JP2012097711A - Solenoid valve and evaporated fuel processing device having the solenoid valve - Google Patents

Solenoid valve and evaporated fuel processing device having the solenoid valve Download PDF

Info

Publication number
JP2012097711A
JP2012097711A JP2010248415A JP2010248415A JP2012097711A JP 2012097711 A JP2012097711 A JP 2012097711A JP 2010248415 A JP2010248415 A JP 2010248415A JP 2010248415 A JP2010248415 A JP 2010248415A JP 2012097711 A JP2012097711 A JP 2012097711A
Authority
JP
Japan
Prior art keywords
valve
valve member
passage
seal
urging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010248415A
Other languages
Japanese (ja)
Other versions
JP5583552B2 (en
Inventor
Masahiro Sugiura
正浩 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2010248415A priority Critical patent/JP5583552B2/en
Publication of JP2012097711A publication Critical patent/JP2012097711A/en
Application granted granted Critical
Publication of JP5583552B2 publication Critical patent/JP5583552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve control accuracy of a flow rate, and to improve sealability between a valve member and a valve seat, while having the bidirectional relief function.SOLUTION: A flow control valve 38 includes first to third valve members 96, 97 and 98 for opening/closing a fluid passage 94 of a valve housing 70, springs 118, 112 and 103 for urging the respective valve members, and a step motor 53 for opening the first valve member 96 and the second valve member 97 stepwise, and is constituted so that the second valve member 97 or the third valve member 98 is opened by differential pressure between upstream side internal pressure and downstream side internal pressure. Seal members 120, 122b and 122c are provided between the valve members 96, 97 and 98 and the valve seats 97b, 98b and 100. The seal members 120, 122b and 122c and the springs 118, 112 and 103 for urging the valve members 96, 97 and 98 corresponding to the respective seal members, are arranged with the positional relationship corresponding to the axial direction.

Description

本発明は、電磁弁及びその電磁弁を備えた蒸発燃料処理装置に関する。   The present invention relates to a solenoid valve and a fuel vapor processing apparatus including the solenoid valve.

電磁弁の従来例(例えば特許文献1参照)について説明する。図10は電磁弁の開弁状態を示す断面図である。
図10に示すように、制御装置522により開閉制御される電磁弁532は、燃料タンク本体とキャニスタとを結ぶ通路528に設けられており、給油時に開弁される。また、駐車時に燃料タンク本体側532Dの内圧が、キャニスタ側532Aの内圧に比べて所定値以上下がった場合には、電磁弁532の弁体532Cがスプリング532Bの付勢力に抗して開弁される。また、燃料タンク本体側532Dの内圧が、キャニスタ側532Aの内圧に比べて所定値以上上がった場合には、弁体532C内に設けられた逃がし弁534の弁体534Aがスプリング534Bの付勢力に抗して開弁される。したがって、電磁弁532は双方向リリーフ機能を備えている。
A conventional example of a solenoid valve (see, for example, Patent Document 1) will be described. FIG. 10 is a cross-sectional view showing the open state of the solenoid valve.
As shown in FIG. 10, the electromagnetic valve 532 controlled to be opened and closed by the control device 522 is provided in a passage 528 connecting the fuel tank main body and the canister, and is opened when refueling. Further, when the internal pressure of the fuel tank main body side 532D is lowered by a predetermined value or more compared to the internal pressure of the canister side 532A during parking, the valve body 532C of the electromagnetic valve 532 is opened against the urging force of the spring 532B. The Further, when the internal pressure of the fuel tank main body side 532D is increased by a predetermined value or more compared to the internal pressure of the canister side 532A, the valve body 534A of the relief valve 534 provided in the valve body 532C becomes the biasing force of the spring 534B. The valve is opened against it. Therefore, the solenoid valve 532 has a bidirectional relief function.

特開2002−317707号公報JP 2002-317707 A

前記電磁弁532によると、制御装置522により開閉制御される弁部材が弁体532Cだけであるため、流量の制御精度が低いという問題があった。また、弁ハウジング536に形成された弁座536Aに対して、弁体532Cをスプリング532Bの付勢力により押圧することで、弁座536Aと弁体532Cとの間をシールしている。また、弁体532Cに形成された弁座538に対して、逃がし弁534をスプリング534Bの付勢力により押圧することで、弁座538と逃がし弁534との間をシールしている。しかし、各弁座536A、538と、弁体532C及び逃がし弁534との間の当接面の平面度を精度良く形成することは困難であり、両者(536Aと532C、538と534との間)間のシール性が低いという問題があった。   According to the electromagnetic valve 532, there is a problem that the flow rate control accuracy is low because the valve member 532C is the only valve member that is controlled to open and close by the control device 522. Further, the valve body 532C is pressed against the valve seat 536A formed in the valve housing 536 by the urging force of the spring 532B, thereby sealing between the valve seat 536A and the valve body 532C. Further, the relief valve 534 is pressed against the valve seat 538 formed on the valve body 532C by the urging force of the spring 534B, thereby sealing between the valve seat 538 and the relief valve 534. However, it is difficult to accurately form the flatness of the contact surfaces between the valve seats 536A and 538, the valve body 532C, and the relief valve 534, and both (between 536A and 532C, 538 and 534). ) Has a problem of low sealing performance.

本発明が解決しようとする課題は、双方向リリーフ機能を備えながらも、流量の制御精度を向上するとともに、弁部材と弁座との間のシール性を向上することのできる電磁弁及びその電磁弁を備えた蒸発燃料処理装置を提供することにある。   The problem to be solved by the present invention is an electromagnetic valve capable of improving the flow rate control accuracy and improving the sealing performance between the valve member and the valve seat while having a bidirectional relief function, and the electromagnetic valve thereof. An object of the present invention is to provide an evaporative fuel processing apparatus including a valve.

前記課題は、特許請求の範囲に記載された構成を要旨とする電磁弁及びその電磁弁を備えた蒸発燃料処理装置により解決することができる。
請求項1に記載された電磁弁によると、相互に連通する第1通路部と第2通路部を有する流体通路を形成する弁ハウジングと、流体通路を開閉しかつ第1付勢手段の付勢力により第1通路部から第2通路部への流体の流れ方向に沿う方向を閉方向として付勢された第1弁部材と、流体通路を開閉しかつ第2付勢手段の付勢力により第1弁部材の閉方向と同じ方向を閉方向として付勢された第2弁部材と、第1弁部材及び第2弁部材を段階的に開く作動部材を有する電磁駆動部と、流体通路を開閉しかつ第3付勢手段の付勢力により第1弁部材の閉方向と逆方向を閉方向として付勢された第3弁部材とを備え、第1通路部の内圧が第2通路部の内圧に比べて所定値以上大きくなった場合には、第3弁部材が第3付勢手段の付勢力に抗して開弁される構成とし、第1通路部の内圧が第2通路部の内圧に比べて所定値以上小さくなった場合には、第1弁部材及び第2弁部材の少なくとも一方の弁部材が当該付勢手段の付勢力に抗して開弁する構成とし、第1弁部材、第2弁部材及び第3弁部材のうちの少なくとも1つの弁部材と該弁部材が着座及び離座可能な弁座との間に、その弁部材の閉弁時において両者間を弾性的にシールするシール部材を設け、前記シール部材と、そのシール部材に対応する弁部材を付勢する付勢手段とを軸方向に対応する位置関係をもって配置したものである。
このように構成すると、第1通路部の内圧が第2通路部の内圧に比べて所定値以上大きくなった場合には、第3弁部材が第3付勢手段の付勢力に抗して開弁することによって、第1通路部の内圧と第2通路部の内圧との差圧を所定値以下に制御することができる。また、第1通路部の内圧が第2通路部の内圧に比べて所定値以上小さくなった場合には、第1弁部材及び第2弁部材の少なくとも一方の弁部材が当該付勢手段の付勢力に抗して開弁することによって、第1通路部の内圧と第2通路部の内圧との差圧を所定値以下に制御することができる。したがって、双方向リリーフ機能を備えることができる。
また、第1弁部材及び第2弁部材が電磁駆動部の作動部材によって段階的に開かれるものであるから、従来例の電磁弁(特許文献1参照)と比べて、流量の制御精度を向上することができる。
また、第1弁部材、第2弁部材及び第3弁部材のうちの少なくとも1つの弁部材と該弁部材が着座及び離座可能な弁座との間に、その弁部材の閉弁時において両者間を弾性的にシールするシール部材を設け、シール部材と、そのシール部材に対応する弁部材を付勢する付勢手段とを軸方向に対応する位置関係をもって配置したものであるから、弁部材と弁座との間のシール部材によるシール部位に対して、軸方向に対応する位置関係をもって付勢手段の付勢力を作用させることにより、弁部材と弁座との間のシール性を向上することができる。このことは、高気密性が要求される電磁弁として有効である。
The above-mentioned problems can be solved by an electromagnetic valve having the gist of the structure described in the claims and an evaporative fuel processing apparatus provided with the electromagnetic valve.
According to the electromagnetic valve described in claim 1, a valve housing that forms a fluid passage having a first passage portion and a second passage portion that communicate with each other, and a biasing force of the first biasing means that opens and closes the fluid passage. The first valve member urged with the direction along the fluid flow direction from the first passage portion to the second passage portion as a closing direction, and the first urging force of the second urging means opens and closes the fluid passage and A second valve member biased with the same direction as the closing direction of the valve member as the closing direction, an electromagnetic drive unit having an actuating member for opening the first valve member and the second valve member in stages, and opening and closing the fluid passage And a third valve member urged by the urging force of the third urging means with the direction opposite to the closing direction of the first valve member as a closing direction, and the internal pressure of the first passage portion becomes the internal pressure of the second passage portion. In contrast, when it becomes larger than a predetermined value, the third valve member opens against the urging force of the third urging means. When the internal pressure of the first passage portion becomes smaller than the internal pressure of the second passage portion by a predetermined value or more, at least one valve member of the first valve member and the second valve member is the urging means. A valve that opens against the urging force of at least one of the first valve member, the second valve member, and the third valve member, and a valve seat on which the valve member can be seated and separated. A seal member that elastically seals between the two when the valve member is closed is provided, and the seal member and the biasing means that biases the valve member corresponding to the seal member correspond to each other in the axial direction. It is arranged with a positional relationship.
With this configuration, when the internal pressure of the first passage portion becomes larger than the internal pressure of the second passage portion by a predetermined value or more, the third valve member opens against the urging force of the third urging means. By controlling the pressure, the differential pressure between the internal pressure of the first passage portion and the internal pressure of the second passage portion can be controlled to a predetermined value or less. In addition, when the internal pressure of the first passage portion becomes smaller than the internal pressure of the second passage portion by a predetermined value or more, at least one of the first valve member and the second valve member is attached to the biasing means. By opening the valve against the force, the differential pressure between the internal pressure of the first passage portion and the internal pressure of the second passage portion can be controlled to a predetermined value or less. Therefore, a bidirectional relief function can be provided.
In addition, since the first valve member and the second valve member are opened stepwise by the actuating member of the electromagnetic drive unit, the flow rate control accuracy is improved compared to the conventional solenoid valve (see Patent Document 1). can do.
Further, when the valve member is closed between at least one of the first valve member, the second valve member, and the third valve member and the valve seat on which the valve member can be seated and separated. A seal member that elastically seals between the two is provided, and the seal member and a biasing means that biases the valve member corresponding to the seal member are arranged with a positional relationship corresponding to the axial direction. The sealing performance between the valve member and the valve seat is improved by applying the urging force of the urging means to the seal portion by the seal member between the member and the valve seat with a positional relationship corresponding to the axial direction. can do. This is effective as a solenoid valve that requires high airtightness.

また、請求項2に記載された電磁弁によると、シール部材が接離される弁部材又は弁座の当接部を、樹脂成形により該シール部材の接離方向に薄肉板状に形成したものである。このように構成すると、シール部材が接離される弁部材又は弁座の当接部の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、シール部材が当接する当接部の当接面の平面度が向上されるため、シール部材と当接部との間のシール性を向上することができる。   Further, according to the electromagnetic valve described in claim 2, the contact portion of the valve member or the valve seat to which the seal member is contacted / separated is formed in a thin plate shape in the contact / separation direction of the seal member by resin molding. is there. If comprised in this way, the amount of shrinkage | contraction deformation by resin molding of the contact part of the valve member or valve seat which a seal member will contact / separate can be made small, and generation | occurrence | production of sink can be prevented. Thereby, since the flatness of the contact surface of the contact part which a seal member contacts is improved, the sealing performance between a seal member and a contact part can be improved.

また、請求項3に記載された電磁弁によると、弁部材又は弁座の当接部が接離される内環側シール部材及び外環側シール部材が二重環状に一体形成されたシール体を備えたものである。このように構成すると、内環側シール部材及び外環側シール部材が二重環状に一体形成されたシール体を備えることで、両シール部材の同軸度が向上されるため、両シール部材と当接部との間のシール性を向上することができる。なお、両シール部材が当接する当接部は、一部材でもよいし、二部材でもよい。   In addition, according to the electromagnetic valve described in claim 3, the seal body in which the inner ring side seal member and the outer ring side seal member to which the abutting portion of the valve member or the valve seat comes into contact is separated and formed integrally in a double ring shape. It is provided. With this configuration, since the inner ring side seal member and the outer ring side seal member are provided with a seal body integrally formed in a double ring shape, the coaxiality of both seal members is improved. The sealing property between the contact portions can be improved. In addition, the contact part which both seal members contact may be one member or two members.

また、請求項4に記載された電磁弁によると、シール体が装着された弁部材を付勢する付勢手段は、その付勢力が内環側シール部材と外環側シール部材との間の中間部に作用するように配置されている。このように構成すると、シール体の両シール部材に作用する付勢手段の付勢力が均等化されるため、両シール部材と当接部との間のシール性を向上することができる。   According to the electromagnetic valve recited in claim 4, the urging means for urging the valve member to which the seal body is attached has an urging force between the inner ring side seal member and the outer ring side seal member. It arrange | positions so that it may act on an intermediate part. If comprised in this way, since the urging | biasing force of the urging means which acts on both the sealing members of a sealing body is equalized, the sealing performance between both the sealing members and a contact part can be improved.

また、請求項5に記載された電磁弁によると、弁ハウジングに、第3弁部材が着座及び離座可能な円環状の第3弁座が形成され、第3弁部材に、第2弁部材に形成された第2弁部が着座及び離座可能な円環状の第2弁座と、第3弁座に着座及び離座可能な第3弁部とが共通の板状部に形成され、第3弁部材の板状部にシール体を設け、シール体の内環側シール部材を第2弁部材の第2弁部が接離される第2シール部材とするとともに、該シール体の外環側シール部材を第3弁座に接離される第3シール部材としたものである。このように構成すると、第3弁部材の板状部に設けたシール体の内環側シール部材を第2シール部材とするとともに、そのシール体の外環側シール部材を第3シール部材とすることで、第2シール部材と第2弁部材の第2弁部との間のシール性を向上するとともに、第3シール部材と弁ハウジングの第3弁座との間のシール性を向上することができる。   According to the electromagnetic valve described in claim 5, an annular third valve seat on which the third valve member can be seated and separated is formed in the valve housing, and the second valve member is formed on the third valve member. An annular second valve seat that can be seated and separated and a third valve portion that can be seated and separated from the third valve seat are formed in a common plate-like portion, A seal body is provided on the plate-like portion of the third valve member, and the inner ring side seal member of the seal body is a second seal member that contacts and separates the second valve portion of the second valve member, and the outer ring of the seal body The side seal member is a third seal member that contacts and separates from the third valve seat. If comprised in this way, while making the inner ring side seal member of the seal body provided in the plate-shaped part of the 3rd valve member into the 2nd seal member, the outer ring side seal member of the seal body is made into the 3rd seal member. Thus, the sealing performance between the second sealing member and the second valve portion of the second valve member is improved, and the sealing performance between the third sealing member and the third valve seat of the valve housing is improved. Can do.

