JP2012096590A - Vehicle charging and heat storage device - Google Patents

Vehicle charging and heat storage device Download PDF

Info

Publication number
JP2012096590A
JP2012096590A JP2010243933A JP2010243933A JP2012096590A JP 2012096590 A JP2012096590 A JP 2012096590A JP 2010243933 A JP2010243933 A JP 2010243933A JP 2010243933 A JP2010243933 A JP 2010243933A JP 2012096590 A JP2012096590 A JP 2012096590A
Authority
JP
Japan
Prior art keywords
heat
heat storage
charging
external power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010243933A
Other languages
Japanese (ja)
Inventor
Atsushi Morita
篤士 森田
Maki Morita
真樹 森田
Miyuki Goto
美由紀 後藤
Kei Shiga
慧 志賀
Shuhei Koyama
修平 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010243933A priority Critical patent/JP2012096590A/en
Publication of JP2012096590A publication Critical patent/JP2012096590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep low-power consumption for completing charging of a battery and heat storage in a heat storage unit as a vehicle is connected to an external power supply.SOLUTION: As a vehicle is connected to an external power supply, a battery 17 is charged using the external power supply and heat is stored in heat storage units 14 and 15 by driving a Peltier element 7 using the external power supply such that the charging and heat storage are completed at the same time. In this process, charging the battery 17 and accumulating heat in the heat storage units 14 and 15 by driving the Peltier element 7 are performed simultaneously, using an electric capacity of the external power supply to its limit, through distribution of electric energy for charging and electric energy for heat storage. In this distribution, a distribution ratio "A:B" is a ratio at which the charging and heat storage can be completed in the shortest time. In this manner, by charging the battery 17 and accumulating heat in the heat storage units 14 and 15 as the vehicle is connected to the external power supply, the charging and heat storage can be carried out efficiently.

Description

本発明は、車両の充電蓄熱装置に関する。   The present invention relates to a charging and heat storage device for a vehicle.

停車時に外部電源に接続されてバッテリへの充電が行われる車両として、例えば、バッテリの電力に基づき駆動されるモータを用いて走行することの可能な車両(特許文献1参照)があげられる。   An example of a vehicle that is connected to an external power source and is charged to a battery when the vehicle is stopped is a vehicle that can travel using a motor that is driven based on the power of the battery (see Patent Document 1).

同車両においても、車室の空調(空気温度の調節)を行うための空調装置が設けられている。こうした空調装置は、例えば特許文献2に示されるように、車両の廃熱を回収して車室の空調(暖房)に用いるべく水等の熱媒体を循環させる循環回路と、その循環回路の熱媒体を蓄えることで顕熱蓄熱を行う蓄熱器と、その蓄熱器の熱媒体に対し温熱を付与することの可能な熱移動装置(ヒートポンプ)とを備えている。上記熱移動装置は、バッテリの電力に基づき低温側から高温側への熱の移動を行うよう駆動される。そして、熱移動装置の高温側によって蓄熱器の熱媒体に対し温熱が付与される。   The vehicle is also provided with an air conditioner for air conditioning (adjustment of air temperature) of the passenger compartment. For example, as disclosed in Patent Document 2, such an air conditioner includes a circulation circuit that recovers waste heat of a vehicle and circulates a heat medium such as water to be used for air conditioning (heating) of a passenger compartment, and heat of the circulation circuit. The heat storage which performs sensible heat storage by storing a medium, and the heat transfer apparatus (heat pump) which can provide heat with respect to the heat medium of the heat storage are provided. The heat transfer device is driven to transfer heat from the low temperature side to the high temperature side based on the electric power of the battery. And warm heat is provided with respect to the heat medium of a thermal accumulator by the high temperature side of a heat transfer apparatus.

同空調装置による車室の空調(ここでは暖房)は、車両の廃熱を回収して温度上昇した循環回路の熱媒体を、車室に送られる空気との間で熱交換させることによって実現される。また、このときに上記蓄熱器に蓄えられた温熱(高温の熱媒体)を循環回路の熱媒体に放出すれば、それによって車室の暖房がより一層効果的に行われるようになる。   Air conditioning of the passenger compartment (in this case, heating) by the air conditioner is realized by exchanging heat between the heat medium of the circulation circuit that has recovered the waste heat of the vehicle and increased in temperature with the air sent to the passenger compartment. The Further, if the warm heat (high temperature heat medium) stored in the heat accumulator is released to the heat medium of the circulation circuit at this time, the vehicle compartment can be heated more effectively.

特開平7−193901公報JP-A-7-193901 特開2010−23527公報JP 2010-23527 A

ところで、上記車両においては、停車中であって外部電源に接続されているとき、同車両の次回の運転開始に伴って外部電源から切り離されるまでに、上記外部電源を用いてバッテリの充電を完了させるとともに、上記外部電源に基づき熱移動装置を駆動して蓄熱器への温熱の蓄熱を完了させることが好ましい。   By the way, when the vehicle is stopped and connected to an external power supply, the battery is charged using the external power supply until the vehicle is disconnected from the external power supply when the vehicle is next operated. In addition, it is preferable that the heat transfer device is driven based on the external power supply to complete the heat storage of the heat to the heat accumulator.

ただし、上記外部電源を用いたバッテリの充電、及び、上記外部電源を用いた熱移動装置の駆動による蓄熱器への蓄熱を行うに当たり、それらバッテリの充電及び蓄熱器への蓄熱の仕方によっては充電及び蓄熱の効率が低下するおそれがある。このように充電及び蓄熱の効率が低下すると、充電及び蓄熱の完了に長い時間がかかるようになり、ひいては充電及び蓄熱を完了させるために消費される電力が多くなる。   However, when charging the battery using the external power source and storing heat in the heat accumulator by driving the heat transfer device using the external power source, charging is performed depending on how the battery is charged and the heat accumulator is stored. And the efficiency of heat storage may be reduced. When the efficiency of charging and heat storage is thus reduced, it takes a long time to complete charging and heat storage, and as a result, more power is consumed to complete the charging and heat storage.

本発明はこのような実情に鑑みてなされたものであって、その目的は、車両の外部電源への接続中、バッテリの充電及び蓄熱器への蓄熱の完了のために消費される電力を小さく抑えることのできる車両の充電蓄熱装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to reduce the power consumed for charging the battery and completing the heat storage in the heat accumulator during connection to the external power source of the vehicle. An object of the present invention is to provide a charging and storing device for a vehicle that can be suppressed.

請求項1記載の発明によれば、車両の外部電源への接続中、その外部電源によるバッテリの充電が行われるとともに、外部電源に基づき熱移動装置を駆動させることで蓄熱器への冷熱もしくは温熱の蓄熱が行われる。そして、それらバッテリの充電と蓄熱器への蓄熱とが同時に完了するよう、車両の外部電源への接続中におけるバッテリの充電及び蓄熱器への蓄熱が行われる。このように充電及び蓄熱を行うことで、少なくとも、そうした充電及び蓄熱の完了直前には、バッテリの充電と蓄熱器への蓄熱とが同時に行われるようになる。   According to the first aspect of the invention, while the vehicle is connected to the external power source, the battery is charged by the external power source, and the heat transfer device is driven based on the external power source to cool or heat the regenerator. Heat storage. Then, charging of the battery and heat storage to the heat accumulator are performed during connection to the external power source of the vehicle so that charging of the battery and heat storage to the heat accumulator are completed simultaneously. By performing charging and heat storage in this way, at least immediately before the completion of such charging and heat storage, charging of the battery and heat storage to the heat accumulator are performed simultaneously.

仮に、車両の外部電源への接続中、まず外部電源の電気容量を最大限に用いてバッテリの充電を完了させ、その後に外部電源の電気容量を最大限に用いて蓄熱器への蓄熱を完了させるようにした場合、上記蓄熱の効率が低下して充電及び蓄熱を完了させるために消費される電力が多くなる。これは、上記蓄熱を行うべく熱移動装置を動作させて同装置の低温側から高温側への熱の移動を行う際、それら低温側と高温側との温度差が小さいほど上記熱の移動が効率よく行われることが関係している。すなわち、上述したように外部電源の電気容量を最大限に用いて熱移動装置の駆動による上記熱の移動を行うと、熱移動装置の低温側から高温側への熱の移動が急速に行われて両者の温度差が大きくなることから、上記熱の移動が効率よく行えなくなり、ひいては蓄熱の効率が低下するためである。   Temporarily, while connecting to the external power supply of the vehicle, first complete the charging of the battery using the maximum electrical capacity of the external power supply, then complete the heat storage to the regenerator using the maximum electrical capacity of the external power supply When it is made to do, the efficiency of the said heat storage falls and the electric power consumed in order to complete charge and heat storage increases. This is because when the heat transfer device is operated to perform the heat storage and the heat is transferred from the low temperature side to the high temperature side of the device, the heat transfer is increased as the temperature difference between the low temperature side and the high temperature side is small. It is related to being done efficiently. That is, as described above, when the heat transfer is performed by driving the heat transfer device using the maximum electric capacity of the external power source, the heat transfer from the low temperature side to the high temperature side of the heat transfer device is performed rapidly. This is because the temperature difference between the two becomes large, so that the heat transfer cannot be performed efficiently, and the heat storage efficiency is lowered.

この点、請求項1記載の発明では、車両の外部電源への接続中、少なくともバッテリ充電及び蓄熱器への蓄熱が完了する直前には、それら充電と蓄熱とが同時に行われるため、そのときに熱移動装置が外部電源の電気容量を最大限に用いて動作することはなくなる。この場合、蓄熱を行うべく動作する熱移動装置での低温側から高温側への熱の移動が緩やかになる。このように熱移動装置の低温側から高温側への熱の移動が緩やかになると、それら低温側と高温側との温度差が過度に大きくなることは抑制され、更には熱移動装置の低温側から高温側への熱の移動が効率よく行えなくなることも抑制される。こうして熱移動装置の低温側から高温側への熱の移動を効率よく行うことが可能になり、それによって蓄熱の効率が低下することは抑制されるようになる。以上により、車両の外部電源への接続中、バッテリの充電及び蓄熱器への蓄熱を効率よく行うことができ、それら充電及び蓄熱の完了のために消費される電力を小さく抑えることができる。   In this respect, in the invention according to claim 1, during the connection to the external power supply of the vehicle, at least immediately before the battery charging and the heat storage to the heat accumulator are completed, the charging and the heat storage are performed at the same time. The heat transfer device will not operate using the maximum capacity of the external power supply. In this case, the heat transfer from the low temperature side to the high temperature side in the heat transfer device that operates to store heat becomes gentle. When the heat transfer from the low temperature side to the high temperature side of the heat transfer device becomes gentle in this way, the temperature difference between the low temperature side and the high temperature side is suppressed from becoming excessively large, and furthermore, the low temperature side of the heat transfer device. It is also possible to prevent the heat from being efficiently transferred to the high temperature side. In this way, it is possible to efficiently transfer heat from the low temperature side to the high temperature side of the heat transfer device, thereby suppressing a decrease in heat storage efficiency. As described above, during the connection to the external power source of the vehicle, the battery can be charged and the heat storage to the heat accumulator can be efficiently performed, and the electric power consumed for the completion of the charging and the heat storage can be kept small.

請求項2記載の発明によれば、車両の外部電源への接続中、その外部電源によるバッテリの充電が行われるとともに、外部電源に基づき熱移動装置を駆動させることで蓄熱器への冷熱もしくは温熱の蓄熱が行われる際、外部電源の電気容量を最大限に用いたバッテリの充電と熱移動装置の駆動による蓄熱器への蓄熱とが同時に行われる。更に、上記充電のための電気エネルギと上記蓄熱のための電気エネルギとを分配するに当たり、その分配率に関しては上記充電及び上記蓄熱が最短で完了する値とされる。その結果、車両の外部電源への接続中、バッテリの充電及び蓄熱器への蓄熱を効率よく行うことができるようになり、それら充電及び蓄熱の完了のために消費される電力を小さく抑えることができるようになる。   According to the second aspect of the invention, while the vehicle is connected to the external power source, the battery is charged by the external power source, and the heat transfer device is driven based on the external power source to thereby cool or heat the regenerator. When the heat storage is performed, charging of the battery using the electric capacity of the external power source to the maximum and heat storage in the heat storage device by driving the heat transfer device are performed simultaneously. Furthermore, when distributing the electric energy for charging and the electric energy for storing heat, the distribution and the heat storage are set to values that can be completed in the shortest time. As a result, during connection to the external power supply of the vehicle, the battery can be charged and the heat storage to the heat accumulator can be performed efficiently, and the electric power consumed for completing the charging and heat storage can be kept small. become able to.

