JP2012093522A - Progressive multifocal contact lens - Google Patents

Progressive multifocal contact lens Download PDF

Info

Publication number
JP2012093522A
JP2012093522A JP2010240171A JP2010240171A JP2012093522A JP 2012093522 A JP2012093522 A JP 2012093522A JP 2010240171 A JP2010240171 A JP 2010240171A JP 2010240171 A JP2010240171 A JP 2010240171A JP 2012093522 A JP2012093522 A JP 2012093522A
Authority
JP
Japan
Prior art keywords
contact lens
progressive multifocal
multifocal contact
distance
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010240171A
Other languages
Japanese (ja)
Inventor
Akira Shimojo
朗 下條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2010240171A priority Critical patent/JP2012093522A/en
Publication of JP2012093522A publication Critical patent/JP2012093522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a progressive multifocal contact lens designed to form two focuses for far sightedness and near sightedness on the retina of a human eye in a state in which a contact lens is put on the human eye.SOLUTION: A progressive multifocal contact lens 1 is constituted which has a lens optical part 2 having a far-sightedness part 3, a transition part 4, a near-sightedness part 5, and a near-sightedness auxiliary part 6 arranged concentrically from the center. The far-sightedness part 3 is arranged in the center of the lens optical part 2, and is an area for viewing a long distance. The transition part 4 is arranged at an outer periphery of the far-sightedness part, and has an optical power distribution continuously increasing from the optical power of the far-sightedness part 3. The near-sightedness part 5 is arranged at an outer periphery of the transition part 4, and is an area for viewing a short distance. The near-sightedness auxiliary part 6 is arranged at an outer periphery of the near-sightedness part 5, has an optical power distribution continuously decreasing the optical power of the near-sightedness part 5, and is provided so as to clearly obtain an image for near-sightedness. The image for near-sightedness can be clearly obtained since the near-sightedness auxiliary part 6 is formed.

Description

本発明は、コンタクトレンズに関し、特に遠近両用の累進多焦点(マルチフォーカル)コンタクトレンズに関する。   The present invention relates to a contact lens, and more particularly to a progressive multifocal contact lens for both near and far.

従来、老眼用コンタクトレンズとして用いられる累進多焦点コンタクトレンズでは、一つの光学部に、遠方を見るための遠用部と近方を見るための近用部とが配置されている(特許文献1、2)。図11に、従来の累進多焦点コンタクトレンズの構成を示す。図11に示すように、従来の累進多焦点コンタクトレンズ10では、レンズ光学部11の中心部から外周にかけて遠用部12、近用部14が同心円状に形成されており、遠用部12及び近用部14の間には遠用部12から近用部14へ度数を連続的に変化させるための移行部13が形成されている。   Conventionally, in a progressive multifocal contact lens used as a contact lens for presbyopia, a distance portion for viewing far and a near portion for viewing near are arranged in one optical portion (Patent Document 1). 2). FIG. 11 shows the configuration of a conventional progressive multifocal contact lens. As shown in FIG. 11, in the conventional progressive multifocal contact lens 10, the distance portion 12 and the near portion 14 are formed concentrically from the center portion to the outer periphery of the lens optical portion 11. Between the near portions 14, a transition portion 13 for continuously changing the power from the distance portion 12 to the near portion 14 is formed.

図12は、図11の累進多焦点コンタクトレンズ10のB−B軸上における度数分布図である。従来の累進多焦点コンタクトレンズ10では、レンズ光学部11の中心から所定の位置まで形成される遠用部12にて遠用度数が付され、移行部13にて近用部14に向けて遠用度数から連続的に度数が増加し、そして、近用部14にて所望の近用度数が付され、レンズ光学部11の周縁にかけてほぼ一定の度数となるように構成されている。このような累進多焦点コンタクトレンズ10を装用すると、移行部13の度数が滑らかに変化しているため、レンズ光学部11という狭い範囲内に遠用領域および近用領域を割り当てても、遠用及び近用の像が良好となり得る。   FIG. 12 is a frequency distribution diagram on the BB axis of the progressive multifocal contact lens 10 of FIG. In the conventional progressive multifocal contact lens 10, the distance power is given by the distance portion 12 formed from the center of the lens optical portion 11 to a predetermined position, and the distance portion is moved toward the near portion 14 by the transition portion 13. The power is continuously increased from the power, and a desired near power is given by the near portion 14 so that the power is almost constant over the periphery of the lens optical portion 11. When such a progressive multifocal contact lens 10 is worn, the power of the transition portion 13 changes smoothly. Therefore, even if the distance area and the near area are allocated within a narrow range of the lens optical section 11, the distance use And near-field images can be good.

特開2002−131705号公報JP 2002-131705 A 特開平05−181096号公報JP 05-181096 A

ところで、人眼は、図13Aに示したように角膜と水晶体の二枚のレンズから構成されている。したがって、累進多焦点コンタクトレンズ10と角膜と水晶体を合わせた状態で人眼の網膜上に遠用及び近用の二つの焦点が形成されるようにコンタクトレンズの設計を行う必要がある。例えば、人眼による実測データや模型眼のデータにより、人眼には球面収差が存在することが知られている。図13Aに模型眼(人眼)の構成を示し、図13Bに、Koomen et al.(1949)、Invanoff(1953)、Jenkins(1963)による人眼の球面収差の実測データと、Navarroによる模型眼の球面収差の測定データを示す。図13Bの縦軸は光線入射高を示し、横軸は縦方向の球面収差を示す。   By the way, the human eye is composed of two lenses, a cornea and a crystalline lens, as shown in FIG. 13A. Therefore, it is necessary to design the contact lens so that two focal points for distance and near are formed on the retina of the human eye in a state where the progressive multifocal contact lens 10, the cornea, and the crystalline lens are combined. For example, it is known that spherical aberration exists in the human eye based on actual measurement data and model eye data. FIG. 13A shows the structure of a model eye (human eye), and FIG. 13B shows measured data of spherical aberration of the human eye by Koomen et al. (1949), Invanoff (1953), Jenkins (1963), and model eye by Navarro. The measurement data of spherical aberration is shown. In FIG. 13B, the vertical axis indicates the incident light height, and the horizontal axis indicates the longitudinal spherical aberration.

なお、Koomen、Invanoff、Jenkinsの実測データは、H.L.Liou and N.A.Brennan,
”The prediction of spherical aberration with schematic eyes”,
Ophthal.Phyisiol.Opt.Vol.16.No.4,pp.348-354,1996に記載されている。また、Navarroの測定データは、R.Navarro,J-Santamaria,J.Bescos”Accommondation-dependent model
of the human eye with aspherics”Vol.2,No8/August 1985/J.Opt.Soc.Am.A)に記載されている。
The measured data for Koomen, Invanoff, and Jenkins are HLI Liou and NABrennan,
“The prediction of spherical aberration with schematic eyes”,
Ophthal.Phyisiol.Opt.Vol.16.No.4, pp.348-354,1996. Navarro's measurement data are R. Navarro, J-Santamaria, J. Bescos ”Accommondation-dependent model.
of the human eye with aspherics ”Vol.2, No8 / August 1985 / J.Opt.Soc.Am.A).

図13Aの一点鎖線Sで示す位置は、模型眼(人眼)の光学部中心である。図13Bの縦軸である光線入射高は、人眼に入射する平行光線の光学部中心からの高さである。図13Bに示すように、模型眼を用いた測定データ、及び人眼を用いた実測データから、光線入射高が高くなるにつれて球面収差が大きくなることがわかる。すなわち、人眼の光学部中心領域と周辺領域では度数が異なり、光学部中心よりも周辺領域の方が度数は大きく、人眼そのものが中心部遠用、周辺部近用の累進多焦点レンズとなっている。   The position indicated by the alternate long and short dash line S in FIG. 13A is the center of the optical part of the model eye (human eye). The light beam incident height, which is the vertical axis of FIG. 13B, is the height from the center of the optical part of parallel light rays that enter the human eye. As shown in FIG. 13B, it can be seen from the measurement data using the model eye and the actual measurement data using the human eye that the spherical aberration increases as the light incident height increases. In other words, the power is different in the central area and the peripheral area of the optical part of the human eye, the power is higher in the peripheral area than in the center of the optical part, and the human eye itself is a progressive multifocal lens for the central part and the peripheral part. It has become.

この人眼に、前述した従来の累進多焦点コンタクトレンズ10を装用させると、特に近用部においてコンタクトレンズと人眼の累進レンズが重なり、コンタクトレンズの効果がくずれ、この結果、近用の像が不明瞭となるという問題があることがわかった。これは従来の累進多焦点コンタクトレンズ10が、角膜から離して使用する眼鏡のように考えて設計されていたためである。   When the above-described conventional progressive multifocal contact lens 10 is worn on this human eye, the contact lens and the human eye progressive lens overlap each other, particularly in the near portion, and the effect of the contact lens is lost. It became clear that there was a problem that became unclear. This is because the conventional progressive multifocal contact lens 10 is designed with the eyeglasses used away from the cornea.