また、請求項6に記載された電磁弁によると、前記第2弁部材を付勢する第2付勢手段と前記第3弁部材を付勢する付勢手段とは、互いの付勢力が対向方向にかつその対向方向に交差する方向に隣接した部位に作用するように配置されている。このように構成すると、第2付勢手段の付勢力と第3付勢手段の付勢力とを互い対向方向にかつその対向方向に交差する方向に隣接した部位に作用させることができるので、シール体の第2シール部材に対する付勢力を増大し、第2シール部材と第2弁部材との間のシール性を向上することができる。   According to the electromagnetic valve described in claim 6, the second urging means for urging the second valve member and the urging means for urging the third valve member are opposed to each other. It arrange | positions so that it may act on the site | part adjacent to the direction and the direction which cross | intersects the opposing direction. If comprised in this way, since the urging | biasing force of a 2nd urging means and the urging | biasing force of a 3rd urging | biasing means can be made to act on the site | part adjacent to the mutually opposing direction and the direction which cross | intersects the opposing direction, The urging | biasing force with respect to the 2nd seal member of a body can be increased, and the sealing performance between a 2nd seal member and a 2nd valve member can be improved.

また、請求項7に記載された蒸発燃料処理装置によると、請求項1〜6のいずれか1つに記載の電磁弁と、燃料タンクとキャニスタとを連通しかつ電磁弁が介装される蒸発燃料通路とを備え、電磁弁の第1通路部が蒸発燃料通路の燃料タンク側に接続されているとともに該電磁弁の第2通路部がキャニスタ側に接続されている。したがって、双方向リリーフ機能を備えながらも、流量の制御精度を向上するとともに、弁部材と弁座との間のシール性を向上することのできる電磁弁を備えた蒸発燃料処理装置を提供することができる。また、蒸発燃料をパージする際に蒸発燃料通路を流れる蒸発燃料の流量を電磁弁により精度良く制御することによって、空燃比(A/F)の乱れを抑えることができる。   Moreover, according to the evaporative fuel processing apparatus described in claim 7, the evaporation in which the solenoid valve according to any one of claims 1 to 6, the fuel tank and the canister are communicated and the solenoid valve is interposed. And a first passage portion of the electromagnetic valve is connected to the fuel tank side of the evaporated fuel passage, and a second passage portion of the electromagnetic valve is connected to the canister side. Accordingly, it is possible to provide an evaporative fuel processing apparatus provided with an electromagnetic valve that can improve the flow rate control accuracy and improve the sealing performance between the valve member and the valve seat while having a bidirectional relief function. Can do. Further, when the vaporized fuel is purged, the flow rate of the vaporized fuel flowing through the vaporized fuel passage is accurately controlled by the electromagnetic valve, so that the disturbance of the air-fuel ratio (A / F) can be suppressed.

実施形態にかかる蒸発燃料処理装置を示す構成図である。It is a block diagram which shows the evaporative fuel processing apparatus concerning embodiment. 流量制御弁を示す断面図である。It is sectional drawing which shows a flow control valve. 弁機構部を示す断面図である。It is sectional drawing which shows a valve mechanism part. 図3のIV−IV線矢視断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. 第1弁部材の開弁状態を示す断面図である。It is sectional drawing which shows the valve opening state of a 1st valve member. 第2弁部材の開弁状態を示す断面図である。It is sectional drawing which shows the valve opening state of a 2nd valve member. 第1通路部の内圧と第2通路部の内圧との差圧による第3弁部材の開弁状態を示す断面図である。It is sectional drawing which shows the valve opening state of the 3rd valve member by the differential pressure of the internal pressure of a 1st channel | path part, and the internal pressure of a 2nd channel | path part. 第1通路部の内圧と第2通路部の内圧との差圧による第2弁部材の開弁状態を示す断面図である。It is sectional drawing which shows the valve opening state of the 2nd valve member by the differential pressure of the internal pressure of a 1st channel | path part, and the internal pressure of a 2nd channel | path part. 弁機構部の要部を示す断面図である。It is sectional drawing which shows the principal part of a valve mechanism part. 従来例にかかる電磁弁の要部を示す断面図である。It is sectional drawing which shows the principal part of the solenoid valve concerning a prior art example.

以下、本発明を実施するための形態について図面を用いて説明する。説明の都合上、エンジン(内燃機関)の蒸発燃料処理装置の概要を説明した後、蒸発燃料処理装置に備えられた電磁弁としての流量制御弁について説明する。図1は蒸発燃料処理装置を示す構成図である。
図1に示すように、蒸発燃料処理装置12は、自動車等の車両のエンジンシステム10に備えられている。エンジンシステム10は、エンジン14と、エンジン14に供給される燃料を貯留する燃料タンク15とを備えている。燃料タンク15には、インレットパイプ16が設けられている。インレットパイプ16は、その上端部の給油口から燃料を燃料タンク15内に導入するパイプである。インレットパイプ16の給油口には、タンクキャップ17が着脱可能に取付けられている。また、インレットパイプ16の上端部内と燃料タンク15内の気層部とは、ブリーザパイプ18を介して連通されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. For convenience of explanation, after describing the outline of the evaporated fuel processing apparatus of the engine (internal combustion engine), the flow control valve as an electromagnetic valve provided in the evaporated fuel processing apparatus will be described. FIG. 1 is a configuration diagram showing an evaporative fuel processing apparatus.
As shown in FIG. 1, the evaporated fuel processing device 12 is provided in an engine system 10 of a vehicle such as an automobile. The engine system 10 includes an engine 14 and a fuel tank 15 that stores fuel supplied to the engine 14. The fuel tank 15 is provided with an inlet pipe 16. The inlet pipe 16 is a pipe that introduces fuel into the fuel tank 15 from a fuel filler port at an upper end portion thereof. A tank cap 17 is detachably attached to the oil filler port of the inlet pipe 16. Further, the upper end portion of the inlet pipe 16 and the air layer portion in the fuel tank 15 are communicated with each other via a breather pipe 18.

前記燃料タンク15内には燃料供給装置19が設けられている。燃料供給装置19は、燃料タンク15内の燃料を吸入しかつ加圧して吐出する燃料ポンプ20、燃料の液面を検出するセンダゲージ21、大気圧に対する相対圧としてのタンク内圧を検出するタンク内圧センサ22等を備えている。燃料ポンプ20により燃料タンク15内から汲み上げられた燃料は、燃料供給通路24を介してエンジン14のデリバリパイプ26に供給された後、インジェクタ(燃料噴射弁)25から吸気通路27内に噴射される。吸気通路27には、エアクリーナ28、エアフロメータ29、スロットルバルブ30等が設けられている。   A fuel supply device 19 is provided in the fuel tank 15. The fuel supply device 19 includes a fuel pump 20 that sucks in and pressurizes fuel in the fuel tank 15, a sender gauge 21 that detects the liquid level of the fuel, and a tank internal pressure sensor that detects a tank internal pressure as a relative pressure to the atmospheric pressure. 22 etc. The fuel pumped up from the fuel tank 15 by the fuel pump 20 is supplied to the delivery pipe 26 of the engine 14 through the fuel supply passage 24, and then injected from the injector (fuel injection valve) 25 into the intake passage 27. . In the intake passage 27, an air cleaner 28, an air flow meter 29, a throttle valve 30 and the like are provided.

前記蒸発燃料処理装置12は、蒸発燃料通路31とパージ通路32とキャニスタ34とを備えている。蒸発燃料通路31の一端部(上流側端部)は、前記燃料タンク15内の気層部と連通されている。蒸発燃料通路31の他端部(下流側端部)は、キャニスタ34内と連通されている。また、パージ通路32の一端部(上流側端部)は、キャニスタ34内と連通されている。パージ通路32の他端部(下流側端部)は、前記吸気通路27におけるスロットルバルブ30よりも下流側の通路部と連通されている。また、キャニスタ34内には、吸着材としての活性炭(図示省略)が装填されている。燃料タンク15内の蒸発燃料は、蒸発燃料通路31を介してキャニスタ34内の吸着材(活性炭)に吸着される。また、燃料タンク15内の気層部において、蒸発燃料通路31の上流側端部には、フューエルカットオフバルブ35及びORVR差圧弁(On Board Refueling Vapor Recovery valve)36が設けられている。   The fuel vapor processing apparatus 12 includes a fuel vapor passage 31, a purge passage 32, and a canister 34. One end portion (upstream end portion) of the evaporated fuel passage 31 is communicated with an air layer portion in the fuel tank 15. The other end (downstream end) of the evaporated fuel passage 31 communicates with the inside of the canister 34. Further, one end (upstream end) of the purge passage 32 communicates with the inside of the canister 34. The other end portion (downstream end portion) of the purge passage 32 communicates with a passage portion on the downstream side of the throttle valve 30 in the intake passage 27. The canister 34 is loaded with activated carbon (not shown) as an adsorbent. The evaporated fuel in the fuel tank 15 is adsorbed by the adsorbent (activated carbon) in the canister 34 through the evaporated fuel passage 31. Further, a fuel cut-off valve 35 and an ORVR differential pressure valve (On Board Refueling Vapor Recovery valve) 36 are provided at the upstream end portion of the evaporated fuel passage 31 in the air layer portion in the fuel tank 15.

前記蒸発燃料通路31の途中には流量制御弁38が介装されている。また、前記パージ通路32の途中にはパージ制御弁40が介装されている。また、前記キャニスタ34には、切替弁41を介して大気通路42が連通されている。大気通路42の他端部は、大気に開放されている。また、大気通路42の途中にはエアフィルタ43が設けられている。また、流量制御弁38、パージ制御弁40及び切替弁41は、エンジン制御装置(以下、「ECU」という)45から出力される駆動信号により開閉制御される電磁弁からなる。また、蒸発燃料通路31は上流側(燃料タンク15側)の通路部31aと下流側(キャニスタ34側)の通路部31bとに二分されており、通路部31a、31bの間に流量制御弁38が介装されている。なお、流量制御弁38については後で詳しく説明する。   A flow control valve 38 is interposed in the middle of the evaporated fuel passage 31. A purge control valve 40 is interposed in the purge passage 32. Further, an atmospheric passage 42 is communicated with the canister 34 via a switching valve 41. The other end of the atmospheric passage 42 is open to the atmosphere. An air filter 43 is provided in the middle of the air passage 42. The flow control valve 38, the purge control valve 40, and the switching valve 41 are electromagnetic valves that are controlled to open and close by a drive signal output from an engine control device (hereinafter referred to as “ECU”) 45. The evaporative fuel passage 31 is divided into a passage portion 31a on the upstream side (fuel tank 15 side) and a passage portion 31b on the downstream side (canister 34 side), and a flow control valve 38 is provided between the passage portions 31a and 31b. Is intervening. The flow control valve 38 will be described in detail later.

前記ECU45には、前記したタンク内圧センサ22、流量制御弁38、パージ制御弁40及び切替弁41の他、リッドスイッチ46、リッドオープナー47、表示装置49等が接続されている。また、リッドオープナー47には、給油口を覆うリッド48を手動で開閉するリッド手動開閉装置(図示省略)が連結されている。リッドオープナー47は、リッド48のロック機構で、ECU45からリッド開信号が供給された場合、又は、リッド手動開閉装置に開動作が施された場合に、リッド48のロックを解除する。また、リッドスイッチ46は、ECU45に対してリッド48のロックを解除するための信号を出力する。なお、ECU45は本明細書でいう「制御手段」に相当する。   In addition to the tank internal pressure sensor 22, the flow rate control valve 38, the purge control valve 40, and the switching valve 41, the ECU 45 is connected to a lid switch 46, a lid opener 47, a display device 49, and the like. The lid opener 47 is connected to a lid manual opening / closing device (not shown) that manually opens and closes the lid 48 that covers the fuel filler opening. The lid opener 47 is a lock mechanism of the lid 48 and releases the lock of the lid 48 when a lid opening signal is supplied from the ECU 45 or when the lid manual opening / closing device is opened. Further, the lid switch 46 outputs a signal for unlocking the lid 48 to the ECU 45. The ECU 45 corresponds to “control means” in this specification.

次に、前記蒸発燃料処理装置12の基本的動作について説明する。
(1)車両の駐車中
車両の駐車中は、流量制御弁38が閉弁状態に維持される。したがって、燃料タンク15の蒸発燃料がキャニスタ34内に流入されることがない。また、キャニスタ34内の空気が燃料タンク15内に流入されることもない。このとき、パージ制御弁40及び切替弁41も閉弁状態に維持される。
Next, the basic operation of the fuel vapor processing apparatus 12 will be described.
(1) While the vehicle is parked While the vehicle is parked, the flow control valve 38 is kept closed. Therefore, the evaporated fuel in the fuel tank 15 does not flow into the canister 34. Further, the air in the canister 34 does not flow into the fuel tank 15. At this time, the purge control valve 40 and the switching valve 41 are also maintained in the closed state.

(2)車両の走行中
車両の走行中において、ECU45は、所定のパージ条件が成立する場合に、キャニスタ34に吸着されている蒸発燃料をパージさせる制御を実行する。この制御では、切替弁41を開弁状態としてキャニスタ34を大気通路42を介して大気に連通させたまま、パージ制御弁40が開閉制御される。パージ制御弁40が開弁されると、エンジン14の吸気負圧がパージ通路32を介してキャニスタ34内に作用する。その結果、キャニスタ34内の蒸発燃料が、大気通路42から吸入される空気とともに吸気通路27に導入されることによりエンジン14で燃焼される。また、ECU45は、蒸発燃料のパージ中に限り、流量制御弁38を開弁状態とする。これにより、燃料タンク15のタンク内圧が大気圧近傍値に維持される。
(2) During traveling of the vehicle During traveling of the vehicle, the ECU 45 performs control to purge the evaporated fuel adsorbed by the canister 34 when a predetermined purge condition is satisfied. In this control, the purge control valve 40 is controlled to open and close while the switching valve 41 is opened and the canister 34 is in communication with the atmosphere via the atmosphere passage 42. When the purge control valve 40 is opened, the intake negative pressure of the engine 14 acts in the canister 34 via the purge passage 32. As a result, the evaporated fuel in the canister 34 is introduced into the intake passage 27 together with the air sucked from the atmospheric passage 42 and burned in the engine 14. The ECU 45 opens the flow control valve 38 only during the purge of the evaporated fuel. Thereby, the tank internal pressure of the fuel tank 15 is maintained at a value near atmospheric pressure.