請求項3記載の発明によれば、車両が前記外部電源に接続された後、同外部電源が車両から切り離される予測時刻である切り離し時刻にて充電及び蓄熱が完了する。すなわち、そのように充電及び蓄熱が完了するよう、車両が外部電源に接続された後、充電及び蓄熱が開始される。従って、車両を運転開始すべく、同車両を切り離し時刻に従って外部電源から切り離すときにバッテリの充電及び蓄熱器への蓄熱を完了させることができ、その完了が上記切り離しに対し早すぎたり遅すぎたりすることがない。   According to the third aspect of the present invention, after the vehicle is connected to the external power supply, charging and heat storage are completed at a disconnection time that is an estimated time when the external power supply is disconnected from the vehicle. That is, charging and heat storage are started after the vehicle is connected to the external power supply so that charging and heat storage are completed in this way. Therefore, when the vehicle is disconnected from the external power source according to the disconnection time in order to start operation of the vehicle, the charging of the battery and the heat storage to the heat accumulator can be completed, and the completion is too early or too late with respect to the disconnection. There is nothing to do.

なお、上記充電のための電気エネルギと上記蓄熱のための電気エネルギとを分配するに当たっての分配率に関しては、請求項4のように次の式「(A:B)=(Qb−Qbnow):(lQs−Qsnowl)/COP」に基づき設定することが好ましい。   As for the distribution ratio in distributing the electric energy for charging and the electric energy for storing heat, the following equation “(A: B) = (Qb−Qbnow)” as in claim 4: It is preferable to set based on (lQs−Qsnowl) / COP ”.

更に、車両を外部電源に接続した後におけるバッテリの充電及び蓄熱器への蓄熱に関しては、請求項5のように最短時間Tfを次の式「Tf=(Qb−Qbnow)/[E・{A/(A+B)}]」に基づいて算出し、上記切り離し時刻から最短時間Tfを遡った時刻にて開始することが好ましい。   Further, regarding the charging of the battery and the heat storage in the heat accumulator after the vehicle is connected to the external power source, the shortest time Tf is expressed by the following equation “Tf = (Qb−Qbnow) / [E · {A / (A + B)}] ”, and it is preferable to start at a time retroactive to the shortest time Tf from the separation time.

また、上記最短時間Tfに関しては、請求項6のように、次の式「Tf={(lQs−Qsnowl)/COP}/[E・{B/(A+B)}]」に基づいて算出することも可能である。   Further, the shortest time Tf is calculated based on the following equation “Tf = {(lQs−Qsnow) / COP} / [E · {B / (A + B)}]” as in claim 6. Is also possible.

本実施形態における熱制御装置の全体構成を示す略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the whole structure of the thermal control apparatus in this embodiment. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. 同熱制御装置の第1〜第3循環回路での熱媒体の循環態様を示す略図。The schematic diagram which shows the circulation aspect of the heat medium in the 1st-3rd circulation circuit of the same heat control apparatus. ペルチェ素子の性能の変化に対する電力効率の推移を示すグラフ。The graph which shows transition of the power efficiency with respect to the change of the performance of a Peltier device. ペルチェ素子の性能の変化に対する充電及び蓄熱の完了時間の推移を示すグラフ。The graph which shows transition of the completion time of charge and heat storage with respect to the change of the performance of a Peltier device. 車両を外部電源に接続した状態のもとでバッテリの充電、及び蓄熱器への蓄熱を行うための処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of the process for performing charge of a battery and the thermal storage to a thermal accumulator under the state which connected the vehicle to the external power supply. (a)〜(c)は車両を外部電源に接続した後のバッテリ残量及び蓄熱残量の推移を示すタイムチャート。(A)-(c) is a time chart which shows transition of the battery residual amount and heat storage residual amount after connecting a vehicle to an external power supply.

以下、本発明を自動車等の車両に適用した一実施形態について、図1〜図11を参照して説明する。
この実施形態の車両は、バッテリの電力に基づき駆動されるモータにより走行可能であって、且つ停車時に上記バッテリを充電すべく外部電源と接続することが可能となっている。こうした車両には、熱制御の一つとして車室の空調などを行う熱制御装置が設けられる。この熱制御装置は、図1に示されるように、ポンプ4の駆動により水等の熱媒体が循環する第1循環回路1と、ポンプ5の駆動により水等の熱媒体が循環する第2循環回路2と、ポンプ8の駆動により水等の熱媒体が循環する第3循環回路3とを備えている。
Hereinafter, an embodiment in which the present invention is applied to a vehicle such as an automobile will be described with reference to FIGS.
The vehicle of this embodiment can be driven by a motor driven based on the electric power of the battery, and can be connected to an external power source to charge the battery when the vehicle is stopped. Such a vehicle is provided with a heat control device that performs air conditioning of the passenger compartment as one of the heat controls. As shown in FIG. 1, the heat control device includes a first circulation circuit 1 in which a heat medium such as water circulates by driving a pump 4, and a second circulation in which a heat medium such as water circulates by driving a pump 5. A circuit 2 and a third circulation circuit 3 in which a heat medium such as water circulates by driving the pump 8 are provided.

上記第1循環回路1では、ポンプ4の駆動により循環する熱媒体を用いて車室の空調を行うことが可能となっている。また、上記第2循環回路2では、ポンプ5の駆動により循環する熱媒体が室外熱交換器6を通過する際、同熱媒体と外気との間での熱交換を行うことが可能となっている。これら第1循環回路1と上記第2循環回路2との間には、上記バッテリや上記外部電源からの電力供給を受けて作動するペルチェ素子7が、第1循環回路1の熱媒体と第2循環回路2の熱媒体との間での熱の移動を行うことの可能な熱移動装置として設けられている。   In the first circulation circuit 1, the passenger compartment can be air-conditioned using a heat medium that circulates by driving the pump 4. Moreover, in the said 2nd circulation circuit 2, when the heat medium circulated by the drive of the pump 5 passes the outdoor heat exchanger 6, it becomes possible to perform heat exchange between the heat medium and outside air. Yes. Between the first circulation circuit 1 and the second circulation circuit 2, a Peltier element 7 that operates by receiving power supply from the battery or the external power supply is connected to the heat medium of the first circulation circuit 1 and the second circulation circuit 2. A heat transfer device capable of transferring heat to and from the heat medium of the circulation circuit 2 is provided.

一方、上記第3循環回路3では、ポンプ8の駆動により循環する熱媒体が充電器9及びトランスアクスル10を通過するようになっている。上記充電器9は、車両に接続された外部電源の電圧をバッテリの充電を行うことの可能な値まで昇圧するためのものであって、例えば家庭用電源を上記外部電源として車両に接続した場合に作動される。そして、充電器9の作動中には、同充電器9からの廃熱が第3循環回路を循環する熱媒体によって回収される。このように熱媒体により回収された廃熱に関しては、同熱媒体がトランスアクスル10を通過する際に同トランスアクスル10に付与される。   On the other hand, in the third circulation circuit 3, the heat medium circulated by driving the pump 8 passes through the charger 9 and the transaxle 10. The charger 9 is for boosting the voltage of the external power source connected to the vehicle to a value at which the battery can be charged. For example, when the home power source is connected to the vehicle as the external power source Operated. During the operation of the charger 9, the waste heat from the charger 9 is recovered by the heat medium circulating in the third circulation circuit. Thus, the waste heat recovered by the heat medium is given to the transaxle 10 when the heat medium passes through the transaxle 10.

また、第3循環回路3は、サーモスタット11にて、放熱器12を通過して循環する経路と同放熱器12を迂回して循環する経路とに分岐している。上記サーモスタット11は、第3循環回路3の熱媒体の温度に応じて、同熱媒体の上記放熱器12の通過を禁止・許可するものである。すなわち、第3循環回路3の熱媒体の温度が高いときには、上記サーモスタット11の動作により上記放熱器12における熱媒体の通過が許可され、それによって上記熱媒体が放熱器12を通過して同放熱器12にて放熱を行うようにされる。その結果、第3循環回路3における熱媒体の温度の過上昇が抑制される。一方、第3循環回路3の熱媒体の温度が高いときには、上記サーモスタット11の動作により上記放熱器12における熱媒体の通過が禁止され、それによって上記熱媒体が放熱器12を迂回して循環するようにされる。その結果、放熱器12での熱媒体の放熱が行われることはなくなり、第3循環回路3における熱媒体の温度が過度に低くなることがないようにされる。   Further, the third circulation circuit 3 branches in the thermostat 11 into a path that circulates through the radiator 12 and a path that circulates around the radiator 12. The thermostat 11 prohibits / permits passage of the heat medium through the radiator 12 according to the temperature of the heat medium in the third circulation circuit 3. That is, when the temperature of the heat medium in the third circulation circuit 3 is high, the operation of the thermostat 11 allows the heat medium to pass through the radiator 12, whereby the heat medium passes through the heat radiator 12 and the heat dissipation. The unit 12 radiates heat. As a result, an excessive increase in the temperature of the heat medium in the third circulation circuit 3 is suppressed. On the other hand, when the temperature of the heat medium in the third circulation circuit 3 is high, the operation of the thermostat 11 prohibits the passage of the heat medium in the radiator 12, whereby the heat medium circulates around the radiator 12. To be done. As a result, heat dissipation of the heat medium in the radiator 12 is not performed, and the temperature of the heat medium in the third circulation circuit 3 is not excessively lowered.

次に、上記第1循環回路1について詳しく説明する。
第1循環回路1は、ポンプ4の下流に設けられた切換弁13にて、冷熱蓄熱器14を通過する経路1a、温熱蓄熱器15を通過する経路1b、バイパス通路16を通過する経路1c、及びバッテリ17を通過する経路1dといった四つの経路に分岐している。上記切換弁13は、前記第1循環回路1における熱媒体の循環経路を冷熱蓄熱器14(経路1a)、温熱蓄熱器15(経路1b)、バイパス通路16(経路1c)、及びバッテリ17(経路1d)のうちのいずれかに切り換えるよう動作する。なお、第1循環回路1における経路1a〜1cは、室内熱交換器18の上流で一つとなるように合流している。この室内熱交換器18は、そこを通過する熱媒体と車室に送られる空気との間での熱交換を行わせるものである。第1循環回路1における室内熱交換器18の下流側は、経路1dの下流と合流した後に遮断弁19に繋がっている。同遮断弁19は、その動作を通じて第1循環回路1を第2循環回路2に対し連通状態もしくは遮断状態とするものである。詳しくは、通常時においては、第1循環回路1と第2循環回路2とが遮断状態となるよう、上記遮断弁19が閉じられた状態とされる。一方、第1循環回路1の熱媒体を第2循環回路2に送って室外熱交換器6にて外気と熱交換させたいときには、上記遮断弁19が開かれて第1循環回路1と第2循環回路2とが連通状態とされる。
Next, the first circulation circuit 1 will be described in detail.
The first circulation circuit 1 includes a switching valve 13 provided downstream of the pump 4, a path 1 a that passes through the cold heat storage unit 14, a path 1 b that passes through the thermal storage unit 15, a path 1 c that passes through the bypass path 16, And it branches into four paths such as a path 1d passing through the battery 17. The switching valve 13 is configured such that the heat medium circulation path in the first circulation circuit 1 is a cold heat storage unit 14 (path 1a), a thermal heat storage unit 15 (path 1b), a bypass path 16 (path 1c), and a battery 17 (path). Operate to switch to any of 1d). Note that the paths 1 a to 1 c in the first circulation circuit 1 are joined together so as to be one upstream of the indoor heat exchanger 18. This indoor heat exchanger 18 performs heat exchange between the heat medium passing therethrough and the air sent to the passenger compartment. The downstream side of the indoor heat exchanger 18 in the first circulation circuit 1 is connected to the shutoff valve 19 after joining the downstream of the path 1d. The shut-off valve 19 makes the first circulation circuit 1 communicate with or shut off the second circulation circuit 2 through its operation. Specifically, in a normal state, the shutoff valve 19 is closed so that the first circulation circuit 1 and the second circulation circuit 2 are shut off. On the other hand, when the heat medium of the first circulation circuit 1 is sent to the second circulation circuit 2 to exchange heat with the outside air in the outdoor heat exchanger 6, the shutoff valve 19 is opened and the first circulation circuit 1 and the second circulation circuit 1 are opened. The circulation circuit 2 is in communication.

