JP2012097169A - Flame-retardant polyurethane raw material composition and expansion-molded article excellent in flame retardancy formed therefrom - Google Patents

Flame-retardant polyurethane raw material composition and expansion-molded article excellent in flame retardancy formed therefrom Download PDF

Info

Publication number
JP2012097169A
JP2012097169A JP2010244972A JP2010244972A JP2012097169A JP 2012097169 A JP2012097169 A JP 2012097169A JP 2010244972 A JP2010244972 A JP 2010244972A JP 2010244972 A JP2010244972 A JP 2010244972A JP 2012097169 A JP2012097169 A JP 2012097169A
Authority
JP
Japan
Prior art keywords
flame retardant
flame
raw material
polyurethane raw
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244972A
Other languages
Japanese (ja)
Other versions
JP5570019B2 (en
Inventor
Akinori Oike
晃範 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Plastics Co Ltd
Original Assignee
Howa Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Plastics Co Ltd filed Critical Howa Plastics Co Ltd
Priority to JP2010244972A priority Critical patent/JP5570019B2/en
Publication of JP2012097169A publication Critical patent/JP2012097169A/en
Application granted granted Critical
Publication of JP5570019B2 publication Critical patent/JP5570019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flame-retardant polyurethane raw material composition that comprises an environment-harmonizing flame retardant and contains no conventional flame retardant containing halogen such as bromine, chlorine or the like, and an expansion-molded article formed from the same that causes no dripping phenomenon and exhibits high-degree flame retardancy when burned.SOLUTION: In a polyurethane raw material, a binary composite flame retardant comprising a first flame retardant composed of carbon and a second flame retardant composed of red phosphorus and condensed phosphate ester is incorporated as a flame retardant. The content of each component of the flame retardant is 0.2-2.0 pts.wt. for highly electroconductive carbon black; 7-15 pts.wt. for expanded graphite; 2-10 pts.wt. for red phosphorus; and 5-10 pts.wt. for condensed phosphate, each based on 100 pts.wt. of a polyether polyol liquid in the polyurethane raw material. Preferably, the total content of the composite flame retardant is 15-40 pts.wt.

Description

本発明は、従来の臭素や塩素等のハロゲン系の難燃剤を使用することがなく、環境調和型の難燃性を用いた難燃性ポリウレタン原料組成物、及びそれにより成形される燃焼時においてドリップ現象がなく高度な難燃性を発揮する発泡成形品に関するものである。   The present invention does not use a conventional halogen-based flame retardant such as bromine or chlorine, and uses a flame retardant polyurethane raw material composition using environment-friendly flame retardant, and at the time of combustion molded thereby The present invention relates to a foam molded article that exhibits no drip phenomenon and exhibits high flame retardancy.

近年、プラスチック材料は電気機器、建築、航空機、船舶、車両、自動車、日用品などの分野に広く使用されて日常生活に不可欠となっているが、プラスチック材料は熱に弱く、また燃えやすくて発熱量も高いため火災事故につながるおそれがある。従って、プラスチック材料からなる各種の製品規格においては難燃性や不燃性が義務づけられている。また、これら製品の安全基準は環境変化とともに年々厳しくなってきており、要求される性能も難燃性や不燃性だけでなく、低毒性、低発煙性などの環境に対応できる性能も要求されるようになってきた。   In recent years, plastic materials are widely used in the fields of electrical equipment, architecture, aircraft, ships, vehicles, automobiles, daily necessities, etc., and are indispensable for daily life. May cause a fire accident. Accordingly, in various product standards made of plastic materials, flame retardancy and incombustibility are required. In addition, the safety standards of these products are becoming stricter year by year as the environment changes, and the required performance is not only flame-retardant and non-flammable, but also performance that can respond to environments such as low toxicity and low smoke generation. It has become like this.

一方、前記難燃剤としては、従来から、特許文献1や特許文献2に示されるように、臭素系、リン系、ハロゲン系、メラミン系、アンチモン系のものが知られており、その中でハロゲン系、特に臭素や塩素を含有する有機化合物、またはこれと三酸化アンチモンとの併用が難燃性の向上に優れており多く使用されていた。
しかしながら、ハロゲン系の難燃剤は環境調和の面において問題があるため、最近では実用性を失いつつあり、環境にやさしい新たな難燃剤を用いた難燃性ポリウレタン原料組成物の開発が要望されていた。
On the other hand, as the flame retardant, brominated, phosphorous, halogen-based, melamine-based, and antimony-based flame retardants are conventionally known as shown in Patent Document 1 and Patent Document 2, among which halogens A system, particularly an organic compound containing bromine or chlorine, or a combination thereof with antimony trioxide is excellent in improving flame retardancy and has been used in many cases.
However, since halogen-based flame retardants have problems in terms of environmental harmony, they are losing practicality recently, and development of flame retardant polyurethane raw material compositions using new environmentally friendly flame retardants has been demanded. It was.