(3)給油中
車両の停車中において、リッドスイッチ46が操作されると、ECU45が流量制御弁38を開弁状態とする。この際、燃料タンク15のタンク内圧が大気圧より高圧であれば、流量制御弁38が開弁すると同時に、燃料タンク15内の蒸発燃料が、蒸発燃料通路31を通ってキャニスタ34内の吸着材に吸着される。これにより、蒸発燃料が大気に放出されることが防止される。これにともない、燃料タンク15のタンク内圧は大気圧近傍値に低下する。また、燃料タンク15のタンク内圧が大気圧近傍値にまで低下すると、ECU45は、リッド48のロックを解除する信号をリッドオープナー47に出力する。その信号を受けたリッドオープナー47がリッド48のロックを解除することにより、リッド48の開動作が可能となる。そして、リッド48が開けられ、タンクキャップ17が開けられた状態で、燃料タンク15への給油が開始される。なお、燃料タンク15のタンク内圧が大気圧近傍値に低下されてからタンクキャップ17が開けられるため、蒸発燃料が給油口から大気に放出されることが防止される。また、ECU45は、給油の終了(具体的にはリッド48が閉じられる)まで、流量制御弁38を開弁状態に維持する。このため、給油の際に、燃料タンク15内の蒸発燃料が蒸発燃料通路31を通ってキャニスタ34内の吸着材に吸着される。
(3) During refueling When the lid switch 46 is operated while the vehicle is stopped, the ECU 45 opens the flow control valve 38. At this time, if the tank internal pressure of the fuel tank 15 is higher than the atmospheric pressure, the flow rate control valve 38 opens, and at the same time, the evaporated fuel in the fuel tank 15 passes through the evaporated fuel passage 31 and the adsorbent in the canister 34. To be adsorbed. This prevents the evaporated fuel from being released into the atmosphere. As a result, the tank internal pressure of the fuel tank 15 decreases to a value near atmospheric pressure. Further, when the tank internal pressure of the fuel tank 15 decreases to a value near atmospheric pressure, the ECU 45 outputs a signal for releasing the lock of the lid 48 to the lid opener 47. Upon receiving the signal, the lid opener 47 releases the lock of the lid 48, so that the lid 48 can be opened. Then, in a state where the lid 48 is opened and the tank cap 17 is opened, the fuel supply to the fuel tank 15 is started. In addition, since the tank cap 17 is opened after the tank internal pressure of the fuel tank 15 is lowered to a value close to the atmospheric pressure, the evaporated fuel is prevented from being released into the atmosphere from the fuel filler port. Further, the ECU 45 keeps the flow control valve 38 in an open state until the end of refueling (specifically, the lid 48 is closed). For this reason, during refueling, the evaporated fuel in the fuel tank 15 passes through the evaporated fuel passage 31 and is adsorbed by the adsorbent in the canister 34.

次に、前記流量制御弁38について説明する。図2は流量制御弁を示す断面図、図3は弁機構部を示す断面図、図4は図3のIV−IV線矢視断面図、図5は第1弁部材の開弁状態を示す断面図、図6は第2弁部材の開弁状態を示す断面図、図7は第1通路部の内圧と第2通路部の内圧との差圧による第3弁部材の開弁状態を示す断面図、図8は同じく第2弁部材の開弁状態を示す断面図、図9は弁機構部の要部を示す断面図である。なお、本明細書では、図2の断面図を基準として流量制御弁38の左右上下の各方向を定めることにする。
図2に示すように、流量制御弁38は、弁機構部51と、弁機構部51を駆動するステップモータ53とを備えている。説明の都合上、ステップモータ53を説明した後、弁機構部51を説明する。
Next, the flow control valve 38 will be described. 2 is a cross-sectional view showing the flow control valve, FIG. 3 is a cross-sectional view showing the valve mechanism, FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, and FIG. FIG. 6 is a cross-sectional view showing a valve opening state of the second valve member, and FIG. 7 shows a valve opening state of the third valve member due to a differential pressure between the internal pressure of the first passage portion and the internal pressure of the second passage portion. FIG. 8 is a cross-sectional view showing the valve-opening state of the second valve member, and FIG. 9 is a cross-sectional view showing the main part of the valve mechanism. In this specification, the left, right, up and down directions of the flow control valve 38 are determined based on the cross-sectional view of FIG.
As shown in FIG. 2, the flow control valve 38 includes a valve mechanism 51 and a step motor 53 that drives the valve mechanism 51. For the convenience of explanation, the valve mechanism 51 will be explained after explaining the step motor 53.

前記ステップモータ53は、ステッパモータ、ステッピングモータ等とも呼ばれるもので、下面開口状のモータハウジング54を備えている。モータハウジング54の下面開口部は、有天円筒状の連結ハウジング55によって閉鎖されている。モータハウジング54と連結ハウジング55とは同心状に結合されている。モータハウジング54内には、ボビン57に励磁コイル58を巻装してなるステータ59が設けられている。ステータ59内で回転する中空円筒状のロータ61は、モータハウジング54内において所定の高さ位置において垂直軸回りに回転可能に支持されている。ロータ61の外周部には永久磁石が配置されている。また、ロータ61の上部内には、ナット部材62が同心状に一体化されている。ナット部材62の上端部は、モータハウジング54に対して軸受63を介して回転可能に支持されている。また、連結ハウジング55の上壁部55a上には、筒状の軸受台64が同心状に固定されている。軸受台64の上部には、ロータ61の下端部が軸受65を介して回転可能に支持されている。   The step motor 53 is also called a stepper motor, a stepping motor or the like, and includes a motor housing 54 having an opening on the lower surface. The lower surface opening portion of the motor housing 54 is closed by a connecting housing 55 having a cylindrical shape. The motor housing 54 and the connecting housing 55 are connected concentrically. A stator 59 is provided in the motor housing 54 by winding an exciting coil 58 around a bobbin 57. A hollow cylindrical rotor 61 that rotates in the stator 59 is supported in the motor housing 54 so as to be rotatable around a vertical axis at a predetermined height position. A permanent magnet is disposed on the outer periphery of the rotor 61. A nut member 62 is concentrically integrated in the upper portion of the rotor 61. An upper end portion of the nut member 62 is rotatably supported with respect to the motor housing 54 via a bearing 63. A cylindrical bearing stand 64 is concentrically fixed on the upper wall portion 55a of the connection housing 55. A lower end portion of the rotor 61 is rotatably supported on the upper portion of the bearing base 64 via a bearing 65.

前記ナット部材62のめねじ孔(符号省略)内には、作動軸67の上部のおねじ(符号省略)が螺合されている。作動軸67は、前記ステップモータ53の出力軸に相当する。また、作動軸67の下部は、前記軸受台64内に対して軸回り方向に回り止めされた状態で、軸方向すなわち上下方向に移動可能に支持されている。したがって、ロータ61の正逆回転によって作動軸67が上下方向に往復移動される。また、作動軸67の下端部は、前記連結ハウジング55の上壁部55aを貫通している。作動軸67の下端部には、円板状の作動板68が同心状に形成されている。また、ステップモータ53は、前記ECU45(図1参照)によって駆動制御されるようになっている。なお、ステップモータ53は、本明細書でいう「電磁駆動部」に相当する。また、作動板68は、本明細書でいう「作動部材」に相当する。   In the female screw hole (reference numeral omitted) of the nut member 62, a male thread (reference numeral omitted) of the upper portion of the operating shaft 67 is screwed. The operating shaft 67 corresponds to the output shaft of the step motor 53. Further, the lower portion of the operating shaft 67 is supported so as to be movable in the axial direction, that is, in the vertical direction, while being prevented from rotating in the axial direction with respect to the inside of the bearing base 64. Therefore, the operating shaft 67 is reciprocated in the vertical direction by the forward / reverse rotation of the rotor 61. Further, the lower end portion of the operating shaft 67 passes through the upper wall portion 55 a of the connection housing 55. A disc-shaped operating plate 68 is formed concentrically at the lower end of the operating shaft 67. The step motor 53 is driven and controlled by the ECU 45 (see FIG. 1). The step motor 53 corresponds to an “electromagnetic drive unit” in this specification. The operation plate 68 corresponds to an “operation member” in this specification.

次に、弁機構部51について説明する。図3に示すように、弁機構部51は弁ハウジング70を備えている。弁ハウジング70は、前記連結ハウジング55の周壁部55bの下端部に同心状に結合されている。弁ハウジング70は、内筒部71と外筒部72と上側の環状壁部73と下側の環状壁部74と第1接続管部75と第2接続管部76とを有している。内筒部71と外筒部72とは、連結ハウジング55と同心状でかつ内外二重円筒状をなしている(図4参照)。また、上側の環状壁部73は、内筒部71と外筒部72との間の環状空間部の上端面を閉鎖している。また、下側の環状壁部74は、内筒部71と外筒部72との間の環状空間部の下端面を閉鎖している。また、第1接続管部75は、外筒部72の右側部に接続されている。また、第2接続管部76は、外筒部72の左側部に接続されている。また、下側の環状壁部74の下面には、蓋板78の外周端部が結合されている。蓋板78は、内筒部71の下面開口部を閉鎖している。また、内筒部71の内部空間81と前記連結ハウジング55の内部空間80とにより弁室82が形成されている。   Next, the valve mechanism 51 will be described. As shown in FIG. 3, the valve mechanism 51 includes a valve housing 70. The valve housing 70 is concentrically coupled to the lower end portion of the peripheral wall portion 55 b of the connection housing 55. The valve housing 70 includes an inner cylinder part 71, an outer cylinder part 72, an upper annular wall part 73, a lower annular wall part 74, a first connection pipe part 75, and a second connection pipe part 76. The inner cylinder portion 71 and the outer cylinder portion 72 are concentric with the connection housing 55 and have an inner and outer double cylindrical shape (see FIG. 4). The upper annular wall 73 closes the upper end surface of the annular space between the inner cylinder 71 and the outer cylinder 72. The lower annular wall 74 closes the lower end surface of the annular space between the inner cylinder 71 and the outer cylinder 72. In addition, the first connecting pipe portion 75 is connected to the right side portion of the outer cylinder portion 72. In addition, the second connecting pipe portion 76 is connected to the left side portion of the outer cylinder portion 72. Further, the outer peripheral end portion of the lid plate 78 is coupled to the lower surface of the lower annular wall portion 74. The lid plate 78 closes the lower surface opening of the inner cylinder portion 71. A valve chamber 82 is formed by the internal space 81 of the inner cylinder portion 71 and the internal space 80 of the connection housing 55.

図4に示すように、前記内筒部71と前記外筒部72との間の環状空間部は、両者(71、72)間に架設された前側の区画壁83aと後側の区画壁83bにより、左側の空間部84と右側の空間部85とに二分されている。また、前記第1接続管部75内は、右側の空間部85と連通する第1通路部87となっている。また、前記第2接続管部76内は、左側の空間部84と連通する第2通路部88となっている。また、図3に示すように、内筒部71の左側部の下端部には、左右方向に貫通しかつ第1通路部87と内筒部71の内部空間81とを連通する第1開口孔90が形成されている。また、前記上側の環状壁部73の左側部には、上下方向に貫通しかつ前記連結ハウジング55の内部空間80と第2空間部84とを連通する第2開口孔92が形成されている。また、前記した第1通路部87、第1空間部85、第1開口孔90、弁室82、第2開口孔92、第2空間部84、及び、第2通路部88は、一連状の流体通路94を構成している。なお、説明の都合上、内部空間81を「弁ハウジング70の内部空間81」という。また、右側の空間部85を「第1空間部85」という。また、左側の空間部84を「第2空間部84」という。   As shown in FIG. 4, the annular space part between the inner cylinder part 71 and the outer cylinder part 72 has a front partition wall 83a and a rear partition wall 83b installed between both (71, 72). Therefore, the space portion is divided into a left space portion 84 and a right space portion 85. Further, the first connecting pipe portion 75 serves as a first passage portion 87 communicating with the right space portion 85. The second connecting pipe portion 76 is a second passage portion 88 that communicates with the left space portion 84. Further, as shown in FIG. 3, a first opening hole that penetrates in the left-right direction and communicates the first passage portion 87 and the internal space 81 of the inner cylinder portion 71 at the lower end portion of the left side portion of the inner cylinder portion 71. 90 is formed. Further, a second opening hole 92 that penetrates in the vertical direction and communicates the internal space 80 of the connection housing 55 and the second space portion 84 is formed in the left side portion of the upper annular wall portion 73. The first passage portion 87, the first space portion 85, the first opening hole 90, the valve chamber 82, the second opening hole 92, the second space portion 84, and the second passage portion 88 are formed in a series. A fluid passage 94 is formed. For convenience of explanation, the internal space 81 is referred to as “the internal space 81 of the valve housing 70”. The right space 85 is referred to as a “first space 85”. The left space 84 is referred to as a “second space 84”.

図3に示すように、前記弁室82内には、3つの弁部材すなわち第1弁部材96、第2弁部材97及び第3弁部材98が配置されている。以下、説明の都合上、第3弁部材98、第2弁部材97、第1弁部材96の順に説明する。
第3弁部材98から説明する。第3弁部材98は、円環板状に形成されている。第3弁部材98の外周部は、前記弁ハウジング70の第3弁座100(後述する)に対応する第3弁部98aになっている。また、第3弁部材98の内周部は、第2弁部材97の第2弁部97a(後述する)に対応する第2弁座98bになっている。すなわち、第3弁部98aと第2弁座98bとが共通の板状部(「弁板部」という)に形成されている。また、第3弁部材98の弁板部の外周縁の上面には、円筒状の周壁部98cが同心状に一体形成されている。
As shown in FIG. 3, three valve members, that is, a first valve member 96, a second valve member 97, and a third valve member 98 are arranged in the valve chamber 82. Hereinafter, for convenience of explanation, the third valve member 98, the second valve member 97, and the first valve member 96 will be described in this order.
The third valve member 98 will be described. The third valve member 98 is formed in an annular plate shape. An outer peripheral portion of the third valve member 98 is a third valve portion 98 a corresponding to a third valve seat 100 (described later) of the valve housing 70. Further, the inner peripheral portion of the third valve member 98 is a second valve seat 98b corresponding to a second valve portion 97a (described later) of the second valve member 97. That is, the third valve portion 98a and the second valve seat 98b are formed in a common plate-like portion (referred to as “valve plate portion”). Further, a cylindrical peripheral wall portion 98 c is integrally formed concentrically on the upper surface of the outer peripheral edge of the valve plate portion of the third valve member 98.

前記第3弁部材98は、前記連結ハウジング55の周壁部55b内に所定の隙間を介して遊嵌状に配置されている。第3弁部材98の周壁部98cと連結ハウジング55の周壁部55bとの間の環状隙間は、第3流通路105になっている。第3流通路105は、連結ハウジング55の内部空間80を上下方向(軸方向)に連通する流通路に相当する。   The third valve member 98 is loosely arranged in the peripheral wall portion 55b of the connection housing 55 via a predetermined gap. An annular gap between the peripheral wall portion 98 c of the third valve member 98 and the peripheral wall portion 55 b of the connection housing 55 is a third flow passage 105. The third flow passage 105 corresponds to a flow passage that communicates the internal space 80 of the connection housing 55 in the vertical direction (axial direction).

前記弁ハウジング70の上側の環状壁部73の内周部には、径方向内方へ突出する第3弁座100が一体形成されている。第3弁座100は、上側の環状壁部73に連続する円環板状に形成されている。また、第3弁座100には、前記第3弁部材98の第3弁部98aが着座及び離座可能となっている。また、第3弁部材98の開弁時すなわち第3弁座100に対する第3弁部98aの離座時において、第3弁座100と第3弁部98aとの間における第3連通路101が開かれる(図7参照)。すなわち、第3連通路101は、第3弁座100と第3弁部98aとの間を径方向に連通する連通路で、第3弁部材98によって開閉される。また、第3弁部材98の開弁時において、前記第2弁部材97は、図示しないストッパ手段によって図7に示す位置より上方への移動が規制されるようになっているものとする。   A third valve seat 100 protruding inward in the radial direction is integrally formed on the inner peripheral portion of the annular wall portion 73 on the upper side of the valve housing 70. The third valve seat 100 is formed in an annular plate shape that is continuous with the upper annular wall portion 73. Further, the third valve seat 100 is configured such that the third valve portion 98a of the third valve member 98 can be seated and separated. Further, when the third valve member 98 is opened, that is, when the third valve portion 98a is separated from the third valve seat 100, the third communication passage 101 between the third valve seat 100 and the third valve portion 98a is formed. Open (see FIG. 7). That is, the third communication passage 101 is a communication passage that communicates between the third valve seat 100 and the third valve portion 98a in the radial direction, and is opened and closed by the third valve member 98. Further, when the third valve member 98 is opened, the second valve member 97 is restricted from moving upward from the position shown in FIG. 7 by a stopper means (not shown).