第1循環回路1における遮断弁19の下流かつポンプ5の上流には、車両のモータを駆動するためのインバータ20が廃熱回収対象として設けられている。従って、モータを駆動するためのインバータ20の動作中には、同インバータ20からの廃熱が第1循環回路1を循環する熱媒体によって回収されるようになる。また、第1循環回路1における遮断弁19の下流かつインバータ20の上流に対応する部分には上述したペルチェ素子7が位置している。このペルチェ素子7は、第2循環回路2に対しては、室外熱交換器6の下流かつポンプ5の上流に対応する部分に位置している。そして、同ペルチェ素子7の駆動を通じて、第2循環回路2の熱媒体の熱を第1循環回路1の熱媒体に移動させたり、第1循環回路1の熱媒体の熱を第2循環回路2の熱媒体に移動させたりすることが行われる。なお、こうしたペルチェ素子7の駆動による熱の移動は、第1循環回路1の熱媒体と第2循環回路2の熱媒体とのうち、低温の熱媒体から高温の熱媒体に向けて行うことも可能となっている。   An inverter 20 for driving a motor of the vehicle is provided as a waste heat recovery target downstream of the shutoff valve 19 and upstream of the pump 5 in the first circulation circuit 1. Accordingly, during the operation of the inverter 20 for driving the motor, the waste heat from the inverter 20 is recovered by the heat medium circulating in the first circulation circuit 1. Further, the Peltier element 7 described above is located in a portion corresponding to the downstream of the shutoff valve 19 and the upstream of the inverter 20 in the first circulation circuit 1. The Peltier element 7 is located in a portion corresponding to the downstream of the outdoor heat exchanger 6 and the upstream of the pump 5 with respect to the second circulation circuit 2. Then, the heat of the heat medium in the second circulation circuit 2 is transferred to the heat medium of the first circulation circuit 1 through the driving of the Peltier element 7, or the heat of the heat medium in the first circulation circuit 1 is transferred to the second circulation circuit 2. Or moving to a heat medium. The movement of heat by driving the Peltier element 7 may be performed from a low-temperature heat medium to a high-temperature heat medium among the heat medium of the first circulation circuit 1 and the heat medium of the second circulation circuit 2. It is possible.

次に、車両の熱制御装置の電気的構成について説明する。
この熱制御装置は、バッテリ17の充電、及び、冷熱蓄熱器14や温熱蓄熱器15を用いた蓄熱を制御する充電蓄熱装置としても機能する。こうした熱制御装置には、車両におけるモータの駆動制御及び車室の空調制御などの各種制御を行う電子制御装置21が設けられている。この電子制御装置21は、上記制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えている。
Next, the electrical configuration of the vehicle thermal control device will be described.
This heat control device also functions as a charge heat storage device that controls charging of the battery 17 and heat storage using the cold heat storage device 14 and the heat storage device 15. Such a heat control device is provided with an electronic control device 21 that performs various controls such as drive control of a motor in a vehicle and air conditioning control of a passenger compartment. This electronic control device 21 includes a CPU that executes various arithmetic processes related to the above control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU calculation results, and the like. It has input / output ports for inputting / outputting signals.

電子制御装置21の入力ポートには、冷熱蓄熱器14内の温度を検出する第1温度センサ22、温熱蓄熱器15内の温度を検出する第2温度センサ23、及び室内熱交換器18の通過後に車室内に吹き出される空気の温度(吹き出し温度)を検出する第3温度センサ24といった各種センサ等が接続されている。更に、上記入力ポートには、車両の運転開始や運転停止の際に操作されて操作位置に対応した信号を出力するレディースイッチ25、及び、車両の外部電源に対する接続の有無に応じた信号を出力するプラグイン検出回路26も接続されている。一方、電子制御装置21の出力ポートには、ポンプ4、ポンプ5、ペルチェ素子7、ポンプ8、充電器9、切換弁13、及び遮断弁19といった各種機器のそれぞれの駆動回路等が接続されている。   The input port of the electronic control device 21 has a first temperature sensor 22 that detects the temperature in the cold heat regenerator 14, a second temperature sensor 23 that detects the temperature in the heat regenerator 15, and the passage through the indoor heat exchanger 18. Various sensors such as a third temperature sensor 24 for detecting the temperature of the air blown into the vehicle interior (blowing temperature) later are connected. Furthermore, the input port outputs a signal corresponding to the presence or absence of connection to an external power source of the vehicle, and a ready switch 25 that outputs a signal corresponding to the operation position when the vehicle is started or stopped. A plug-in detection circuit 26 is also connected. On the other hand, the output ports of the electronic control device 21 are connected to the drive circuits of various devices such as the pump 4, the pump 5, the Peltier element 7, the pump 8, the charger 9, the switching valve 13, and the shutoff valve 19. Yes.

電子制御装置21は、車両の運転中などに車室の空調を行うべく、上記各種センサから入力した検出信号及び車室の冷房要求や暖房要求等に基づいて、ポンプ4、ペルチェ素子7、及び切換弁13といった機器の駆動回路に対し指令信号を出力する。こうして車室の空調を行うためのポンプ4の駆動制御、ペルチェ素子7の駆動制御、及び切換弁13の駆動制御等が電子制御装置21を通じて実施される。   The electronic control unit 21 performs the air conditioning of the passenger compartment during the operation of the vehicle, based on the detection signals input from the various sensors and the passenger compartment cooling request, the heating request, etc. A command signal is output to a drive circuit of a device such as the switching valve 13. Thus, the drive control of the pump 4 for air conditioning the passenger compartment, the drive control of the Peltier element 7, the drive control of the switching valve 13, and the like are performed through the electronic control unit 21.

なお、車室の冷房要求の大きさや暖房要求の大きさは、第3温度センサ24の検出信号から求められる吹き出し温度と、その吹き出し温度の目標値である目標吹き出し温度とに基づいて求めることが可能である。上記目標吹き出し温度は、車両の乗員により定められる車室内の設定温度、車室内の実際の温度、及び、車室内への日射量などに基づいて求められる値である。そして、上記目標吹き出し温度が第3温度センサ24の検出信号から求められる吹き出し温度に対し低い値であるほど、車室の冷房要求が大きいと判断することができる。一方、上記目標吹き出し温度が第3温度センサ24の検出信号から求められる吹き出し温度に対し高い値であるほど、車室の暖房要求が大きいと判断することができる。   In addition, the magnitude | size of the cooling request | requirement of a vehicle interior and the magnitude | size of a heating request | requirement can be calculated | required based on the blowing temperature calculated | required from the detection signal of the 3rd temperature sensor 24, and the target blowing temperature which is the target value of the blowing temperature. Is possible. The target blowing temperature is a value obtained based on the set temperature in the passenger compartment determined by the vehicle occupant, the actual temperature in the passenger compartment, the amount of solar radiation into the passenger compartment, and the like. It can be determined that the lower the target blowing temperature is lower than the blowing temperature obtained from the detection signal of the third temperature sensor 24, the greater the request for cooling the passenger compartment. On the other hand, it can be determined that the higher the target blowing temperature is higher than the blowing temperature obtained from the detection signal of the third temperature sensor 24, the greater the request for heating the passenger compartment.

また、電子制御装置21は、停止中の車両に対する外部電源の接続中などに、上記各種センサから入力した検出信号に基づき冷熱蓄熱器14の蓄熱残量や温熱蓄熱器15の蓄熱残量を把握する。そして、把握した蓄熱残量に基づいて冷熱蓄熱器14への冷熱の蓄熱や温熱蓄熱器15への温熱の蓄熱を行うべく、ポンプ4、ペルチェ素子7、及び切換弁13といった機器の駆動回路に対し指令信号を出力する。こうして冷熱蓄熱器14への冷熱の蓄熱や温熱蓄熱器15への温熱の蓄熱を行うためのポンプ4の駆動制御、ペルチェ素子7の駆動制御、及び切換弁13の駆動制御等が電子制御装置21を通じて実施される。   In addition, the electronic control unit 21 grasps the remaining heat storage amount of the refrigeration regenerator 14 and the remaining heat storage amount of the heat regenerator 15 based on the detection signals input from the various sensors while the external power source is connected to the stopped vehicle. To do. Then, based on the grasped remaining heat storage amount, in a drive circuit of a device such as the pump 4, the Peltier element 7, and the switching valve 13 in order to store the cold heat in the cold heat storage device 14 and the hot heat storage device 15. A command signal is output. Thus, the electronic control unit 21 performs the drive control of the pump 4, the drive control of the Peltier element 7, the drive control of the switching valve 13, etc. for storing the cold heat in the cold heat accumulator 14 and the warm heat accumulator 15. Implemented through.

更に、電子制御装置21は、停止中の車両に対する外部電源(家庭用電源)の接続中、同外部電源の接続開始時におけるバッテリ17の残量を把握し、その把握したバッテリ17の残量等に基づき同バッテリ17の充電を行う。このとき、電子制御装置21は、家庭用電源の電圧をバッテリ17の充電を行うことの可能な値まで昇圧すべく充電器9の駆動回路に対して指令信号を出力し、それに基づく充電器9の駆動制御により家庭用電源を用いたバッテリ17の充電を行う。   Further, the electronic control unit 21 grasps the remaining amount of the battery 17 at the start of connection of the external power source while the external power source (home power source) is connected to the stopped vehicle, and the grasped remaining amount of the battery 17 and the like. Based on the above, the battery 17 is charged. At this time, the electronic control unit 21 outputs a command signal to the drive circuit of the charger 9 to boost the voltage of the household power supply to a value at which the battery 17 can be charged, and the charger 9 based on the command signal. The battery 17 is charged using the household power supply by the drive control.

次に、第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様について、車両の各種状況毎に図2〜図7を参照して詳しく説明する。
図2は、夏期での車両の運転中、冷熱蓄熱器14に蓄えられた冷熱を用いて車室を冷房する際の第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。こうした蓄熱器を用いた車室の空調(以下、蓄熱器空調という)、より詳しくは冷熱蓄熱器14に蓄えられた冷熱を用いた車室の冷房では、第1循環回路1における熱媒体の循環経路が冷熱蓄熱器14(経路1a)となるよう切換弁13が切り換えられる。更に、遮断弁19を閉じ動作させて第1循環回路1と第2循環回路2とが遮断状態とされるとともに、第1循環回路1のポンプ4及び第2循環回路2のポンプ5が駆動される。これにより、第1循環回路1を循環する熱媒体が冷熱蓄熱器14を通過するようになり、冷熱蓄熱器14に蓄えられた冷熱が上記熱媒体を通じて室内熱交換器18に運ばれることになる。そして、室内熱交換器18での熱媒体と車室に送られる空気との熱交換により同空気が冷やされる。こうして冷やされた空気が車室に送られることで、冷熱蓄熱器14に蓄えられた冷熱を用いた車室の冷房が行われるようになる。なお、このときの第3循環回路3ではポンプ8の駆動により熱媒体の循環が行われる。
Next, the heat medium circulation mode in the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 will be described in detail with reference to FIGS.
FIG. 2 shows the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when the vehicle interior is cooled by using the cold energy stored in the cold heat accumulator 14 during operation of the vehicle in summer. This shows a circulation mode of the heat medium. In the air conditioning of the passenger compartment using such a heat accumulator (hereinafter referred to as “heat accumulator air conditioning”), more specifically, in the cooling of the passenger compartment using the cold energy stored in the cold heat accumulator 14, the circulation of the heat medium in the first circulation circuit 1 is performed. The switching valve 13 is switched so that the path becomes the cold heat accumulator 14 (path 1a). Further, the shut-off valve 19 is closed so that the first circulation circuit 1 and the second circulation circuit 2 are shut off, and the pump 4 of the first circulation circuit 1 and the pump 5 of the second circulation circuit 2 are driven. The Thereby, the heat medium circulating through the first circulation circuit 1 passes through the cold heat regenerator 14, and the cold heat stored in the cold heat accumulator 14 is conveyed to the indoor heat exchanger 18 through the heat medium. . Then, the air is cooled by heat exchange between the heat medium in the indoor heat exchanger 18 and the air sent to the passenger compartment. The air thus cooled is sent to the passenger compartment, so that the passenger compartment is cooled using the cold energy stored in the cold heat accumulator 14. At this time, in the third circulation circuit 3, the heat medium is circulated by driving the pump 8.