特開平5−86285公報JP-A-5-86285 特開平1−74263公報JP-A-1-74263

有機物の発泡成形体であるポリウレタンフォームは、微細なセル集合体によって構成され、そのセルの壁は数μmレベルと極めて薄いものである。また、各セルの内部には空気が存在しているため、燃焼時において燃え易い構造となっている。
この発泡成形体の燃焼メカニズムは、以下のように分析されている。先ず、火源から発せられる輻射熱により成形体表面が加熱され、内部に熱伝導して高分子が溶融し、低分子化を経て分解する。これにより、可燃性ガスが生成してこのガスが成形体内部に拡散する。更に、可燃性ガスが成形体表面まで到達すると、気相に拡散して着火燃焼し、燃焼を継続させることとなる。
Polyurethane foam, which is an organic foamed molded article, is composed of fine cell aggregates, and the walls of the cells are as thin as a few μm level. Moreover, since air exists in each cell, it has a structure that is easy to burn during combustion.
The combustion mechanism of this foam molded body is analyzed as follows. First, the surface of the molded body is heated by radiant heat emitted from a fire source, and the polymer is thermally conducted to melt the polymer, and then decomposes after lowering the molecular weight. Thereby, combustible gas is produced | generated and this gas diffuses inside a molded object. Further, when the combustible gas reaches the surface of the molded body, it diffuses into the gas phase, ignites and burns, and the combustion is continued.

そこで、本願発明者はどのような材料が、燃焼時においてドリップ現象がなく高度な難燃性を発揮するのに効果的であるかを調べるなかで、先ず燃焼のメカニズムについて分析した。
燃焼サイクルの中で最も注目したのが可燃性ガスである。つまり、燃焼現象は高分子の分解によって気体となった可燃性ガスが主因である。このことは、対象物が熱分解により可燃性ガスの発生量を抑制できれば高度な難燃性を発揮できるということである。
Therefore, the present inventor first analyzed the combustion mechanism while investigating what kind of material is effective in exhibiting high flame retardancy without drip phenomenon during combustion.
Combustible gas is the most notable in the combustion cycle. In other words, the combustion phenomenon is mainly caused by a combustible gas that has become a gas by decomposition of the polymer. This means that if the object can suppress the amount of combustible gas generated by thermal decomposition, it can exhibit high flame retardancy.

このことから、高度な難燃性を発揮する難燃剤として採用するための第1の条件は、着火温度が高く、熱安定性に優れ、揮発減量が少量であって、そのもの自身が着火しないことである。第2の条件は、断熱物質を形成し、熱安定性に優れることである。第3の条件は、環境を阻害せず、また安全衛生上も問題がないことである。第4の条件は、難燃剤の添加によって粘性が高くなると、成形型内での流動性が悪くなり寸法通りの成形品が得られなくなるので、添加量が少ないことである。第5の条件は、モールド成形における原料の流動性を確保するよう、ウレタン原料と相溶性があることである。   From this, the first condition to adopt as a flame retardant exhibiting high flame retardancy is that the ignition temperature is high, the thermal stability is excellent, the volatilization loss is small, and itself does not ignite. It is. The second condition is that a heat insulating material is formed and the thermal stability is excellent. The third condition is that the environment is not hindered and there is no problem in health and safety. The fourth condition is that when the viscosity increases due to the addition of the flame retardant, the fluidity in the mold becomes poor and a molded product with the dimensions cannot be obtained, so that the addition amount is small. The fifth condition is to be compatible with the urethane raw material so as to ensure the fluidity of the raw material in molding.

本願発明者は、以上の第1〜5の条件を満足し、燃焼時においてドリップ現象がない高度な難燃剤として種々の材料を選択し、かつその配合量につき多くの実験を重ねた結果、全ての条件を満たす材料として、カーボンからなる第1の難燃剤と、同属系の無機化合物及び有機化合物を併用したリンからなる第2の難燃剤の二元系からなる複合難燃剤を用いると高度な難燃性を発揮することを見出した。
より具体的には、高導電性カーボンブラックと膨張黒鉛の同属系の2種のカーボンからなる第1の難燃剤と、赤リンと縮合リン酸エステルの同属系の2種のリンからなる第2の難燃剤の二元系からなる複合難燃剤が、高度な難燃剤として使用できることを見出し、本発明を完成したのである。
また、上記のカーボンとリンの二元系からなる複合難燃剤をウレタン原料に配合添加して得られた発泡成形体の難燃試験を行った結果、燃焼時においてドリップ現象がない高度な難燃性を確保できることも確認した。
The inventor of the present application satisfies the above first to fifth conditions, selects various materials as an advanced flame retardant having no drip phenomenon at the time of combustion, and has conducted many experiments on the blending amount. As a material that satisfies the above condition, a composite flame retardant composed of a binary system of a first flame retardant composed of carbon and a second flame retardant composed of phosphorus in combination with an inorganic compound and an organic compound belonging to the same group is used. It has been found that it exhibits flame retardancy.
More specifically, a first flame retardant composed of two carbons belonging to the same group of highly conductive carbon black and expanded graphite, and a second flame composed of two phosphors belonging to the same group of red phosphorus and condensed phosphate ester. The present inventors have found that a composite flame retardant comprising a binary system of the above flame retardant can be used as an advanced flame retardant, and thus completed the present invention.
In addition, as a result of the flame retardant test of the foamed molding obtained by adding the above-mentioned composite flame retardant composed of carbon and phosphorus to the urethane raw material, it is highly flame retardant without drip phenomenon during combustion. It was also confirmed that the property can be secured.