図3に示すように、前記第3弁部材98と前記連結ハウジング55の上壁部55aとの軸方向(上下方向)の対向面間には、コイルスプリングからなる第3スプリング103が介装されている。第3スプリング103は、第3弁部材98を常に下方すなわち閉弁方向に付勢している。なお、第3スプリング103は本明細書でいう「第3付勢手段」に相当する。   As shown in FIG. 3, a third spring 103 made of a coil spring is interposed between opposing surfaces in the axial direction (vertical direction) between the third valve member 98 and the upper wall portion 55 a of the connection housing 55. ing. The third spring 103 always urges the third valve member 98 downward, that is, in the valve closing direction. The third spring 103 corresponds to “third urging means” in this specification.

前記第2弁部材97を説明する。第2弁部材97は、前記第3弁部材98よりも小径の円環板状に形成されている。第2弁部材97の外周部は、前記第3弁部材98の第2弁座98bに対応する第2弁部97aになっている。また、第2弁部材97の内周部は、第1弁部材97の第1弁部96a(後述する)に対応する第1弁座97bになっている。すなわち、第2弁部97aと第1弁座97bとが共通の板状部(「弁板部」という)に形成されている。また、第2弁部材97の弁板部の内周縁の上面には、中空状の連動軸部97cが同心状に一体形成されている。また、第2弁部材97の弁板部の外周縁の下面には、円筒状の周壁部97dが同心状に一体形成されている。また、第2弁部材97の下面には、周壁部97d内に対して二重筒状をなす筒状壁部97eが同心状に一体形成されている。   The second valve member 97 will be described. The second valve member 97 is formed in an annular plate shape having a smaller diameter than the third valve member 98. The outer peripheral portion of the second valve member 97 is a second valve portion 97 a corresponding to the second valve seat 98 b of the third valve member 98. Further, the inner peripheral portion of the second valve member 97 is a first valve seat 97 b corresponding to a first valve portion 96 a (described later) of the first valve member 97. That is, the second valve portion 97a and the first valve seat 97b are formed in a common plate-like portion (referred to as “valve plate portion”). Further, a hollow interlocking shaft portion 97 c is integrally formed concentrically on the upper surface of the inner peripheral edge of the valve plate portion of the second valve member 97. A cylindrical peripheral wall portion 97d is integrally formed concentrically on the lower surface of the outer peripheral edge of the valve plate portion of the second valve member 97. Further, a cylindrical wall portion 97e having a double cylindrical shape with respect to the inside of the peripheral wall portion 97d is integrally formed on the lower surface of the second valve member 97 concentrically.

前記第2弁部材97は、前記弁ハウジング70の第3弁座100の中空部内に対して所定の隙間を介して遊嵌状に配置されている。第2弁部材97の第2弁部97aは、前記第3弁部材98の第2弁座98bに対して着座及び離座可能となっている。また、第2弁部材97の連動軸部97cは、前記第3弁部材98の中空部内の中央部に配置されている。また、第2弁部材97の周壁部97dと弁ハウジング70の第3弁座100との間の環状隙間は、第2流通路109になっている。第2流通路109は、弁ハウジング70の内部空間81を上下方向(軸方向)に連通する流通路に相当する。   The second valve member 97 is arranged loosely with a predetermined gap in the hollow portion of the third valve seat 100 of the valve housing 70. The second valve portion 97 a of the second valve member 97 can be seated and separated from the second valve seat 98 b of the third valve member 98. Further, the interlocking shaft portion 97 c of the second valve member 97 is disposed at the center of the hollow portion of the third valve member 98. An annular gap between the peripheral wall portion 97 d of the second valve member 97 and the third valve seat 100 of the valve housing 70 is a second flow passage 109. The second flow passage 109 corresponds to a flow passage that communicates the internal space 81 of the valve housing 70 in the vertical direction (axial direction).

前記第2弁部材97の開弁時すなわち前記第3弁部材98の第2弁座98bに対する第2弁部97aの離座時において、第2弁座98bと第2弁部97aとの間における第2連通路110が開かれる(図6参照)。すなわち、第2連通路110は、第2弁座98bと第2弁部97aとの間を径方向に連通する連通路で、第2弁部材97によって開閉される。また、第2弁部材97の開弁時において、第2弁部材97の弁板部は、第3弁座100よりも下方へ移動する。したがって、前記弁ハウジング70の内部空間81と前記連結ハウジング55の内部空間80とが第2連通路110を介して連通される。   When the second valve member 97 is opened, that is, when the second valve member 97a is separated from the second valve seat 98b of the third valve member 98, the second valve member 98b is interposed between the second valve member 98b and the second valve member 97a. The second communication path 110 is opened (see FIG. 6). That is, the second communication passage 110 is a communication passage that communicates between the second valve seat 98b and the second valve portion 97a in the radial direction, and is opened and closed by the second valve member 97. Further, when the second valve member 97 is opened, the valve plate portion of the second valve member 97 moves below the third valve seat 100. Therefore, the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 are communicated with each other via the second communication passage 110.

図3に示すように、前記第2弁部材97と前記蓋板78との軸方向(上下方向)の対向面間には、コイルスプリングからなる第2スプリング112が介装されている。第2スプリング112は、常に第2弁部材97を常に上方すなわち閉弁方向に付勢している。第2スプリング112の上端部は、第2弁部材97の周壁部97dと筒状壁部97eとの間の環状空間部に嵌合されている。なお、第2スプリング112は本明細書でいう「第2付勢手段」に相当する。   As shown in FIG. 3, a second spring 112 made of a coil spring is interposed between the opposing surfaces of the second valve member 97 and the cover plate 78 in the axial direction (vertical direction). The second spring 112 always urges the second valve member 97 upward, that is, in the valve closing direction. The upper end portion of the second spring 112 is fitted into an annular space portion between the peripheral wall portion 97d of the second valve member 97 and the cylindrical wall portion 97e. The second spring 112 corresponds to “second urging means” in this specification.

前記第1弁部材96を説明する。第1弁部材96は、前記第2弁部材97よりも小径の円板状に形成されている。第1弁部材96の外周部は、前記第2弁部材97の第1弁座97bに対応する第1弁部96aになっている。第1弁部96aを含む板状部を、「弁板部」という。また、第1弁部材96の弁板部の中央部の上面には、中実状の連動軸部96bが同心状に一体形成されている。また、第1弁部材96の弁板部の外周縁の下面には、円筒状の周壁部96cが同心状に一体形成されている。   The first valve member 96 will be described. The first valve member 96 is formed in a disk shape having a smaller diameter than the second valve member 97. An outer peripheral portion of the first valve member 96 is a first valve portion 96 a corresponding to the first valve seat 97 b of the second valve member 97. The plate-like portion including the first valve portion 96a is referred to as “valve plate portion”. Further, a solid interlocking shaft portion 96 b is integrally formed concentrically on the upper surface of the central portion of the valve plate portion of the first valve member 96. Further, a cylindrical peripheral wall portion 96c is integrally formed concentrically on the lower surface of the outer peripheral edge of the valve plate portion of the first valve member 96.

前記第1弁部材96は、前記第2弁部材97の下側部に配置されている。第1弁部材96の第1弁部96aは、前記第2弁部材97の第1弁座97bに対して着座及び離座可能となっている。また、第1弁部材96の連動軸部96bは、前記第2弁部材97の連動軸部97c内に所定の隙間を介して遊嵌状に配置されている。両連動軸部96b、97cの相互間の環状隙間は、第1流通路(「上側の第1流通路」という)114になっている。上側の第1流通路114は、両連動軸部96b、97cの相互間を上下方向(軸方向)に連通する流通路に相当する。また、第1弁部材96の周壁部96cは、前記第2弁部材97の筒状壁部97e内に対して所定の隙間を介して遊嵌状に配置されている。周壁部96cと筒状壁部97eとの間の環状隙間は、第1流通路(「下側の第1流通路」という)115になっている。下側の第1流通路115は、周壁部96cと筒状壁部97eとの間を上下方向(軸方向)に連通する流通路に相当する。   The first valve member 96 is disposed on the lower side of the second valve member 97. The first valve portion 96 a of the first valve member 96 can be seated and separated from the first valve seat 97 b of the second valve member 97. Further, the interlocking shaft portion 96b of the first valve member 96 is disposed loosely in the interlocking shaft portion 97c of the second valve member 97 through a predetermined gap. An annular gap between the interlocking shaft portions 96b and 97c is a first flow passage (referred to as an “upper first flow passage”) 114. The upper first flow passage 114 corresponds to a flow passage communicating between the interlocking shaft portions 96b and 97c in the vertical direction (axial direction). Further, the peripheral wall portion 96c of the first valve member 96 is disposed in a loosely fitted manner with a predetermined gap with respect to the cylindrical wall portion 97e of the second valve member 97. An annular gap between the peripheral wall portion 96 c and the cylindrical wall portion 97 e is a first flow passage (referred to as a “lower first flow passage”) 115. The lower first flow passage 115 corresponds to a flow passage communicating in the vertical direction (axial direction) between the peripheral wall portion 96c and the cylindrical wall portion 97e.

前記第1弁部材96の開弁時すなわち前記第2弁部材97の第1弁座97bに対する第1弁部96aの離座時において、第1弁座97bと第1弁部96aとの間における第1連通路116が開かれる(図5参照)。すなわち、第1連通路116は、第1弁座97bと第1弁部96aとの間を径方向に連通する連通路で、第1弁部材96によって開閉される。また、第1連通路116は、前記下側の第1流通路115を介して弁ハウジング70の内部空間81に連通されるとともに、前記上側の第1流通路114を介して前記連結ハウジング55の内部空間80に連通される。これにより、弁ハウジング70の内部空間81と前記連結ハウジング55の内部空間80とが連通される。   When the first valve member 96 is opened, that is, when the first valve portion 96a is separated from the first valve seat 97b of the second valve member 97, the first valve member 96b is located between the first valve seat 97b and the first valve portion 96a. The first communication passage 116 is opened (see FIG. 5). That is, the first communication passage 116 is a communication passage that communicates between the first valve seat 97b and the first valve portion 96a in the radial direction, and is opened and closed by the first valve member 96. The first communication passage 116 is communicated with the internal space 81 of the valve housing 70 via the lower first flow passage 115, and the connection housing 55 is connected via the upper first flow passage 114. It communicates with the internal space 80. Thereby, the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 are communicated.

図3に示すように、前記第1弁部材96の第1弁部96aと前記蓋板78との軸方向(上下方向)の対向面間には、コイルスプリングからなる第1スプリング118が介装されている。第1スプリング118は、常に第1弁部材96を上方すなわち閉弁方向に付勢している。また、第1スプリング118は、前記第2スプリング112に対して二重環状をなすように配置されている(図4参照)。なお、第1スプリング118は本明細書でいう「第1付勢手段」に相当する。   As shown in FIG. 3, a first spring 118 made of a coil spring is interposed between the axial surfaces (vertical directions) of the first valve portion 96 a of the first valve member 96 and the lid plate 78. Has been. The first spring 118 always urges the first valve member 96 upward, that is, in the valve closing direction. The first spring 118 is disposed so as to form a double ring shape with respect to the second spring 112 (see FIG. 4). The first spring 118 corresponds to the “first urging means” in this specification.

図3に示すように、前記第1弁部材96及び前記第2弁部材97の閉弁時において、第1弁部材96の連動軸部96bの上端部が第2弁部材97の連動軸部97cの上端面から上方へ突出するように設定されている。したがって、前記ステップモータ53(図2参照)の作動板68に対する第1弁部材96の連動軸部96bの間隔は、同じく第2弁部材97の連動軸部97cの間隔よりも小さくなっている。なお、作動板68は、第2弁部材97の連動軸部97cの外径よりも大きくかつ前記第3弁部材98の内径よりも小さい外径で形成されている。   As shown in FIG. 3, when the first valve member 96 and the second valve member 97 are closed, the upper end portion of the interlocking shaft portion 96 b of the first valve member 96 is connected to the interlocking shaft portion 97 c of the second valve member 97. It is set so as to protrude upward from the upper end surface. Therefore, the interval of the interlocking shaft portion 96b of the first valve member 96 with respect to the operating plate 68 of the step motor 53 (see FIG. 2) is also smaller than the interval of the interlocking shaft portion 97c of the second valve member 97. The operating plate 68 is formed with an outer diameter larger than the outer diameter of the interlocking shaft portion 97c of the second valve member 97 and smaller than the inner diameter of the third valve member 98.

前記第1弁部材96の第1弁部96aの上面には、ゴム状弾性体からなる円環状の第1シール部材120が同心状にかつ接着等により装着されている。第1シール部材120は、断面四角形状に形成されている。また、第1シール部材120は、前記第2弁部材97の第1弁座97bに対応している。したがって、第1弁部材96の閉弁時において、第2弁部材97の第1弁座97bと第1弁部材96の第1弁部96aとの間が第1シール部材120を介して弾性的にシールされる。また、第1弁部材96の開弁時において、第1シール部材120は、第2弁部材97の第1弁座97bから離れる(図5参照)。   On the upper surface of the first valve portion 96a of the first valve member 96, an annular first seal member 120 made of a rubber-like elastic body is mounted concentrically and by adhesion or the like. The first seal member 120 is formed in a square cross section. The first seal member 120 corresponds to the first valve seat 97 b of the second valve member 97. Therefore, when the first valve member 96 is closed, the space between the first valve seat 97b of the second valve member 97 and the first valve portion 96a of the first valve member 96 is elastic through the first seal member 120. Sealed. Further, when the first valve member 96 is opened, the first seal member 120 is separated from the first valve seat 97b of the second valve member 97 (see FIG. 5).

前記第1シール部材120と前記第1スプリング118とは、軸方向すなわち上下方向に対応する位置関係をもって配置されている(図9参照)。すなわち、第1シール部材120の中心径と第1スプリング118のコイル径(コイル部の中心径)とが、同等又は近似する大きさに設定されている。なお、第1シール部材120は、第1弁部96aに代えて第1弁座97bに装着することもできる。   The first seal member 120 and the first spring 118 are arranged with a positional relationship corresponding to the axial direction, that is, the vertical direction (see FIG. 9). That is, the center diameter of the first seal member 120 and the coil diameter of the first spring 118 (the center diameter of the coil portion) are set to the same or approximate size. The first seal member 120 can be attached to the first valve seat 97b instead of the first valve portion 96a.

前記第3弁部材98の下面には、ゴム状弾性体からなる円環状のシール体122が同心状にかつ接着等により装着されている。シール体122は、円環板状の基板部122aと、その基板部122aの下面側に二重環状に突出された内環側シール突起122bと外環側シール突起122cとを有している。基板部122aは、断面横長四角形状に形成されている。また、両シール突起122b、122cは断面半円状に形成されている。また、内環側シール突起122bは、前記第2弁部材97の第2弁部97aに対応している。また、外環側シール突起122cは、前記弁ハウジング70の第3弁座100に対応している。なお、第3弁部材98は、シール体122が装着された弁部材に相当する。   An annular seal body 122 made of a rubber-like elastic body is concentrically attached to the lower surface of the third valve member 98 by adhesion or the like. The seal body 122 includes an annular plate-shaped substrate portion 122a, and an inner ring-side seal projection 122b and an outer ring-side seal projection 122c that project in a double annular shape on the lower surface side of the substrate portion 122a. The substrate portion 122a is formed in a horizontally long cross-sectional shape. Both seal protrusions 122b and 122c are formed in a semicircular cross section. The inner ring side seal protrusion 122 b corresponds to the second valve portion 97 a of the second valve member 97. Further, the outer ring side seal projection 122 c corresponds to the third valve seat 100 of the valve housing 70. The third valve member 98 corresponds to a valve member to which the seal body 122 is attached.