図3は、冬季での車両の運転中、温熱蓄熱器15に蓄えられた温熱を用いて車室を暖房する際の第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。こうした蓄熱器を用いた車室の空調(以下、蓄熱器空調という)、より詳しくは温熱蓄熱器15に蓄えられた温熱を用いた車室の暖房では、第1循環回路1における熱媒体の循環経路が温熱蓄熱器15(経路1b)となるよう切換弁13が切り換えられる。更に、遮断弁19を閉じ動作させて第1循環回路1と第2循環回路2とが遮断状態とされるとともに、第1循環回路1のポンプ4及び第2循環回路2のポンプ5が駆動される。これにより、第1循環回路1を循環する熱媒体が温熱蓄熱器15を通過するようになり、温熱蓄熱器15に蓄えられた温熱が上記熱媒体を通じて室内熱交換器18に運ばれることになる。そして、室内熱交換器18での熱媒体と車室に送られる空気との熱交換により同空気が温められる。こうして温められた空気が車室に送られることで、温熱蓄熱器15に蓄えられた温熱を用いた車室の暖房が行われるようになる。なお、このときの第3循環回路3ではポンプ8の駆動により熱媒体の循環が行われる。   FIG. 3 shows the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when heating the passenger compartment using the heat stored in the heat storage unit 15 during the operation of the vehicle in winter. This shows a circulation mode of the heat medium. In the air conditioning of the passenger compartment using such a heat accumulator (hereinafter referred to as “heat accumulator air conditioning”), more specifically in the heating of the passenger compartment using the heat stored in the thermal heat accumulator 15, the circulation of the heat medium in the first circulation circuit 1 is performed. The switching valve 13 is switched so that the path becomes the thermal heat accumulator 15 (path 1b). Further, the shut-off valve 19 is closed so that the first circulation circuit 1 and the second circulation circuit 2 are shut off, and the pump 4 of the first circulation circuit 1 and the pump 5 of the second circulation circuit 2 are driven. The Thereby, the heat medium circulating through the first circulation circuit 1 passes through the heat storage unit 15, and the heat stored in the heat storage unit 15 is conveyed to the indoor heat exchanger 18 through the heat medium. . The air is warmed by heat exchange between the heat medium in the indoor heat exchanger 18 and the air sent to the passenger compartment. As the air thus warmed is sent to the passenger compartment, the passenger compartment is heated using the heat stored in the thermal heat accumulator 15. At this time, in the third circulation circuit 3, the heat medium is circulated by driving the pump 8.

図4は、夏期での車両の運転中、ペルチェ素子7を用いて車室を冷房する際の第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。こうしたペルチェ素子7を用いた車室の空調(以下、ペルチェ空調という)、より詳しくはペルチェ素子7を用いた車室の冷房では、第1循環回路1における熱媒体の循環経路がバイパス通路16(経路1c)となるよう切換弁13が切り換えられる。更に、遮断弁19を閉じ動作させて第1循環回路1と第2循環回路2とが遮断状態とされるとともに、第1循環回路1のポンプ4及び第2循環回路2のポンプ5が駆動される。この状態で、第1循環回路1の熱媒体から第2循環回路2の熱媒体へと熱の移動が行われるようにペルチェ素子7が駆動される。なお、図中のペルチェ素子7における白抜き矢印は、同ペルチェ素子7の駆動による熱の動きを示している。この場合、第1循環回路1を循環する熱媒体は、ペルチェ素子7の近傍で冷やされた後に室内熱交換器18を通過するようになる。そして、室内熱交換器18での熱媒体と車室に送られる空気との熱交換により同空気が冷やされる。こうして冷やされた空気が車室に送られることで、ペルチェ素子7を用いた車室の冷房が行われるようになる。なお、このときの第3循環回路3ではポンプ8の駆動により熱媒体の循環が行われる。   FIG. 4 shows a circulation mode of the heat medium in the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when the passenger compartment is cooled by using the Peltier element 7 during operation of the vehicle in summer. Is shown. In such air conditioning of the passenger compartment using the Peltier element 7 (hereinafter referred to as Peltier air conditioning), more specifically in the cooling of the passenger compartment using the Peltier element 7, the circulation path of the heat medium in the first circulation circuit 1 is the bypass passage 16 ( The switching valve 13 is switched so as to be route 1c). Further, the shut-off valve 19 is closed so that the first circulation circuit 1 and the second circulation circuit 2 are shut off, and the pump 4 of the first circulation circuit 1 and the pump 5 of the second circulation circuit 2 are driven. The In this state, the Peltier element 7 is driven so that heat is transferred from the heat medium of the first circulation circuit 1 to the heat medium of the second circulation circuit 2. In addition, the white arrow in the Peltier element 7 in the figure indicates the movement of heat by driving the Peltier element 7. In this case, the heat medium circulating in the first circulation circuit 1 passes through the indoor heat exchanger 18 after being cooled in the vicinity of the Peltier element 7. Then, the air is cooled by heat exchange between the heat medium in the indoor heat exchanger 18 and the air sent to the passenger compartment. The air thus cooled is sent to the passenger compartment, whereby the passenger compartment is cooled using the Peltier element 7. At this time, in the third circulation circuit 3, the heat medium is circulated by driving the pump 8.

図5は、冬季での車両の運転中、ペルチェ素子7を用いて車室を暖房する際の第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。こうしたペルチェ素子7を用いた車室の空調(以下、ペルチェ空調という)、より詳しくはペルチェ素子7を用いた車室の暖房では、第1循環回路1における熱媒体の循環経路がバイパス通路16(経路1c)となるよう切換弁13が切り換えられる。更に、遮断弁19を閉じ動作させて第1循環回路1と第2循環回路2とが遮断状態とされるとともに、第1循環回路1のポンプ4及び第2循環回路2のポンプ5が駆動される。この状態で、第2循環回路2の熱媒体から第1循環回路1の熱媒体へと熱の移動が行われるようにペルチェ素子7が駆動される。なお、図中のペルチェ素子7における白抜き矢印は、同ペルチェ素子7の駆動による熱の動きを示している。この場合、第1循環回路1を循環する熱媒体は、ペルチェ素子7の近傍で温められた後に室内熱交換器18を通過するようになる。そして、室内熱交換器18での熱媒体と車室に送られる空気との熱交換により同空気が暖められる。こうして温められた空気が車室に送られることで、ペルチェ素子7を用いた車室の暖房が行われるようになる。なお、このときの第3循環回路3ではポンプ8の駆動により熱媒体の循環が行われる。   FIG. 5 shows how the heat medium circulates in the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when heating the passenger compartment using the Peltier element 7 during operation of the vehicle in winter. Is shown. In the air conditioning of the passenger compartment using the Peltier element 7 (hereinafter referred to as Peltier air conditioning), more specifically, the heating of the passenger compartment using the Peltier element 7, the circulation path of the heat medium in the first circulation circuit 1 is the bypass passage 16 ( The switching valve 13 is switched so as to be route 1c). Further, the shut-off valve 19 is closed so that the first circulation circuit 1 and the second circulation circuit 2 are shut off, and the pump 4 of the first circulation circuit 1 and the pump 5 of the second circulation circuit 2 are driven. The In this state, the Peltier element 7 is driven so that heat is transferred from the heat medium of the second circulation circuit 2 to the heat medium of the first circulation circuit 1. In addition, the white arrow in the Peltier element 7 in the figure indicates the movement of heat by driving the Peltier element 7. In this case, the heat medium circulating in the first circulation circuit 1 passes through the indoor heat exchanger 18 after being heated in the vicinity of the Peltier element 7. Then, the air is warmed by heat exchange between the heat medium in the indoor heat exchanger 18 and the air sent to the passenger compartment. The warmed air is sent to the passenger compartment so that the passenger compartment is heated using the Peltier element 7. At this time, in the third circulation circuit 3, the heat medium is circulated by driving the pump 8.

図6は、夏期に停止状態の車両を外部電源(家庭用電源)に接続したときの第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。このように車両を外部電源に接続した状態のもとでバッテリ17が充電される。詳しくは、充電器9の作動を通じて家庭用電源の電圧がバッテリ17の充電を行うことの可能な値まで昇圧され、それによって外部電源を用いたバッテリ17の充電が可能とされる。こうしたバッテリ17の充電中には、第3循環回路3の熱媒体がポンプ8の駆動を通じて循環されることで、充電器9の作動時の廃熱が上記循環する熱媒体によって回収され、その後に同熱媒体によってトランスアクスル10に付与される。   FIG. 6 shows how the heat medium circulates in the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when the vehicle in a stopped state in summer is connected to an external power supply (household power supply). ing. In this way, the battery 17 is charged with the vehicle connected to the external power source. Specifically, the voltage of the household power supply is boosted to a value at which the battery 17 can be charged through the operation of the charger 9, thereby allowing the battery 17 to be charged using an external power supply. During charging of the battery 17, the heat medium in the third circulation circuit 3 is circulated through the drive of the pump 8, so that waste heat generated when the charger 9 is operated is recovered by the circulating heat medium, and thereafter It is applied to the transaxle 10 by the same heat medium.

夏期においては、上述したようにバッテリ17の充電が行われる一方、ペルチェ素子7の駆動制御及び切換弁13の切り換え制御を通じて冷熱蓄熱器14に対する冷熱の蓄熱も行われる。具体的には、まず第1循環回路1の熱媒体がポンプ4の駆動を通じて循環されるとともに、第2循環回路2の熱媒体がポンプ5の駆動を通じて循環された状態のもと、第1循環回路1と第2循環回路2とが遮断弁19の閉じ動作を通じて遮断状態とされる。このような状態で、第1循環回路1の熱媒体から第2循環回路2の熱媒体への熱の移動が行われるようペルチェ素子7が家庭用電源を用いて駆動される。なお、図中のペルチェ素子7における白抜き矢印は、同ペルチェ素子7の駆動による熱の動きを示している。これにより、第1循環回路1を循環する熱媒体の温度が低下するようになる。更に、第1循環回路1における熱媒体の循環経路が冷熱蓄熱器14(経路1a)となるよう切換弁13を切り換えることで、低温の熱媒体が冷熱蓄熱器14を通過するようになって同冷熱蓄熱器14に冷熱が蓄えられる。なお、冷熱蓄熱器14への冷熱の蓄熱が完了した場合、第1循環回路1における熱媒体の循環経路が冷熱蓄熱器14(経路1a)以外の経路となるよう切換弁13を切り換えれば、冷熱蓄熱器14に蓄えられた冷熱を保持することが可能になる。   In the summer, the battery 17 is charged as described above, and cold energy is stored in the cold heat accumulator 14 through drive control of the Peltier element 7 and switching control of the switching valve 13. Specifically, first, the heat medium in the first circulation circuit 1 is circulated through the driving of the pump 4 and the heat medium in the second circulation circuit 2 is circulated through the driving of the pump 5. The circuit 1 and the second circulation circuit 2 are shut off through the closing operation of the shutoff valve 19. In such a state, the Peltier element 7 is driven using a household power supply so that heat is transferred from the heat medium of the first circulation circuit 1 to the heat medium of the second circulation circuit 2. In addition, the white arrow in the Peltier element 7 in the figure indicates the movement of heat by driving the Peltier element 7. As a result, the temperature of the heat medium circulating in the first circulation circuit 1 decreases. Furthermore, by switching the switching valve 13 so that the circulation path of the heat medium in the first circulation circuit 1 becomes the cold heat storage 14 (path 1a), the low temperature heat medium passes through the cold heat storage 14 and the same. Cold energy is stored in the cold energy regenerator 14. In addition, when the heat storage of the cold heat to the cold energy storage 14 is completed, if the switching valve 13 is switched so that the circulation path of the heat medium in the first circulation circuit 1 becomes a route other than the cold heat storage device 14 (path 1a), It becomes possible to hold the cold energy stored in the cold energy regenerator 14.

図7は、冬季に停止状態の車両を外部電源(家庭用電源)に接続したときの第1循環回路1、第2循環回路2、及び第3循環回路3での熱媒体の循環態様を示している。このように車両を家庭用電源に接続した状態のもとで、上述した夏期での充電態様と同様にバッテリ17の充電が行われる。更に、第3循環回路3での熱媒体の循環も行われ、それによって充電器9の廃熱が回収されるとともに、その回収された廃熱のトランスアクスル10への付与も行われる。   FIG. 7 shows a circulation mode of the heat medium in the first circulation circuit 1, the second circulation circuit 2, and the third circulation circuit 3 when a vehicle in a stopped state in winter is connected to an external power supply (household power supply). ing. In this way, the battery 17 is charged in the same manner as the above-described charging mode in the summer, with the vehicle connected to the household power source. Furthermore, the heat medium is also circulated in the third circulation circuit 3, whereby the waste heat of the charger 9 is recovered, and the recovered waste heat is also applied to the transaxle 10.