本発明は、上述の発明者が見出した事実に基づき、従来の臭素や塩素等のハロゲン系の難燃剤を用いずに、環境調和型の二元系からなる複合難燃剤を用いた難燃性ポリウレタン原料組成物及びそれにより成形される難燃性に優れた発泡成形品を提供することを目的として完成されたものである。   The present invention is based on the facts found by the above-mentioned inventor, and does not use a conventional halogen-based flame retardant such as bromine or chlorine, but uses a flame retardant using an environmentally harmonious binary flame retardant. The present invention has been completed for the purpose of providing a polyurethane raw material composition and a foamed molded article having excellent flame retardancy.

上記の課題を解決するためになされた本発明は、ポリウレタン原料に、難燃剤としてカーボンからなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤を含有させたことを特徴とする難燃性ポリウレタン原料組成物である。   The present invention, which has been made to solve the above problems, is based on a binary system of a polyurethane material, a first flame retardant comprising carbon as a flame retardant, and a second flame retardant comprising red phosphorus and a condensed phosphate ester. It is a flame retardant polyurethane raw material composition characterized by containing a composite flame retardant.

前記カーボンからなる第1の難燃剤は、高導電性カーボンブラックと膨張黒鉛からなるものが好ましく、これを請求項2に係る発明とする。   The first flame retardant made of carbon is preferably made of highly conductive carbon black and expanded graphite, and this is the invention according to claim 2.

また、難燃剤の各成分の含有量が、ポリウレタン原料中のポリエーテルポリオール液100重量部に対し、高導電性カーボンブラック:0.2〜2.0重量部、膨張黒鉛:7〜15重量部、赤リン:2〜10重量部、縮合リン酸エステル:5〜10重量部であり、また複合難燃剤の合計含有量が15〜40重量部であることが好ましく、これを請求項3に係る発明とする。   Further, the content of each component of the flame retardant is 0.2 to 2.0 parts by weight of highly conductive carbon black and 7 to 15 parts by weight of expanded graphite with respect to 100 parts by weight of the polyether polyol liquid in the polyurethane raw material. , Red phosphorus: 2 to 10 parts by weight, condensed phosphate ester: 5 to 10 parts by weight, and the total content of the composite flame retardant is preferably 15 to 40 parts by weight. Invention.

更に、前記の難燃性ポリウレタン原料組成物を発泡成形して得られる難燃性に優れた発泡成形品を請求項4に係る発明とする。   Furthermore, the invention according to claim 4 is a foam-molded article excellent in flame retardancy obtained by foam-molding the flame-retardant polyurethane raw material composition.

請求項1に係る発明では、難燃剤としてカーボンからなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤を含有させたので、少量の難燃剤の添加量で優れた難燃性を発揮し、またハロゲンフリーで環境に調和したやさしいものとすることができる。   In the invention according to claim 1, since the composite flame retardant comprising the binary system of the first flame retardant comprising carbon as the flame retardant and the second flame retardant comprising red phosphorus and condensed phosphate ester is contained. Excellent flame retardancy can be achieved with a small amount of added flame retardant, and it can be made halogen-free and environmentally friendly.

請求項2に係る発明では、カーボンからなる第1の難燃剤として高導電性カーボンブラックと膨張黒鉛からなるものとしたので、2種のカーボンにより中空状の各セルの空隙を狭めて熱対流を抑制し、燃焼時におけるドリップの防止を図ることができる。   In the invention according to claim 2, since the first flame retardant made of carbon is made of highly conductive carbon black and expanded graphite, the voids of the hollow cells are narrowed by two kinds of carbons, and heat convection is conducted. It can suppress and can prevent the drip at the time of combustion.

請求項3に係る発明では、難燃剤の含有量を所定の範囲のものとしたので、難燃剤の添加量を少なくでき、またウレタン原料との相溶性及び流動性が良好で効率よく成形を行うことができる。   In the invention according to claim 3, since the content of the flame retardant is within a predetermined range, the amount of the flame retardant added can be reduced, and the compatibility and fluidity with the urethane raw material are good and the molding is performed efficiently. be able to.