前記第2弁部材97の閉弁時において、第3弁部材98の第2弁座98bと第2弁部材97の第2弁部97aとの間が内環側シール突起122bを介して弾性的にシールされる。また、第2弁部材97の開弁時において、第2弁部材97の第2弁部97aは、内環側シール突起122bから離れる(図6参照)。なお、内環側シール突起122bは本明細書でいう「内環側シール部材」、「第2シール部材」に相当する。   When the second valve member 97 is closed, the space between the second valve seat 98b of the third valve member 98 and the second valve portion 97a of the second valve member 97 is elastic through the inner ring side seal protrusion 122b. Sealed. Further, when the second valve member 97 is opened, the second valve portion 97a of the second valve member 97 is separated from the inner ring side seal protrusion 122b (see FIG. 6). The inner ring side seal protrusion 122b corresponds to “inner ring side seal member” and “second seal member” in this specification.

前記第3弁部材98の閉弁時において、弁ハウジング70の第3弁座100と第3弁部材98の第3弁部98aとの間が外環側シール突起122cを介して弾性的にシールされる(図9参照)。また、第3弁部材98の開弁時において、外環側シール突起122cは、弁ハウジング70の第3弁座100から離れる(図7参照)。なお、外環側シール突起122cは本明細書でいう「外環側シール部材」、「第3シール部材」に相当する。   When the third valve member 98 is closed, the space between the third valve seat 100 of the valve housing 70 and the third valve portion 98a of the third valve member 98 is elastically sealed through the outer ring side seal protrusion 122c. (See FIG. 9). Further, when the third valve member 98 is opened, the outer ring side seal protrusion 122c is separated from the third valve seat 100 of the valve housing 70 (see FIG. 7). The outer ring side seal protrusion 122c corresponds to “outer ring side seal member” and “third seal member” in this specification.

前記内環側シール突起122bと前記第2スプリング112とは、軸方向すなわち上下方向に対応する位置関係をもって配置されている(図9参照)。すなわち、内環側シール突起122bの中心径と第2スプリング112のコイル径(コイル部の中心径)とが、同等又は近似する大きさに設定されている。   The inner ring side seal protrusion 122b and the second spring 112 are arranged with a positional relationship corresponding to the axial direction, that is, the vertical direction (see FIG. 9). That is, the center diameter of the inner ring-side seal protrusion 122b and the coil diameter of the second spring 112 (center diameter of the coil portion) are set to the same or approximate size.

前記外環側シール突起122cと前記第3スプリング103とは、軸方向すなわち上下方向に対応する位置関係をもって配置されている(図9参照)。さらに、第3スプリング103は、その付勢力が前記シール体122の内環側シール突起122bと外環側シール突起122cとの間の中間部に作用するように配置されている。すなわち、内環側シール突起122bの中心径と外環側シール突起122cの中心径との間の中間径と、第3スプリング103のコイル径(コイル部の中心径)とが、同等又は近似する大きさに設定されている。これにともない、前記第2弁部材97を付勢する前記第2スプリング112と前記第3弁部材98を付勢する第3スプリング103とは、互いの付勢力が対向方向にかつその対向方向に交差する方向(コイル径方向)に隣接した部位に作用するように配置されている。   The outer ring side seal projection 122c and the third spring 103 are arranged with a positional relationship corresponding to the axial direction, that is, the vertical direction (see FIG. 9). Further, the third spring 103 is arranged so that the urging force acts on an intermediate portion between the inner ring side seal projection 122 b and the outer ring side seal projection 122 c of the seal body 122. That is, the intermediate diameter between the center diameter of the inner ring side seal protrusion 122b and the center diameter of the outer ring side seal protrusion 122c and the coil diameter of the third spring 103 (center diameter of the coil portion) are equal or approximate. The size is set. Accordingly, the second spring 112 that urges the second valve member 97 and the third spring 103 that urges the third valve member 98 have a biasing force in the opposite direction and in the opposite direction. It arrange | positions so that it may act on the site | part adjacent to the direction (coil radial direction) which cross | intersects.

前記した弁ハウジング70、第1弁部材96、第2弁部材97及び第3弁部材98は、それぞれ樹脂成形により形成された樹脂成形品からなる。また、図9に示すように、第2弁部材97の第2弁部97a及び第1弁座97bを含む弁板部が薄肉板状に形成されている。すなわち、第2弁部材97の弁板部は、内環側シール突起122b及び第1シール部材120の接離方向(軸方向、上下方向)に薄肉板状に形成されている。なお、第2弁部97aは、前記シール体122の内環側シール突起122bが接離される当接部に相当する。また、第1弁座97bは、前記第1シール部材120が接離される当接部に相当する。また、内環側シール突起122b及び第1シール部材120の接離方向は、第2弁部材97の開閉方向に相当する。   The valve housing 70, the first valve member 96, the second valve member 97, and the third valve member 98 are each formed of a resin molded product formed by resin molding. Further, as shown in FIG. 9, the valve plate portion including the second valve portion 97a and the first valve seat 97b of the second valve member 97 is formed in a thin plate shape. That is, the valve plate portion of the second valve member 97 is formed in a thin plate shape in the contact / separation direction (axial direction, vertical direction) of the inner ring side seal protrusion 122b and the first seal member 120. The second valve portion 97a corresponds to a contact portion to which the inner ring side seal projection 122b of the seal body 122 is brought into contact with and separated from. The first valve seat 97b corresponds to an abutting portion where the first seal member 120 is contacted and separated. The contact / separation direction of the inner ring side seal protrusion 122b and the first seal member 120 corresponds to the opening / closing direction of the second valve member 97.

また、前記弁ハウジング70の第3弁座100が薄肉板状に形成されている。すなわち、第3弁座100は、外環側シール突起122cの接離方向(軸方向、上下方向)に薄肉板状に形成されている。なお、第3弁座100は、前記シール体122の外環側シール突起122cが接離される当接部に相当する。また、外環側シール突起122cの接離方向は、第3弁部材98の開閉方向に相当する。   The third valve seat 100 of the valve housing 70 is formed in a thin plate shape. That is, the third valve seat 100 is formed in a thin plate shape in the contact / separation direction (axial direction, vertical direction) of the outer ring side seal projection 122c. The third valve seat 100 corresponds to an abutting portion to which the outer ring side seal projection 122c of the seal body 122 is contacted and separated. The contact / separation direction of the outer ring side seal projection 122c corresponds to the opening / closing direction of the third valve member 98.

本実施形態では、前記第1弁部材96の第1弁部96aを含む弁板部が薄肉板状に形成されている。すなわち、第1弁部材96の弁板部は、第1弁部材96の開閉方向(軸方向、上下方向)に薄肉板状に形成されている。なお、第1弁部96aは、前記第1シール部材120が装着される装着部に相当する。   In the present embodiment, the valve plate portion including the first valve portion 96a of the first valve member 96 is formed in a thin plate shape. That is, the valve plate portion of the first valve member 96 is formed in a thin plate shape in the opening / closing direction (axial direction, vertical direction) of the first valve member 96. The first valve portion 96a corresponds to a mounting portion on which the first seal member 120 is mounted.

また、前記第3弁部材98の第3弁部98a及び第2弁座98bを含む弁板部が薄肉板状に形成されている。すなわち、第3弁部材98の弁板部は、第3弁部材98の開閉方向(軸方向、上下方向)に薄肉板状に形成されている。なお、第3弁部98a及び第2弁座98bは、前記シール体122が装着される装着部に相当する。   The valve plate portion including the third valve portion 98a and the second valve seat 98b of the third valve member 98 is formed in a thin plate shape. That is, the valve plate portion of the third valve member 98 is formed in a thin plate shape in the opening / closing direction (axial direction, vertical direction) of the third valve member 98. The third valve portion 98a and the second valve seat 98b correspond to a mounting portion to which the seal body 122 is mounted.

前記流量制御弁38は、前記蒸発燃料処理装置12における蒸発燃料通路31における上流側(燃料タンク15側)の通路部31aの下流側端部と下流側(キャニスタ34側)の通路部31bとの間に介装される(図1参照)。すなわち、上流側の通路部31aの下流側端部が前記弁ハウジング70の第1通路部87に連通され、また、下流側(キャニスタ34側)の通路部31bの上流側端部が弁ハウジング70の第2通路部88に連通される。なお、弁ハウジング70は車体側の固定側部材(図示省略)にボルト等によって取付けられる。   The flow rate control valve 38 is formed between the downstream end portion of the upstream side (fuel tank 15 side) passage portion 31a and the downstream side (canister 34 side) passage portion 31b of the evaporated fuel passage 31 in the evaporated fuel processing device 12. (See FIG. 1). That is, the downstream end portion of the upstream passage portion 31 a communicates with the first passage portion 87 of the valve housing 70, and the upstream end portion of the downstream (canister 34 side) passage portion 31 b is the valve housing 70. The second passage portion 88 is communicated. The valve housing 70 is attached to a stationary member (not shown) on the vehicle body side with a bolt or the like.

次に、前記流量制御弁38の動作について説明する。
(1)全弁部材96、97、98の閉弁状態
車両の駐車中にあっては、流量制御弁38の弁機構部51における第1弁部材96、第2弁部材97及び第3弁部材98が閉弁状態に維持される(図2及び図3参照)。すなわち、第1弁部材96は、第1スプリング118の付勢力により閉弁状態に維持される。また、第2弁部材97は、第2スプリング112の付勢力により閉弁状態に維持される。また、第3弁部材98は、第3スプリング103の付勢力により第1弁部材96の閉方向と逆方向を閉方向として閉弁状態に維持される。また、ステップモータ53の作動軸67は、後退位置(上昇位置)にあり、作動軸67の作動板68が、第1弁部材96の連動軸部96b及び第2弁部材97の連動軸部97cから離れた位置にある。したがって、蒸発燃料処理装置12(図1参照)において、燃料タンク15内の蒸発燃料が蒸発燃料通路31を介してキャニスタ34内に流入されることがなく、また逆に、キャニスタ34内の空気が蒸発燃料通路31を介して燃料タンク15内に流入されることもない。なお、全弁部材96、97、98の閉弁時において、第1通路部87の内圧(燃料タンク15側の圧力)P1が第2通路部88の内圧(キャニスタ34側の圧力)P2に比して所定値以上大きくなったり、あるいは、所定値以上小さくなったりした場合における流量制御弁38のリリーフ機能については後で説明する。
Next, the operation of the flow control valve 38 will be described.
(1) Closed state of all valve members 96, 97, 98 While the vehicle is parked, the first valve member 96, the second valve member 97, and the third valve member in the valve mechanism 51 of the flow control valve 38. 98 is kept closed (see FIGS. 2 and 3). That is, the first valve member 96 is maintained in a closed state by the urging force of the first spring 118. Further, the second valve member 97 is maintained in a closed state by the urging force of the second spring 112. Further, the third valve member 98 is maintained in the closed state by the urging force of the third spring 103 with the direction opposite to the closing direction of the first valve member 96 as the closing direction. Further, the operating shaft 67 of the step motor 53 is in the retracted position (upward position), and the operating plate 68 of the operating shaft 67 is connected to the interlocking shaft portion 96b of the first valve member 96 and the interlocking shaft portion 97c of the second valve member 97. It is in the position away from. Therefore, in the evaporated fuel processing apparatus 12 (see FIG. 1), the evaporated fuel in the fuel tank 15 does not flow into the canister 34 via the evaporated fuel passage 31, and conversely, the air in the canister 34 There is no flow into the fuel tank 15 via the evaporated fuel passage 31. When all the valve members 96, 97, 98 are closed, the internal pressure (pressure on the fuel tank 15 side) P1 of the first passage portion 87 is larger than the internal pressure (pressure on the canister 34 side) P2 of the second passage portion 88. The relief function of the flow rate control valve 38 when it becomes larger than the predetermined value or smaller than the predetermined value will be described later.

(2)第1弁部材96の開弁状態(他の弁部材97、98は閉弁状態)
車両の走行中において、蒸発燃料通路31(図1参照)を介して燃料タンク15側からキャニスタ34側へ小流量の蒸発燃料を流すときは、ECU45から流量制御弁38のステップモータ53に第1段目の開弁信号が入力され、ロータ61が開弁方向に回転される。すると、作動軸67が後退位置(上昇位置)から第1段目の進出位置(下動位置)に移動される(図5参照)。これにともない、作動軸67の作動板68が、第1弁部材96の連動軸部96bに当接して該第1弁部材96を第1スプリング118の付勢に抗して押下げる。これにより、第1弁部材96が開弁されることで、弁ハウジング70の内部空間81と連結ハウジング55の内部空間80とが連通される。詳しくは、第1連通路116が開かれることで、弁ハウジング70の内部空間81に連通する下側の第1流通路115と、連結ハウジング55の内部空間80に連通する上側の第1流通路114とが連通されることになる。このとき、作動軸67の作動板68は、第2弁部材97の連動軸部97cに対して所定の隙間を隔てて離れている。また、連結ハウジング55の内部空間80は、常に、第3流通路105、第2開口孔92及び第2空間部84を介して第2通路部88に連通している。
(2) Opening state of the first valve member 96 (the other valve members 97 and 98 are closed)
When a small flow rate of evaporated fuel is allowed to flow from the fuel tank 15 side to the canister 34 side through the evaporated fuel passage 31 (see FIG. 1) while the vehicle is traveling, the ECU 45 sends the first flow to the step motor 53 of the flow rate control valve 38. The valve opening signal at the stage is input, and the rotor 61 is rotated in the valve opening direction. Then, the operating shaft 67 is moved from the retracted position (upward position) to the first-stage advance position (downward movement position) (see FIG. 5). Accordingly, the operating plate 68 of the operating shaft 67 contacts the interlocking shaft portion 96 b of the first valve member 96 and pushes down the first valve member 96 against the bias of the first spring 118. As a result, the first valve member 96 is opened, so that the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 communicate with each other. Specifically, when the first communication passage 116 is opened, a lower first flow passage 115 that communicates with the internal space 81 of the valve housing 70 and an upper first flow passage that communicates with the internal space 80 of the connection housing 55. 114 is communicated. At this time, the operating plate 68 of the operating shaft 67 is separated from the interlocking shaft portion 97c of the second valve member 97 with a predetermined gap. Further, the internal space 80 of the connection housing 55 is always in communication with the second passage portion 88 through the third flow passage 105, the second opening hole 92, and the second space portion 84.

したがって、弁ハウジング70の第1通路部87からの蒸発燃料は、第1空間部85、第1開口孔90、弁ハウジング70の内部空間81、下側の第1流通路115、第1連通路116、上側の第1流通路114、作動板68と第2弁部材97の連動軸部97cとの間の隙間、連結ハウジング55の内部空間80、第3流通路105、第2開口孔92、第2空間部84を通って、第2通路部88へ流れる(図5中、矢印参照)。このときの蒸発燃料の流量は、第1弁部材96と第2弁部材97との間に形成される一連状の通路における最小の通路断面積に応じた流量となる。   Accordingly, the evaporated fuel from the first passage portion 87 of the valve housing 70 is the first space portion 85, the first opening 90, the inner space 81 of the valve housing 70, the lower first flow passage 115, the first communication passage. 116, the upper first flow passage 114, the gap between the operating plate 68 and the interlocking shaft portion 97c of the second valve member 97, the internal space 80 of the connection housing 55, the third flow passage 105, the second opening hole 92, It flows to the 2nd channel | path part 88 through the 2nd space part 84 (refer arrow in FIG. 5). The flow rate of the evaporated fuel at this time is a flow rate corresponding to the minimum passage cross-sectional area in a series of passages formed between the first valve member 96 and the second valve member 97.