冬季においては、上記バッテリ17の充電が行われる一方、ペルチェ素子7の駆動制御及び切換弁13の切り換え制御を通じて温熱蓄熱器15に対する温熱の蓄熱も行われる。具体的には、夏期と同様、第1循環回路1の熱媒体がポンプ4の駆動を通じて循環されるとともに、第2循環回路2の熱媒体がポンプ5の駆動を通じて循環された状態のもと、第1循環回路1と第2循環回路2とが遮断弁19の閉じ動作を通じて遮断状態とされる。このような状態で、夏期とは逆に第1循環回路1の熱媒体から第2循環回路2の熱媒体への熱の移動が行われるようペルチェ素子7が家庭用電源を用いて駆動される。なお、図中のペルチェ素子7における白抜き矢印は、同ペルチェ素子7の駆動による熱の動きを示している。これにより、第1循環回路1を循環する熱媒体の温度が上昇するようになる。更に、第1循環回路1における熱媒体の循環経路が温熱蓄熱器15(経路1b)となるよう切換弁13を切り換えることで、高温の熱媒体が温熱蓄熱器15を通過するようになって同温熱蓄熱器15に温熱が蓄えられる。なお、温熱蓄熱器15への冷熱の蓄熱が完了した場合、第1循環回路1における熱媒体の循環経路が温熱蓄熱器15(経路1b)以外の経路となるよう切換弁13を切り換えれば、温熱蓄熱器15に蓄えられた温熱を保持することが可能になる。   In the winter season, the battery 17 is charged, while warm heat is stored in the warm heat accumulator 15 through drive control of the Peltier element 7 and switching control of the switching valve 13. Specifically, as in the summer, the heat medium in the first circulation circuit 1 is circulated through the drive of the pump 4 and the heat medium in the second circulation circuit 2 is circulated through the drive of the pump 5. The first circulation circuit 1 and the second circulation circuit 2 are shut off through the closing operation of the shut-off valve 19. In such a state, the Peltier element 7 is driven using a household power supply so that heat is transferred from the heat medium of the first circulation circuit 1 to the heat medium of the second circulation circuit 2 contrary to the summer. . In addition, the white arrow in the Peltier element 7 in the figure indicates the movement of heat by driving the Peltier element 7. Thereby, the temperature of the heat medium circulating through the first circulation circuit 1 rises. Furthermore, by switching the switching valve 13 so that the circulation path of the heat medium in the first circulation circuit 1 becomes the thermal heat accumulator 15 (path 1b), the high-temperature heat medium passes through the thermal heat accumulator 15 and the same. Warm heat is stored in the warm heat regenerator 15. In addition, when the heat storage of the cold heat to the heat storage unit 15 is completed, if the switching valve 13 is switched so that the circulation path of the heat medium in the first circulation circuit 1 becomes a path other than the heat storage unit 15 (path 1b), It becomes possible to hold the heat stored in the heat storage unit 15.

次に、車両が外部電源(家庭用電源)に接続されたときの同外部電源を用いたバッテリ17の充電、及び蓄熱器14,15への蓄熱について、更に詳しく説明する。
この実施形態では、車両の外部電源への接続中、その外部電源によるバッテリ17の充電が行われるとともに、外部電源に基づきペルチェ素子7を駆動させることで蓄熱器14,15への冷熱もしくは温熱の蓄熱が行われる。そして、それらバッテリ17の充電と蓄熱器14,15への蓄熱とが同時に完了するよう、車両の外部電源への接続中におけるバッテリ17の充電及び蓄熱器14,15への蓄熱が行われる。このように充電及び蓄熱を行うことで、少なくとも、そうした充電及び蓄熱の完了直前には、バッテリ17の充電と蓄熱器14,15への蓄熱とが同時に行われるようになる。
Next, charging of the battery 17 using the external power source when the vehicle is connected to the external power source (household power source) and heat storage in the heat accumulators 14 and 15 will be described in more detail.
In this embodiment, while the vehicle is connected to the external power source, the battery 17 is charged by the external power source, and the Peltier element 7 is driven based on the external power source to thereby cool or warm the regenerators 14 and 15. Heat storage is performed. Then, charging of the battery 17 and storage of heat in the regenerators 14 and 15 are performed during connection to the external power source of the vehicle so that charging of the batteries 17 and heat storage in the regenerators 14 and 15 are completed simultaneously. By performing charging and heat storage in this way, at least immediately before completion of such charging and heat storage, charging of the battery 17 and heat storage to the heat accumulators 14 and 15 are performed simultaneously.

また、車両が接続される外部電源(家庭用電源)の電気容量には限りがある。このため、外部電源を用いてバッテリ17の充電とペルチェ素子7の駆動による蓄熱器14,15への蓄熱とを同時に行う際には、充電のための電気エネルギと蓄熱のための電気エネルギとの分配が次のように行われる。すなわち、外部電源の電気容量を最大限に用いてバッテリ17の充電とペルチェ素子7の駆動による蓄熱器14,15への蓄熱とを同時に行い、充電のための電気エネルギと蓄熱のための電気エネルギとを分配するに当たり、その分配率「A:B」を上記充電及び上記蓄熱が最短で完了する値となるようにする。そして、上記分配率「A:B」で分配された電気エネルギを用いて上記充電及び上記蓄熱を行う。   Moreover, the electric capacity of the external power supply (home power supply) to which the vehicle is connected is limited. For this reason, when charging the battery 17 and storing heat in the heat accumulators 14 and 15 by driving the Peltier element 7 using an external power source at the same time, the electric energy for charging and the electric energy for storing heat are Distribution is performed as follows. That is, charging of the battery 17 and heat storage to the heat accumulators 14 and 15 by driving the Peltier element 7 are performed simultaneously by using the electric capacity of the external power source to the maximum, and electric energy for charging and electric energy for heat storage are obtained. , The distribution ratio “A: B” is set to a value at which the charging and the heat storage are completed in the shortest time. And the said charge and the said heat storage are performed using the electrical energy distributed with the said distribution rate "A: B".

より詳しくは、夏期には、バッテリ17の充電のための電気エネルギと冷熱蓄熱器14への冷熱の蓄熱のための電気エネルギとが、それら充電及び蓄熱を最短で完了させることの可能な分配率「A:B」でもって分配される。そして、その分配率「A:B」で分配された電気エネルギを用いて上記バッテリ17の充電、及びペルチェ素子7の駆動による冷熱蓄熱器14への冷熱の蓄熱が行われる。一方、冬季には、バッテリ17の充電のための電気エネルギと温熱蓄熱器15への温熱の蓄熱のための電気エネルギとが、それら充電及び蓄熱を最短で完了させることの可能な分配率「A:B」でもって分配される。そして、その分配率「A:B」で分配された電気エネルギを用いて上記バッテリ17の充電、及びペルチェ素子7の駆動による温熱蓄熱器15への温熱の蓄熱が行われる。   More specifically, in summer, the distribution rate at which the electric energy for charging the battery 17 and the electric energy for storing the cold heat in the cold heat storage 14 can be completed in the shortest time. It is distributed with “A: B”. Then, the electric energy distributed at the distribution ratio “A: B” is used to charge the battery 17 and to store the cold heat in the cold heat accumulator 14 by driving the Peltier element 7. On the other hand, in the winter season, the electric energy for charging the battery 17 and the electric energy for storing the thermal heat in the thermal heat storage unit 15 can be distributed in the shortest possible distribution rate “A”. : B ”. Then, the electric energy distributed at the distribution ratio “A: B” is used to charge the battery 17 and to store the warm heat in the warm heat accumulator 15 by driving the Peltier element 7.

上述したように車両の外部電源への接続中にバッテリ17の充電及び蓄熱器14,15への蓄熱を行うことにより、それら充電及び蓄熱を効率よく行うことができ、ひいては上記充電及び上記蓄熱の完了のために消費される電力を小さく抑えることができるようになる。   As described above, by charging the battery 17 and storing heat to the heat accumulators 14 and 15 during connection to the external power source of the vehicle, the charging and heat storage can be performed efficiently. The power consumed for completion can be kept small.

ここで、上述したようにバッテリ17の充電及び蓄熱器14,15への蓄熱を行う代わりに、例えば、外部電源の電気容量を最大限に用いて充電を完了させ、その後に同じく外部電源の電気容量を最大限に用いて蓄熱を完了させるようにしたとすると、上記蓄熱の効率が低下して充電及び蓄熱を完了させるために消費される電力が多くなる。このように充電及び蓄熱を行った場合、ペルチェ素子7の電力効率は図8に破線で示される状態となる。なお、ここでの電力効率とは、ペルチェ素子7を駆動する際における単位消費電力当たりの移動可能な熱量のことである。同図の破線から分かるように、外部電源の電気容量を最大限に用いて充電を完了させた後、同じく外部電源の電気容量を最大限に用いて蓄熱を完了させるようにした場合、ペルチェ素子7の電力効率が小さい値になる。   Here, instead of charging the battery 17 and storing heat in the heat accumulators 14 and 15 as described above, for example, the charging is completed using the electric capacity of the external power source to the maximum, and then the electric power of the external power source is also used. If heat storage is completed using the capacity to the maximum, the efficiency of the heat storage is reduced, and more power is consumed to complete charging and heat storage. When charging and heat storage are performed in this manner, the power efficiency of the Peltier element 7 is in a state indicated by a broken line in FIG. Here, the power efficiency is the amount of heat that can be transferred per unit power consumption when driving the Peltier element 7. As can be seen from the broken line in the figure, the Peltier element is used to complete the heat storage using the maximum electrical capacity of the external power supply after completing the charge using the maximum electrical capacity of the external power supply. The power efficiency of 7 is a small value.

これは、ペルチェ素子7を動作させて同ペルチェ素子7の低温側から高温側への熱の移動を行う際、それら低温側と高温側との温度差が小さいほど上記熱の移動が効率よく行われることが関係している。すなわち、上述したように外部電源の電気容量を最大限に用いてペルチェ素子7の駆動による上記熱の移動を行うと、ペルチェ素子7の低温側から高温側への熱の移動が急速に行われて両者の温度差が大きくなることから、上記熱の移動が効率よく行えなくなってペルチェ素子7の電力効率が小さい値(破線)になる。そして、ペルチェ素子7の電力効率が小さい値になると、同ペルチェ素子7の駆動による蓄熱器14,15への蓄熱の効率が低下する。このため、バッテリ17の充電及び蓄熱器14,15への蓄熱を開始してから、それら充電及び蓄熱が完了するまでの時間(完了時間)が長くなって例えば図9に破線で示される状態となる。そして、このように完了時間が長くなると、バッテリ17の充電及び蓄熱器14,15への蓄熱を完了させるために消費される電力が多くなる。   This is because when the Peltier element 7 is operated to transfer heat from the low temperature side to the high temperature side of the Peltier element 7, the heat transfer is performed more efficiently as the temperature difference between the low temperature side and the high temperature side is smaller. Is related. That is, as described above, when the heat transfer is performed by driving the Peltier element 7 using the electric capacity of the external power source to the maximum, the heat transfer from the low temperature side to the high temperature side of the Peltier element 7 is rapidly performed. Since the temperature difference between the two becomes large, the heat transfer cannot be performed efficiently, and the power efficiency of the Peltier element 7 becomes a small value (broken line). And if the power efficiency of the Peltier device 7 becomes a small value, the efficiency of the heat storage to the heat storage devices 14 and 15 by the drive of the Peltier device 7 will fall. For this reason, the time (completion time) from the start of charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 to the completion of the charging and heat storage becomes longer, for example, as shown by the broken line in FIG. Become. And if completion time becomes long in this way, the electric power consumed in order to complete the charge of the battery 17 and the heat storage to the heat accumulators 14 and 15 will increase.

これに対し、本実施形態のようにバッテリ17の充電及び蓄熱器14,15への蓄熱を行えば、それら充電及び蓄熱を効率よく行うことができ、ひいては充電及び蓄熱を完了するために消費される電力を小さく抑えることができる。本実施形態のように充電及び蓄熱を行った場合、ペルチェ素子7の電力効率は図8に実線で示される状態となり、外部電源の電気容量を最大限に用いて充電を完了させた後、同じく外部電源の電気容量を最大限に用いて蓄熱を完了させるようにした場合(破線)と比較して、ペルチェ素子7の電力効率が大きい値になる。   On the other hand, if charging of the battery 17 and heat storage to the heat accumulators 14 and 15 are performed as in the present embodiment, the charge and heat storage can be performed efficiently, and eventually consumed to complete the charge and heat storage. Power can be kept small. When charging and heat storage are performed as in the present embodiment, the power efficiency of the Peltier element 7 is in a state indicated by a solid line in FIG. 8, and after completing charging using the electric capacity of the external power source to the maximum, The power efficiency of the Peltier device 7 becomes a value larger than that in the case where heat storage is completed using the electric capacity of the external power supply to the maximum (dashed line).

これは、バッテリ17の充電と蓄熱器14,15への蓄熱とを同時に完了させるために充電と蓄熱とを同時に行う際、上記分配率「A:B」で分配された電気エネルギを用いて、上記バッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への温熱の蓄熱が同時に行われているためである。このように分配された電気エネルギを用いて充電及び蓄熱が同時に行われているときには、ペルチェ素子7が外部電源の電気容量を最大限に用いて動作されることはなくなるため、蓄熱を行うべく動作するペルチェ素子7における低温側から高温側への熱の移動が緩やかになる。同ペルチェ素子7における低温側から高温側への熱の移動が緩やかになると、それら低温側と高温側との温度差が小さく抑えられる。このため、ペルチェ素子7の駆動による同素子7の低温側から高温側への熱の移動が効率良く行われてペルチェ素子7の電力効率が大きい値(実線)になる。そして、ペルチェ素子7の電力効率が大きい値になると、同ペルチェ素子7の駆動による蓄熱器14,15への蓄熱の効率が向上する。これにより、バッテリ17の充電及び蓄熱器14,15への蓄熱を開始してから、それら充電及び蓄熱が完了するまでの時間(完了時間)が短くなって例えば図9に実線で示される状態となる。このように完了時間が短くなると、バッテリ17の充電及び蓄熱器14,15への蓄熱を完了させるために消費される電力が小さく抑えられる。   This is because when charging and heat storage are simultaneously performed in order to complete the charging of the battery 17 and the heat storage in the heat accumulators 14 and 15, the electric energy distributed at the distribution ratio “A: B” is used. This is because charging of the battery 17 and storage of warm heat to the heat accumulators 14 and 15 by driving the Peltier element 7 are performed simultaneously. When charging and heat storage are simultaneously performed using the electric energy distributed in this way, the Peltier device 7 is not operated using the electric capacity of the external power source to the maximum, and therefore operates to perform heat storage. The movement of heat from the low temperature side to the high temperature side in the Peltier element 7 to be performed becomes gentle. When the movement of heat from the low temperature side to the high temperature side in the Peltier element 7 becomes gentle, the temperature difference between the low temperature side and the high temperature side can be kept small. Therefore, heat is efficiently transferred from the low temperature side to the high temperature side of the element 7 by driving the Peltier element 7, and the power efficiency of the Peltier element 7 becomes a large value (solid line). And if the power efficiency of the Peltier device 7 becomes a large value, the efficiency of the heat storage to the heat storage devices 14 and 15 by the drive of the Peltier device 7 will improve. As a result, the time (completion time) from the start of charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 to the completion of the charging and heat storage is shortened, for example, as shown by the solid line in FIG. Become. When the completion time is shortened in this way, the electric power consumed to complete the charging of the battery 17 and the heat storage in the heat accumulators 14 and 15 is suppressed to a small value.

なお、図9に実線で示される完了時間は上記分配率「A:B」の変化に伴って変わる。この実施形態では、上記完了時間が最短となるよう上記分配率「A:B」が設定されている。ちなみに、この図9及び上記図8において、横軸はペルチェ素子7における個々の設計上の性能を表している。従って、ペルチェ素子7においては、図8及び図9の横軸で表される設計上の性能が高くなるほど、電力効率が図8に示されるように大きくなるとともに完了時間が図9に示されるように短くなる傾向がある。   Note that the completion time indicated by the solid line in FIG. 9 changes as the distribution ratio “A: B” changes. In this embodiment, the distribution ratio “A: B” is set so that the completion time is the shortest. Incidentally, in FIG. 9 and FIG. 8 above, the horizontal axis represents the performance of each design in the Peltier element 7. Therefore, in the Peltier element 7, as the design performance represented by the horizontal axis in FIGS. 8 and 9 increases, the power efficiency increases as shown in FIG. 8 and the completion time is shown in FIG. Tend to be shorter.

次に、車両を外部電源に接続した状態のもとでバッテリ17の充電、及び蓄熱器14,15への蓄熱を行うための処理について、充電蓄熱ルーチンを示す図10のフローチャートを参照して詳しく説明する。この充電蓄熱ルーチンは、電子制御装置21を通じて、所定時間毎の時間割り込みにて周期的に実行される。   Next, processing for charging the battery 17 and storing heat in the heat accumulators 14 and 15 under the state where the vehicle is connected to an external power source will be described in detail with reference to the flowchart of FIG. explain. This charge and heat storage routine is periodically executed through the electronic control device 21 with a time interruption every predetermined time.

同ルーチンにおいては、レディースイッチ25がオフ位置、すなわち運転停止位置に操作されているか否か(S101)、及び、車両が外部電源に接続(プラグイン)されているか否か(S102)が判断される。そして、S101の処理とS102の処理とで共に肯定判定がなされると、バッテリ17の充電及び蓄熱器14,15への蓄熱の実行中であるか否かを判断するために用いられるフラグFが「0(実行中でない)」であるか否かが判断される(S103)。ここで肯定判定であれば、分配率「A:B」で分配された電気エネルギを用いてのバッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への蓄熱を開始するための処理(S104〜S110)が実行される。   In this routine, it is determined whether or not the ready switch 25 is operated to the off position, that is, the operation stop position (S101), and whether or not the vehicle is connected (plugged in) to an external power source (S102). The And if both affirmation judging is made by processing of S101 and processing of S102, flag F used in order to judge whether charge of battery 17 and heat storage to heat storage units 14 and 15 are under execution. It is determined whether or not “0 (not being executed)” (S103). If the determination is affirmative, charging of the battery 17 using electrical energy distributed at the distribution ratio “A: B” and heat storage to the heat accumulators 14 and 15 by driving the Peltier element 7 are started. Processing (S104 to S110) is executed.

この一連の処理では、まずバッテリ容量Qb、バッテリ残量Qbnow、蓄熱器容量Qs、蓄熱残量Qsnow、ペルチェ素子7の電力効率COPに基づき、次の式(1)を用いて上述した分配率「A:B」が算出される(S104)。   In this series of processes, first, based on the battery capacity Qb, the remaining battery capacity Qbnow, the regenerator capacity Qs, the remaining heat storage capacity Qsnow, and the power efficiency COP of the Peltier element 7, the distribution rate “ A: B "is calculated (S104).


(A:B)=(Qb−Qbnow):(lQs−Qsnowl)/COP …(1)

式(1)から分かるように、分配率「A:B」における「A」は、バッテリ容量Qbとバッテリ残量Qbnowとの差に対応する値となる。上記バッテリ容量Qbはバッテリ17に蓄えられる電力量の上限値であり、上記バッテリ残量Qbnowはバッテリ17に蓄えられている実際の電力量である。なお、上記バッテリ残量Qbnowは、バッテリ17におけるそれまでの充電履歴や車両の電気機器を作動させる際のバッテリ17からの放電履歴等に基づき、計算によって求められる。

(A: B) = (Qb−Qbnow) :( lQs−Qsnow) / COP (1)

As can be seen from Equation (1), “A” in the distribution rate “A: B” is a value corresponding to the difference between the battery capacity Qb and the remaining battery charge Qbnow. The battery capacity Qb is the upper limit value of the amount of power stored in the battery 17, and the battery remaining amount Qbnow is the actual amount of power stored in the battery 17. The battery remaining amount Qbnow is obtained by calculation based on the charging history of the battery 17 so far, the discharging history from the battery 17 when operating the electric device of the vehicle, and the like.

一方、分配率「A:B」における「B」は、蓄熱器容量Qsと蓄熱残量Qsnowとの差の絶対値をペルチェ素子7の電力効率COPで除算して得られる値に対応している。上記蓄熱器容量Qsは蓄熱器14,15に蓄えられる熱量の上限値であり、蓄熱残量Qsnowは蓄熱器14,15に蓄えられている実際の熱量である。なお、ここで用いられる蓄熱器容量Qs及び蓄熱残量Qsnowとしては、夏期に冷熱蓄熱器14に冷熱が蓄えられる際には同冷熱蓄熱器14に対応する値がそれぞれ用いられ、冬季に温熱蓄熱器15に温熱が蓄えられる際には同温熱蓄熱器15に対応する値がそれぞれ用いられる。ちなみに、冷熱蓄熱器14の蓄熱残量Qsnowは、第1温度センサ22によって検出される同冷熱蓄熱器14内の温度等に基づき求められる。また、温熱蓄熱器15の蓄熱残量Qsnowは、第2温度センサ23によって検出される同温熱蓄熱器15内の温度等に基づき求められる。更に、上記電力効率COPに関しては、ペルチェ素子7を蓄熱器14,15への蓄熱のために駆動する際の実際の電力効率を表す値として、ペルチェ素子7の駆動電力(入力電力)等に基づき算出された値が用いられる。   On the other hand, “B” in the distribution ratio “A: B” corresponds to a value obtained by dividing the absolute value of the difference between the regenerator capacity Qs and the remaining heat storage amount Qsnow by the power efficiency COP of the Peltier element 7. . The heat accumulator capacity Qs is the upper limit value of the amount of heat stored in the regenerators 14 and 15, and the remaining heat storage amount Qsnow is the actual amount of heat stored in the regenerators 14 and 15. As the heat storage capacity Qs and the remaining heat storage capacity Qsnow used here, values corresponding to the cold energy regenerator 14 are used when the cold energy is stored in the cold energy regenerator 14 in summer, respectively, When the heat is stored in the cooler 15, values corresponding to the warm heat storage device 15 are used. Incidentally, the remaining heat storage amount Qsnow of the cold heat storage device 14 is obtained based on the temperature in the cold heat storage device 14 detected by the first temperature sensor 22. Further, the remaining heat storage amount Qsnow of the thermal heat storage unit 15 is obtained based on the temperature in the thermal storage unit 15 detected by the second temperature sensor 23. Further, regarding the above power efficiency COP, based on the drive power (input power) of the Peltier element 7 as a value representing the actual power efficiency when the Peltier element 7 is driven for storing heat in the heat accumulators 14 and 15. The calculated value is used.

その後、バッテリ17の充電及び蓄熱器14,15への蓄熱を開始してから、それら充電及び蓄熱が完了するまでの時間(完了時間)の最小値である最短時間Tfが算出される(S105)。この最短時間Tfは、S104の処理によって求められた分配率「A:B」で分配された電気エネルギを用いて上記バッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への蓄熱が同時に行ったときの上記完了時間を表している。最短時間Tfは、外部電源の電気容量E、上記バッテリ容量Qb、上記バッテリ残量Qbnow、及び上記分配率「A:B」に基づき、次の式(2)を用いて算出される。   Thereafter, the shortest time Tf which is the minimum value of the time (completion time) from the start of charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 to the completion of the charging and heat storage is calculated (S105). . This shortest time Tf is stored in the heat accumulators 14 and 15 by charging the battery 17 and driving the Peltier element 7 using the electric energy distributed at the distribution ratio “A: B” obtained by the process of S104. Represents the completion time when the two are simultaneously performed. The shortest time Tf is calculated using the following formula (2) based on the electric capacity E of the external power source, the battery capacity Qb, the remaining battery charge Qbnow, and the distribution ratio “A: B”.


Tf=(Qb−Qbnow)/[E・{A/(A+B)}] …(2)

式(2)において、外部電源の電気容量Eとは、その外部電源によって供給可能な電力の上限値のことである。ここでの電気容量Eとしては、上記外部電源毎に定められる固定値が用いられる。

Tf = (Qb−Qbnow) / [E · {A / (A + B)}] (2)

In Expression (2), the electric capacity E of the external power supply is an upper limit value of power that can be supplied by the external power supply. As the electric capacity E here, a fixed value determined for each external power source is used.

続いて、車両が外部電源から切り離される時刻(切り離し時刻Ta)が取得される(S106)。この切り離し時刻Taとしては、車両の使用者により設定されて電子制御装置21のRAMに記憶された値や、車両の使用状況に応じて学習されて電子制御装置21のRAMに記憶された値が用いられる。その後、上記切り離し時刻Taから上記最短時間Tfだけ遡った時刻が、バッテリ17の充電及び蓄熱器14,15への蓄熱の開始時刻Tbとして設定される(S107)。   Then, the time (separation time Ta) at which the vehicle is disconnected from the external power source is acquired (S106). As the disconnection time Ta, a value set by the user of the vehicle and stored in the RAM of the electronic control device 21 or a value learned according to the use state of the vehicle and stored in the RAM of the electronic control device 21 is used. Used. Thereafter, a time that is back by the shortest time Tf from the disconnection time Ta is set as a start time Tb for charging the battery 17 and storing heat in the heat accumulators 14 and 15 (S107).