請求項4に係る発明では、燃焼時においてドリップ現象がない高度な難燃性を有し、かつ成形型通りの寸法精度の高い製品が得られることとなる。   In the invention according to claim 4, a product having high flame retardancy without drip phenomenon at the time of combustion and high dimensional accuracy as in the mold can be obtained.

本発明のウレタン原料組成物は、軟質の液状ポリウレタン原料に、難燃剤としてカーボンからなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤を含有させたものである。また、カーボンからなる第1の難燃剤としては、高導電性カーボンブラックと膨張黒鉛からなるものが好ましい。
これは、高導電性カーボンブラックと膨張黒鉛という同属系のカーボンを併用した第1の難燃剤と、無機リン化合物と有機リン化合物という同属系のリンを併用した第2の難燃剤の二元系からなる複合難燃剤を用いると、前述の第1〜5の全ての条件を満足して高度な難燃性を発揮するとともに、特に、火炎の減少と燃焼時間の抑制に大きな効果を発揮することを確認できたことによる。また、高導電性カーボンブラックとしては、ケッチェンブラックが特に好ましい。
The urethane raw material composition of the present invention is a composite comprising a binary system consisting of a soft liquid polyurethane raw material, a first flame retardant comprising carbon as a flame retardant, and a second flame retardant comprising red phosphorus and a condensed phosphate ester. It contains a flame retardant. Moreover, as a 1st flame retardant which consists of carbon, what consists of highly conductive carbon black and expanded graphite is preferable.
This is a binary system consisting of a first flame retardant using a high conductivity carbon black and a carbon belonging to the same group, expanded graphite, and a second flame retardant using a combination of the same group of phosphorus, an inorganic phosphorus compound and an organic phosphorus compound. When using a composite flame retardant consisting of the above, it exhibits all the above-mentioned first to fifth conditions and exhibits high flame retardancy, and in particular, exerts a great effect in reducing the flame and suppressing the combustion time. It was because we were able to confirm. As the highly conductive carbon black, ketjen black is particularly preferable.

高導電性カーボンブラックと膨張黒鉛は、1000℃以上の高温でも着火燃焼することがなく、また耐熱性にも優れている。赤リンと縮合リン酸エステは、脱水炭化作用により固相表面に緻密なチャー(炭化皮膜)が形成されて基質から熱や酸素を遮断し、炎の伝播を阻止する効果が得られる。そして、いずれも従来の臭素や塩素等のハロゲン系の難燃剤に代わり、ハロゲンフリーとして環境に調和できるものである。   Highly conductive carbon black and expanded graphite do not ignite and burn even at a high temperature of 1000 ° C. or higher, and are excellent in heat resistance. Red phosphorus and condensed phosphate ester form a dense char (carbonized film) on the surface of the solid phase due to dehydration and carbonization action, thereby blocking heat and oxygen from the substrate and preventing the propagation of flame. All of them are halogen-free and can be harmonized with the environment in place of conventional halogen-based flame retardants such as bromine and chlorine.

前記ウレタン原料は、一般的にはポリエーテルポリオール液(以下、A液と称する)とジイソシアネート液(以下、B液と称する)から構成されており、この混合物をウレタン原料と称している。本発明では前記難燃剤をA液に対して添加し、プロペラ撹拌機などにより均一に混合分散して相溶化させたうえ、これにB液を加えて混合し液状のウレタン原料としている。この場合は、優れた相溶性を発揮して高品質のウレタン原料を簡単に製造することができる。A液への難燃剤の相容化を行なうには、常用のプロペラ攪拌機付のタンク容器を用いることができ、減圧可能な容器の場合はより都合がよい。
なお、難燃剤をA液とB液の混合液に加えることや、難燃剤をB液に加えた後にA液を加えることも可能である。
The urethane raw material is generally composed of a polyether polyol liquid (hereinafter referred to as A liquid) and a diisocyanate liquid (hereinafter referred to as B liquid), and this mixture is referred to as a urethane raw material. In this invention, the said flame retardant is added with respect to A liquid, and after mixing and disperse | distributing uniformly with a propeller stirrer etc., and adding B liquid, it mixes and it is set as a liquid urethane raw material. In this case, it is possible to easily produce a high-quality urethane raw material by exhibiting excellent compatibility. In order to compatibilize the flame retardant in the liquid A, a conventional tank container with a propeller stirrer can be used, and a container that can be decompressed is more convenient.
In addition, it is also possible to add a flame retardant to the liquid mixture of A liquid and B liquid, or to add A liquid after adding a flame retardant to B liquid.