(3)第1弁部材96及び第2弁部材97の開弁状態(第3弁部材98は閉弁状態)
車両の走行中又は給油中において、蒸発燃料通路31(図1参照)を介して燃料タンク15側からキャニスタ34側へ大流量の蒸発燃料を流すときは、前記(1)項に続いて、ECU45から流量制御弁38のステップモータ53に第2段目の開弁信号が入力され、ロータ61が開弁方向に回転される。すると、作動軸67が第1段目の進出位置からその下側の第2段目の進出位置(下動位置)に移動される(図6参照)。これにともない、作動軸67の作動板68が、第1弁部材96の連動軸部96bに当接したまま、第2弁部材97の連動軸部97cに当接して両弁部材96、97を両スプリング118、112の付勢に抗して押下げる。これにより、第2弁部材97が開弁されることで、弁ハウジング70の内部空間81と連結ハウジング55の内部空間80とが連通される。詳しくは、第2連通路110が開かれることで、弁ハウジング70の内部空間81に連通する第2流通路109と連結ハウジング55の内部空間80とが連通されることになる。
(3) Opened state of the first valve member 96 and the second valve member 97 (the third valve member 98 is closed)
When a large flow of evaporated fuel is allowed to flow from the fuel tank 15 side to the canister 34 side through the evaporated fuel passage 31 (see FIG. 1) while the vehicle is traveling or refueling, the ECU 45 Is input to the step motor 53 of the flow control valve 38 from the second stage, and the rotor 61 is rotated in the valve opening direction. Then, the operating shaft 67 is moved from the first-stage advance position to the second-stage advance position (downward movement position) below (see FIG. 6). Accordingly, the operating plate 68 of the operating shaft 67 is in contact with the interlocking shaft portion 97c of the second valve member 97 while being in contact with the interlocking shaft portion 96b of the first valve member 96. The springs 118 and 112 are pushed down against the urging force. As a result, the second valve member 97 is opened, so that the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 communicate with each other. Specifically, when the second communication passage 110 is opened, the second flow passage 109 communicating with the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 are communicated.

したがって、弁ハウジング70の第1通路部87からの蒸発燃料は、第1空間部85、第1開口孔90、弁ハウジング70の内部空間81、第2流通路109、第2連通路110、連結ハウジング55の内部空間80、第3流通路105、第2開口孔92、第2空間部84を通って、第2通路部88へ流れる(図6中、矢印参照)。このときの蒸発燃料の流量は、第2弁部材97と第3弁部材98との間に形成される一連状の通路における最小の通路断面積に応じた流量となる。   Therefore, the evaporated fuel from the first passage portion 87 of the valve housing 70 is connected to the first space portion 85, the first opening 90, the internal space 81 of the valve housing 70, the second flow passage 109, the second communication passage 110, and the connection. It flows to the second passage portion 88 through the internal space 80 of the housing 55, the third flow passage 105, the second opening hole 92, and the second space portion 84 (see arrows in FIG. 6). The flow rate of the evaporated fuel at this time is a flow rate corresponding to the minimum passage cross-sectional area in a series of passages formed between the second valve member 97 and the third valve member 98.

また、第1弁部材96の開弁により第1弁部材96と第2弁部材97との間に形成される一連状の通路における最小の通路断面積をAとし、第2弁部材97の開弁により第2弁部材97と第3弁部材98との間に形成される一連状の通路における最小の通路断面積をBとした場合、通路断面積Aと通路断面積Bは、
A<B
の関係を満たすように設定されている。したがって、第1弁部材96の開弁によって小流量を制御し、また、第2弁部材97の開弁によって小流量の2倍以上の大流量を制御することができる。
In addition, the minimum passage cross-sectional area in a series of passages formed between the first valve member 96 and the second valve member 97 by opening the first valve member 96 is A, and the second valve member 97 is opened. When the minimum passage sectional area in the series of passages formed between the second valve member 97 and the third valve member 98 by the valve is B, the passage sectional area A and the passage sectional area B are:
A <B
It is set to satisfy the relationship. Therefore, the small flow rate can be controlled by opening the first valve member 96, and the large flow rate more than twice the small flow rate can be controlled by opening the second valve member 97.

また、両弁部材96、97の開弁状態(図6参照)において、前記ECU45(図1参照)から流量制御弁38のステップモータ53に閉弁信号が入力され、ロータ61が閉弁方向(開弁方向と逆方向)に回転されると、作動軸67が後退(上動)される結果、第2弁部材97が第2スプリング112の付勢力により閉弁された後(図5参照)、第1弁部材96が第1スプリング118の付勢力により閉弁される(図2及び図3参照)。   Further, in a valve open state (see FIG. 6) of both valve members 96 and 97, a valve closing signal is input from the ECU 45 (see FIG. 1) to the step motor 53 of the flow control valve 38, and the rotor 61 is closed (see FIG. 6). When rotated in the direction opposite to the valve opening direction), the operating shaft 67 is retracted (moved upward), so that the second valve member 97 is closed by the urging force of the second spring 112 (see FIG. 5). The first valve member 96 is closed by the biasing force of the first spring 118 (see FIGS. 2 and 3).

(4)全弁部材96、97、98の閉弁状態において、第1通路部87の内圧(燃料タンク15側の圧力)P1が第2通路部88の内圧(キャニスタ34側の圧力)P2に比して所定値以上大きくなった場合
全弁部材96、97、98の閉弁状態すなわち車両の駐車中(図2及び図3参照)において、第1通路部87の内圧P1が第2通路部88の内圧P2に比して所定値Pα以上大きくなった場合について説明する。なお、この場合の内圧P1から内圧P2を引いた差圧Paと所定値Pαとの関係は、
Pa=P1−P2
Pα<Pa
で表される。
(4) When all the valve members 96, 97, 98 are closed, the internal pressure (pressure on the fuel tank 15 side) P1 of the first passage portion 87 becomes the internal pressure (pressure on the canister 34 side) P2 of the second passage portion 88. When the pressure is larger than a predetermined value, the internal pressure P1 of the first passage portion 87 is set to the second passage portion in the closed state of all the valve members 96, 97, 98, that is, when the vehicle is parked (see FIGS. 2 and 3). A case where the pressure becomes greater than the predetermined value Pα as compared with the internal pressure P2 of 88 will be described. In this case, the relationship between the differential pressure Pa obtained by subtracting the internal pressure P2 from the internal pressure P1 and the predetermined value Pα is:
Pa = P1-P2
Pα <Pa
It is represented by

この場合、所定値Pα以上の差圧Paによって、第3弁部材98が第3スプリング103の付勢力に抗して開弁される(図7参照)。これにより、第3連通路101が開かれることで、第2流通路109と第2開口孔92とが連通されることになる。したがって、内圧P1が第2通路部88へ逃がされることにより、内圧P1と内圧P2との差圧Paを所定値Pα以下に制御することができる。すなわち、第3弁部材98が、内圧P1が内圧P2に比して所定値Pα以上大きくなった場合に開弁する正方向リリーフ弁として機能する。なお、差圧Paが所定値Pα以下になれば、第3弁部材98が第3スプリング103の付勢力により閉弁される(図3参照)。   In this case, the third valve member 98 is opened against the urging force of the third spring 103 by the differential pressure Pa equal to or greater than the predetermined value Pα (see FIG. 7). Thereby, the 3rd communication path 101 is opened, and the 2nd flow path 109 and the 2nd opening hole 92 are connected. Therefore, when the internal pressure P1 is released to the second passage portion 88, the differential pressure Pa between the internal pressure P1 and the internal pressure P2 can be controlled to be equal to or less than the predetermined value Pα. That is, the third valve member 98 functions as a positive-direction relief valve that opens when the internal pressure P1 is greater than the internal pressure P2 by a predetermined value Pα or more. If the differential pressure Pa is equal to or less than the predetermined value Pα, the third valve member 98 is closed by the urging force of the third spring 103 (see FIG. 3).

(5)全弁部材96、97、98の閉弁状態において、第1通路部87の内圧(燃料タンク15側の圧力)P1が第2通路部88の内圧(キャニスタ34側の圧力)P2に比して所定値以上小さくなった場合
全弁部材96、97、98の閉弁状態すなわち車両の駐車中(図2及び図3参照)において、第1通路部87の内圧P1が第2通路部88の内圧P2に比して所定値Pβ以上小さくなった場合について説明する。なお、この場合の内圧P2から内圧P1を引いた差圧Pbと所定値Pβとの関係は、
Pb=P2−P1
Pβ<Pb
で表される。
(5) When all the valve members 96, 97, 98 are closed, the internal pressure (pressure on the fuel tank 15 side) P1 of the first passage portion 87 becomes the internal pressure (pressure on the canister 34 side) P2 of the second passage portion 88. In the case where all the valve members 96, 97, 98 are closed, that is, when the vehicle is parked (see FIGS. 2 and 3), the internal pressure P1 of the first passage portion 87 is the second passage portion. A case where the pressure becomes smaller than the predetermined value Pβ as compared with the internal pressure P2 of 88 will be described. In this case, the relationship between the differential pressure Pb obtained by subtracting the internal pressure P1 from the internal pressure P2 and the predetermined value Pβ is:
Pb = P2-P1
Pβ <Pb
It is represented by

この場合、所定値Pβ以上の差圧Pbによって、第2弁部材97が第2スプリング112の付勢力に抗して開弁される(図8参照)。第2弁部材97の開弁にともない、第1弁部材96が第1スプリング118の付勢力に抗して押下げられる。第2弁部材97の開弁により、連結ハウジング55の内部空間80と弁ハウジング70の内部空間81とが連通される。詳しくは、第2連通路110が開かれることで、弁ハウジング70の内部空間81に連通する第2流通路109と連結ハウジング55の内部空間80とが連通されることになる。したがって、内圧P2が第1通路部87へ逃がされることにより、内圧P1と内圧P2との差圧Pbを所定値Pβ以下に制御することができる。すなわち、第2弁部材97が、内圧P1が内圧P2に比して所定値Pβ以上小さくなった場合に開弁する逆方向リリーフ弁として機能する。なお、差圧Pbが所定値Pβ以下になれば、第2弁部材97が第2スプリング112の付勢力により閉弁されるとともに、第1弁部材96が第1スプリング118の付勢力により押上げられる(図3参照)。   In this case, the second valve member 97 is opened against the urging force of the second spring 112 by the differential pressure Pb equal to or greater than the predetermined value Pβ (see FIG. 8). As the second valve member 97 is opened, the first valve member 96 is pushed down against the urging force of the first spring 118. By opening the second valve member 97, the internal space 80 of the connection housing 55 and the internal space 81 of the valve housing 70 are communicated with each other. Specifically, when the second communication passage 110 is opened, the second flow passage 109 communicating with the internal space 81 of the valve housing 70 and the internal space 80 of the connection housing 55 are communicated. Therefore, when the internal pressure P2 is released to the first passage portion 87, the differential pressure Pb between the internal pressure P1 and the internal pressure P2 can be controlled to be equal to or less than the predetermined value Pβ. That is, the second valve member 97 functions as a reverse relief valve that opens when the internal pressure P1 is smaller than the internal pressure P2 by a predetermined value Pβ or more. If the differential pressure Pb becomes equal to or less than the predetermined value Pβ, the second valve member 97 is closed by the urging force of the second spring 112 and the first valve member 96 is pushed up by the urging force of the first spring 118. (See FIG. 3).

前記した流量制御弁38によると、第1通路部87の内圧P1が第2通路部88の内圧P2に比べて所定値以上大きくなった場合には、第3弁部材98が第3スプリング103の付勢力に抗して開弁することによって、第1通路部87の内圧P1と第2通路部88の内圧P2との差圧を所定値以下に制御することができる(図7参照)。また、第1通路部87の内圧P1が第2通路部88の内圧P2に比べて所定値以上小さくなった場合には、第2弁部材97が第2スプリング112の付勢力に抗して開弁することによって、第1通路部87の内圧P1と第2通路部88の内圧P2との差圧を所定値以下に制御することができる。したがって、双方向リリーフ機能を備えることができる。なお、第1通路部87の内圧P1が第2通路部88の内圧P2に比べて所定値以上小さくなった場合において、第2弁部材97を開弁する構成としたが、第2弁部材97に代えて第1弁部材96を開弁する構成としてもよいし、第2弁部材96と第2弁部材97とを開弁する構成としてもよい。   According to the flow control valve 38 described above, when the internal pressure P1 of the first passage portion 87 becomes larger than the internal pressure P2 of the second passage portion 88 by a predetermined value or more, the third valve member 98 of the third spring 103 By opening the valve against the urging force, the differential pressure between the internal pressure P1 of the first passage portion 87 and the internal pressure P2 of the second passage portion 88 can be controlled to a predetermined value or less (see FIG. 7). When the internal pressure P1 of the first passage portion 87 becomes smaller than the internal pressure P2 of the second passage portion 88 by a predetermined value or more, the second valve member 97 opens against the urging force of the second spring 112. By controlling the pressure, the differential pressure between the internal pressure P1 of the first passage portion 87 and the internal pressure P2 of the second passage portion 88 can be controlled to a predetermined value or less. Therefore, a bidirectional relief function can be provided. Although the second valve member 97 is configured to open when the internal pressure P1 of the first passage portion 87 is smaller than the internal pressure P2 of the second passage portion 88 by a predetermined value or more, the second valve member 97 is configured to open. Instead of this, the first valve member 96 may be opened, or the second valve member 96 and the second valve member 97 may be opened.

また、第1弁部材96及び第2弁部材97がステップモータ53の作動板68によって段階的に開かれるものであるから、従来例の電磁弁(特許文献1参照)と比べて、流量の制御精度を向上することができる。   Further, since the first valve member 96 and the second valve member 97 are opened stepwise by the operation plate 68 of the step motor 53, the flow rate is controlled as compared with the conventional solenoid valve (see Patent Document 1). Accuracy can be improved.

また、第1弁部材96の第1弁部96aと該第1弁部96aが着座及び離座可能な第2弁部材97の第1弁座97bとの間に、その弁部材96の閉弁時において両者(96a,97b)間を弾性的にシールする第1シール部材120を設け、第1シール部材120と、そのシール部材120に対応する第1弁部材96を付勢する第1スプリング118とを軸方向に対応する位置関係をもって配置したものである。このため、第1弁部96aと第1弁座97bとの間の第1シール部材120によるシール部位に対して、軸方向に対応する位置関係をもって第1スプリング118の付勢力を作用させることにより、第1弁部96aと第1弁座97bとの間のシール性を向上することができる。このことは、高気密性が要求される流量制御弁38として有効である。   Further, the valve member 96 is closed between the first valve portion 96a of the first valve member 96 and the first valve seat 97b of the second valve member 97 on which the first valve portion 96a can be seated and separated. In some cases, a first seal member 120 that elastically seals between the two (96a, 97b) is provided, and a first spring 118 that biases the first seal member 120 and the first valve member 96 corresponding to the seal member 120 is provided. Are arranged with a positional relationship corresponding to the axial direction. For this reason, the biasing force of the first spring 118 is applied to the seal portion by the first seal member 120 between the first valve portion 96a and the first valve seat 97b with a positional relationship corresponding to the axial direction. The sealing performance between the first valve portion 96a and the first valve seat 97b can be improved. This is effective as the flow control valve 38 that requires high airtightness.