そして、現在の時刻が上記開始時刻Tbになると(S108:YES)、分配率「A:B」で分配された電気エネルギを用いてのバッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への蓄熱が開始される(S109)。更に、バッテリ17の充電及び蓄熱器14,15への蓄熱の実行中であるか否かを判断するために用いられる上記フラグFが「1(実行中)」に設定される(S110)。   When the current time reaches the start time Tb (S108: YES), the battery 14 is charged using the electric energy distributed at the distribution rate “A: B” and the heat accumulator 14 is driven by driving the Peltier element 7. , 15 is started (S109). Further, the flag F used to determine whether or not the battery 17 is being charged and the heat storage in the heat accumulators 14 and 15 is being executed is set to “1 (running)” (S110).

このようにフラグFが「1」に設定されると、次回のS103の処理で否定判定がなされる。この場合、分配率「A:B」で分配された電気エネルギを用いてのバッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への蓄熱を開始するための処理(S111〜S114)が実行される。この一連の処理では、現在の時刻が切り離し時刻Taであるか否かの判断(S111)や、外部電源からの車両の切り離し(プラグオフ)が実行されたか否かの判断(S112)が行われる。そして、これら判断のうちのいずれかで肯定判定がなされると、上記バッテリ17の充電及び蓄熱器14,15への蓄熱が終了される(S113)。更に、上記フラグFが「0(実行中でない)」に設定される(S114)。   When the flag F is set to “1” in this way, a negative determination is made in the next process of S103. In this case, processing for starting charging of the battery 17 using the electric energy distributed at the distribution ratio “A: B” and storing heat in the heat accumulators 14 and 15 by driving the Peltier element 7 (S111 to S114). ) Is executed. In this series of processes, a determination is made as to whether or not the current time is the disconnection time Ta (S111), and a determination is made as to whether or not the vehicle has been disconnected (plug-off) from the external power supply (S112). . If an affirmative determination is made in any of these determinations, the charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 are terminated (S113). Further, the flag F is set to “0 (not being executed)” (S114).

次に、車両が外部電源に接続された後のバッテリ残量Qbnow及び蓄熱残量Qsnowの推移について、図11のタイムチャートを参照して説明する。
車両が外部電源に接続されると(タイミングt1)、切り離し時刻Taが取得されるとともに、分配率「A:B」や開始時刻Tb等が求められる。そして、現在の時刻が開始時刻Tbになると(タイミングt2)、上記分配率「A:B」で分配された電気エネルギを用いてのバッテリ17の充電、及びペルチェ素子7の駆動による蓄熱器14,15への蓄熱が開始される。
Next, transitions of the remaining battery level Qbnow and the remaining heat storage level Qsnow after the vehicle is connected to the external power source will be described with reference to the time chart of FIG.
When the vehicle is connected to the external power source (timing t1), the disconnection time Ta is acquired, and the distribution rate “A: B”, the start time Tb, and the like are obtained. When the current time reaches the start time Tb (timing t2), the battery 17 is charged using the electric energy distributed at the distribution ratio “A: B”, and the heat accumulator 14 is driven by driving the Peltier element 7. Heat storage to 15 is started.

こうしたバッテリ17の充電に基づき、バッテリ残量Qbnowが図11(a)に示されるようにバッテリ容量Qbに向けて徐々に多くなる。また、夏期には上記ペルチェ素子7の駆動により冷熱蓄熱器14への冷熱の蓄熱が行われるため、冷熱蓄熱器14の蓄熱残量Qsnowが蓄熱器容量Qsに向けて徐々に小さくなる。一方、冬季には上記ペルチェ素子7の駆動により温熱蓄熱器15への温熱の蓄熱が行われるため、温熱蓄熱器15の蓄熱残量Qsnowが蓄熱器容量Qsに向けて徐々に大きくなる。   Based on such charging of the battery 17, the remaining battery charge Qbnow gradually increases toward the battery capacity Qb as shown in FIG. In summer, the Peltier element 7 is driven to store the cold heat to the cold heat accumulator 14, so that the remaining amount Qsnow of the cold heat accumulator 14 gradually decreases toward the heat accumulator capacity Qs. On the other hand, in the winter season, the Peltier element 7 is driven to store the heat in the heat storage unit 15, so that the remaining heat storage Qsnow of the heat storage unit 15 gradually increases toward the storage unit capacity Qs.

そして、現在の時刻が切り離し時刻Taになるか(タイミングt3)、あるいは現在の時刻が切り離し時刻Taとなる前に車両が外部電源から切り離されると、バッテリ17の充電及び蓄熱器14,15への蓄熱が終了される。現在の時刻が切り離し時刻Taになるまで車両の外部電源への接続状態が維持された場合には、バッテリ残量Qbnowが図11(a)に示されるようにバッテリ容量Qbに達してバッテリ17の充電が完了する。また、蓄熱残量Qsnowが図11(b)もしくは図11(c)に示されるように蓄熱器容量Qsに達して蓄熱器14,15への蓄熱も完了する。従って、切り離し時刻Taにて車両が外部電源から切り離された場合には、バッテリ17の充電及び蓄熱器14,15への蓄熱が完了した状態となる。   If the current time becomes the disconnection time Ta (timing t3), or if the vehicle is disconnected from the external power supply before the current time becomes the disconnection time Ta, the battery 17 is charged and the regenerators 14 and 15 are connected. Heat storage is terminated. When the connection state of the vehicle to the external power source is maintained until the current time becomes the disconnection time Ta, the remaining battery capacity Qbnow reaches the battery capacity Qb as shown in FIG. Charging is complete. Further, the heat storage remaining amount Qsnow reaches the heat storage capacity Qs as shown in FIG. 11B or FIG. 11C, and the heat storage to the heat storage units 14 and 15 is also completed. Therefore, when the vehicle is disconnected from the external power source at the disconnection time Ta, the charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 are completed.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)車両の外部電源への接続中に、同外部電源によるバッテリ17の充電、及び、同外部電源に基づくペルチェ素子7の駆動による蓄熱器14,15への冷熱もしくは温熱の蓄熱を行う際には、バッテリ17の充電と蓄熱器14,15への蓄熱とが同時に完了するよう、それら充電及び蓄熱が行われるようになる。その結果、少なくともバッテリ17の充電及び蓄熱器14,15への蓄熱が完了する直前には、それら充電と蓄熱とが同時に行われるため、そのときにペルチェ素子7が外部電源の電気容量を最大限に用いて動作することはなくなる。この場合、蓄熱を行うべく動作するペルチェ素子7での低温側から高温側への熱の移動が緩やかになり、それによって同ペルチェ素子7における低温側と高温側との温度差が過度に大きくなることは抑制される。その結果、ペルチェ素子7における低温側から高温側への熱の移動を効率よく行うことが可能になり、それによって蓄熱の効率が低下することは抑制されるようになる。従って、車両の外部電源への接続中、バッテリ17の充電及び蓄熱器14,15への蓄熱を効率よく行うことができ、それら充電及び蓄熱の完了のために消費される電力を小さく抑えることができる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) When the battery 17 is charged by the external power source while the vehicle is connected to the external power source, and the regenerators 14 and 15 are driven by the Peltier element 7 based on the external power source to store cold or warm heat. The charging and heat storage are performed so that the charging of the battery 17 and the heat storage in the heat accumulators 14 and 15 are completed simultaneously. As a result, at least immediately before the charging of the battery 17 and the heat storage in the heat accumulators 14 and 15 are completed, the charging and the heat storage are performed simultaneously. At that time, the Peltier element 7 maximizes the electric capacity of the external power source. It will not be used to operate. In this case, the movement of heat from the low temperature side to the high temperature side in the Peltier element 7 that operates to store heat becomes gentle, and thereby the temperature difference between the low temperature side and the high temperature side in the Peltier element 7 becomes excessively large. That is suppressed. As a result, it is possible to efficiently transfer heat from the low temperature side to the high temperature side in the Peltier element 7, thereby suppressing a decrease in heat storage efficiency. Therefore, during the connection to the external power supply of the vehicle, the battery 17 can be charged and the heat storage 14 and 15 can be efficiently stored, and the power consumed for completing the charging and the heat storage can be kept small. it can.

(2)車両の外部電源への接続中、外部電源の電気容量を最大限に用いてバッテリ17の充電とペルチェ素子7の駆動による蓄熱器14,15への蓄熱とを同時に行い、充電のための電気エネルギと蓄熱のための電気エネルギとを分配するに当たり、その分配率「A:B」が上記充電及び上記蓄熱を最短で完了させることの可能な値とされる。このように車両の外部電源への接続中にバッテリ17の充電及び蓄熱器14,15への蓄熱を行うことにより、それら充電及び蓄熱を効率よく行うことができ、ひいては上記充電及び上記蓄熱の完了のために消費される電力を小さく抑えることができるようになる。   (2) During the connection to the external power source of the vehicle, charging of the battery 17 and heat storage to the heat accumulators 14 and 15 by driving the Peltier element 7 are performed simultaneously by using the maximum electric capacity of the external power source for charging. When the electric energy and the electric energy for heat storage are distributed, the distribution ratio “A: B” is set to a value capable of completing the charging and the heat storage in the shortest time. Thus, by charging the battery 17 and storing heat to the heat accumulators 14 and 15 during connection to the external power source of the vehicle, the charging and heat storage can be performed efficiently, and as a result, the charging and the heat storage are completed. Therefore, it is possible to reduce the power consumed for the purpose.

(3)車両が前記外部電源に接続された後、同外部電源が車両から切り離される時刻の予測値である切り離し時刻Taにてバッテリ17の充電及び蓄熱器14,15への蓄熱が完了するよう、その切り離し時刻Taから最短時間Tfだけ遡った開始時刻Tbにてバッテリ17の充電及び蓄熱器14,15への蓄熱が開始される。従って、車両を運転開始すべく、同車両を切り離し時刻Taに従って外部電源から切り離すときにバッテリ17の充電及び蓄熱器14,15への蓄熱を完了させることができ、その完了が上記切り離しに対し早すぎたり遅すぎたりすることがない。   (3) After the vehicle is connected to the external power supply, the charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 are completed at a disconnection time Ta that is a predicted value of the time when the external power supply is disconnected from the vehicle. Then, charging of the battery 17 and storage of heat in the heat accumulators 14 and 15 are started at a start time Tb that goes back by the shortest time Tf from the separation time Ta. Therefore, when the vehicle is disconnected and disconnected from the external power source in accordance with the time Ta in order to start driving the vehicle, the charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 can be completed. It is never too late or too late.

(4)上記分配率「A:B」を式(1)に基づき算出することで、その分配率「A:B」がバッテリ17の充電及び蓄熱器14,15への蓄熱を最短で完了させる値として適切な値になる。   (4) By calculating the distribution ratio “A: B” based on the equation (1), the distribution ratio “A: B” completes charging of the battery 17 and heat storage to the heat accumulators 14 and 15 in the shortest time. It becomes an appropriate value.

(5)上記最短時間Tfを式(2)に基づき算出することで、その最短時間Tfがバッテリ17の充電及び蓄熱器14,15への蓄熱を開始してから完了するまでの最短の時間として適切な値になる。更に、その最短時間Tfと切り離し時刻Taとから算出される開始時刻Tbも、バッテリ17の充電及び蓄熱器14,15への蓄熱を開始する時刻として適切な値になる。   (5) By calculating the shortest time Tf based on the formula (2), the shortest time Tf from the start of charging of the battery 17 and the heat storage to the heat accumulators 14 and 15 to completion thereof Appropriate value. Furthermore, the start time Tb calculated from the shortest time Tf and the separation time Ta is also an appropriate value as the time for starting charging the battery 17 and storing heat in the heat accumulators 14 and 15.

なお、上記実施形態は、例えば以下のように変更することもできる。
・最短時間Tfについては、電気容量E、蓄熱器容量Qs、蓄熱残量Qsnow、及び分配率「A:B」に基づき、次の式(3)を用いて算出してもよい。
In addition, the said embodiment can also be changed as follows, for example.
The shortest time Tf may be calculated using the following equation (3) based on the electric capacity E, the regenerator capacity Qs, the remaining heat storage amount Qsnow, and the distribution rate “A: B”.


Tf={(lQs−Qsnowl)/COP}/[E・{B/(A+B)}] …(3)

この場合も、上記(5)と同等の効果が得られる。

Tf = {(lQs−Qsnowl) / COP} / [E · {B / (A + B)}] (3)

In this case, the same effect as the above (5) can be obtained.

・上記分配率「A:B」については、必ずしも最短時間Tfの得られる値である必要はなく、その値以外の任意の値に変更することが可能である。
・熱移動装置としてペルチェ素子7以外のもの、例えば蒸気圧縮式のヒートポンプを採用してもよい。
The distribution ratio “A: B” does not necessarily have to be a value that provides the shortest time Tf, and can be changed to any value other than that value.
A heat transfer device other than the Peltier element 7, for example, a vapor compression heat pump may be employed.

・経路1a〜1dの分岐部分に切換弁13を設ける代わりに、経路1a〜1dの各々に経路の連通遮断を行う切換弁を設けるようにしてもよい。
・上記切換弁13を設ける代わりに、経路1a〜1cの合流部分に経路1a〜1cのいずれかの経路への切り換えを行う切換弁を設けるとともに、経路1dに同経路1dの連通遮断を行う切換弁を設けるようにしてもよい。
Instead of providing the switching valve 13 at the branch portion of the paths 1a to 1d, a switching valve that cuts off the communication of the path may be provided in each of the paths 1a to 1d.
-Instead of providing the switching valve 13, a switching valve for switching to any one of the paths 1a to 1c is provided at the joining portion of the paths 1a to 1c, and switching for disconnecting the path 1d from the path 1d is performed. A valve may be provided.

・蓄熱器として冷熱蓄熱器14と温熱蓄熱器15とのうちの一方のみを設けて冷熱蓄熱と温熱蓄熱との一方のみを行うようにしてもよい。
・冷熱蓄熱器14と温熱蓄熱器15との両方の機能を有する蓄熱器を設け、同蓄熱器により冷熱蓄熱や温熱蓄熱を行うようにしてもよい。この場合、夏季には上記蓄熱器により冷熱蓄熱を行い、冬季には上記蓄熱器により温熱蓄熱を行うことが好ましい。
-As a heat storage device, only one of the cold heat storage device 14 and the hot heat storage device 15 may be provided, and only one of the cold heat storage and the heat storage may be performed.
A heat accumulator having both functions of the cold energy regenerator 14 and the heat energy regenerator 15 may be provided, and the heat accumulator may perform cold energy accumulation and heat energy accumulation. In this case, it is preferable that cold storage is performed by the heat storage unit in summer and thermal storage is performed by the heat storage unit in winter.

1…第1循環回路、1a〜1d…経路、2…第2循環回路、3…第3循環回路、4,5…ポンプ、6…室外熱交換器、7…ペルチェ素子、8…ポンプ、9…充電器、10…トランスアクスル、11…サーモスタット、12…放熱器、13…切換弁、14…冷熱蓄熱器、15…温熱蓄熱器、16…バイパス通路、17…バッテリ、18…室内熱交換器、19…遮断弁、20…インバータ、21…電子制御装置(制御手段、設定手段)、22…第1温度センサ、23…第2温度センサ、24…第3温度センサ、25…レディースイッチ、26…プラグイン検出回路。   DESCRIPTION OF SYMBOLS 1 ... 1st circuit, 1a-1d ... path | route, 2 ... 2nd circuit, 3 ... 3rd circuit, 4, 5 ... Pump, 6 ... Outdoor heat exchanger, 7 ... Peltier device, 8 ... Pump, 9 DESCRIPTION OF SYMBOLS ... Charger, 10 ... Transaxle, 11 ... Thermostat, 12 ... Radiator, 13 ... Switching valve, 14 ... Cold heat storage device, 15 ... Heat storage device, 16 ... Bypass passage, 17 ... Battery, 18 ... Indoor heat exchanger , 19 ... shut-off valve, 20 ... inverter, 21 ... electronic control device (control means, setting means), 22 ... first temperature sensor, 23 ... second temperature sensor, 24 ... third temperature sensor, 25 ... ready switch, 26 ... Plug-in detection circuit.

Claims (6)

停車時に外部電源に接続される車両の充電蓄熱装置であって、
車室の空調を行うための熱媒体が循環する第1循環回路と、
外気との間での熱交換を行うべく熱媒体が循環する第2循環回路と、
前記第1循環回路に設けられて熱媒体の冷熱もしくは温熱を蓄熱する一方、その蓄熱した冷熱もしくは温熱を同第1循環回路の熱媒体に対し放出可能な蓄熱器と、
前記車両の前記外部電源への接続中、その外部電源に基づき駆動して前記第1循環回路の熱媒体と前記第2循環回路の熱媒体との間での熱の移動を行うことの可能な熱移動装置と、
前記車両の前記外部電源への接続中、その外部電源によるバッテリの充電、及び、前記外部電源に基づき熱移動装置を駆動して前記蓄熱器への冷熱もしくは温熱の蓄熱を行う制御手段と、
を備え、
前記制御手段は、前記バッテリの充電と前記熱移動装置の駆動による前記蓄熱器への蓄熱とが同時に完了するよう、それら充電及び蓄熱を行うものである
ことを特徴とする車両の充電蓄熱装置。
A vehicle charging / storage device connected to an external power source when the vehicle is stopped,
A first circulation circuit in which a heat medium for air conditioning the passenger compartment circulates;
A second circulation circuit in which a heat medium circulates to exchange heat with outside air;
A heat accumulator that is provided in the first circulation circuit and stores the cold or warm heat of the heat medium, and that can discharge the stored cold or warm heat to the heat medium of the first circulation circuit;
During the connection of the vehicle to the external power supply, it is possible to transfer heat between the heat medium of the first circulation circuit and the heat medium of the second circulation circuit by driving based on the external power supply. A heat transfer device;
During the connection to the external power supply of the vehicle, charging of the battery by the external power supply, and a control means for driving the heat transfer device based on the external power supply to store cold or warm heat in the heat accumulator;
With
The vehicle charging and storage device is characterized in that the control means performs charging and heat storage so that charging of the battery and heat storage to the heat accumulator by driving of the heat transfer device are completed simultaneously.
前記制御手段は、前記外部電源の電気容量を最大限に用いて前記バッテリの充電と前記熱移動装置の駆動による前記蓄熱器への蓄熱とを同時に行い、前記充電のための電気エネルギと前記蓄熱のための電気エネルギとを分配するに当たり、その分配率を前記充電及び前記蓄熱が最短で完了する値とする
請求項1記載の車両の充電蓄熱装置。
The control means simultaneously performs charging of the battery and heat storage to the heat accumulator by driving the heat transfer device using the electric capacity of the external power source to the maximum, and electric energy for the charging and the heat storage The vehicle charge heat storage device according to claim 1, wherein the distribution rate is set to a value at which the charging and the heat storage are completed in a shortest time when distributing the electric energy for the vehicle.
請求項2記載の車両の充電蓄熱装置において、
前記車両が前記外部電源に接続された後に同外部電源が前記車両から切り離される予測時刻である切り離し時刻を設定する設定手段を更に備え、
前記制御手段は、車両が前記外部電源に接続された後、切り離し時刻にて前記充電及び前記蓄熱が完了するよう、それら充電及び蓄熱を開始するものである
ことを特徴とする車両の充電蓄熱装置。
In the vehicle heat storage device according to claim 2,
Further comprising setting means for setting a disconnection time which is a predicted time when the external power supply is disconnected from the vehicle after the vehicle is connected to the external power supply;
The control means starts charging and storing heat so that the charging and the heat storage are completed at a disconnection time after the vehicle is connected to the external power source. .
前記制御手段は、前記充電のための電気エネルギと前記蓄熱のための電気エネルギとの分配率を「A:B」、前記バッテリの容量を「Qb」、前記車両が前記外部電源に接続されたときの前記バッテリの残量を「Qbnow」、前記蓄熱器の容量を「Qs」、前記車両が前記外部電源に接続されたときの前記蓄熱器の残量を「Qsnow」、前記熱移動装置の電力効率を「COP」としたとき、前記分配率「A:B」を次の式「(A:B)=(Qb−Qbnow):(lQs−Qsnowl)/COP」に基づいて設定する
請求項2記載の車両の充電蓄熱装置。
The control means is configured such that the distribution ratio between the electric energy for charging and the electric energy for heat storage is “A: B”, the capacity of the battery is “Qb”, and the vehicle is connected to the external power source. When the battery is connected to the external power source, the remaining amount of the battery is “Qsnow”, the capacity of the heat storage device is “Qs”, the remaining amount of the heat storage device is “Qsnow”, When the power efficiency is “COP”, the distribution ratio “A: B” is set based on the following expression “(A: B) = (Qb−Qbnow) :( lQs−Qsnow) / COP”. 3. The vehicle heat storage device according to 2.
前記制御手段は、前記充電及び前記蓄熱の完了までに要する最短時間を「Tf」とし、前記外部電源の電気容量を「E」としたとき、その最短時間Tfを次の式「Tf=(Qb−Qbnow)/[E・{A/(A+B)}]」に基づいて算出し、切り離し時刻から前記最短時間Tfを遡った時刻にて上記分配率「A:B」での前記充電及び前記蓄熱を開始する
請求項4記載の車両の充電蓄熱装置。
When the shortest time required to complete the charging and the heat storage is “Tf” and the electric capacity of the external power source is “E”, the control means sets the shortest time Tf to the following expression “Tf = (Qb -Qbnow) / [E · {A / (A + B)}] ", and the charging and the heat storage at the distribution rate" A: B "at a time that goes back the shortest time Tf from the disconnection time The vehicle charge and heat storage device according to claim 4.
前記制御手段は、前記充電及び前記蓄熱の完了までに要する最短時間を「Tf」とし、前記外部電源の電気容量を「E」としたとき、その最短時間Tfを次の式「Tf={(lQs−Qsnowl)/COP}/[E・{B/(A+B)}]」に基づいて算出し、切り離し時刻から前記最短時間Tfを遡った時刻にて上記分配率「A:B」での前記充電及び前記蓄熱を開始する
請求項4記載の車両の充電蓄熱装置。
When the shortest time required to complete the charging and the heat storage is “Tf” and the electric capacity of the external power source is “E”, the control means sets the shortest time Tf to the following expression “Tf = {( lQs−Qsnow) / COP} / [E · {B / (A + B)}] ”, and the distribution rate“ A: B ”at a time that goes back the shortest time Tf from the disconnection time. The vehicle charge heat storage device according to claim 4, wherein charging and heat storage are started.
JP2010243933A 2010-10-29 2010-10-29 Vehicle charging and heat storage device Pending JP2012096590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243933A JP2012096590A (en) 2010-10-29 2010-10-29 Vehicle charging and heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243933A JP2012096590A (en) 2010-10-29 2010-10-29 Vehicle charging and heat storage device

Publications (1)

Publication Number Publication Date
JP2012096590A true JP2012096590A (en) 2012-05-24

Family

ID=46389041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243933A Pending JP2012096590A (en) 2010-10-29 2010-10-29 Vehicle charging and heat storage device

Country Status (1)

Country Link
JP (1) JP2012096590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system
CN115366743A (en) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 Heating method and device of power battery, electronic equipment, system and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system
JP2019118178A (en) * 2017-12-26 2019-07-18 カルソニックカンセイ株式会社 Energy management system
CN115366743A (en) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 Heating method and device of power battery, electronic equipment, system and storage medium
CN115366743B (en) * 2022-04-24 2024-02-02 宁德时代新能源科技股份有限公司 Heating method and device of power battery, electronic equipment, system and storage medium

Similar Documents

Publication Publication Date Title
US11292363B2 (en) Charging system
JP6916600B2 (en) Vehicle battery cooling system
US8851153B2 (en) System and method for managing waste heat of electric vehicle
CN109585973B (en) Power battery thermal management method and system
US8774999B2 (en) Air-conditioning control device for electric vehicle
CN111055727B (en) Control method and device of thermal management system of vehicle and vehicle
US20100293966A1 (en) Vehicle air conditioner
US10532751B2 (en) Air-conditioning device for vehicle
JP7094907B2 (en) Battery temperature riser
JP6150113B2 (en) Vehicle thermal management system
CN102050007A (en) Control system for heat management of electric vehicle
JP2011068348A (en) Vehicle inside temperature control method of electric motor vehicle and air-conditioning system
US11247577B2 (en) Vehicle
KR20110062232A (en) Air-conditioning system of electric vehicle and method for controlling the same
TW201226228A (en) Multifunctional air conditioning system for thermal management of electric vehicle
CN109203909B (en) Heating, ventilation and air conditioning system for a vehicle
JP6958493B2 (en) Battery temperature controller
JP2015191703A (en) Battery temperature control device
JP5218523B2 (en) Vehicle thermal control device
JP4930270B2 (en) Vehicle and heat exchange system
JP5441391B2 (en) Charging device, building equipped with charging device, and hot water generating device
JP2018111339A (en) Air conditioner for electrically driven vehicle
JP2012096590A (en) Vehicle charging and heat storage device
WO2020129260A1 (en) Vehicle
JP2011131858A (en) Air-conditioning system having fuel cell, air-conditioning method using fuel cell, and fuel cell vehicle having air-conditioning system