上述の点に鑑み、本発明は、人眼にコンタクトレンズを装用させた状態において、人眼の網膜上に遠用及び近用の二焦点が形成されるように設計された累進多焦点コンタクトレンズを得ることを目的とする。もしくは、コンタクトレンズと角膜を合わせた状態で人眼の網膜上に遠近の二焦点が形成されるように設計された累進多焦点コンタクトレンズを得ることを目的とする。   In view of the above, the present invention is a progressive multifocal contact lens designed so that two focal points for distance and near are formed on the retina of the human eye when the contact lens is worn on the human eye. The purpose is to obtain. Alternatively, it is an object of the present invention to obtain a progressive multifocal contact lens designed so that two near-focal points are formed on the retina of a human eye in a state where the contact lens and the cornea are combined.

上記課題を解決し、本発明の目的を達成するため、本発明の累進多焦点コンタクトレンズは、度数の異なる領域が同心円状に配置されたレンズ光学部を有する。そして、レンズ光学部は、中心から遠用部、移行部、近用部、近用補助部を有する。遠用部は、レンズ光学部中心に配置され、遠方を見るための領域である。移行部は、遠用部の外周に配置され、遠用部の度数から連続して増加する度数分布を有する。近用部は、移行部の外周に配置され、近方を見るための領域である。近用補助部は、近用部の外周に配置され、近用部の度数から連続して減少する度数分布を有する。そして、この近用補助部は、近用の像を明瞭に得るために設けられている。   In order to solve the above problems and achieve the object of the present invention, the progressive multifocal contact lens of the present invention has a lens optical section in which regions having different powers are arranged concentrically. The lens optical unit includes a distance portion, a transition portion, a near portion, and a near assist portion from the center. The distance portion is an area that is disposed at the center of the lens optical portion and for viewing the distance. The transition portion is disposed on the outer periphery of the distance portion and has a power distribution that continuously increases from the power of the distance portion. The near portion is an area that is arranged on the outer periphery of the transition portion and for viewing the near portion. The near auxiliary part is disposed on the outer periphery of the near part and has a frequency distribution that continuously decreases from the frequency of the near part. The near-use auxiliary unit is provided to clearly obtain a near-use image.

本発明の累進多焦点コンタクトレンズでは、近用部の外側に近用補助部が形成されることにより、近用の焦点について網膜上における球面収差の変化量が低減され、人眼そのものの度数の影響が緩和される。なお、中央に遠用部が形成されることにより、遠用の焦点について網膜上における球面収差の変化量が小さいことは言うまでもない。   In the progressive multifocal contact lens according to the present invention, the near auxiliary portion is formed outside the near portion, whereby the amount of change in spherical aberration on the retina is reduced for the near focus, and the frequency of the human eye itself is reduced. Impact is mitigated. Needless to say, since the distance portion is formed at the center, the amount of change in spherical aberration on the retina is small at the distance focus.

本発明の累進多焦点コンタクトレンズによれば、従来よりも優れた近用の焦点が網膜上に形成されるため、遠方と近方の両方を明瞭に見ることが可能となる。   According to the progressive multifocal contact lens of the present invention, a near focus superior to the conventional one is formed on the retina, so that it is possible to clearly see both far and near.

図1は、本発明の一実施形態に係る累進多焦点コンタクトレンズの構成を示す図である。FIG. 1 is a diagram showing a configuration of a progressive multifocal contact lens according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る累進多焦点コンタクトレンズのレンズ光学部の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a lens optical unit of a progressive multifocal contact lens according to an embodiment of the present invention. 図3は、図2のレンズ光学部のA−A軸上における度数分布を示す図である。FIG. 3 is a diagram illustrating a frequency distribution on the AA axis of the lens optical unit in FIG. 図4は、実施例1のレンズ光学部における度数分布を示す図である。FIG. 4 is a diagram illustrating a frequency distribution in the lens optical unit according to the first embodiment. 図5は、実施例1の累進多焦点コンタクトレンズをナバロの模型眼に装用させた場合の模型眼の網膜上の縦の球面収差を示した図である。FIG. 5 is a diagram showing vertical spherical aberration on the retina of the model eye when the progressive multifocal contact lens of Example 1 is worn on the Navarro model eye. 図6は、実施例2のレンズ光学部における度数分布を示す図である。FIG. 6 is a diagram illustrating a frequency distribution in the lens optical unit according to the second embodiment. 図7は、実施例2の累進多焦点コンタクトレンズをナバロの模型眼に装用させた場合の模型眼の網膜上の縦の球面収差を示した図である。FIG. 7 is a diagram showing vertical spherical aberration on the retina of the model eye when the progressive multifocal contact lens of Example 2 is worn on the Navarro model eye. 図8は、実施例3のレンズ光学部における度数分布を示す図である。FIG. 8 is a diagram illustrating a frequency distribution in the lens optical unit according to the third embodiment. 図9は、実施例4のレンズ光学部における度数分布を示す図である。FIG. 9 is a diagram illustrating a frequency distribution in the lens optical unit according to the fourth embodiment. 図10は、実施例5のレンズ光学部における度数分布を示す図である。FIG. 10 is a diagram illustrating a frequency distribution in the lens optical unit according to the fifth embodiment. 図11は、従来の累進多焦点コンタクトレンズのレンズ光学部の構成を示す図である。FIG. 11 is a diagram illustrating a configuration of a lens optical unit of a conventional progressive multifocal contact lens. 図12は、図11のレンズ光学部のB−B軸上における度数分布を示す図である。12 is a diagram showing a frequency distribution on the BB axis of the lens optical unit in FIG. 図13Aは、模型眼(人眼)の構成を示した図であり、図13Bは、Koomen et al.(1949)、Invanoff(1953)、Jenkins(1963)による人眼の球面収差の実測データと、Navarroによる模型眼の球面収差の計算データを示した図である。FIG. 13A is a diagram showing a configuration of a model eye (human eye), and FIG. 13B is a graph showing measured data of spherical aberration of the human eye by Koomen et al. (1949), Invanoff (1953), and Jenkins (1963). It is the figure which showed the calculation data of the spherical aberration of the model eye by Navarro. 図14は、模型眼に累進多焦点コンタクトレンズを装用させた状態の断面における構成を示す図である。FIG. 14 is a diagram showing a configuration in a cross section in a state where a progressive multifocal contact lens is worn on a model eye. 図15は、従来の累進多焦点コンタクトレンズを模型眼に装用した状態において模型眼の網膜面上の縦の球面収差を示した図である。FIG. 15 is a diagram showing vertical spherical aberration on the retina surface of the model eye in a state where the conventional progressive multifocal contact lens is worn on the model eye.

以下に、本発明の実施形態に係る累進多焦点コンタクトレンズの一例を、図を参照しながら説明する。なお、本発明は以下の例に限定されるものではない。   Hereinafter, an example of a progressive multifocal contact lens according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following examples.

まず、本発明の実施形態を説明する前に、図11に示した従来の累進多焦点コンタクトレンズ10を人眼の代わりにナバロの模型眼に装用させた場合の球面収差について説明する。図14は、模型眼に累進多焦点コンタクトレンズ10を装用させた状態を示す断面構成図であり、図15は、図14の状態における模型眼の網膜面上の縦の球面収差を示した図である。図15の縦軸は光線入射高(mm)であり、横軸は球面収差(mm)である。   First, before describing the embodiment of the present invention, spherical aberration when the conventional progressive multifocal contact lens 10 shown in FIG. 11 is worn on a Navarro model eye instead of the human eye will be described. 14 is a cross-sectional configuration diagram illustrating a state in which the progressive multifocal contact lens 10 is worn on the model eye, and FIG. 15 is a diagram illustrating vertical spherical aberration on the retinal surface of the model eye in the state of FIG. It is. The vertical axis in FIG. 15 is the incident light height (mm), and the horizontal axis is the spherical aberration (mm).

累進多焦点コンタクトレンズ10は、図11、図14に示したように、遠用部12の中心が瞳の中心となるように模型眼に装用するものとする。図15からわかるように、瞳の中心に入射する光は網膜上に遠用部12の焦点を形成するが、光線入射高が高くなると球面収差量の絶対値が単調に増加する。このため、累進多焦点コンタクトレンズ10の近用部14で形成される焦点位置が不明となってしまう。すなわち、従来の累進多焦点コンタクトレンズ10では、遠用は明瞭となるものの、近用は不明瞭な像しか得られないことが予想される。   As shown in FIGS. 11 and 14, the progressive multifocal contact lens 10 is worn on the model eye so that the center of the distance portion 12 is the center of the pupil. As can be seen from FIG. 15, the light incident on the center of the pupil forms the focal point of the distance portion 12 on the retina. However, as the incident light height increases, the absolute value of the spherical aberration increases monotonously. For this reason, the focal position formed by the near portion 14 of the progressive multifocal contact lens 10 becomes unclear. That is, with the conventional progressive multifocal contact lens 10, it is expected that the distance use will be clear, but the near use only provides an unclear image.