また、第2弁部材97の第2弁部97aと該第2弁部97aが着座及び離座可能な第3弁部材98の第2弁座98bとの間に、その弁部材97の閉弁時において両者(97a,98b)間を弾性的にシールするシール体122の内環側シール突起122bを設け、内環側シール突起122bと、そのシール突起122bに対応する第2弁部材97を付勢する第2スプリング112とを軸方向に対応する位置関係をもって配置したものである。このため、第2弁部97aと第2弁座98bとの間のシール体122の内環側シール突起122bによるシール部位に対して、軸方向に対応する位置関係をもって第2スプリング112の付勢力を作用させることにより、第2弁部97aと第2弁座98bとの間のシール性を向上することができる。このことは、高気密性が要求される流量制御弁38として有効である。   Further, the valve member 97 is closed between the second valve portion 97a of the second valve member 97 and the second valve seat 98b of the third valve member 98 on which the second valve portion 97a can be seated and separated. The inner ring side seal projection 122b of the seal body 122 that elastically seals between the two (97a, 98b) is provided, and the inner ring side seal projection 122b and the second valve member 97 corresponding to the seal projection 122b are attached. The second spring 112 is arranged with a positional relationship corresponding to the axial direction. For this reason, the biasing force of the second spring 112 has a positional relationship corresponding to the axial direction with respect to the seal portion by the inner ring side seal projection 122b of the seal body 122 between the second valve portion 97a and the second valve seat 98b. As a result, the sealing performance between the second valve portion 97a and the second valve seat 98b can be improved. This is effective as the flow control valve 38 that requires high airtightness.

また、第3弁部材98の第3弁部98aと該第3弁部98aが着座及び離座可能な弁ハウジング70の第3弁座100との間に、その弁部材97の閉弁時において両者(98a,100)間を弾性的にシールするシール体122の外環側シール突起122cを設け、外環側シール突起122cと、そのシール突起122cに対応する第3弁部材98を付勢する第3スプリング103とを軸方向に対応する位置関係をもって配置したものである。このため、第3弁部98aと第3弁座100との間のシール体122の外環側シール突起122cによるシール部位に対して、軸方向に対応する位置関係をもって第3スプリング103の付勢力を作用させることにより、第3弁部98aと第3弁座100との間のシール性を向上することができる。このことは、高気密性が要求される流量制御弁38として有効である。   Further, when the valve member 97 is closed between the third valve portion 98a of the third valve member 98 and the third valve seat 100 of the valve housing 70 in which the third valve portion 98a can be seated and separated. The outer ring side seal projection 122c of the seal body 122 that elastically seals between both (98a, 100) is provided, and the outer ring side seal projection 122c and the third valve member 98 corresponding to the seal projection 122c are urged. The third spring 103 is arranged with a positional relationship corresponding to the axial direction. For this reason, the biasing force of the third spring 103 has a positional relationship corresponding to the axial direction with respect to the seal portion by the outer ring side seal projection 122c of the seal body 122 between the third valve portion 98a and the third valve seat 100. As a result, the sealing performance between the third valve portion 98a and the third valve seat 100 can be improved. This is effective as the flow control valve 38 that requires high airtightness.

また、第1シール部材120が接離される第2弁部材97の第1弁座97bを含む弁板部を、樹脂成形により該シール部材120の接離方向に薄肉板状に形成したものである。したがって、第1シール部材120が接離される第2弁部材97の弁板部の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、第1シール部材120が当接する第2弁部材97の第1弁座97bの当接面の平面度が向上されるため、第1シール部材120と第1弁座97bとの間のシール性を向上することができる。   Further, the valve plate portion including the first valve seat 97b of the second valve member 97 with which the first seal member 120 is contacted and separated is formed into a thin plate shape in the contact and separation direction of the seal member 120 by resin molding. . Therefore, it is possible to reduce the amount of molding shrinkage deformation caused by resin molding of the valve plate portion of the second valve member 97 with which the first seal member 120 is contacted and separated, thereby preventing the occurrence of sink marks. As a result, the flatness of the contact surface of the first valve seat 97b of the second valve member 97 with which the first seal member 120 abuts is improved, so that the space between the first seal member 120 and the first valve seat 97b is improved. Sealability can be improved.

また、シール体122の内環側シール突起122bが接離される第2弁部材97の第2弁部97aを含む弁板部を、樹脂成形により該内環側シール突起122bの接離方向に薄肉板状に形成したものである。したがって、シール体122の内環側シール突起122bが接離される第2弁部材97の弁板部の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、シール体122の内環側シール突起122bが当接する第2弁部材97の第2弁部97aの当接面の平面度が向上されるため、シール体122の内環側シール突起122bと第2弁部97aとの間のシール性を向上することができる。   Further, the valve plate portion including the second valve portion 97a of the second valve member 97 to which the inner ring side seal projection 122b of the seal body 122 is contacted and separated is thinned in the contact and separation direction of the inner ring side seal projection 122b by resin molding. It is formed in a plate shape. Therefore, it is possible to reduce the amount of deformation due to resin molding of the valve plate portion of the second valve member 97 with which the inner ring side seal projection 122b of the seal body 122 is contacted and separated, thereby preventing the occurrence of sink marks. Accordingly, the flatness of the contact surface of the second valve portion 97a of the second valve member 97 with which the inner ring side seal protrusion 122b of the seal body 122 contacts is improved, and therefore the inner ring side seal protrusion 122b of the seal body 122 is improved. And the second valve portion 97a can be improved in sealing performance.

また、シール体122の外環側シール突起122cが接離される弁ハウジング70の第3弁座100を、樹脂成形により該外環側シール突起122cの接離方向に薄肉板状に形成したものである。したがって、シール体122の外環側シール突起122cが接離される弁ハウジング70の第3弁座100の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、シール体122の外環側シール突起122cが当接する弁ハウジング70の第3弁座100の当接面の平面度が向上されるため、シール体122の外環側シール突起122cと第3弁座100との間のシール性を向上することができる。   Further, the third valve seat 100 of the valve housing 70 to which the outer ring side seal projection 122c of the seal body 122 is contacted and separated is formed in a thin plate shape in the contact and separation direction of the outer ring side seal projection 122c by resin molding. is there. Accordingly, it is possible to reduce the amount of deformation due to resin molding of the third valve seat 100 of the valve housing 70 to which the outer ring side seal projection 122c of the seal body 122 is contacted and separated, thereby preventing the occurrence of sink marks. As a result, the flatness of the contact surface of the third valve seat 100 of the valve housing 70 with which the outer ring side seal protrusion 122c of the seal body 122 contacts is improved, so that the outer ring side seal protrusion 122c of the seal body 122 and the The sealing property between the three valve seats 100 can be improved.

また、第2弁部材97の第2弁部97aが接離される内環側シール突起122b、及び、弁ハウジング70の第3弁座100が接離される外環側シール突起122cが二重環状に一体形成されたシール体122を備えたものである。したがって、内環側シール突起122b及び外環側シール突起122cが二重環状に一体形成されたシール体122を備えることで、両シール突起122b、122cの同軸度が向上されるため、内環側シール突起122bと第2弁部97aとの間、及び、外環側シール突起122cと第3弁座100との間のシール性を向上することができる。   Further, the inner ring side seal protrusion 122b to which the second valve portion 97a of the second valve member 97 is contacted / separated and the outer ring side seal protrusion 122c to which the third valve seat 100 of the valve housing 70 is contacted / separated are double-annular. The seal body 122 is integrally formed. Accordingly, since the inner ring side seal projection 122b and the outer ring side seal projection 122c are provided with the seal body 122 integrally formed in a double ring shape, the coaxiality of both the seal projections 122b and 122c is improved. The sealing performance between the seal protrusion 122b and the second valve portion 97a and between the outer ring side seal protrusion 122c and the third valve seat 100 can be improved.

また、シール体122が装着された第3弁部材98を付勢する第3スプリング103は、その付勢力が内環側シール突起122bと外環側シール突起122cとの間の中間部に作用するように配置されている。したがって、シール体122の両シール突起122b、122cに作用する第3スプリング103の付勢力が均等化されるため、内環側シール突起122bと第2弁部97aとの間、及び、外環側シール突起122cと第3弁座100との間のシール性を向上することができる。   Further, the third spring 103 that urges the third valve member 98 to which the seal body 122 is attached has its urging force acting on an intermediate portion between the inner ring side seal projection 122b and the outer ring side seal projection 122c. Are arranged as follows. Therefore, since the urging force of the third spring 103 acting on both the seal protrusions 122b and 122c of the seal body 122 is equalized, the inner ring side seal protrusion 122b and the second valve portion 97a are arranged between the outer ring side and the outer ring side. The sealing performance between the seal protrusion 122c and the third valve seat 100 can be improved.

また、弁ハウジング70に、第3弁部材98が着座及び離座可能な円環状の第3弁座100が形成され、第3弁部材98に、第2弁部材97に形成された第2弁部97aが着座及び離座可能な円環状の第2弁座98bと、第3弁座100に着座及び離座可能な第3弁部98aとが共通の弁板部(板状部)に形成され、第3弁部材98の弁板部にシール体122を設け、シール体122の内環側シール突起122bを第2弁部材97の第2弁部97aが接離される第2シール部材とするとともに、該シール体122の外環側シール突起122cを第3弁座100に接離される第3シール部材としたとしたものである。したがって、第3弁部材98の弁板部(板状部)に設けたシール体122の内環側シール突起122bを第2シール部材とするとともに、そのシール体122の外環側シール突起122cを第3シール部材とすることで、第2シール部材(122b)と第2弁部材97の第2弁部97aとの間のシール性を向上するとともに、第3シール部材(122c)と弁ハウジング70の第3弁座100との間のシール性を向上することができる。なお、両シール突起122b、122cが当接する当接部は一部材とすることもできる。また、両シール突起122b、122cは、それぞれ独立したシール部材とすることもできる。   An annular third valve seat 100 on which the third valve member 98 can be seated and separated is formed on the valve housing 70, and the second valve formed on the second valve member 97 is formed on the third valve member 98. An annular second valve seat 98b on which the portion 97a can be seated and separated and a third valve portion 98a that can be seated on and separated from the third valve seat 100 are formed on a common valve plate portion (plate-shaped portion). The seal body 122 is provided on the valve plate portion of the third valve member 98, and the inner ring side seal protrusion 122b of the seal body 122 is used as the second seal member to which the second valve portion 97a of the second valve member 97 is contacted and separated. In addition, the outer ring side seal projection 122c of the seal body 122 is a third seal member that is brought into contact with and separated from the third valve seat 100. Accordingly, the inner ring side seal projection 122b of the seal body 122 provided on the valve plate portion (plate-shaped portion) of the third valve member 98 is used as the second seal member, and the outer ring side seal projection 122c of the seal body 122 is used. By using the third seal member, the sealing performance between the second seal member (122b) and the second valve portion 97a of the second valve member 97 is improved, and the third seal member (122c) and the valve housing 70 are improved. The sealing performance with the third valve seat 100 can be improved. In addition, the contact part which both seal protrusions 122b and 122c contact can also be made into one member. Further, both the seal protrusions 122b and 122c can be independent seal members.

また、第2弁部材97を付勢する第2スプリング112と第3弁部材98を付勢する第3スプリング103とは、互いの付勢力が対向方向にかつその対向方向に交差する方向(径方向)に隣接した部位に作用するように配置されている。したがって、第2スプリング112の付勢力と第3スプリング103の付勢力とを互い対向方向にかつその対向方向に交差する方向に隣接した部位に作用させることができるので、シール体122の内環側シール突起122bに対する付勢力を増大し、内環側シール突起122bと第2弁部材97の第2弁部97aとの間のシール性を向上することができる。   Further, the second spring 112 that urges the second valve member 97 and the third spring 103 that urges the third valve member 98 are in a direction (diameter in which the urging forces of the second spring 112 and the third spring 103 intersect each other in the opposing direction. It is arranged to act on the part adjacent to (direction). Accordingly, the urging force of the second spring 112 and the urging force of the third spring 103 can be applied to the portions adjacent to each other in the opposite direction and in the direction crossing the opposite direction. The urging force against the seal protrusion 122 b can be increased, and the sealing performance between the inner ring side seal protrusion 122 b and the second valve portion 97 a of the second valve member 97 can be improved.

また、第1シール部材120が接着等により装着される装着部である第1弁部材96の第1弁部96aを含む弁板部が樹脂成形により薄肉板状に形成されている。したがって、第1シール部材120が装着される第1弁部材96の弁板部の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、第1シール部材120を装着する第1弁部材96の第1弁部96aの装着面の平面度が向上されるため、第1シール部材120と第1弁部96aとの間の装着性(接着性)を向上することができる。   Further, the valve plate portion including the first valve portion 96a of the first valve member 96, which is a mounting portion to which the first seal member 120 is attached by adhesion or the like, is formed into a thin plate shape by resin molding. Accordingly, it is possible to reduce the amount of molding shrinkage deformation due to resin molding of the valve plate portion of the first valve member 96 to which the first seal member 120 is attached, and to prevent the occurrence of sink marks. As a result, the flatness of the mounting surface of the first valve portion 96a of the first valve member 96 to which the first seal member 120 is mounted is improved, so that the mounting between the first seal member 120 and the first valve portion 96a is performed. Property (adhesiveness) can be improved.

また、シール体122が接着等により装着される装着部である第3弁部材98の第3弁部98a及び第2弁座98bを含む弁板部が樹脂成形により薄肉板状に形成されている。したがって、シール体122が装着される第3弁部材98の弁板部の樹脂成形による成形収縮変形量を小さくし、ヒケの発生を防止することができる。これにより、シール体122を装着する第3弁部材98の第3弁部98a及び第2弁座98bの装着面の平面度が向上されるため、シール体122と第3弁部98a及び第2弁座98bとの間の装着性(接着性)を向上することができる。   Further, the valve plate portion including the third valve portion 98a and the second valve seat 98b of the third valve member 98, which is a mounting portion to which the seal body 122 is mounted by adhesion or the like, is formed into a thin plate shape by resin molding. . Therefore, it is possible to reduce the amount of molding shrinkage due to resin molding of the valve plate portion of the third valve member 98 to which the seal body 122 is attached, thereby preventing the occurrence of sink marks. As a result, the flatness of the mounting surfaces of the third valve portion 98a and the second valve seat 98b of the third valve member 98 to which the seal body 122 is mounted is improved, so that the seal body 122, the third valve portion 98a, and the second The mounting property (adhesiveness) with the valve seat 98b can be improved.

また、前記した蒸発燃料処理装置12によると、流量制御弁38(図2参照)と、燃料タンク15とキャニスタ34とを連通しかつ流量制御弁38が介装される蒸発燃料通路31とを備え、流量制御弁38の第1通路部87が蒸発燃料通路31の燃料タンク15側に接続されているとともに該流量制御弁38の第2通路部88がキャニスタ34側に接続されている。したがって、双方向リリーフ機能を備えながらも、流量の制御精度を向上するとともに、各弁部材96、97、98の弁部96a、97a、98aと弁座97b、98b、100との間のシール性を向上することのできる流量制御弁38(図2参照)を備えた蒸発燃料処理装置12を提供することができる。また、蒸発燃料をパージする際に蒸発燃料通路31を流れる蒸発燃料の流量を流量制御弁(電磁弁)38により精度良く制御することによって、空燃比(A/F)の乱れを抑えることができる。   Further, according to the evaporated fuel processing device 12 described above, the flow rate control valve 38 (see FIG. 2), the evaporated fuel passage 31 that communicates the fuel tank 15 and the canister 34 and is provided with the flow rate control valve 38 are provided. The first passage portion 87 of the flow control valve 38 is connected to the fuel tank 15 side of the evaporated fuel passage 31 and the second passage portion 88 of the flow control valve 38 is connected to the canister 34 side. Therefore, while providing the bidirectional relief function, the flow rate control accuracy is improved, and the sealing performance between the valve portions 96a, 97a, 98a of the valve members 96, 97, 98 and the valve seats 97b, 98b, 100 is provided. It is possible to provide the evaporated fuel processing apparatus 12 including the flow rate control valve 38 (see FIG. 2) that can improve the fuel efficiency. Further, when the evaporated fuel is purged, the flow rate of the evaporated fuel flowing through the evaporated fuel passage 31 is accurately controlled by the flow rate control valve (solenoid valve) 38, so that the disturbance of the air-fuel ratio (A / F) can be suppressed. .

本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本発明の電磁弁は、蒸発燃料処理装置12の流量制御弁38に限らず、どのような用途にも適用することができる。また、前記実施形態では、それぞれの弁部材と該弁部材に対応する弁座との間にそれぞれシール部材を設けたが、少なくとも1つの弁部材と該弁部材に対応する弁座との間にシール部材を設け、そのシール部材とそのシール部材に対応する弁部材を付勢する付勢手段とを軸方向に対応する位置関係をもって配置するものであればよい。また、第2シール部材(内環側シール突起122b)と第3シール部材(外環側シール突起122c)とを有するシール体122に代えて、それぞれ独立した第2シール部材、第3シール部材を用いることができる。また、シール体122を、第2弁部材97の第1弁座97bに対応する両シール突起122b、122cを有する第1シール部材として用いることもできる。また、弁ハウジング70、第1弁部材96、第2弁部材97及び第3弁部材98は、樹脂成形品に限らず、金属製品でもよい。また、金属製品の場合において、シール部材が接離される弁部材又は弁座の当接部を、樹脂成形により該シール材の接離方向に薄肉板状に形成してもよい。   The present invention is not limited to the above embodiment, and can be modified without departing from the gist of the present invention. For example, the solenoid valve of the present invention is not limited to the flow rate control valve 38 of the evaporative fuel processing device 12 and can be applied to any application. Moreover, in the said embodiment, although each sealing member was provided between each valve member and the valve seat corresponding to this valve member, it is provided between at least one valve member and the valve seat corresponding to this valve member. What is necessary is just to arrange | position the sealing member and to arrange | position the sealing member and the biasing means which biases the valve member corresponding to the sealing member with the positional relationship corresponding to an axial direction. Further, instead of the seal body 122 having the second seal member (inner ring side seal protrusion 122b) and the third seal member (outer ring side seal protrusion 122c), independent second seal members and third seal members are used. Can be used. Further, the seal body 122 can also be used as a first seal member having both seal projections 122b and 122c corresponding to the first valve seat 97b of the second valve member 97. Further, the valve housing 70, the first valve member 96, the second valve member 97, and the third valve member 98 are not limited to resin molded products but may be metal products. In the case of a metal product, the contact portion of the valve member or the valve seat to which the seal member is contacted / separated may be formed in a thin plate shape in the contact / separation direction of the seal material by resin molding.

12…蒸発燃料処理装置
15…燃料タンク
31…蒸発燃料通路
34…キャニスタ
38…流量制御弁(電磁弁)
53…ステップモータ(電磁駆動部)
68…作動板(作動部材)
70…弁ハウジング
87…第1通路部
88…第2通路部
94…流体通路
96…第1弁部材
96a…第1弁部
97…第2弁部材
97a…第2弁部
97b…第2弁座
98…第3弁部材
98a…第3弁部
98b…第2弁座
100…第3弁座
103…第3スプリング(第3付勢手段)
112…第2スプリング(第2付勢手段)
118…第1スプリング(第1付勢手段)
120…第1シール部材
122…シール体
122a…基板部
122b…内環側シール突起(内環側シール部材)
122c…外環側シール突起(外環側シール部材)
DESCRIPTION OF SYMBOLS 12 ... Evaporative fuel processing apparatus 15 ... Fuel tank 31 ... Evaporative fuel passage 34 ... Canister 38 ... Flow control valve (solenoid valve)
53 ... Step motor (electromagnetic drive unit)
68 ... Actuating plate (actuating member)
DESCRIPTION OF SYMBOLS 70 ... Valve housing 87 ... 1st channel | path part 88 ... 2nd channel | path part 94 ... Fluid path 96 ... 1st valve member 96a ... 1st valve part 97 ... 2nd valve member 97a ... 2nd valve part 97b ... 2nd valve seat 98 ... 3rd valve member 98a ... 3rd valve part 98b ... 2nd valve seat 100 ... 3rd valve seat 103 ... 3rd spring (3rd biasing means)
112 ... Second spring (second urging means)
118 ... 1st spring (1st biasing means)
DESCRIPTION OF SYMBOLS 120 ... 1st seal member 122 ... Seal body 122a ... Substrate part 122b ... Inner ring side seal protrusion (inner ring side seal member)
122c ... Outer ring side seal projection (outer ring side seal member)

Claims (7)

相互に連通する第1通路部と第2通路部を有する流体通路を形成する弁ハウジングと、
前記流体通路を開閉しかつ第1付勢手段の付勢力により前記第1通路部から前記第2通路部への流体の流れ方向に沿う方向を閉方向として付勢された第1弁部材と、
前記流体通路を開閉しかつ第2付勢手段の付勢力により前記第1弁部材の閉方向と同じ方向を閉方向として付勢された第2弁部材と、
前記第1弁部材及び前記第2弁部材を段階的に開く作動部材を有する電磁駆動部と、
前記流体通路を開閉しかつ第3付勢手段の付勢力により前記第1弁部材の閉方向と逆方向を閉方向として付勢された第3弁部材と
を備え、
前記第1通路部の内圧が前記第2通路部の内圧に比べて所定値以上大きくなった場合には、前記第3弁部材が前記第3付勢手段の付勢力に抗して開弁される構成とし、
前記第1通路部の内圧が前記第2通路部の内圧に比べて所定値以上小さくなった場合には、前記第1弁部材及び前記第2弁部材の少なくとも一方の弁部材が当該付勢手段の付勢力に抗して開弁する構成とし、
前記第1弁部材、前記第2弁部材及び前記第3弁部材のうちの少なくとも1つの弁部材と該弁部材が着座及び離座可能な弁座との間に、その弁部材の閉弁時において両者間を弾性的にシールするシール部材を設け、
前記シール部材と、そのシール部材に対応する弁部材を付勢する付勢手段とを軸方向に対応する位置関係をもって配置した
ことを特徴とする電磁弁。
A valve housing forming a fluid passage having a first passage portion and a second passage portion communicating with each other;
A first valve member that opens and closes the fluid passage and is biased by a biasing force of a first biasing means with a direction along a fluid flow direction from the first passage portion to the second passage portion as a closing direction;
A second valve member that opens and closes the fluid passage and is biased by the biasing force of the second biasing means as a closing direction in the same direction as the closing direction of the first valve member;
An electromagnetic drive unit having an actuating member for gradually opening the first valve member and the second valve member;
A third valve member that opens and closes the fluid passage and is urged by a urging force of a third urging means with a closing direction opposite to the closing direction of the first valve member;
When the internal pressure of the first passage portion becomes greater than a predetermined value compared to the internal pressure of the second passage portion, the third valve member is opened against the urging force of the third urging means. And
When the internal pressure of the first passage portion becomes smaller than the internal pressure of the second passage portion by a predetermined value or more, at least one valve member of the first valve member and the second valve member is the urging means. It is configured to open against the urging force of
When the valve member is closed between at least one of the first valve member, the second valve member, and the third valve member and a valve seat on which the valve member can be seated and separated. A sealing member that elastically seals between the two is provided,
An electromagnetic valve characterized in that the sealing member and a biasing means for biasing a valve member corresponding to the seal member are arranged with a positional relationship corresponding to the axial direction.
請求項1に記載の電磁弁であって、
前記シール部材が接離される前記弁部材又は前記弁座の当接部を、樹脂成形により該シール材の接離方向に薄肉板状に形成したことを特徴とする電磁弁。
The electromagnetic valve according to claim 1,
An electromagnetic valve characterized in that a contact portion of the valve member or the valve seat to which the seal member is contacted / separated is formed in a thin plate shape in the contact / separation direction of the seal material by resin molding.
請求項1又は2に記載の電磁弁であって、
前記弁部材又は前記弁座の当接部が接離される内環側シール部材及び外環側シール部材が二重環状に一体形成されたシール体を備えたことを特徴とする電磁弁。
The electromagnetic valve according to claim 1 or 2,
An electromagnetic valve comprising: a seal body in which an inner ring side seal member and an outer ring side seal member to which a contact portion of the valve member or the valve seat comes into contact are separated from each other.
請求項3に記載の電磁弁であって、
前記シール体が装着された弁部材を付勢する付勢手段は、その付勢力が前記内環側シール部材と前記外環側シール部材との間の中間部に作用するように配置されていることを特徴とする電磁弁。
The electromagnetic valve according to claim 3,
The urging means for urging the valve member to which the seal body is mounted is arranged so that the urging force acts on an intermediate portion between the inner ring side seal member and the outer ring side seal member. A solenoid valve characterized by that.
請求項3又は4に記載の電磁弁であって、
前記弁ハウジングに、前記第3弁部材が着座及び離座可能な円環状の第3弁座が形成され、
前記第3弁部材に、前記第2弁部材に形成された第2弁部が着座及び離座可能な円環状の第2弁座と、前記第3弁座に着座及び離座可能な第3弁部とが共通の板状部に形成され、
前記第3弁部材の板状部に前記シール体を設け、
前記シール体の内環側シール部材を前記第2弁部材の第2弁部が接離される第2シール部材とするとともに、該シール体の外環側シール部材を前記第3弁座に接離される第3シール部材とした
ことを特徴とする電磁弁。
The solenoid valve according to claim 3 or 4,
An annular third valve seat on which the third valve member can be seated and separated is formed in the valve housing,
An annular second valve seat on which the second valve portion formed on the second valve member can be seated and separated from the third valve member, and a third that can be seated on and separated from the third valve seat. The valve part is formed in a common plate-like part,
The sealing body is provided on the plate-like portion of the third valve member,
The inner ring side seal member of the seal body is a second seal member to which the second valve portion of the second valve member is contacted and separated, and the outer ring side seal member of the seal body is contacted and separated from the third valve seat. A solenoid valve characterized by being a third seal member.
請求項5に記載の電磁弁であって、
前記第2弁部材を付勢する第2付勢手段と前記第3弁部材を付勢する付勢手段とは、互いの付勢力が対向方向にかつその対向方向に交差する方向に隣接した部位に作用するように配置されていることを特徴とする電磁弁。
The electromagnetic valve according to claim 5,
The second urging means for urging the second valve member and the urging means for urging the third valve member are adjacent to each other in the direction in which the urging forces cross each other in the opposing direction. An electromagnetic valve characterized by being arranged to act on the.
請求項1〜6のいずれか1つに記載の電磁弁と、燃料タンクとキャニスタとを連通しかつ前記電磁弁が介装される蒸発燃料通路とを備え、前記電磁弁の第1通路部が前記蒸発燃料通路の燃料タンク側に接続されているとともに該電磁弁の第2通路部がキャニスタ側に接続されていることを特徴とする蒸発燃料処理装置。
A solenoid valve according to any one of claims 1 to 6, an evaporative fuel passage through which a fuel tank and a canister are communicated and in which the solenoid valve is interposed, and the first passage portion of the solenoid valve includes An evaporative fuel processing apparatus, wherein the evaporative fuel passage is connected to a fuel tank side and a second passage portion of the electromagnetic valve is connected to a canister side.
JP2010248415A 2010-11-05 2010-11-05 Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve Expired - Fee Related JP5583552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248415A JP5583552B2 (en) 2010-11-05 2010-11-05 Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248415A JP5583552B2 (en) 2010-11-05 2010-11-05 Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve

Publications (2)

Publication Number Publication Date
JP2012097711A true JP2012097711A (en) 2012-05-24
JP5583552B2 JP5583552B2 (en) 2014-09-03

Family

ID=46389895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248415A Expired - Fee Related JP5583552B2 (en) 2010-11-05 2010-11-05 Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve

Country Status (1)

Country Link
JP (1) JP5583552B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102012A (en) * 2013-11-25 2015-06-04 愛三工業株式会社 Evaporation fuel treatment device
CN105736774A (en) * 2014-12-25 2016-07-06 爱三工业株式会社 Flow control valve and fuel vapor processing apparatus
US9803593B2 (en) 2013-07-02 2017-10-31 Aisan Kogyo Kabushiki Kaisha Flow rate control valve and fuel vapor processing apparatus including the same
KR101852278B1 (en) 2013-11-25 2018-04-25 아이상 고교 가부시키가이샤 Device for treating evaporated fuel
JP2020041596A (en) * 2018-09-10 2020-03-19 株式会社テージーケー Motor-operated valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158366U (en) * 1979-05-01 1980-11-14
JPH01135984A (en) * 1987-11-21 1989-05-29 Toho Seisakusho:Kk High range ability valve
JPH06241341A (en) * 1993-02-19 1994-08-30 Kanbishi:Kk Solenoid valve
JPH0868364A (en) * 1994-06-20 1996-03-12 Toyota Motor Corp Vaporized fuel treating device for internal combustion engine
JP2001206082A (en) * 2000-01-24 2001-07-31 Toyota Motor Corp Device for controlling evaporated gas in fuel tank
JP2002317707A (en) * 2001-04-24 2002-10-31 Toyota Motor Corp Fuel vapor control device
JP2011144848A (en) * 2010-01-13 2011-07-28 Aisan Industry Co Ltd Solenoid valve and evaporated-fuel processing device including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158366U (en) * 1979-05-01 1980-11-14
JPH01135984A (en) * 1987-11-21 1989-05-29 Toho Seisakusho:Kk High range ability valve
JPH06241341A (en) * 1993-02-19 1994-08-30 Kanbishi:Kk Solenoid valve
JPH0868364A (en) * 1994-06-20 1996-03-12 Toyota Motor Corp Vaporized fuel treating device for internal combustion engine
JP2001206082A (en) * 2000-01-24 2001-07-31 Toyota Motor Corp Device for controlling evaporated gas in fuel tank
JP2002317707A (en) * 2001-04-24 2002-10-31 Toyota Motor Corp Fuel vapor control device
JP2011144848A (en) * 2010-01-13 2011-07-28 Aisan Industry Co Ltd Solenoid valve and evaporated-fuel processing device including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803593B2 (en) 2013-07-02 2017-10-31 Aisan Kogyo Kabushiki Kaisha Flow rate control valve and fuel vapor processing apparatus including the same
JP2015102012A (en) * 2013-11-25 2015-06-04 愛三工業株式会社 Evaporation fuel treatment device
KR101852278B1 (en) 2013-11-25 2018-04-25 아이상 고교 가부시키가이샤 Device for treating evaporated fuel
CN105736774A (en) * 2014-12-25 2016-07-06 爱三工业株式会社 Flow control valve and fuel vapor processing apparatus
CN105736774B (en) * 2014-12-25 2019-08-02 爱三工业株式会社 Flow control valve and evaporated fuel treating apparatus
JP2020041596A (en) * 2018-09-10 2020-03-19 株式会社テージーケー Motor-operated valve
JP7113505B2 (en) 2018-09-10 2022-08-05 株式会社テージーケー electric valve

Also Published As

Publication number Publication date
JP5583552B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5410370B2 (en) Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve
JP5456493B2 (en) Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve
JP5996799B2 (en) Evaporative fuel processing apparatus provided with flow control valve and flow control valve
JP6275634B2 (en) Flow control valve and evaporated fuel processing device
JP5583552B2 (en) Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve
US10934976B2 (en) Evaporated fuel treatment device
JP6275633B2 (en) Flow control valve and evaporated fuel processing device
US10605206B2 (en) Fuel vapor processing apparatus
JP6968754B2 (en) Fluid control valve
JP7019515B2 (en) Fluid control valve
CN112219052B (en) Fluid control valve and evaporated fuel treatment device
JP2016148250A (en) Evaporated fuel treatment device
JP6320910B2 (en) Evaporative fuel processing equipment
JP7046726B2 (en) Fluid control valve
JP2019211023A (en) Fluid control valve
JP6542423B2 (en) Fluid control valve
JP2023008122A (en) Flow control valve and evaporative fuel processing device
JP7379216B2 (en) flow control valve
JP2023114094A (en) fluid control valve
JP2019211019A (en) Fluid control valve
JP2020094667A (en) Check valve device and evaporation fuel supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees