源10の上方および周囲を完全に覆い、搬送される光源10が通過できる切欠を搬送方向に形成してもよい。あるいは、このような切欠を形成せずに、光源10が測定位置に搬送される度に半球状拡散板30、外光遮断箱40および撮像装置50を上方に移動させ、光源10を通過させるように構成してもよい。   Further, in the light distribution characteristic measuring apparatus 100 and the light distribution characteristic inspection apparatus 200 described above, as shown in FIG. 1, the hemispherical diffusion plate 30 is disposed above the light source 10 by a predetermined distance. The plate 30 may completely cover the top and the periphery of the light source 10 and form a notch through which the light source 10 to be transported can pass in the transport direction. Alternatively, without forming such a notch, the hemispherical diffusion plate 30, the external light blocking box 40, and the imaging device 50 are moved upward each time the light source 10 is transported to the measurement position so that the light source 10 passes therethrough. You may comprise.

10 光源
11 リードフレーム
20 ハンドラ
21 搬送機構
22 制御部
30 半球状拡散板
40 外光遮断箱
50 撮像装置
60 画像処理装置
61 垂直光強度抽出手段
62 抽出条件記憶手段
63 放射強度算出手段
64 配光特性判定手段(配光特性比較手段)
65 判定条件記憶手段
66 点灯電源制御手段
70 点灯電源
80 PC
100 配光特性測定装置
110 配光特性判定手段
200 配光特性検査装置
DESCRIPTION OF SYMBOLS 10 Light source 11 Lead frame 20 Handler 21 Conveying mechanism 22 Control part 30 Hemispherical diffusing plate 40 External light blocking box 50 Imaging device 60 Image processing device 61 Vertical light intensity extraction means 62 Extraction condition storage means 63 Radiation intensity calculation means 64 Light distribution characteristic Judgment means (light distribution characteristic comparison means)
65 judgment condition storage means 66 lighting power control means 70 lighting power supply 80 PC
DESCRIPTION OF SYMBOLS 100 Light distribution characteristic measuring apparatus 110 Light distribution characteristic determination means 200 Light distribution characteristic inspection apparatus

Claims (6)

所定の測定位置に搬送された光源の上部および周囲を覆うように半球状に形成され、半球の頂点が前記光源の中心軸と一致するように配置される半球状拡散板と、前記半球状拡散板の上方に所定間隔を置いて設置されるとともに、光軸が前記光源の中心軸と一致するように配置され、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像装置と、前記撮像装置が撮像した画像に所定の処理を施す画像処理装置と、を備え、前記光源の配光特性を測定する配光特性測定装置であって、
前記画像処理装置は、
前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出手段と、
前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出手段と、
を備えることを特徴とする配光特性測定装置。
A hemispherical diffusion plate formed in a hemispherical shape so as to cover the upper part and the periphery of the light source conveyed to a predetermined measurement position, and arranged so that the apex of the hemisphere coincides with the central axis of the light source; An imaging device that is installed above the plate at a predetermined interval, is arranged so that an optical axis thereof coincides with a central axis of the light source, and images light emitted from the light source and transmitted through the hemispherical diffusion plate; An image processing device that performs a predetermined process on an image captured by the imaging device, and a light distribution characteristic measuring device that measures a light distribution property of the light source,
The image processing apparatus includes:
Of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device, the X-axis vertical light intensity and the Y-axis indicating the vertical light intensity on the X-axis and the Y-axis with respect to the center pixel of the image Vertical light intensity extracting means for extracting a predetermined number of vertical light intensities, and
A vertical distance to an X-axis corresponding position indicating a position corresponding to a pixel from which the X-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device; a distance from the X-axis corresponding position to the light source; The X-axis vertical light intensity is converted into an X-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the X-axis corresponding position according to the distance from the X-axis corresponding position to the light source installation surface, and the imaging A vertical distance from a device to a Y-axis corresponding position indicating a position corresponding to a pixel obtained by extracting the Y-axis vertical light intensity on the hemispherical diffusion plate, a distance from the Y-axis corresponding position to the light source, and the Y A radiation intensity calculating means for converting the Y-axis vertical light intensity into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position according to a distance from the axis corresponding position to the installation surface of the light source;
A light distribution characteristic measuring apparatus comprising:
前記放射強度算出手段は、下記式(1)によって前記X軸断面放射強度を算出するとともに、下記式(2)によって前記Y軸断面放射強度を算出することを特徴とする請求項1に記載の配光特性測定装置。

Figure 2012098131

但し、式(1)および式(2)において、WはX軸断面放射強度、WはY軸断面放射強度、wはX軸垂直光強度、wはY軸垂直光強度、dは撮像装置から半球状拡散板の頂点までの距離、rは半球状拡散板の半径、θはX軸対応位置またはY軸対応位置と光源とを結んだ仮想線が、X軸対応位置またはY軸対応位置と光源の設置面とを結んだ垂直線となす角度、を示している。
The said radiation intensity calculation means calculates the said X-axis cross-section radiation intensity by following formula (1), and calculates the said Y-axis cross-section radiation intensity by following formula (2). Light distribution characteristic measuring device.

Figure 2012098131

However, in the formula (1) and (2), W x X-axis cross-sectional radiation intensity, W y is the Y-axis cross-sectional radiation intensity, w x is the X-axis vertical light intensity, w y is the Y-axis vertical light intensity, d Is the distance from the imaging device to the apex of the hemispherical diffusion plate, r is the radius of the hemispherical diffusion plate, θ is the X-axis corresponding position or Y-axis corresponding position and the phantom line connecting the light source and the X-axis corresponding position or Y An angle formed by a vertical line connecting the axis corresponding position and the light source installation surface is shown.
請求項1または請求項2に記載の配光特性測定装置と、当該配光特性測定装置によって測定された配光特性の良否を判定する配光特性判定手段と、を備える配光特性検査装置であって、
前記配光特性判定手段は、前記配光特性測定装置の放射強度算出手段によって測定された前記X軸断面放射強度および前記Y軸断面放射強度が、予め用意されたX軸断面放射強度の上下限値およびY軸断面放射強度の上下限値の範囲内であるか否かを判定することで、前記光源のX軸上およびY軸上における配光特性の良否を判定する配光特性判定手段を備えることを特徴とする配光特性検査装置。
A light distribution characteristic inspection apparatus comprising: the light distribution characteristic measurement apparatus according to claim 1; and a light distribution characteristic determination unit that determines whether the light distribution characteristic measured by the light distribution characteristic measurement apparatus is good or bad. There,
The light distribution characteristic determining means is configured such that the X-axis cross-sectional radiation intensity and the Y-axis cross-sectional radiation intensity measured by the radiation intensity calculating means of the light distribution characteristic measuring device are prepared in advance. A light distribution characteristic determination means for determining whether the light distribution characteristic on the X axis and the Y axis of the light source is good or not by determining whether the value and the upper and lower limit values of the Y-axis cross-sectional radiation intensity are within the range A light distribution characteristic inspection apparatus comprising:
所定の測定位置に搬送された光源から照射され、当該光源の上部および周囲を覆う半球状拡散板を透過した光を撮像装置によって撮像し、当該撮像した画像から、前記光源の配光測定を測定するために、コンピュータを、
前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出手段、
前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出手段、
として機能させることを特徴とする配光特性測定プログラム。
The light emitted from the light source transported to a predetermined measurement position and transmitted through the hemispherical diffusion plate covering the top and the periphery of the light source is imaged by the imaging device, and the light distribution measurement of the light source is measured from the captured image Computer to
Of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device, the X-axis vertical light intensity and the Y-axis indicating the vertical light intensity on the X-axis and the Y-axis with respect to the center pixel of the image Vertical light intensity extraction means for extracting a predetermined number of vertical light intensities,
A vertical distance to an X-axis corresponding position indicating a position corresponding to a pixel from which the X-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device; a distance from the X-axis corresponding position to the light source; The X-axis vertical light intensity is converted into an X-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the X-axis corresponding position according to the distance from the X-axis corresponding position to the light source installation surface, and the imaging A vertical distance from a device to a Y-axis corresponding position indicating a position corresponding to a pixel obtained by extracting the Y-axis vertical light intensity on the hemispherical diffusion plate, a distance from the Y-axis corresponding position to the light source, and the Y A radiation intensity calculating means for converting the Y-axis vertical light intensity into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position, depending on a distance from the axis corresponding position to the installation surface of the light source;
A light distribution characteristic measurement program characterized by functioning as
測定対象となる光源の配光特性を測定する配光特性測定方法であって、
ハンドラによって、前記光源の中心軸が半球状拡散板の半球の頂点と撮像装置の光軸とに一致するように、当該光源を搬送する光源搬送工程と、
前記撮像装置によって、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像工程と、
垂直光強度抽出手段によって、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出工程と、
放射強度算出手段によって、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出工程と、
を行うことを特徴とする配光特性測定方法。
A light distribution characteristic measuring method for measuring a light distribution characteristic of a light source to be measured,
A light source transporting step of transporting the light source by the handler so that the central axis of the light source coincides with the hemispherical apex of the hemispherical diffusion plate and the optical axis of the imaging device;
An imaging step of imaging light emitted from the light source and transmitted through the hemispherical diffusion plate by the imaging device;
X indicating the vertical light intensity on the X-axis and the Y-axis with respect to the center pixel of the image, out of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device by the vertical light intensity extraction unit A vertical light intensity extracting step of extracting a predetermined number of the axis vertical light intensity and the Y axis vertical light intensity,
A vertical distance from the imaging device to the X-axis corresponding position indicating the position corresponding to the pixel from which the X-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device, and the X-axis corresponding position from the X-axis corresponding position. Depending on the distance to the light source and the distance from the X-axis corresponding position to the light source installation surface, the X-axis vertical light intensity is changed to the X-axis cross-sectional radiation intensity indicating the cross-sectional radiation intensity at the X-axis corresponding position. The vertical distance from the imaging device to the Y-axis corresponding position indicating the position corresponding to the pixel from which the Y-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device, and from the Y-axis corresponding position to the light source , And the distance from the Y-axis corresponding position to the light source installation surface, the Y-axis vertical light intensity is converted into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position. Release And strength calculation step,
A light distribution characteristic measuring method comprising:
検査対象となる光源の配光特性を検査する配光特性検査方法であって、
ハンドラによって、前記光源の中心軸が半球状拡散板の半球の頂点と撮像装置の光軸とに一致するように、当該光源を搬送する光源搬送工程と、
前記撮像装置によって、前記光源から照射され前記半球状拡散板を透過した光を撮像する撮像工程と、
垂直光強度抽出手段によって、前記撮像装置が撮像した画像の各画素値に対応する垂直光強度のうち、前記画像の中心画素を基準とするX軸上およびY軸上における垂直光強度を示すX軸垂直光強度およびY軸垂直光強度を、それぞれ所定個数ずつ抽出する垂直光強度抽出工程と、
放射強度算出手段によって、前記撮像装置から前記半球状拡散板上における前記X軸垂直光強度を抽出した画素に対応する位置を示すX軸対応位置までの垂直距離と、前記X軸対応位置から前記光源までの距離と、前記X軸対応位置から前記光源の設置面までの距離と、に応じて、前記X軸垂直光強度を前記X軸対応位置における断面放射強度を示すX軸断面放射強度に変換するとともに、前記撮像装置から前記半球状拡散板上における前記Y軸垂直光強度を抽出した画素に対応する位置を示すY軸対応位置までの垂直距離と、前記Y軸対応位置から前記光源までの距離と、前記Y軸対応位置から前記光源の設置面までの距離と、に応じて、前記Y軸垂直光強度を前記Y軸対応位置における断面放射強度を示すY軸断面放射強度に変換する放射強度算出工程と、
配光特性判定手段によって、変換された前記X軸断面放射強度が、予め用意されたX軸断面放射強度の上下限値の範囲内であるか否かを判定するとともに、変換された前記Y軸断面放射強度が、予め用意されたY軸断面放射強度の上下限値の範囲内であるか否かを判定することで、前記光源のX軸上およびY軸上における配光特性の良否を判定する配光特性判定工程と、
を行うことを特徴とする配光特性検査方法。
A light distribution characteristic inspection method for inspecting a light distribution characteristic of a light source to be inspected,
A light source transporting step of transporting the light source by the handler so that the central axis of the light source coincides with the hemispherical apex of the hemispherical diffusion plate and the optical axis of the imaging device;
An imaging step of imaging light emitted from the light source and transmitted through the hemispherical diffusion plate by the imaging device;
X indicating the vertical light intensity on the X-axis and the Y-axis with respect to the center pixel of the image, out of the vertical light intensity corresponding to each pixel value of the image captured by the imaging device by the vertical light intensity extraction unit A vertical light intensity extracting step of extracting a predetermined number of the axis vertical light intensity and the Y axis vertical light intensity,
A vertical distance from the imaging device to the X-axis corresponding position indicating the position corresponding to the pixel from which the X-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device, and the X-axis corresponding position from the X-axis corresponding position. Depending on the distance to the light source and the distance from the X-axis corresponding position to the light source installation surface, the X-axis vertical light intensity is changed to the X-axis cross-sectional radiation intensity indicating the cross-sectional radiation intensity at the X-axis corresponding position. The vertical distance from the imaging device to the Y-axis corresponding position indicating the position corresponding to the pixel from which the Y-axis vertical light intensity is extracted on the hemispherical diffusion plate from the imaging device, and from the Y-axis corresponding position to the light source , And the distance from the Y-axis corresponding position to the light source installation surface, the Y-axis vertical light intensity is converted into a Y-axis cross-sectional radiation intensity indicating a cross-sectional radiation intensity at the Y-axis corresponding position. Release And strength calculation step,
The light distribution characteristic determining means determines whether the converted X-axis cross-sectional radiation intensity is within the range of upper and lower limits of the X-axis cross-sectional radiation intensity prepared in advance, and the converted Y-axis By determining whether the cross-sectional radiation intensity is within the range of the upper and lower limits of the Y-axis cross-sectional radiation intensity prepared in advance, the quality of the light distribution characteristics on the X-axis and the Y-axis of the light source is determined. A light distribution characteristic determining step,
The light distribution characteristic inspection method characterized by performing.
JP2010245621A 2010-11-01 2010-11-01 Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method Pending JP2012098131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245621A JP2012098131A (en) 2010-11-01 2010-11-01 Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245621A JP2012098131A (en) 2010-11-01 2010-11-01 Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method

Publications (1)

Publication Number Publication Date
JP2012098131A true JP2012098131A (en) 2012-05-24

Family

ID=46390210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245621A Pending JP2012098131A (en) 2010-11-01 2010-11-01 Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method

Country Status (1)

Country Link
JP (1) JP2012098131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103107A (en) * 2010-11-10 2012-05-31 Sony Corp Device, method and program for measuring light distribution
CN111386612A (en) * 2017-12-25 2020-07-07 株式会社富士 Production management device
CN111707357A (en) * 2019-03-18 2020-09-25 大塚电子株式会社 Illuminant measurement device and illuminant measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103107A (en) * 2010-11-10 2012-05-31 Sony Corp Device, method and program for measuring light distribution
CN111386612A (en) * 2017-12-25 2020-07-07 株式会社富士 Production management device
CN111386612B (en) * 2017-12-25 2023-07-25 株式会社富士 Production management device
CN111707357A (en) * 2019-03-18 2020-09-25 大塚电子株式会社 Illuminant measurement device and illuminant measurement method

Similar Documents

Publication Publication Date Title
JP6291418B2 (en) Optical measurement arrangements and related methods
JP5559840B2 (en) Method for determining the tilt of an image sensor
US7924418B2 (en) Inspection apparatus and method
US9874436B2 (en) Hole inspection method and apparatus
KR20110136866A (en) Profilometer, measuring apparatus, and observing apparatus
JP4876201B1 (en) Glass bottle inspection device and telecentric lens unit
TW201100779A (en) System and method for inspecting a wafer (3)
JP2013053973A (en) Solar battery cell test equipment
JP2017203734A (en) Visual inspection method and visual inspection device
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
TWI452270B (en) Detecting apparatus and detecting method thereof
TWI495867B (en) Application of repeated exposure to multiple exposure image blending detection method
JP2012098131A (en) Light distribution property measuring device, light distribution property inspection device, light distribution property measuring program, light distribution property measuring method and light distribution property inspection method
JP2014240766A (en) Surface inspection method and device
KR20230022725A (en) Lighting module inspection device for machine vision and light module inspection method for machine vision using thereof
KR20150071228A (en) Apparatus of inspecting glass of three dimensional shape
JP2004163425A (en) Visual examination apparatus
KR101575895B1 (en) Apparatus and method for inspecting wafer using light
JP2018040761A (en) Device for inspecting appearance of inspection target object
JP5565278B2 (en) Light distribution measuring device, light distribution measuring method, and light distribution measuring program
JP6381865B2 (en) Inspection apparatus and inspection method
TW587156B (en) Spatial 2-D distribution measuring method of light source emitting power and its device
JP2014122825A (en) Bottle cap appearance inspection device and appearance inspection method
KR101028335B1 (en) Inspecting apparatus for wire
JP2011180044A (en) Device for measurement of beam parallelism