従来の累進多焦点コンタクトレンズ10において、近用で不明瞭な像となる理由は、人眼そのものの球面収差に起因する。図13Bに示すように、人眼の中心領域の球面収差は小さい。このため、遠用部12を介して人眼に入射する光は人眼そのものの球面収差の影響をあまり受けない。この結果、遠用部12の度数(屈折力)によって網膜上に焦点が形成される。   In the conventional progressive multifocal contact lens 10, the reason why the near-intelligible and unclear image is generated is due to the spherical aberration of the human eye itself. As shown in FIG. 13B, the spherical aberration in the central region of the human eye is small. For this reason, the light incident on the human eye via the distance portion 12 is not significantly affected by the spherical aberration of the human eye itself. As a result, a focal point is formed on the retina by the power (refractive power) of the distance portion 12.

一方、人眼の光学部周辺領域では周辺に行くにしたがって度数が大きくなるため、図13Bに示すように、人眼の光学部周辺領域の球面収差は大きい。このため、近用部14を介して人眼に入射する光は近用部14の度数と人眼そのもの度数の両方の影響を受けるため、焦点位置が不明瞭となる。
以下、本発明の累進多焦点コンタクトレンズの実施形態として、人眼に装用した際に、遠用と近用の2つの焦点が形成される例について説明する。
On the other hand, since the frequency increases in the region around the optical part of the human eye, the spherical aberration in the region around the optical part of the human eye is large as shown in FIG. 13B. For this reason, the light incident on the human eye via the near portion 14 is affected by both the power of the near portion 14 and the power of the human eye itself, and the focal position becomes unclear.
Hereinafter, as an embodiment of the progressive multifocal contact lens of the present invention, an example in which two focal points for distance and near are formed when worn on the human eye will be described.

〈累進多焦点コンタクトレンズ〉
図1に、本発明の一実施形態に係る累進多焦点コンタクトレンズの概略構成を示し、図2に、累進多焦点コンタクトレンズの光学部の概略構成を示す。累進多焦点コンタクトレンズ1は、図1に示すように、中心から順に、レンズ光学部2、周辺部7、エッジ部8が同心円状に形成されており、レンズ光学部2が、所定の屈折度数を有するように構成されている。累進多焦点コンタクトレンズ1を人眼に装用した場合は、レンズ光学部2を介して入射した光が網膜上に焦点を結ぶ。
<Progressive multifocal contact lens>
FIG. 1 shows a schematic configuration of a progressive multifocal contact lens according to an embodiment of the present invention, and FIG. 2 shows a schematic configuration of an optical unit of the progressive multifocal contact lens. As shown in FIG. 1, the progressive multifocal contact lens 1 has a lens optical part 2, a peripheral part 7, and an edge part 8 formed concentrically in order from the center, and the lens optical part 2 has a predetermined refractive power. It is comprised so that it may have. When the progressive multifocal contact lens 1 is worn on the human eye, the light incident through the lens optical unit 2 is focused on the retina.

本実施形態例の累進多焦点コンタクトレンズ1は、直径φ8〜15mmの円盤状の部材で構成され、装用面(人眼に装着する側の面)が凹状とされている。ハードコンタクトレンズの直径はφ8〜10mmであり、ソフトコンタクトレンズの直径はφ13〜15mmである。また、レンズ光学部2は、直径φ6〜10mmの円盤状の部材で構成され、ハードコンタクトレンズの直径はφ6〜7mmであり、ソフトコンタクトレンズの直径はφ6〜10mmである。なお、本実施形態例の累進多焦点コンタクトレンズ1は、図1に示すように、円盤状の形状を示すが、この形状に限らず例えば、楕円形等の非円盤状に置き換えることも可能である。   The progressive multifocal contact lens 1 according to this embodiment is formed of a disk-shaped member having a diameter of 8 to 15 mm, and the wearing surface (the surface to be worn on the human eye) is concave. The diameter of the hard contact lens is φ8 to 10 mm, and the diameter of the soft contact lens is φ13 to 15 mm. The lens optical unit 2 is composed of a disk-shaped member having a diameter of 6 to 10 mm, the hard contact lens has a diameter of 6 to 7 mm, and the soft contact lens has a diameter of 6 to 10 mm. The progressive multifocal contact lens 1 according to the present embodiment has a disc shape as shown in FIG. 1, but is not limited to this shape, and can be replaced with a non-disc shape such as an ellipse. is there.

累進多焦点コンタクトレンズ1の材料としては、一般的なハードコンタクトレンズ、ソフトコンタクトレンズと同様の材料を用いることができ、何等限定されるものでなく、非ガス透過性のPMMA(ポリメタクリル酸メチル)等の他、シリコン/アクリレート系共重合体などのガス透過性(RGP)等からなるハードコンタクトレンズとして公知の各種材料、PHEMA(ポリヒドロキシエチルメタクリレート)やPVP(ポリビニルピロリドン)等の含水性材料や酸素透過性を向上させるためにシリコーン含有モノマーやシロキサンマクロマーを主成分とするシリコーンハイドロゲルコンタクトレンズとして公知の各材料であっても良い。   The material of the progressive multifocal contact lens 1 can be the same material as that of a general hard contact lens or soft contact lens, and is not limited in any way. Non-gas-permeable PMMA (polymethyl methacrylate) ), And various other materials known as hard contact lenses made of gas permeable (RGP) such as silicon / acrylate copolymers, hydrous materials such as PHEMA (polyhydroxyethyl methacrylate) and PVP (polyvinylpyrrolidone) In addition, in order to improve oxygen permeability, each material known as a silicone hydrogel contact lens mainly composed of a silicone-containing monomer or a siloxane macromer may be used.

累進多焦点コンタクトレンズ1のレンズ光学部2では、中心から順に遠用部3、移行部4、近用部5、及び近用補助部6が同心円状に形成されている。図3に、図2の累進多焦点コンタクトレンズ1のA−A軸上における度数分布を示す。図3の縦軸は度数(D)であり、横軸はレンズ光学部中心からの距離(mm)である。また、縦軸は基準(0点)を目的とする遠用度数としている。なお、縦軸は加入度数と読み替えても良い。   In the lens optical part 2 of the progressive multifocal contact lens 1, a distance part 3, a transition part 4, a near part 5 and a near auxiliary part 6 are formed concentrically in order from the center. FIG. 3 shows a frequency distribution on the AA axis of the progressive multifocal contact lens 1 of FIG. The vertical axis in FIG. 3 is the frequency (D), and the horizontal axis is the distance (mm) from the center of the lens optical unit. The vertical axis represents the distance power for the purpose of reference (0 point). The vertical axis may be read as addition power.

累進多焦点コンタクトレンズ1では、遠用部3を介して人眼に入射する光線は遠用部3に付された度数によって人眼の網膜に焦点として形成される。これによって、遠用の像を明瞭に見ることができる。   In the progressive multifocal contact lens 1, a light ray incident on the human eye via the distance portion 3 is formed as a focal point on the retina of the human eye by the frequency applied to the distance portion 3. As a result, it is possible to clearly see the far-field image.

遠用部3は、遠方を見る際に用いられる領域であり、レンズ光学部2の中心に円状に形成されている。遠用部3の径が0.5mmよりも小さいと、明瞭な遠用の像が得られないという問題があり、3.5mmよりも大きいと近用の領域を瞳孔内に確保できないという問題がある。したがって遠用部3は、中心から半径0.5〜3.5mmの円状に形成されることが好ましい。なお、瞳孔径は、φ2〜8mmで、普段はφ3〜4mm程度である。   The distance portion 3 is an area used when looking far away, and is formed in a circular shape at the center of the lens optical portion 2. If the diameter of the distance portion 3 is smaller than 0.5 mm, there is a problem that a clear distance image cannot be obtained, and if it is larger than 3.5 mm, a near area cannot be secured in the pupil. is there. Therefore, the distance portion 3 is preferably formed in a circular shape having a radius of 0.5 to 3.5 mm from the center. The pupil diameter is φ2 to 8 mm, usually about φ3 to 4 mm.

遠用部3においては、遠方を見る場合に明瞭な視界を得ることができる所望の屈折度数(遠用度数)が付されている。この遠用度数は、通常のコンタクトレンズにおける遠用度数と同様にして処方される度数である。   The distance portion 3 is provided with a desired refractive power (distance power) capable of obtaining a clear field of view when looking far away. This distance power is a power prescribed in the same manner as the distance power in a normal contact lens.

遠用の場合、光線入射高が0〜1.5mmの範囲における球面収差の最大値と最小値の差(球面収差の変化量)が0.3mm以内に収まるように、遠用部3の度数を設計することが好ましい。これにより、レンズ光学部2と人眼とを合わせた状態で遠用の焦点について球面収差の変化量が低減され、遠用の視界が明瞭となる。   In the case of distance use, the frequency of the distance portion 3 is set so that the difference between the maximum value and the minimum value of spherical aberration (the amount of change in spherical aberration) is within 0.3 mm when the incident light height is in the range of 0 to 1.5 mm. Is preferably designed. As a result, the amount of change in spherical aberration is reduced for the far focus in a state where the lens optical unit 2 and the human eye are combined, and the far vision is clear.

移行部4は、遠用部3と近用部5との度数を滑らかに変化させる領域であり、遠用部3の外周に所定の幅を有して形成されている。移行部4の幅が0.5mmよりも小さいと急激な度数変化となり、像がダブりやすいという問題があり、2mmよりも大きいと瞳孔内に遠用部3及び近用部5の領域を確保できないという問題がある。したがって、移行部4の幅は、0.5〜2mmの幅で形成されることが好ましい。   The transition part 4 is an area in which the frequencies of the distance part 3 and the near part 5 are smoothly changed, and is formed on the outer periphery of the distance part 3 with a predetermined width. If the width of the transition portion 4 is smaller than 0.5 mm, the frequency changes rapidly, and there is a problem that the image is likely to be doubled. If the width is larger than 2 mm, the regions of the distance portion 3 and the near portion 5 cannot be secured in the pupil. There is a problem. Therefore, the width of the transition portion 4 is preferably formed with a width of 0.5 to 2 mm.

近用部5は、近方を見る際に用いられる領域であり、移行部4の外周に所定の幅を有して形成されている。近用部5の幅が0.3mmよりも小さいと明瞭な近用の像が得られないという問題があり、2mmよりも大きいと近用補助部6がレンズ光学部2からはみ出てしまうという問題がある。したがって、近用部5の幅は0.3〜2mmの幅で形成されることが好ましい。   The near portion 5 is an area used when looking at the near side, and is formed on the outer periphery of the transition portion 4 with a predetermined width. If the width of the near portion 5 is smaller than 0.3 mm, there is a problem that a clear near-use image cannot be obtained. If the width is larger than 2 mm, the near auxiliary portion 6 protrudes from the lens optical portion 2. There is. Therefore, the near portion 5 is preferably formed with a width of 0.3 to 2 mm.

近用部5においては、近方を見る場合に明瞭な視界を得ることができる所望の屈折度数(近用度数)が付されている。この近用度数は、通常のコンタクトレンズにおける近用度数と同様にして処方される度数である。   In the near portion 5, a desired refractive power (near power) is given so that a clear field of view can be obtained when viewing near. This near power is a power prescribed in the same manner as a near power in a normal contact lens.

近用補助部6は、人眼そのものの度数の影響を緩和して、近用の像をより明瞭にするための領域であり、近用部5の外周(レンズ光学部2の最外周)に所定の幅を有して形成されている。近用補助部6の幅が0.5mmよりも小さいと効果的な近用補助部6とならないという問題があり、2mmよりも大きいとレンズ光学部2内に納めることができないという問題がある。したがって、近用補助部6の幅は0.5mm〜2mmの幅で形成されることが好ましい。   The near vision assisting part 6 is an area for reducing the influence of the power of the human eye itself and making the near vision image clearer, and on the outer circumference of the near vision part 5 (the outermost circumference of the lens optical part 2). It is formed with a predetermined width. If the width of the near assisting part 6 is smaller than 0.5 mm, there is a problem that the effective near assisting part 6 cannot be obtained, and if it is larger than 2 mm, there is a problem that it cannot be accommodated in the lens optical part 2. Therefore, it is preferable that the near auxiliary portion 6 is formed with a width of 0.5 mm to 2 mm.

近用補助部6における度数は、近用度数のピーク値から光学部外周にかけて0.25〜5.00Dの間で減少するように構成されることが好ましい。近用補助部6における度数の減少量を0.25〜5.00Dとすることにより、近用の像をより明瞭にする効果を有する。   It is preferable that the power in the near assisting unit 6 is configured to decrease between 0.25 and 5.00 D from the peak value of the near power to the outer periphery of the optical unit. By setting the reduction amount of the frequency in the near vision auxiliary unit 6 to 0.25 to 5.00 D, there is an effect of making the near vision image clearer.

図3に示すように、累進多焦点コンタクトレンズ1のレンズ光学部2において、移行部4、近用部5、及び近用補助部6を合わせた領域が凸形を示すように構成されている。すなわち、本実施形態例では、従来の累進多焦点コンタクトレンズ10に比較し、近用部5で加えられた度数を減じる領域(近用補助部6)が近用部5の外周に形成される。本発明の特徴は、より効果的な近用領域を設けるために、近用部5の外周に近用度数を減じる領域を設けたことである。なお、近用部5と近用補助部6とを合わせて近用部と表記しても構わない。   As shown in FIG. 3, in the lens optical unit 2 of the progressive multifocal contact lens 1, the combined region of the transition unit 4, the near-use unit 5, and the near-use auxiliary unit 6 is configured to have a convex shape. . That is, in the present embodiment, compared to the conventional progressive multifocal contact lens 10, an area where the power applied by the near portion 5 is reduced (near auxiliary portion 6) is formed on the outer periphery of the near portion 5. . A feature of the present invention is that an area for reducing the near vision frequency is provided on the outer periphery of the near vision portion 5 in order to provide a more effective near vision area. Note that the near portion 5 and the near auxiliary portion 6 may be collectively referred to as a near portion.

累進多焦点コンタクトレンズ1では、近用部5及び近用補助部6を介して入射した光も網膜上に焦点を形成する。つまり、近用度数を減じる近用補助部6を近用部5の外側に設けたことにより、人眼の光学部周辺領域が人眼の光学部中心領域に比べて度数が大きいことに起因した人眼そのものの度数の影響が緩和され、近用における球面収差の変化量が低減し、人眼の網膜に近用の焦点が形成される。こうして、近用の像の明瞭さが向上する。   In the progressive multifocal contact lens 1, light incident through the near portion 5 and the near auxiliary portion 6 also forms a focal point on the retina. In other words, by providing the near vision assisting part 6 for reducing the near vision power outside the near vision part 5, the human eye optical part peripheral area is larger than the human eye optical part central area. The influence of the power of the human eye itself is alleviated, the amount of change in spherical aberration in near vision is reduced, and a near focus is formed in the retina of the human eye. Thus, the clarity of near-use images is improved.

近用の場合、光線入射高が2.5〜3.5mmの範囲における球面収差の最大値と最小値の差(球面収差の変化量)が0.5mm以内に収まるように、近用部5及び近用補助部6の度数が設計されることが好ましい。これにより、レンズ光学部2と人眼を合わせた状態で近用の焦点について網膜面上における球面収差の変化量が低減され、近用の像が明瞭となる。   In the case of near-use, the near-use part 5 is set so that the difference between the maximum value and the minimum value of spherical aberration (the amount of change in spherical aberration) is within 0.5 mm when the incident height is in the range of 2.5 to 3.5 mm. It is preferable that the power of the near auxiliary unit 6 is designed. As a result, the amount of change in spherical aberration on the retinal surface with respect to the near focus is reduced in a state where the lens optical unit 2 and the human eye are aligned, and the near image becomes clear.

近用補助部6においては、近用部5における近用度数が連続的に減少する第1領域6aと、第1領域6aにおいて減少された度数から再び度数を増加させる第2領域6bとが構成されている。図13Bからわかるように、実際の人眼とナバロの模型眼とを比べると、光線入射高が高い位置における球面収差の変化が小さい例がある。つまり、近用部5において加わった度数を減じすぎると、レンズ光学部2の最外周の領域(近用補助部6)を介して入射した光線は網膜上に焦点として形成されず、視界が不明瞭になるおそれがある。そこで、本実施形態例では、第1領域6aで減少した度数をレンズ光学部2の最外周の領域(第2領域6b)において再度増加している。   The near assisting unit 6 includes a first area 6a in which the near power in the near area 5 continuously decreases, and a second area 6b in which the power is increased again from the frequency decreased in the first area 6a. Has been. As can be seen from FIG. 13B, when the actual human eye and the Navarro model eye are compared, there is an example in which the change in spherical aberration at a position where the light incident height is high is small. That is, if the power applied in the near portion 5 is reduced too much, the light beam incident through the outermost peripheral region (near auxiliary portion 6) of the lens optical portion 2 is not formed as a focal point on the retina, and the field of view is not good. May become clear. Therefore, in the present embodiment, the frequency decreased in the first region 6a is increased again in the outermost peripheral region (second region 6b) of the lens optical unit 2.

なお、第1領域6aにおける度数の減少量や第2領域6bにおける度数の増加量は、種々の変更が可能である。また、近用補助部6は、第1領域6aで減じられた度数を再度増加させる第2領域6bを設けたが、近用部5で加えられた度数を減じる領域が構成されればよく、近用補助部6は第1領域6aのみであってもよい。すなわち、移行部4、近用部5、及び近用補助部6において、度数がプラス側に凸形状となるような度数分布を有するように構成することにより、近用の像の鮮明さが向上する。   Note that various changes can be made to the amount of decrease in the frequency in the first region 6a and the amount of increase in the frequency in the second region 6b. In addition, the near assisting unit 6 is provided with the second region 6b that increases again the frequency reduced in the first region 6a, but it is only necessary to configure a region that decreases the frequency added in the near region 5, The near auxiliary part 6 may be only the first region 6a. That is, the transition portion 4, the near portion 5, and the near portion assist portion 6 are configured to have a frequency distribution in which the power has a convex shape on the plus side, thereby improving the clarity of the near-use image. To do.

このように、本実施形態例の累進多焦点コンタクトレンズ1では、人眼の度数を考慮した度数設計がなされている。このため、遠用及び近用の二焦点が網膜上に形成され、遠方及び近方を明瞭に見ることが可能となる。
以下に、本実施形態例の累進多焦点コンタクトレンズ1の具体的な例を示す。
Thus, in the progressive multifocal contact lens 1 according to the present embodiment, the power design is made in consideration of the power of the human eye. For this reason, two focal points for distance and near are formed on the retina, and it becomes possible to clearly see the distance and the near.
Below, the specific example of the progressive multifocal contact lens 1 of this embodiment example is shown.

[実施例1]
実施例1に係る累進多焦点コンタクトレンズについて説明する。実施例1に係る累進多焦点コンタクトレンズの概略構成は、図2と同様であるから図示を省略する。実施例1では、図2の遠用部3の直径が約2mm、移行部4の幅が約0.8mm、近用部5の幅が約0.6mm、近用補助部6の幅が約1.6mmに設計されている。また、実施例1の累進多焦点レンズの性能を決定するパラメータは以下の通りである。
ベースカーブ(BC):7.75(mm)
パワー(遠用度数):0.00(D)
加入度数(Add):+2.00(D)
中心肉厚(CT):0.15(mm)
屈折率(N):1.44
[Example 1]
The progressive multifocal contact lens according to Example 1 will be described. The schematic configuration of the progressive multifocal contact lens according to Example 1 is the same as that shown in FIG. In Example 1, the diameter of the distance portion 3 in FIG. 2 is about 2 mm, the width of the transition portion 4 is about 0.8 mm, the width of the near portion 5 is about 0.6 mm, and the width of the near auxiliary portion 6 is about Designed to 1.6 mm. The parameters that determine the performance of the progressive multifocal lens of Example 1 are as follows.
Base curve (BC): 7.75 (mm)
Power (distance power): 0.00 (D)
Addition power (Add): +2.00 (D)
Center thickness (CT): 0.15 (mm)
Refractive index (N): 1.44

図4に、実施例1の累進多焦点コンタクトレンズにおける度数分布(図2のA−A軸上に対応)を示す。実施例1では、縦軸を度数(D)として示し、横軸に光学部中心からの距離(mm)を示す。なお、実施例1は遠用度数が0.00Dであるため、縦軸を加入度数と読みかえても良い。   FIG. 4 shows a frequency distribution (corresponding to the AA axis in FIG. 2) in the progressive multifocal contact lens of Example 1. In Example 1, the vertical axis indicates the frequency (D), and the horizontal axis indicates the distance (mm) from the center of the optical unit. In Example 1, the distance power is 0.00D, so the vertical axis may be read as addition power.

遠用部3における度数分布は、遠用度数0.00Dのほぼ一定の値とされ、近用部5における度数分布は、ピーク値が約+2.00D(加入度数に相当)となるように構成される。移行部4における度数分布は、遠用度数から加入度数に至るまで滑らかに増加する。   The frequency distribution in the distance portion 3 is a substantially constant value of the distance power 0.00D, and the frequency distribution in the near portion 5 is configured to have a peak value of about +2.00 D (corresponding to the addition power). Is done. The frequency distribution in the transition unit 4 increases smoothly from the distance power to the addition power.

第1領域6aにおける度数分布は、遠用度数0.00Dを下回るまで減少し、第2領域6bにおいて遠用度数と同じ度数(つまり、0.00D)となるまで度数を連続的に増加させる構成としている。このような構成とすることにより、実施例1における累進多焦点コンタクトレンズの度数分布は、移行部4、近用部5、及び近用補助部6を合わせた領域において、上(度数プラス方向)に凸形状を有す。   The frequency distribution in the first region 6a decreases until the distance power falls below 0.00D, and the power is continuously increased until the frequency in the second region 6b becomes the same as the distance power (that is, 0.00D). It is said. With such a configuration, the power distribution of the progressive multifocal contact lens in Example 1 is higher (frequency plus direction) in the region where the transition portion 4, the near portion 5 and the near portion auxiliary portion 6 are combined. Has a convex shape.

実施例1の累進多焦点コンタクトレンズを図14と同様にナバロの模型眼に装用させ、模型眼の網膜上の縦の球面収差を調べた。なお、模型眼として使用したナバロの模型眼のパラメータを表1に示す。   The progressive multifocal contact lens of Example 1 was worn on a Navarro model eye in the same manner as in FIG. 14, and the longitudinal spherical aberration on the retina of the model eye was examined. Table 1 shows the parameters of Navarro model eyes used as model eyes.

図5に、実施例1の累進多焦点コンタクトレンズをナバロの模型眼に装用させた場合の模型眼の網膜上における縦の球面収差を示す。図5の縦軸は、図14の一点鎖線Sで示す模型眼の光学部中心に対する光線入射高(mm)であり、横軸は球面収差(mm)である。   FIG. 5 shows vertical spherical aberration on the retina of the model eye when the progressive multifocal contact lens of Example 1 is worn on the Navarro model eye. The vertical axis in FIG. 5 is the light incident height (mm) with respect to the center of the optical part of the model eye indicated by the one-dot chain line S in FIG. 14, and the horizontal axis is the spherical aberration (mm).

図5の破線で囲む領域aに示すように、遠用部3に対応する光線入射高0〜1mmの間においては球面収差の変化量が低減され、遠用における焦点が形成される。また、破線で囲む領域bに示すように、近用部5と近用補助部6との間の領域に対応する光線入射高2〜3mmの間において特に球面収差の変化量が低減され、近用における焦点が形成される。これにより、実施例1の累進多焦点コンタクトレンズを装用した場合には、遠用のみならず近用においても明瞭な像が得られる。   As shown in a region a surrounded by a broken line in FIG. 5, the amount of change in spherical aberration is reduced between the incident light heights of 0 to 1 mm corresponding to the distance portion 3, and a focal point for distance is formed. Further, as shown in a region b surrounded by a broken line, the amount of change in spherical aberration is particularly reduced between the incident light heights of 2 to 3 mm corresponding to the region between the near portion 5 and the near assisting portion 6, A focal point is formed. Thus, when the progressive multifocal contact lens of Example 1 is worn, a clear image can be obtained not only for distance use but also for near use.

なお、実施例1では、近用補助部6において、近用部5から度数が減少するように構成された第1領域6aの外周に、再度度数が増加する第2領域6bを構成する例とした。   In the first embodiment, in the near assisting unit 6, the second region 6b whose frequency increases again is formed on the outer periphery of the first region 6a configured to decrease the frequency from the near unit 5. did.

[実施例2]
実施例2に係る累進多焦点コンタクトレンズについて説明する。実施例2に係る累進多焦点コンタクトレンズの概略構成は、図2と同様であるから図示を省略する。実施例2では、図2の遠用部3の直径が約2.4mm、移行部4の幅が約0.6mm、近用部5の幅が約0.6mm、近用補助部6の幅が約1.6mmに設計されている。また、実施例2の累進多焦点コンタクトレンズの性能を決定するパラメータは以下の通りである。
ベースカーブ(BC):7.75(mm)
パワー(遠用度数):0.00(D)
加入度数(Add):+1.00(D)
中心肉厚(CT):0.15(mm)
屈折率(N):1.44
[Example 2]
A progressive multifocal contact lens according to Example 2 will be described. The schematic configuration of the progressive multifocal contact lens according to Example 2 is the same as that shown in FIG. In Example 2, the diameter of the distance portion 3 of FIG. 2 is about 2.4 mm, the width of the transition portion 4 is about 0.6 mm, the width of the near portion 5 is about 0.6 mm, and the width of the near portion auxiliary portion 6. Is designed to be about 1.6 mm. Parameters for determining the performance of the progressive multifocal contact lens of Example 2 are as follows.
Base curve (BC): 7.75 (mm)
Power (distance power): 0.00 (D)
Addition power (Add): +1.00 (D)
Center thickness (CT): 0.15 (mm)
Refractive index (N): 1.44

図6に、実施例2の累進多焦点コンタクトレンズにおける度数分布(図2のA−A軸上に対応)を示す。縦軸および横軸は上述の実施例1と同様である。なお、実施例2は遠用度数が0.00Dであるため、縦軸を加入度数と読みかえても良い。   FIG. 6 shows a frequency distribution (corresponding to the AA axis in FIG. 2) in the progressive multifocal contact lens of Example 2. The vertical axis and the horizontal axis are the same as those in the first embodiment. In Example 2, the distance power is 0.00D, so the vertical axis may be read as addition power.

遠用部3における度数分布は、遠用度数が0.00Dとほぼ一定の値とされ、近用部5における度数分布は、ピーク値が約+1.00D(加入度数に相当)となるように構成される。移行部4の度数分布は、遠用度数から近用度数に至るまで滑らかに増加する。   The frequency distribution in the distance portion 3 is a substantially constant value with the distance frequency being 0.00D, and the frequency distribution in the near portion 5 is such that the peak value is about +1.00 D (corresponding to the addition power). Composed. The frequency distribution of the transition unit 4 increases smoothly from the distance power to the near power.

近用補助部6の度数分布は、近用部5の近用度数から滑らかに減少し、最終的に遠用度数よりも低い度数まで減少する。実施例2は、実施例1に比較して加入度数が小さく、近用補助部6において、再度度数を増加させる領域(実施例1の第2領域6bに相当)が構成されない例である。このような構成とすることにより、実施例2における累進多焦点コンタクトレンズの度数分布は、移行部4、近用部5、及び近用補助部6を合わせた領域において、上に凸形状を有す。   The frequency distribution of the near assisting unit 6 smoothly decreases from the near power of the near unit 5 and finally decreases to a frequency lower than the far power. The second embodiment is an example in which the addition power is smaller than that of the first embodiment, and the area for increasing the power again (corresponding to the second region 6b of the first embodiment) is not configured in the near-by auxiliary unit 6. With this configuration, the power distribution of the progressive multifocal contact lens in Example 2 has an upwardly convex shape in the region where the transition portion 4, the near portion 5 and the near portion auxiliary portion 6 are combined. The

実施例2の累進多焦点コンタクトレンズをナバロの模型眼に装用させ、模型眼の網膜上における縦の球面収差を図7のとおり示す。縦軸および横軸は上述の図5と同様である。図7の破線で囲む領域aに示すように、遠用部3に対応する光線入射高0〜1mmの間において球面収差の変化量が低減され、遠用における焦点が形成される。また、破線で囲む領域bに示すように、近用部5と近用補助部6との間の領域に対応する光線入射高2.5〜3.5mmの間において球面収差の変化量が低減され、近用部5の焦点が形成される。   The progressive multifocal contact lens of Example 2 is worn on a Navarro model eye, and the vertical spherical aberration on the retina of the model eye is shown in FIG. The vertical axis and the horizontal axis are the same as those in FIG. As shown in a region a surrounded by a broken line in FIG. 7, the amount of change in spherical aberration is reduced between the incident light heights of 0 to 1 mm corresponding to the distance portion 3 and a focal point for distance is formed. Moreover, as shown in the area | region b enclosed with a broken line, the variation | change_quantity of spherical aberration reduces between the light incident heights of 2.5-3.5 mm corresponding to the area | region between the near part 5 and the near auxiliary | assistant part 6. Then, the focal point of the near portion 5 is formed.

[実施例3]
実施例3に係る累進多焦点コンタクトレンズについて説明する。実施例3に係る累進多焦点コンタクトレンズの概略構成は、図2と同様であるから図示を省略する。実施例3では、図2の遠用部3の直径が約2.4mm、移行部4の幅が約0.7mm、近用部5の幅が約0.6mm、近用補助部6の幅が約1.5mmに設計されている。また、実施例3の累進多焦点コンタクトレンズの性能を決定するパラメータは以下の通りである。
ベースカーブ(BC):8.00(mm)
パワー(遠用度数):−3.00(D)
加入度数(Add):+1.50(D)
中心肉厚(CT):0.15(mm)
屈折率(N):1.44
[Example 3]
A progressive multifocal contact lens according to Example 3 will be described. The schematic configuration of the progressive multifocal contact lens according to Example 3 is the same as that shown in FIG. In Example 3, the diameter of the distance portion 3 of FIG. 2 is about 2.4 mm, the width of the transition portion 4 is about 0.7 mm, the width of the near portion 5 is about 0.6 mm, and the width of the near portion auxiliary portion 6. Is designed to be about 1.5 mm. Parameters for determining the performance of the progressive multifocal contact lens of Example 3 are as follows.
Base curve (BC): 8.00 (mm)
Power (distance for distance use): -3.00 (D)
Addition power (Add): +1.50 (D)
Center thickness (CT): 0.15 (mm)
Refractive index (N): 1.44

図8に、実施例3の累進多焦点コンタクトレンズにおける度数分布(図2のA−A軸上に対応)を示す。縦軸および横軸は上述の実施例1と同様である。遠用部3における度数分布は、遠用度数が−3.00Dとほぼ一定の値とされ、近用部5における度数分布は、ピーク値が−1.50D(加入度数+1.50Dに相当)となるように構成される。移行部4は、遠用度数から近用度数に至るまで連続的に度数が増加する。   FIG. 8 shows a frequency distribution (corresponding to the AA axis in FIG. 2) in the progressive multifocal contact lens of Example 3. The vertical axis and the horizontal axis are the same as those in the first embodiment. The frequency distribution in the distance portion 3 is a substantially constant value with the distance frequency being -3.00 D, and the frequency distribution in the near portion 5 has a peak value of -1.50 D (corresponding to addition power +1.50 D). It is comprised so that. The transition unit 4 continuously increases in power from the distance power to the near power.

近用補助部6の度数分布は、近用部5における近用度数(−1.50D)から滑らかに−2.50Dまで減少する。このような構成とすることにより、実施例3における累進多焦点コンタクトレンズの度数分布は、移行部4、近用部5、及び近用補助部6を合わせた領域において、上(度数プラス側)に凸形状を有す。なお、過去の研究では、人眼の球面収差はナバロの模型眼よりも小さいことが知られている。このため、実施例3では、人眼の球面収差を考慮し、実施例1及び実施例2よりも、近用補助部6で度数を減じる量を小さくしている。この場合においても、近用補助部6の加入度数が小さいため、近用における網膜上の球面収差の変化量が小さくなることが予想される。   The frequency distribution of the near assisting unit 6 smoothly decreases from the near power (−1.50D) in the near unit 5 to −2.50D. With such a configuration, the power distribution of the progressive multifocal contact lens in Example 3 is higher (frequency plus side) in the region including the transition portion 4, the near portion 5, and the near auxiliary portion 6. Has a convex shape. In past research, it is known that the spherical aberration of the human eye is smaller than that of Navarro's model eye. For this reason, in Example 3, in consideration of the spherical aberration of the human eye, the amount of power reduction by the near assisting unit 6 is made smaller than in Examples 1 and 2. Even in this case, since the addition power of the near auxiliary unit 6 is small, it is expected that the amount of change in spherical aberration on the retina in the near use is small.

[実施例4]
実施例4に係る累進多焦点コンタクトレンズについて説明する。実施例4に係る累進多焦点コンタクトレンズの概略構成は、図2と同様であるから図示を省略する。実施例4では、図2の遠用部3の直径が約2.2mm、移行部4の幅が約1.2mm、近用部5の幅が約1mm、近用補助部6の幅が約0.7mmに設計されている。また、実施例4の累進多焦点コンタクトレンズの性能を決定するパラメータは以下の通りである。
ベースカーブ(BC):7.75(mm)
パワー(遠用度数):0.00(D)
加入度数(Add):+2.00(D)
中心肉厚(CT):0.15(mm)
屈折率(N):1.44
[Example 4]
A progressive multifocal contact lens according to Example 4 will be described. The schematic configuration of the progressive multifocal contact lens according to Example 4 is the same as that shown in FIG. In Example 4, the diameter of the distance portion 3 in FIG. 2 is about 2.2 mm, the width of the transition portion 4 is about 1.2 mm, the width of the near portion 5 is about 1 mm, and the width of the near auxiliary portion 6 is about Designed to 0.7 mm. Parameters for determining the performance of the progressive multifocal contact lens of Example 4 are as follows.
Base curve (BC): 7.75 (mm)
Power (distance power): 0.00 (D)
Addition power (Add): +2.00 (D)
Center thickness (CT): 0.15 (mm)
Refractive index (N): 1.44

図9に、実施例4の累進多焦点コンタクトレンズにおける度数分布(図2のA−A軸上に対応)を示す。縦軸および横軸は上述の実施例1と同様である。遠用部3における度数分布は、中央部において正側に凸形状とされ、近用部5における度数分布は、ピーク値が+2.00D(加入度数+2.00Dに相当)となるように構成される。移行部4は、遠用度数から近用度数に至るまで連続的に度数が増加する。遠用部3の度数分布が中央部において正側に凸形状を有するように形成されているため、遠用における網膜上の球面収差の変化量を小さくすることができ、遠用の像をより明瞭に見ることができる。   FIG. 9 shows a frequency distribution (corresponding to the AA axis in FIG. 2) in the progressive multifocal contact lens of Example 4. The vertical axis and the horizontal axis are the same as those in the first embodiment. The frequency distribution in the distance portion 3 is convex on the positive side in the central portion, and the frequency distribution in the near portion 5 is configured such that the peak value is +2.00 D (corresponding to addition power +2.00 D). The The transition unit 4 continuously increases in power from the distance power to the near power. Since the frequency distribution of the distance portion 3 is formed to have a convex shape on the positive side in the central portion, the amount of change in spherical aberration on the retina in the distance can be reduced, and the distance image can be more It can be seen clearly.

近用補助部6の度数分布は、近用部5における近用度数(+2.00D)から滑らかに減少するが、最終的に遠用度数よりも高い度数で留まる。実施例4は、実施例1〜3と比べ近用補助部6における加入度数の減少量は小さく、近用補助部6において、再度度数を増加させる領域(実施例1の第2領域6bに相当)が構成されていない例である。このような構成とすることにより、実施例4における累進多焦点コンタクトレンズの度数分布は、移行部4、近用部5、及び近用補助部6を合わせた領域において、上(度数プラス側)に凸形状を有す。また、近用補助部6における加入度数が小さいため、近用における網膜上の球面収差の変化量が小さくなることが予想される。   The frequency distribution of the near assisting unit 6 smoothly decreases from the near power (+2.00 D) in the near unit 5, but finally remains at a higher frequency than the distance power. In the fourth embodiment, the amount of decrease in the addition power in the near assisting unit 6 is smaller than in the first to third embodiments, and in the near assisting unit 6, the frequency is increased again (corresponding to the second region 6b in the first embodiment). ) Is not configured. With such a configuration, the power distribution of the progressive multifocal contact lens in Example 4 is higher (frequency plus side) in the region where the transition portion 4, the near portion 5 and the near portion auxiliary portion 6 are combined. Has a convex shape. Moreover, since the addition power in the near vision auxiliary unit 6 is small, it is expected that the amount of change in spherical aberration on the retina in near vision will be small.

[実施例5]
実施例5に係る累進多焦点コンタクトレンズについて説明する。実施例5に係る累進多焦点コンタクトレンズの概略構成は、図2と同様であるから図示を省略する。実施例5では、図2の遠用部3の直径が約1.6mm、移行部4の幅が約1.1mm、近用部5の幅が約1mm、近用補助部6の幅が約1.1mmに設計されている。また、実施例5の累進多焦点コンタクトレンズの性能を決定するパラメータは以下の通りである。
ベースカーブ(BC):7.75(mm)
パワー(遠用度数):0.00(D)
加入度数(Add):+2.00(D)
中心肉厚(CT):0.15(mm)
屈折率(N):1.44
[Example 5]
A progressive multifocal contact lens according to Example 5 will be described. The schematic configuration of the progressive multifocal contact lens according to Example 5 is the same as that shown in FIG. In Example 5, the diameter of the distance portion 3 in FIG. 2 is about 1.6 mm, the width of the transition portion 4 is about 1.1 mm, the width of the near portion 5 is about 1 mm, and the width of the near auxiliary portion 6 is about Designed to 1.1 mm. Parameters for determining the performance of the progressive multifocal contact lens of Example 5 are as follows.
Base curve (BC): 7.75 (mm)
Power (distance power): 0.00 (D)
Addition power (Add): +2.00 (D)
Center thickness (CT): 0.15 (mm)
Refractive index (N): 1.44

図10に、実施例5の累進多焦点コンタクトレンズにおける度数分布(図2のA−A軸上に対応)を示す。縦軸および横軸は上述の実施例1と同様である。遠用部3における度数分布は、中央部で0Dとされ、近用部5における度数分布は、ピーク値が+2.00D(加入度数+2.00Dに相当)となるように構成される。移行部4は、遠用度数から近用度数に至るまで連続的に度数が増加する。   FIG. 10 shows a frequency distribution (corresponding to the AA axis in FIG. 2) in the progressive multifocal contact lens of Example 5. The vertical axis and the horizontal axis are the same as those in the first embodiment. The frequency distribution in the distance portion 3 is set to 0D in the center portion, and the frequency distribution in the near portion 5 is configured to have a peak value of +2.00 D (corresponding to addition power +2.00 D). The transition unit 4 continuously increases in power from the distance power to the near power.

近用補助部6の度数分布は、近用部5における近用度数(+2.00D)から連続的に減少するが、最終的に遠用度数よりも高い度数で留まる。実施例5は、近用補助部6において、再度度数を増加させる領域(実施例1の第2領域6bに相当)が構成されていない例である。実施例5における近用補助部6の減少量は、実施例1〜3に比べ小さいが実施例4と比べ大きい。このような構成とすることにより、実施例5における累進多焦点コンタクトレンズの度数分布は、移行部4、近用部5、及び近用補助部6を合わせた領域において、上(度数プラス側)に凸形状を有する。この場合においても、近用補助部6の加入度数が小さいため、近用における網膜上の球面収差の変化量が小さくなることが予想される。   The frequency distribution of the near assisting unit 6 continuously decreases from the near power (+2.00 D) in the near unit 5, but finally remains at a frequency higher than the distance power. The fifth embodiment is an example in which a region for increasing the frequency again (corresponding to the second region 6b of the first embodiment) is not configured in the near assisting unit 6. The amount of decrease in the near-use auxiliary unit 6 in the fifth embodiment is smaller than those in the first to third embodiments but larger than that in the fourth embodiment. With such a configuration, the power distribution of the progressive multifocal contact lens in Example 5 is higher (frequency plus side) in the region including the transition portion 4, the near portion 5, and the near auxiliary portion 6. Has a convex shape. Even in this case, since the addition power of the near auxiliary unit 6 is small, it is expected that the amount of change in spherical aberration on the retina in the near use is small.

1・・・累進多焦点コンタクトレンズ、2・・・レンズ光学部、3・・・遠用部、4・・・移行部、5・・・近用部、6・・・近用補助部
DESCRIPTION OF SYMBOLS 1 ... Progressive multifocal contact lens, 2 ... Lens optical part, 3 ... Distance part, 4 ... Transition part, 5 ... Near part, 6 ... Near use auxiliary part

Claims (9)

度数の異なる領域が同心円状に配置されたレンズ光学部を有する累進多焦点コンタクトレンズにおいて、前記レンズ光学部は、
前記レンズ光学部中心に配置された、遠方を見るための遠用部と、
前記遠用部の外周に配置され、前記遠用部の度数から連続して増加する度数分布を有する移行部と、
前記移行部の外周に配置された、近方を見るための近用部と、
前記近用部の外周に配置され、前記近用部の度数から連続して減少する度数分布を有する近用補助部とを備え、
前記近用補助部は、近用の像を明瞭に得るために設けられている
ことを特徴とする累進多焦点コンタクトレンズ。
In a progressive multifocal contact lens having a lens optical unit in which regions having different frequencies are arranged concentrically, the lens optical unit includes:
A distance portion disposed at the center of the lens optical portion for viewing a distance;
A transition portion disposed on the outer periphery of the distance portion and having a frequency distribution that continuously increases from the frequency of the distance portion; and
A near portion for viewing the near, disposed on the outer periphery of the transition portion;
A near assisting part disposed on the outer periphery of the near part and having a frequency distribution that continuously decreases from the frequency of the near part,
A progressive multifocal contact lens, wherein the near assisting unit is provided to clearly obtain a near image.
遠用及び近用の二つの焦点について網膜面上における球面収差の変化量が低減されている
請求項1に記載の累進多焦点コンタクトレンズ。
The progressive multifocal contact lens according to claim 1, wherein the amount of change in spherical aberration on the retinal surface is reduced for two focal points for distance and near.
前記近用補助部は、前記近用部の外周に配置され、前記近用部から前記近用部の半径外方向に向かって度数を連続して減少させる第1領域を有すると共に、前記第1領域の外周に配置され、前記第1領域で減少した度数を再度増加させる第2領域とで構成されている
請求項1又は2に記載の累進多焦点コンタクトレンズ。
The near auxiliary part is disposed on the outer periphery of the near part, and has a first region for continuously decreasing the frequency from the near part toward the radially outward direction of the near part. The progressive multifocal contact lens according to claim 1, wherein the progressive multifocal contact lens is configured by a second region that is arranged on an outer periphery of the region and that increases again the power decreased in the first region.
前記遠用部は、直径0.5〜3mmの範囲で形成され、前記移行部は、幅0.5〜2.0mmの範囲で形成され、前記近用部は、幅0.3〜2.0mmの範囲で形成され、近用補助部は、幅0.5〜2.0mmの範囲で形成される
請求項1〜3のいずれかに記載の累進多焦点コンタクトレンズ。
The distance portion is formed with a diameter of 0.5-3 mm, the transition portion is formed with a width of 0.5-2.0 mm, and the near portion has a width of 0.3-2. The progressive multifocal contact lens according to any one of claims 1 to 3, wherein the near auxiliary portion is formed in a range of 0.5 to 2.0 mm in width.
前記遠用部は直径2mmで形成され、前記移行部は幅0.8mmで形成され、前記近用部は幅0.6mmで形成され、近用補助部は幅1.6mmで形成される
請求項1〜3のいずれかに記載の累進多焦点コンタクトレンズ。
The distance portion is formed with a diameter of 2 mm, the transition portion is formed with a width of 0.8 mm, the near portion is formed with a width of 0.6 mm, and the near auxiliary portion is formed with a width of 1.6 mm. Item 4. A progressive multifocal contact lens according to any one of Items 1 to 3.
前記網膜上における球面収差の変化量は、光線入射高が0〜1.5mmの範囲において0.3mm以下とされ、光線入射高が2.5〜3.5mmの範囲において0.5mm以下とされている
請求項1〜5のいずれかに記載の累進多焦点コンタクトレンズ。
The amount of change in spherical aberration on the retina is 0.3 mm or less when the light incident height is in the range of 0 to 1.5 mm, and 0.5 mm or less when the light incident height is in the range of 2.5 to 3.5 mm. The progressive multifocal contact lens according to any one of claims 1 to 5.
前記近用部と近用補助部の度数の戻りが、近用度数のピーク値から光学部外周にかけて、0.25〜5.00Dの間で減少させることにより、明瞭な近用の像を得られる
請求項1〜6のいずれかに記載の累進多焦点コンタクトレンズ。
A clear near-use image is obtained by reducing the power return of the near-use part and the near-use auxiliary part from 0.25 to 5.00 D from the peak value of the near-use power to the outer periphery of the optical part. A progressive multifocal contact lens according to any one of claims 1 to 6.
前記近用補助部で減少される度数の減少幅は、前記移行部で増加される度数の増加幅よりも小さい
請求項1〜7のいずれかに記載の累進多焦点コンタクトレンズ。
The progressive multifocal contact lens according to any one of claims 1 to 7, wherein a decrease width of the power decreased by the near assisting unit is smaller than an increase width of the power increased by the transition portion.
ハイドロゲルまたはシリコーンハイドロゲルをレンズ素材として用いたことを特徴とする請求項1〜8のいずれかに記載の累進多焦点コンタクトレンズ。   The progressive multifocal contact lens according to claim 1, wherein hydrogel or silicone hydrogel is used as a lens material.
JP2010240171A 2010-10-26 2010-10-26 Progressive multifocal contact lens Pending JP2012093522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240171A JP2012093522A (en) 2010-10-26 2010-10-26 Progressive multifocal contact lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240171A JP2012093522A (en) 2010-10-26 2010-10-26 Progressive multifocal contact lens

Publications (1)

Publication Number Publication Date
JP2012093522A true JP2012093522A (en) 2012-05-17

Family

ID=46386919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240171A Pending JP2012093522A (en) 2010-10-26 2010-10-26 Progressive multifocal contact lens

Country Status (1)

Country Link
JP (1) JP2012093522A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
JP2016051180A (en) * 2014-08-29 2016-04-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. Free-form lens design and method for preventing and/or slowing myopia progression
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
JP6188974B1 (en) * 2017-01-24 2017-08-30 Hoya株式会社 Ophthalmic lens, design method thereof, production method thereof, and ophthalmic lens set
JP2019082670A (en) * 2017-10-28 2019-05-30 鄭 克立ZHENG Keli Holographic spectacles
JP2020060707A (en) * 2018-10-11 2020-04-16 Hoya株式会社 Ophthalmic lens, design method therefor, manufacturing method therefor, and ophthalmic lens set
WO2020189299A1 (en) 2019-03-19 2020-09-24 株式会社トプコン Slit lamp microscope
CN114911069A (en) * 2021-02-10 2022-08-16 爱博诺德(北京)医疗科技股份有限公司 Modeling method of retina periphery defocusing model
WO2023016515A1 (en) * 2021-08-11 2023-02-16 江苏瑞尔光学有限公司 Multi-ring and multi-focal-length lens having wavy individual rings
WO2023162956A1 (en) * 2022-02-24 2023-08-31 Hoya株式会社 Ophthalmic lens, design method therefor, manufacturing method therefor, and ophthalmic lens set

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
JP2016051180A (en) * 2014-08-29 2016-04-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. Free-form lens design and method for preventing and/or slowing myopia progression
JP2018120040A (en) * 2017-01-24 2018-08-02 Hoya株式会社 Ophthalmic lens, ophthalmic lens design method, ophthalmic lens manufacturing method, and ophthalmic lens set
CN109791308A (en) * 2017-01-24 2019-05-21 Hoya株式会社 Eye-use lens, the design method of eye-use lens, the manufacturing method of eye-use lens and eye-use lens group
KR102646965B1 (en) * 2017-01-24 2024-03-12 호야 가부시키가이샤 Eye lens, design method thereof, manufacturing method thereof, and eye lens set
JP6188974B1 (en) * 2017-01-24 2017-08-30 Hoya株式会社 Ophthalmic lens, design method thereof, production method thereof, and ophthalmic lens set
CN109791308B (en) * 2017-01-24 2021-02-12 Hoya株式会社 Ophthalmic lens, method for designing ophthalmic lens, method for producing ophthalmic lens, and ophthalmic lens group
KR20190104309A (en) * 2017-01-24 2019-09-09 호야 가부시키가이샤 Ophthalmic lens, its design method, its manufacturing method, and eye lens set
WO2018138931A1 (en) * 2017-01-24 2018-08-02 Hoya株式会社 Ophthalmic lens, method of design therefor, method of manufacture therefor, and ophthalmic lens set
US11409132B2 (en) 2017-01-24 2022-08-09 Hoya Corporation Ophthalmic lens, method for designing the same, method for manufacturing the same, and ophthalmic lens set
JP2019082670A (en) * 2017-10-28 2019-05-30 鄭 克立ZHENG Keli Holographic spectacles
WO2020075312A1 (en) * 2018-10-11 2020-04-16 Hoya株式会社 Ophthalmic lens, design method for same, manufacturing method for same, and ophthalmic lens set
US20210318556A1 (en) * 2018-10-11 2021-10-14 Hoya Corporation Ophthalmic lens, design method for the same, manufacturing method for the same, and ophthalmic lens set
CN112703443A (en) * 2018-10-11 2021-04-23 Hoya株式会社 Ophthalmic lens, method for designing same, method for manufacturing same, and ophthalmic lens group
CN112703443B (en) * 2018-10-11 2023-10-17 Hoya株式会社 Ophthalmic lens, design method thereof, manufacturing method thereof, and ophthalmic lens set
JP2020060707A (en) * 2018-10-11 2020-04-16 Hoya株式会社 Ophthalmic lens, design method therefor, manufacturing method therefor, and ophthalmic lens set
WO2020189299A1 (en) 2019-03-19 2020-09-24 株式会社トプコン Slit lamp microscope
CN114911069A (en) * 2021-02-10 2022-08-16 爱博诺德(北京)医疗科技股份有限公司 Modeling method of retina periphery defocusing model
CN114911069B (en) * 2021-02-10 2024-04-02 爱博诺德(北京)医疗科技股份有限公司 Modeling method of retinal periphery defocus model
WO2023016515A1 (en) * 2021-08-11 2023-02-16 江苏瑞尔光学有限公司 Multi-ring and multi-focal-length lens having wavy individual rings
WO2023162956A1 (en) * 2022-02-24 2023-08-31 Hoya株式会社 Ophthalmic lens, design method therefor, manufacturing method therefor, and ophthalmic lens set

Similar Documents

Publication Publication Date Title
JP2012093522A (en) Progressive multifocal contact lens
KR102140425B1 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
RU2671544C2 (en) Construction of multifocal lens and method of prevention and/or slowing progression of myopia
RU2628669C2 (en) Lens design with optical force profile of arbitrary shape and method of preventing and/or slowing progression of myopia
JP4519205B2 (en) Concentric single viewpoint lens and its design method
US8911079B2 (en) Translating presbyopic contact lens
RU2570225C2 (en) Translating presbyopia contact lens pair
KR960040327A (en) Centrifugal ring lens for astigmatism presbyopia
US9158129B2 (en) Translating presbyopic contact lens
JP2013514833A (en) Finite echelette lens, system and method
JP2013515284A5 (en)
US9170434B2 (en) Translating presbyopic contact lens
CN219179722U (en) Lens element
JP6188974B1 (en) Ophthalmic lens, design method thereof, production method thereof, and ophthalmic lens set
JP6559866B1 (en) Ophthalmic lens, design method thereof, production method thereof, and ophthalmic lens set
US20230104969A1 (en) Lens element with improved visual performance
JP2017221659A (en) Monofocal intraocular lens
JP2023008787A (en) intraocular lens