難燃剤の各成分の含有量は、ポリウレタン原料中のポリエーテルポリオール液100重量部に対し、高導電性カーボンブラック:0.2〜2.0重量部、膨張黒鉛:7〜15重量部、赤リン:2〜10重量部、縮合リン酸エステル:5〜10重量部の範囲が好ましい。含有量がいずれも下限値より少ない場合は、火炎長が大きくなり、また残炎時間も長くなり、更には、ドリップ現象も見られ所望の難燃性を得ることができない。一方、含有量が上限値より多くても難燃効果は頭打ちであり、含有量としては上限値で十分である。
また複合難燃剤の合計含有量は15〜40重量部の範囲が好ましい。下限値より少ない場合は、十分な難燃性を得ることができず、一方、上限値より多いとウレタン原料中への均一な混合が難しくなるので好ましくない。
The content of each component of the flame retardant is as follows: high conductivity carbon black: 0.2 to 2.0 parts by weight, expanded graphite: 7 to 15 parts by weight, red with respect to 100 parts by weight of the polyether polyol solution in the polyurethane raw material. The range of phosphorus: 2 to 10 parts by weight and condensed phosphate ester: 5 to 10 parts by weight is preferable. When the content is less than the lower limit, the flame length is increased, the afterflame time is increased, and further, a drip phenomenon is also observed and the desired flame retardancy cannot be obtained. On the other hand, even if the content is higher than the upper limit, the flame retardant effect reaches a peak, and the upper limit is sufficient as the content.
The total content of the composite flame retardant is preferably in the range of 15 to 40 parts by weight. When the amount is less than the lower limit, sufficient flame retardancy cannot be obtained. On the other hand, when the amount is more than the upper limit, uniform mixing into the urethane raw material becomes difficult.

なお、高導電性カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、オイルファーネスブラック等があるが、特にケッチェンブラックが好ましい。このケッチェンブラックは、高い導電性を有して品質も安定しており、他の高導電性カーボンブラックに比べて半分以下の添加量で同等以上の性能を得ることができる。   Examples of the highly conductive carbon black include ketjen black, acetylene black, and oil furnace black. Ketjen black is particularly preferable. This ketjen black has high conductivity and stable quality, and can achieve equivalent or better performance with less than half the amount added compared to other highly conductive carbon blacks.

以上のように、難燃剤として高導電性カーボンブラックと膨張黒鉛からなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤を含有させた場合の難燃作用の理由については明確でないが、以下の理由によるものと解される。
これは酸化反応の場において、酸素とは反応するが、その反応のエンタルピーが著しく低い無機物質が存在すれば、その物自身は燃焼反応に無関係となり単位体積当りの材料としての割合が減少し、酸化反応場での燃焼熱が減少する。更に、カーボンと酸素との反応が起きれば、固相中の酸素濃度の低下を招くこととなる。この作用は、高導電性カーボンブラック(即ち、ケッチェンブラック)が主となる。
As described above, as a flame retardant, a composite flame retardant comprising a binary system of a first flame retardant composed of highly conductive carbon black and expanded graphite and a second flame retardant composed of red phosphorus and a condensed phosphate ester is contained. Although the reason for the flame retardancy when it is made is not clear, it is understood that it is due to the following reason.
This reacts with oxygen in the oxidation reaction field, but if there is an inorganic substance with a remarkably low enthalpy of the reaction, the substance itself becomes irrelevant to the combustion reaction, and the ratio as a material per unit volume decreases. The heat of combustion in the oxidation reaction field is reduced. Furthermore, if the reaction between carbon and oxygen occurs, the oxygen concentration in the solid phase will decrease. This function is mainly performed by highly conductive carbon black (that is, ketjen black).

次に、膨張黒鉛については、急速な温度上昇に伴って体積が著しく膨張し炭化層を形成することで、連通化したセル孔(空隙)を狭めて熱対流を抑制し、更にフレーク形状による基地(マトリックス)強化へ働くことにより、燃焼時におけるドリップ防止となる。   Next, for expanded graphite, the volume expands significantly with rapid temperature rise to form a carbonized layer, thereby narrowing the connected cell holes (voids) and suppressing thermal convection. By acting on (matrix) strengthening, drip is prevented during combustion.

赤リンと縮合リン酸エステルは、脱水炭化によって形成された炭化物質(残渣)が、セル孔をポーラス連通状から閉塞状とすることにより、断熱効果を奏して熱の伝播を阻止することとなる。
以上の高導電性カーボンブラックと膨張黒鉛からなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤の相乗効果により、高度な難燃性を発揮するものと解される。
Red phosphorus and condensed phosphoric acid ester are carbonized substances (residues) formed by dehydration carbonization, making the cell pores closed from a porous continuous state, thereby providing a heat insulating effect and preventing heat propagation. .
Due to the synergistic effect of the composite flame retardant comprising the binary system of the first flame retardant composed of the above highly conductive carbon black and expanded graphite and the second flame retardant composed of red phosphorus and condensed phosphate, It is understood that it exhibits flammability.

以下、本発明の実施例について説明する。
表2に使用材料を示し、表3その材料の性状を示す。この材料を表4、5に示す割合でA液と難燃剤を配合し、プロペラ攪拌機によって1000〜1500rpm/minで3分間均一に混合した。次いで、B液をポリエーテルポリオール液100重量部に対し所定量、添加し、1800rpm/minで5秒間混合した。これをポリプレピレン製の型枠容器に投入し、24時間熟成後、発泡成形品を得た。
Examples of the present invention will be described below.
Table 2 shows the materials used, and Table 3 shows the properties of the materials. This material was blended with the liquid A and the flame retardant at the ratios shown in Tables 4 and 5, and was uniformly mixed with a propeller stirrer at 1000 to 1500 rpm / min for 3 minutes. Subsequently, the B liquid was added in a predetermined amount with respect to 100 parts by weight of the polyether polyol liquid, and mixed at 1800 rpm / min for 5 seconds. This was put into a polypropylene container, and after aging for 24 hours, a foam molded product was obtained.

得られた発泡成形品から試験片を採取し、「UL94(20mm垂直燃焼試験)」に準じた燃焼試験を実施した。
「UL94」は、国際規格となっているアメリカの燃焼試験法であり、バーナの筒の上端が試験片の下端から10±1mmになるようにし、試験片の中央に対し炎を垂直に当て、その距離を10±0.5秒間保って、試験片の燃焼及び溶融落下物による脱脂綿の着火の有無を調べる方法である。試験条件は下記の表1に示す通りである。
A test piece was collected from the obtained foamed molded article and subjected to a combustion test according to “UL94 (20 mm vertical combustion test)”.
"UL94" is an American flame test method that has become an international standard. The upper end of the burner tube is 10 ± 1 mm from the lower end of the test piece, and a flame is applied vertically to the center of the test piece. This is a method in which the distance is maintained for 10 ± 0.5 seconds, and the presence or absence of ignition of the absorbent cotton by the burning of the test piece and the molten fallen object is examined. The test conditions are as shown in Table 1 below.

Figure 2012097169
Figure 2012097169

得られた結果を表4、表5に示す。なお、表4はカーボンからなる第1の難燃剤として膨張黒鉛のみを用いた場合を示し、表5は第1の難燃剤として高導電性カーボンブラック(ケッチェンブラック)と膨張黒鉛を用いた場合を示している。結果は、試験片の着火は認められず、また試験片が溶けて下にある脱脂綿上にドリップ(滴下)する現象も見られず、「UL94」でいう燃焼性クラスの「V−0」に相当する効果があることが確認できた。
なお、表4、表5中の残炎時間は、10秒の接炎後における試験片の残炎状態を測定するものであり、実施例では残炎がないのでゼロ秒に近いが、1秒以下として記載した。
The obtained results are shown in Tables 4 and 5. Table 4 shows the case where only expanded graphite is used as the first flame retardant made of carbon, and Table 5 shows the case where highly conductive carbon black (Ketjen black) and expanded graphite are used as the first flame retardant. Is shown. As a result, the ignition of the test piece was not observed, and the phenomenon that the test piece melted and drip (dropped) on the absorbent cotton underneath was not observed, and the flame resistance class “V-0” in “UL94” was observed. It was confirmed that there was a corresponding effect.
The afterflame times in Tables 4 and 5 are for measuring the afterflame state of the test piece after flame contact for 10 seconds. In the examples, there is no afterflame, which is close to zero seconds. Described as below.

Figure 2012097169
Figure 2012097169

Figure 2012097169
Figure 2012097169

Figure 2012097169
Figure 2012097169

Figure 2012097169
Figure 2012097169

次に、一例として自動車用ヘッドレスト用発泡成形品の製造について説明する。
表5の実施例6に示す難燃性ポリウレタン原料組成物を準備した。このウレタン原料を、離型剤(コニシ社製URH−580)を塗布したアルミ製発泡モールド型(580×400×375mm)内へ注入した。なお、このモールド型は、熱風循環式加熱炉において型温45℃に加熱しておく。
注入後の型を熱風循環式加熱炉に装入し、80℃で15分間キュア(硬化)処理して発泡成形した。その後、発泡成形品を型から取り出し、ウレタン発泡樹脂よりなる所定形状の自動車用ヘッドレスト製品を得た。
この製品から試験片を切り出し、前記の表1に示す燃焼試験方法により難燃テストを行った結果、試験片の着火は認められなかった。また、試験片が溶けて下にある脱脂綿上にドリップ(滴下)する現象も見られず、優れた難燃性を発揮することが確認できた。
Next, as an example, the production of a foam molded product for an automobile headrest will be described.
A flame retardant polyurethane raw material composition shown in Example 6 of Table 5 was prepared. This urethane raw material was poured into an aluminum foam mold (580 × 400 × 375 mm) coated with a release agent (URH-580 manufactured by Konishi Co., Ltd.). The mold is heated to a mold temperature of 45 ° C. in a hot air circulating heating furnace.
The mold after the injection was placed in a hot air circulation type heating furnace, and was cured (cured) at 80 ° C. for 15 minutes for foam molding. Thereafter, the foamed molded product was taken out of the mold, and an automotive headrest product having a predetermined shape made of urethane foam resin was obtained.
As a result of cutting out a test piece from this product and conducting a flame retardant test by the combustion test method shown in Table 1, ignition of the test piece was not recognized. Moreover, the test piece melt | dissolved and the phenomenon of dripping (dropping) on the absorbent cotton under was not seen, but it has confirmed that the outstanding flame retardance was exhibited.

Claims (4)

ポリウレタン原料に、難燃剤としてカーボンからなる第1の難燃剤と、赤リンと縮合リン酸エステルからなる第2の難燃剤の二元系からなる複合難燃剤を含有させたことを特徴とする難燃性ポリウレタン原料組成物。   A flame retardant characterized by containing a composite flame retardant comprising a binary system of a first flame retardant comprising carbon as a flame retardant and a second flame retardant comprising red phosphorus and a condensed phosphate ester as a polyurethane raw material. Flammable polyurethane raw material composition. カーボンからなる第1の難燃剤が、高導電性カーボンブラックと膨張黒鉛からなるものである請求項1に記載の難燃性ポリウレタン原料組成物。   The flame retardant polyurethane raw material composition according to claim 1, wherein the first flame retardant made of carbon is made of highly conductive carbon black and expanded graphite. 難燃剤の各成分の含有量が、ポリウレタン原料中のポリエーテルポリオール液100重量部に対し、高導電性カーボンブラック:0.2〜2.0重量部、膨張黒鉛:7〜15重量部、赤リン:2〜10重量部、縮合リン酸エステル:5〜10重量部であり、また複合難燃剤の合計含有量が15〜40重量部である請求項2に記載の難燃性ポリウレタン原料組成物。   The content of each component of the flame retardant is 0.2 to 2.0 parts by weight of highly conductive carbon black, 7 to 15 parts by weight of expanded graphite, and red for 100 parts by weight of the polyether polyol liquid in the polyurethane raw material. The flame retardant polyurethane raw material composition according to claim 2, wherein the phosphorus content is 2 to 10 parts by weight, the condensed phosphate ester is 5 to 10 parts by weight, and the total content of the composite flame retardant is 15 to 40 parts by weight. . 請求項1から3のいずれかに記載の難燃性ポリウレタン原料組成物を発泡成形して得られることを特徴とする難燃性に優れた発泡成形品。   A foam-molded article having excellent flame retardancy obtained by foam-molding the flame-retardant polyurethane raw material composition according to any one of claims 1 to 3.
JP2010244972A 2010-11-01 2010-11-01 Flame retardant polyurethane raw material composition and foamed molded article excellent in flame retardancy molded thereby Expired - Fee Related JP5570019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244972A JP5570019B2 (en) 2010-11-01 2010-11-01 Flame retardant polyurethane raw material composition and foamed molded article excellent in flame retardancy molded thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244972A JP5570019B2 (en) 2010-11-01 2010-11-01 Flame retardant polyurethane raw material composition and foamed molded article excellent in flame retardancy molded thereby

Publications (2)

Publication Number Publication Date
JP2012097169A true JP2012097169A (en) 2012-05-24
JP5570019B2 JP5570019B2 (en) 2014-08-13

Family

ID=46389449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244972A Expired - Fee Related JP5570019B2 (en) 2010-11-01 2010-11-01 Flame retardant polyurethane raw material composition and foamed molded article excellent in flame retardancy molded thereby

Country Status (1)

Country Link
JP (1) JP5570019B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219127A (en) * 2011-04-05 2012-11-12 Rin Kagaku Kogyo Kk Flame retardant composition for polyurethane, flame retardant polyurethane and flame retardant polyurethane foam produced using the same
WO2015004928A1 (en) * 2013-07-12 2015-01-15 積水化学工業株式会社 Urethane resin composition
JP2015052110A (en) * 2013-08-08 2015-03-19 積水化学工業株式会社 Flame-retardant curable resin composition
WO2015129844A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Fire-resistant heat-insulating coating material for piping or equipment
EP2922921A4 (en) * 2012-11-26 2016-06-29 Proprietect Lp Isocyanate-based polymer foam having improved flame retardant properties
KR20200027691A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR20200027692A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR20200027690A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
CN112585185A (en) * 2018-08-23 2021-03-30 美国圣戈班性能塑料公司 Polyurethane foam and method of forming same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083208A (en) * 2004-09-14 2006-03-30 Inoac Corp Flame-retardant filter foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083208A (en) * 2004-09-14 2006-03-30 Inoac Corp Flame-retardant filter foam

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219127A (en) * 2011-04-05 2012-11-12 Rin Kagaku Kogyo Kk Flame retardant composition for polyurethane, flame retardant polyurethane and flame retardant polyurethane foam produced using the same
EP2922921A4 (en) * 2012-11-26 2016-06-29 Proprietect Lp Isocyanate-based polymer foam having improved flame retardant properties
WO2015004928A1 (en) * 2013-07-12 2015-01-15 積水化学工業株式会社 Urethane resin composition
JP2015052110A (en) * 2013-08-08 2015-03-19 積水化学工業株式会社 Flame-retardant curable resin composition
JP2018173174A (en) * 2014-02-27 2018-11-08 積水化学工業株式会社 Fireproof heat insulation covering material for pipeline or equipment
JP5973068B2 (en) * 2014-02-27 2016-08-23 積水化学工業株式会社 Fireproof insulation for piping or equipment
JPWO2015129844A1 (en) * 2014-02-27 2017-03-30 積水化学工業株式会社 Fireproof insulation for piping or equipment
WO2015129844A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Fire-resistant heat-insulating coating material for piping or equipment
JP2019184068A (en) * 2014-02-27 2019-10-24 積水化学工業株式会社 Fireproof heat insulation covering material for pipeline or equipment
CN105793633A (en) * 2014-02-27 2016-07-20 积水化学工业株式会社 Fire-resistant heat-insulating coating material for piping or equipment
CN112585185A (en) * 2018-08-23 2021-03-30 美国圣戈班性能塑料公司 Polyurethane foam and method of forming same
US11851521B2 (en) 2018-08-23 2023-12-26 Saint-Gobain Performance Plastics Corporation Polyurethane foam and methods of forming the same
KR20200027692A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR20200027690A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR102247683B1 (en) 2018-09-05 2021-04-30 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR102255392B1 (en) 2018-09-05 2021-05-21 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR102255391B1 (en) 2018-09-05 2021-05-21 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof
KR20200027691A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Composition for flame retardant polyurethane foam and flame retardant polyurethane foam comprising cured product thereof

Also Published As

Publication number Publication date
JP5570019B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5570019B2 (en) Flame retardant polyurethane raw material composition and foamed molded article excellent in flame retardancy molded thereby
Meng et al. Effects of expandable graphite and ammonium polyphosphate on the flame‐retardant and mechanical properties of rigid polyurethane foams
Rao et al. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite
Yuan et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios
Thirumal et al. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties
Zhu et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide
Liu et al. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites
Xu et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame‐retardant properties of rigid polyurethane foam
Wang et al. Synergistic effect of expandable graphite and melamine phosphate on flame‐retardant polystyrene
US9650484B2 (en) Fire-resistant polyurethane material and fire-resistant structure
Vitkauskienė et al. Thermal properties of polyurethane-polyisocyanurate foams based on poly (ethylene terephthalate) waste
Singh et al. Effect of phosphorus‐nitrogen additives on fire retardancy of rigid polyurethane foams
Wang et al. Synergistic effect of aluminum hydroxide and expandable graphite on the flame retardancy of polyisocyanurate–polyurethane foams
Song et al. Synergistic effect of supported nickel catalyst with intumescent flame‐retardants on flame retardancy and thermal stability of polypropylene
JP6782067B2 (en) Organic materials as fireproof and flame retardant synergists
Pal et al. Development of halogen‐free flame‐retardant thermoplastic elastomer polymer blend
Li et al. Halogen‐free coatings combined with the synergistic effect of phytic acid and montmorillonite for fire safety flexible polyurethane foam
Xu et al. Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate
Yu et al. Study on char reinforcing of different inorganic fillers for expandable fire resistance silicone rubber
CN108467547A (en) A kind of converter environment-protection flame-proof electrostatic resistance polypropylene composition and preparation method thereof
Shi et al. A new strategy for constructing polypropylene composite foams with excellent ablation resistance and flame retardancy
Serbezeanu et al. Poly (vinyl alcohol)-oligophosphonate eco-friendly composites with improved reaction-to-fire properties
US10436994B2 (en) Optical fiber cable
JP5699350B2 (en) Flame Retardant Polyvinyl Chloride Raw Material Composition and Molded Vinyl Chloride Molded Product Excellent in Flame Retardancy
JP5871523B2 (en) Flame retardant polyurethane elastomer raw material composition and molded article excellent in flame retardancy molded thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5570019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees