JP2012092758A - Cylinder block cooling structure - Google Patents

Cylinder block cooling structure Download PDF

Info

Publication number
JP2012092758A
JP2012092758A JP2010241384A JP2010241384A JP2012092758A JP 2012092758 A JP2012092758 A JP 2012092758A JP 2010241384 A JP2010241384 A JP 2010241384A JP 2010241384 A JP2010241384 A JP 2010241384A JP 2012092758 A JP2012092758 A JP 2012092758A
Authority
JP
Japan
Prior art keywords
cylinder block
bore
cooling
cooling structure
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010241384A
Other languages
Japanese (ja)
Other versions
JP5569335B2 (en
Inventor
Motohiro Yuge
元宏 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010241384A priority Critical patent/JP5569335B2/en
Publication of JP2012092758A publication Critical patent/JP2012092758A/en
Application granted granted Critical
Publication of JP5569335B2 publication Critical patent/JP5569335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder block cooling structure that can properly cool a bore wall according to an engine warmup state.SOLUTION: The cylinder block cooling structure 1 includes a groove 11 formed between the bore 13 and a water jacket 14 out of a cylinder block 10A of an engine, and a high heat conduction material 12 provided in the groove 11. The high heat conduction material has a coefficient of linear expansion higher than that of a base material of the cylinder block 10A and is provided in a contactless state with a wall surface of the groove 11 so that the heat conduction material 12 contacts with the wall surface of the groove 11 when a temperature of a coolant circulating into the water jacket 14 is higher than a predetermined value α. Moreover, the high heat conduction material 12 has thermal conductivity higher than that of the base material of the cylinder block 10A.

Description

本発明はシリンダブロックの冷却構造に関し、特に高熱伝導材を備えるシリンダブロックの冷却構造に関する。   The present invention relates to a cooling structure for a cylinder block, and more particularly to a cooling structure for a cylinder block provided with a high thermal conductivity material.

エンジンのシリンダブロックなどに高熱伝導材を備える技術が知られている。特許文献1では、シリンダライナの外周とシリンダブロックのシリンダライナ挿入穴の内周との間に高熱伝導部材を配設した内燃機関が開示されている。   A technique for providing a high thermal conductivity material in an engine cylinder block or the like is known. Patent Document 1 discloses an internal combustion engine in which a high heat conduction member is disposed between an outer periphery of a cylinder liner and an inner periphery of a cylinder liner insertion hole of a cylinder block.

特開2010−71246号公報JP 2010-71246 A

ボア壁部からの伝熱を促進する高熱伝導材を備えることで、ボア壁部の冷却を促進できる。結果、ノッキングの発生を抑制できる。しかしながら、機関暖機中にはピストンのフリクションを低減する観点から、ボア壁部の温度上昇を促進できることが望ましい。   By providing a high thermal conductivity material that promotes heat transfer from the bore wall, cooling of the bore wall can be promoted. As a result, occurrence of knocking can be suppressed. However, it is desirable that the temperature rise of the bore wall can be promoted during engine warm-up from the viewpoint of reducing piston friction.

本発明は上記課題に鑑み、機関暖機状態に応じてボア壁部を適切に冷却できるシリンダブロックの冷却構造を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a cooling structure for a cylinder block that can appropriately cool a bore wall according to the engine warm-up state.

本発明はエンジンのシリンダブロックのうち、ボアと冷却媒体通路との間の部分に設けられた溝部と、前記溝部に設けられた高熱伝導材と、を備え、前記高熱伝導材が、前記シリンダブロックの母材よりも高い線膨張係数を有するとともに、前記冷却媒体通路を流通する冷却媒体の温度が所定値よりも高い場合に前記溝部の壁面に接触するように、前記溝部の壁面に対して非接触の状態で設けられているシリンダブロックの冷却構造である。   The present invention includes a groove portion provided in a portion between a bore and a cooling medium passage in a cylinder block of an engine, and a high heat conductive material provided in the groove portion, wherein the high heat conductive material is the cylinder block. And has a linear expansion coefficient higher than that of the base material, and when the temperature of the cooling medium flowing through the cooling medium passage is higher than a predetermined value, the non-grooved wall surface is not in contact with the groove wall surface. It is the cooling structure of the cylinder block provided in the state of contact.

また本発明は前記高熱伝導材が、前記シリンダブロックの母材よりも高い熱伝導率を有する構成であることが好ましい。   In the present invention, it is preferable that the high thermal conductivity material has a higher thermal conductivity than the base material of the cylinder block.

本発明によれば機関暖機状態に応じてボア壁部を適切に冷却できる。   According to the present invention, the bore wall can be appropriately cooled according to the engine warm-up state.

実施例1のシリンダブロックの概略構成図である。It is a schematic block diagram of the cylinder block of Example 1. FIG. 図1に示すA部の拡大図である。It is an enlarged view of the A section shown in FIG. 実施例1における伝熱の様子を示す図である。It is a figure which shows the mode of the heat transfer in Example 1. FIG. 実施例2のシリンダブロックの概略構成図である。It is a schematic block diagram of the cylinder block of Example 2. TiNiのNi含有率と形状回復温度Afとの関係を示す図である。It is a figure which shows the relationship between Ni content rate of TiNi, and shape recovery temperature Af. 誘導部の説明図である。It is explanatory drawing of a guidance | induction part. 実施例2における伝熱の様子を示す図である。It is a figure which shows the mode of the heat transfer in Example 2. FIG. 実施例2における冷却水の流通の様子を示す図である。It is a figure which shows the mode of the distribution | circulation of the cooling water in Example 2. FIG.

図面を用いて、本発明の実施例について説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1はシリンダブロック10Aの概略構成図である。図2は図1に示すA部の拡大図である。シリンダブロック10Aは、シリンダブロックの冷却構造(以下、冷却構造と称す)1Aを備えている。冷却構造1Aは、溝部11と高熱伝導材12とを備えている。シリンダブロック10Aには、ボア13やウォータジャケット(以下、W/Jと称す)14が形成されている。シリンダブロック10Aは図示しないエンジンに設けられる。シリンダブロック10Aはデッキ面にW/J14が開口したオープンデッキタイプのシリンダブロックになっている。   FIG. 1 is a schematic configuration diagram of a cylinder block 10A. FIG. 2 is an enlarged view of a portion A shown in FIG. The cylinder block 10A includes a cylinder block cooling structure (hereinafter referred to as a cooling structure) 1A. The cooling structure 1 </ b> A includes a groove 11 and a high thermal conductive material 12. A bore 13 and a water jacket (hereinafter referred to as W / J) 14 are formed in the cylinder block 10A. The cylinder block 10A is provided in an engine (not shown). The cylinder block 10A is an open deck type cylinder block in which W / J 14 is opened on the deck surface.

溝部11はシリンダブロック10Aのうち、ボア13と冷却媒体通路であるW/J14との間の部分に設けられている。溝部11はシリンダブロック10Aのデッキ面に開口するとともに、ボア13の延伸方向においてW/J14に対応させて設けられている。このため溝部11とW/J14とは深さが同等になっている。   The groove 11 is provided in a portion of the cylinder block 10A between the bore 13 and the W / J 14 that is the cooling medium passage. The groove 11 opens on the deck surface of the cylinder block 10 </ b> A and is provided corresponding to W / J 14 in the extending direction of the bore 13. For this reason, the groove part 11 and W / J14 have the same depth.

高熱伝導材12は溝部11に設けられている。高熱伝導材12は板状の形状を有し、溝部11の開口部から底部にかけて設けられている。高熱伝導材12はシリンダブロック10Aの母材よりも高い線膨張係数を有するとともに、W/J14を流通する冷却媒体である冷却水の温度(冷却水温)が所定値αよりも高い場合に溝部11の壁面(具体的には、ボア側の壁面およびW/J14側の壁面)に接触するように、溝部11の壁面に対して非接触の状態で設けられている。   The high thermal conductive material 12 is provided in the groove 11. The high thermal conductive material 12 has a plate shape and is provided from the opening to the bottom of the groove 11. The high thermal conductive material 12 has a higher linear expansion coefficient than the base material of the cylinder block 10A, and the groove portion 11 when the temperature of cooling water (cooling water temperature) that is a cooling medium flowing through the W / J 14 is higher than a predetermined value α. Are provided in a non-contact state with respect to the wall surface of the groove 11 so as to be in contact with the wall surface (specifically, the wall surface on the bore side and the wall surface on the W / J 14 side).

したがって、高熱伝導材12は冷却水温が所定値α以下である場合に、溝部11の壁面との間に隙間が形成されるように設けられている。隙間は例えば数μmから数十μm程度の大きさの僅かな隙間である。所定値αには、例えば機関暖機完了時の冷却水温を適用できる。高熱伝導材12はボア側の壁面およびW/J14側の壁面のうち、いずれか一方の壁面と非接触の状態で設けられてもよい。   Therefore, the high thermal conductive material 12 is provided so that a gap is formed between the groove 11 and the wall surface of the groove 11 when the cooling water temperature is equal to or lower than the predetermined value α. The gap is a slight gap having a size of about several μm to several tens of μm, for example. For example, the cooling water temperature at the completion of engine warm-up can be applied to the predetermined value α. The high heat conductive material 12 may be provided in a non-contact state with any one of the wall surface on the bore side and the wall surface on the W / J 14 side.

高熱伝導材12はシリンダブロック10Aの母材よりも高い熱伝導率を有している。シリンダブロック10Aの母材は例えばアルミダイキャストであり、高熱伝導材12の材質は例えば亜鉛である。高熱伝導材12の材質は、例えばシリンダブロック10Aの母材をアルミダイキャストとする場合に、アルミダイキャストよりも線膨張係数が大きく、且つ熱伝導率が高いアルミ合金であってもよい。この点、鋳造で用いられるアルミダイキャストはSiなどの添加物が多い。このため、添加物が少ないアルミ合金はアルミダイキャストと比較して例えば2倍程度、熱伝導率が高くなる。   The high thermal conductive material 12 has a higher thermal conductivity than the base material of the cylinder block 10A. The base material of the cylinder block 10A is, for example, aluminum die cast, and the material of the high thermal conductive material 12 is, for example, zinc. For example, when the base material of the cylinder block 10A is aluminum die cast, the material of the high heat conductive material 12 may be an aluminum alloy having a larger linear expansion coefficient and higher thermal conductivity than aluminum die cast. In this regard, aluminum die casts used in casting have many additives such as Si. For this reason, an aluminum alloy with few additives has a thermal conductivity that is, for example, about twice that of aluminum die casting.

次に冷却構造1Aの作用効果について説明する。図3は冷却構造1Aにおける伝熱の様子を示す図である。(a)は機関暖機中の伝熱の様子を、(b)は機関暖機後の伝熱の様子を示す。そして、(a)は冷却水温が所定値αよりも低い場合の様子を、(b)は冷却水温が所定値αよりも高い場合の様子を示している。   Next, the function and effect of the cooling structure 1A will be described. FIG. 3 is a view showing a state of heat transfer in the cooling structure 1A. (A) shows the state of heat transfer during engine warm-up, and (b) shows the state of heat transfer after engine warm-up. (A) shows a state where the cooling water temperature is lower than the predetermined value α, and (b) shows a state where the cooling water temperature is higher than the predetermined value α.

(a)に示すように、溝部11の壁面と高熱伝導材12との間には、機関暖機中に隙間が形成される。結果、矢印H1で模式的に示すように、空気による断熱効果でボア13壁部からW/J14を流通する冷却水への伝熱が抑制される。このため、冷却構造1Aは機関暖機中に、ボア13に設けられるピストンのフリクションを低減できる。   As shown to (a), a clearance gap is formed between the wall surface of the groove part 11, and the high heat conductive material 12 during engine warm-up. As a result, as schematically shown by the arrow H1, heat transfer from the wall portion of the bore 13 to the cooling water flowing through the W / J 14 is suppressed by the heat insulating effect by air. For this reason, the cooling structure 1A can reduce the friction of the piston provided in the bore 13 during engine warm-up.

一方、エンジンの暖機が進むと高熱伝導材12が熱膨張する。結果、(b)に示すように、溝部11の壁面と高熱伝導材12とが機関暖機後に接触する。このため、冷却構造1Aは矢印H2で模式的に示すように、機関暖機後にボア13壁部からW/J14を流通する冷却水への伝熱を促進できる。そしてこれにより、ボア13壁部の冷却を促進できる。結果、具体的にはこれにより、ノッキングの発生を抑制できる。このように、冷却構造1Aは機関暖機状態に応じてボア13壁部を適切に冷却できる。   On the other hand, as the engine warms up, the high thermal conductive material 12 thermally expands. As a result, as shown in (b), the wall surface of the groove 11 and the high thermal conductive material 12 come into contact after the engine is warmed up. For this reason, the cooling structure 1A can promote heat transfer from the wall portion of the bore 13 to the cooling water flowing through the W / J 14 after the engine is warmed up, as schematically shown by the arrow H2. And thereby, cooling of the bore 13 wall part can be promoted. As a result, specifically, this can suppress the occurrence of knocking. Thus, the cooling structure 1A can appropriately cool the wall portion of the bore 13 according to the engine warm-up state.

また、このようにしてボア13壁部の冷却を促進する冷却構造1Aによれば、シリンダブロック10Aに設けられるシリンダヘッドの冷却性を特段高めることなく、ノッキングの発生を抑制することも可能になる。具体的には例えばシリンダヘッドを断熱性の高いヘッドガスケットを介してシリンダブロック10Aに設けることで、ボア13壁部の冷却を促進しつつ、シリンダヘッドの冷却性が高まることを抑制できる。この点、シリンダヘッドの冷却は大きな冷却損失を伴うことがわかっている。このため、冷却構造1Aは冷却損失の増大を抑制しつつ、ノッキングの発生を抑制するにあたっても好適である。   Further, according to the cooling structure 1A for promoting the cooling of the wall portion of the bore 13 in this manner, it is possible to suppress the occurrence of knocking without particularly increasing the cooling performance of the cylinder head provided in the cylinder block 10A. . Specifically, for example, by providing the cylinder head to the cylinder block 10A via a head gasket having high heat insulation properties, it is possible to suppress the cooling performance of the cylinder head while promoting cooling of the wall portion of the bore 13. In this regard, it has been found that the cooling of the cylinder head is accompanied by a large cooling loss. For this reason, the cooling structure 1A is suitable for suppressing the occurrence of knocking while suppressing an increase in cooling loss.

図4はシリンダブロック10Bの概略構成図である。シリンダブロック10Bは冷却構造1Aの代わりに冷却構造1Bを備える点以外、シリンダブロック10Aと実質的に同一である。冷却構造1Bは溝部11および高熱伝導材12の代わりに、以下に示す形状記憶材15を備えている。   FIG. 4 is a schematic configuration diagram of the cylinder block 10B. The cylinder block 10B is substantially the same as the cylinder block 10A except that a cooling structure 1B is provided instead of the cooling structure 1A. The cooling structure 1 </ b> B includes a shape memory material 15 shown below instead of the groove 11 and the high thermal conductive material 12.

形状記憶材15はW/J14に設けられている。形状記憶材15は板状の形状を有し、W/J14の開口部から底部にかけて設けられている。W/J14に設けられた形状記憶材15は、流路断面積を減少させるとともに冷却水の流速を増加させることで、熱伝達率の向上を図るウォータジャケットスペーサとして機能する。   The shape memory material 15 is provided in W / J14. The shape memory material 15 has a plate shape, and is provided from the opening to the bottom of the W / J 14. The shape memory material 15 provided in the W / J 14 functions as a water jacket spacer that improves the heat transfer coefficient by decreasing the flow path cross-sectional area and increasing the flow rate of the cooling water.

形状記憶材15は冷却水温が所定値α´よりも高い場合に、ボア13側から、ボア13とは反対側に位置するように形状が変化する。所定値α´には、例えば機関暖機完了時の冷却水温を適用できる。所定値α´と所定値αとは同じ値であってよい。この点、所定値αではなく所定値α´としたのは、後述するように冷却構造1Bと冷却構造1Aとを組み合わせて用いた場合に、高熱伝導材12に係る所定値αと形状記憶材15に係る所定値α´とが、実際には多少なりとも異なってくる可能性があることを考慮したものである。   When the cooling water temperature is higher than the predetermined value α ′, the shape memory material 15 changes its shape so as to be located on the opposite side of the bore 13 from the bore 13 side. For example, the coolant temperature at the completion of engine warm-up can be applied to the predetermined value α ′. The predetermined value α ′ and the predetermined value α may be the same value. In this respect, the predetermined value α ′ is used instead of the predetermined value α because, as will be described later, when the cooling structure 1B and the cooling structure 1A are used in combination, the predetermined value α and the shape memory material related to the high thermal conductive material 12 This is because the predetermined value α ′ according to 15 may actually be slightly different.

形状記憶材15はボア13側に位置する場合に、W/J14の壁面のうち、ボア13側の壁面に密接するように設けられている。また、ボア13とは反対側に位置する場合に、W/J14の壁面のうち、ボア13とは反対側の壁面に密接するように設けられている。   When the shape memory material 15 is located on the bore 13 side, the shape memory material 15 is provided so as to be in close contact with the wall surface on the bore 13 side among the wall surfaces of the W / J 14. Moreover, when located in the opposite side to the bore 13, it is provided so that it may closely_contact | adhere to the wall surface on the opposite side to the bore 13 among the wall surfaces of W / J14.

図5はTiNiのNi含有率と形状回復温度Afとの関係を示す図である。形状記憶材15の材質をTiNiとする場合、TiNiの組成によって、冷却水温が所定値α´よりも高い場合に、上述のように形状記憶材15を変形させることができる。TiNiの組成は、エンジンの暖機し易さに応じて、すなわち、機関暖機完了時の冷却水温に応じて設定できる。   FIG. 5 is a graph showing the relationship between the Ni content of TiNi and the shape recovery temperature Af. When the material of the shape memory material 15 is TiNi, the shape memory material 15 can be deformed as described above when the cooling water temperature is higher than the predetermined value α ′ due to the composition of TiNi. The composition of TiNi can be set according to the ease of warming up of the engine, that is, according to the coolant temperature when the engine warm-up is completed.

エンジンが暖機し易い場合、例えば60℃から80℃の間で形状記憶材15が変形するようにTiNiの組成を設定できる。また、エンジンが暖機し難い場合、例えば80℃で形状記憶材15が変形するようにTiNiの組成を設定できる。これらに対しては、例えば範囲Rで示す範囲が好適である。この点、TiNiの組成はさらに例えばNi含有率を50at%とする組成が好ましい。   When the engine is easily warmed up, for example, the composition of TiNi can be set so that the shape memory material 15 is deformed between 60 ° C. and 80 ° C. When the engine is difficult to warm up, the composition of TiNi can be set so that the shape memory material 15 is deformed at 80 ° C., for example. For these, for example, the range indicated by the range R is suitable. In this regard, the composition of TiNi is preferably a composition in which, for example, the Ni content is 50 at%.

TiNiの熱伝導率は、アルミダイキャストの熱伝導率が100W/mK程度であるのに対して、12W/mK程度と大幅に小さくなっている。   The thermal conductivity of TiNi is greatly reduced to about 12 W / mK, whereas the thermal conductivity of aluminum die cast is about 100 W / mK.

図6は誘導部15aの説明図である。(a)は、シリンダブロック10Bを上面視で示す。(b)は、(a)に示すB部を拡大して示す。形状記憶材15は、冷却水温に応じてW/J14を流通する冷却水を第1の流通経路P1または第2の流通経路P2に誘導する誘導部15aをさらに備えている。誘導部15aは冷却水温が所定値α´よりも低い場合に、冷却水を第1の流通経路P1に誘導する。また、冷却水温が所定値α´よりも高い場合に、冷却水を第2の流通経路P2に誘導する。誘導部15aはW/J14のうち、冷却水の入口部Inに設けられている。   FIG. 6 is an explanatory diagram of the guiding portion 15a. (A) shows cylinder block 10B in top view. (B) expands and shows the B section shown to (a). The shape memory material 15 further includes a guide portion 15a that guides the cooling water flowing through the W / J 14 to the first distribution path P1 or the second distribution path P2 according to the cooling water temperature. The guiding portion 15a guides the cooling water to the first flow path P1 when the cooling water temperature is lower than the predetermined value α ′. Further, when the cooling water temperature is higher than the predetermined value α ′, the cooling water is guided to the second flow path P2. The guide part 15a is provided in the inlet part In of cooling water among W / J14.

流通経路P1、P2はともに入口部Inから冷却水の出口部Outに冷却水を流通させる経路となっている。第1の流通経路P1は直列に配置された複数のボア13のうち、入口部Inおよび出口部Out側の端に設けられたボア13の側方に沿って、入口部Inから出口部Outに冷却水を流通させる経路となっている。第2の流通経路P2は直列に配置された複数のボア13に沿って、入口部Inから出口部OutにU字状に冷却水を流通させる経路となっている。   The distribution paths P1 and P2 are both paths through which the cooling water flows from the inlet part In to the cooling water outlet part Out. Of the plurality of bores 13 arranged in series, the first distribution path P1 extends from the inlet portion In to the outlet portion Out along the side of the bore 13 provided at the end on the inlet portion In and outlet portion Out side. It is a route for circulating cooling water. The second circulation path P2 is a path for circulating cooling water in a U shape from the inlet portion In to the outlet portion Out along the plurality of bores 13 arranged in series.

これに対し、誘導部15aは機関暖機中と機関暖機後との間で(b)に示すように変形する。そしてこれにより、入口部Inで冷却水の流れを制御することで、W/J14に流入する冷却水を第1の流通経路P1または第2の流通経路P2に誘導する。誘導部15aは、流通経路P1、P2のうち、いずれか一方の流通経路に冷却水を誘導する場合に、他方の冷却経路よりも流量が大きくなるように冷却水を流通させることができる。誘導部15aは、流通経路P1、P2のうち、いずれか一方の流通経路に冷却水を誘導する場合に、他方の冷却経路に冷却水を流通させなくてもよい。   On the other hand, the induction | guidance | derivation part 15a deform | transforms as shown in (b) between engine warm-up and after engine warm-up. Then, by controlling the flow of the cooling water at the inlet portion In, the cooling water flowing into the W / J 14 is guided to the first distribution path P1 or the second distribution path P2. The guiding portion 15a can circulate the cooling water so that the flow rate is larger than that of the other cooling path when the cooling water is guided to one of the distribution paths P1 and P2. The guiding part 15a does not have to circulate the cooling water through the other cooling path when the cooling water is guided to any one of the distribution paths P1 and P2.

次に冷却構造1Bの作用効果について説明する。図7は冷却構造1Bにおける伝熱の様子を示す図である。図8は冷却構造1Bにおける冷却水の流通の様子を示す図である。図7、図8ともに(a)は機関暖機中の伝熱の様子を、(b)は機関暖機後の伝熱の様子を示す。そして、(a)は冷却水温が所定値α´よりも低い場合の様子を、(b)は冷却水温が所定値α´よりも高い場合の様子を示す。図8において、流通経路P1、P2の矢印の太さは流量の大きさを模式的に示す。   Next, the effect of the cooling structure 1B will be described. FIG. 7 is a diagram showing a state of heat transfer in the cooling structure 1B. FIG. 8 is a view showing a state of circulation of the cooling water in the cooling structure 1B. 7 and 8, (a) shows the state of heat transfer during engine warm-up, and (b) shows the state of heat transfer after engine warm-up. And (a) shows a mode when the cooling water temperature is lower than the predetermined value α ′, and (b) shows a mode when the cooling water temperature is higher than the predetermined value α ′. In FIG. 8, the thickness of the arrows of the distribution paths P1 and P2 schematically shows the magnitude of the flow rate.

図7(a)に示すように、形状記憶材15は機関暖機中にボア13側に位置する。結果、矢印H1´で模式的に示すように、ボア13壁部からW/J14を流通する冷却水への伝熱が抑制される。このため、冷却構造1Bは、機関暖機中にピストンのフリクションを低減できる。   As shown in FIG. 7A, the shape memory material 15 is located on the bore 13 side during engine warm-up. As a result, as schematically indicated by the arrow H1 ′, heat transfer from the wall of the bore 13 to the cooling water flowing through the W / J 14 is suppressed. For this reason, the cooling structure 1B can reduce piston friction during engine warm-up.

一方、機関暖機後には形状記憶材15が変形する。結果、図7(b)に示すように形状記憶材15がボア13とは反対側に位置する。このため、冷却構造1Bは矢印H2´で模式的に示すように、機関暖機後にボア13壁部からW/J14を流通する冷却水への伝熱を促進できる。そしてこれにより、ボア13壁部の冷却を促進できる。   On the other hand, the shape memory material 15 is deformed after the engine is warmed up. As a result, as shown in FIG. 7B, the shape memory material 15 is located on the opposite side to the bore 13. For this reason, the cooling structure 1B can promote heat transfer from the wall portion of the bore 13 to the cooling water flowing through the W / J 14 after the engine is warmed up, as schematically shown by the arrow H2 ′. And thereby, cooling of the bore 13 wall part can be promoted.

冷却構造1Bは、このように形状記憶材15の変形によって、機関暖機状態に応じてボア13壁部を適切に冷却できる。また、形状記憶材15の材質をTiNiとすることで、機関暖機のし易さに応じた適切な変形を実現できる。さらに、形状記憶材15の材質をTiNiとすることで、低い熱伝導率によって機関暖機中にボア13壁部の断熱性を高めることもできる。   The cooling structure 1B can appropriately cool the wall portion of the bore 13 according to the engine warm-up state by the deformation of the shape memory material 15 as described above. Further, by making the material of the shape memory material 15 TiNi, it is possible to realize appropriate deformation according to the ease of engine warm-up. Furthermore, by making the material of the shape memory material 15 TiNi, it is possible to improve the heat insulation of the wall portion of the bore 13 during engine warm-up due to low thermal conductivity.

図8(a)に示すように、誘導部15aは機関暖機中にW/J14に流入する冷却水を第1の流通経路P1に誘導する。結果、冷却水は主に第1の流通経路P1を流通する。このため、冷却構造1Bはボア13壁部の冷却を抑制することで、機関暖機中にピストンのフリクションを低減できる。   As shown to Fig.8 (a), the guidance part 15a guides the cooling water which flows in into W / J14 to the 1st distribution path P1 during engine warming-up. As a result, the cooling water mainly circulates through the first distribution path P1. For this reason, the cooling structure 1B can reduce the friction of the piston during engine warm-up by suppressing the cooling of the wall portion of the bore 13.

一方、誘導部15aは機関暖機後にW/J14に流入する冷却水を第2の流通経路P2に誘導する。結果、図8(b)に示すように冷却水は優先的に第2の流通経路P2を流通する。このため、冷却構造1Bはボア13壁部の冷却を促進できる。そして、冷却構造1Bはこのように誘導部15aでW/J14を流通する冷却水の流れを制御することで、機関暖機状態に応じてボア13壁部をより適切に冷却できる。   On the other hand, the guiding portion 15a guides the cooling water flowing into the W / J 14 after the engine is warmed up to the second circulation path P2. As a result, as shown in FIG. 8B, the cooling water preferentially flows through the second distribution path P2. For this reason, the cooling structure 1B can promote the cooling of the wall portion of the bore 13. And the cooling structure 1B can cool the bore 13 wall part more appropriately according to the engine warm-up state by controlling the flow of the cooling water flowing through the W / J 14 by the guide part 15a.

また、冷却構造1Bは冷却構造1Aと組み合わせて用いることで、換言すれば溝部11および高熱伝導材12をさらに備えることで、機関暖機状態に応じてボア13壁部をさらに適切に冷却できる。   Further, the cooling structure 1B is used in combination with the cooling structure 1A. In other words, the cooling structure 1B further includes the groove portion 11 and the high thermal conductive material 12, thereby further appropriately cooling the wall portion of the bore 13 according to the engine warm-up state.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

冷却構造 1A、1B
シリンダブロック 10A、10B
溝部 11
高熱伝導材 12
ボア 13
W/J 14
形状記憶材 15
誘導部 15a
Cooling structure 1A, 1B
Cylinder block 10A, 10B
Groove 11
High thermal conductivity material 12
Bore 13
W / J 14
Shape memory material 15
Guide part 15a

Claims (2)

エンジンのシリンダブロックのうち、ボアと冷却媒体通路との間の部分に設けられた溝部と、
前記溝部に設けられた高熱伝導材と、を備え、
前記高熱伝導材が、前記シリンダブロックの母材よりも高い線膨張係数を有するとともに、前記冷却媒体通路を流通する冷却媒体の温度が所定値よりも高い場合に前記溝部の壁面に接触するように、前記溝部の壁面に対して非接触の状態で設けられているシリンダブロックの冷却構造。
Of the cylinder block of the engine, a groove provided in a portion between the bore and the cooling medium passage,
A high thermal conductivity material provided in the groove,
The high thermal conductivity material has a higher linear expansion coefficient than the base material of the cylinder block, and contacts the wall surface of the groove when the temperature of the cooling medium flowing through the cooling medium passage is higher than a predetermined value. The cooling structure of the cylinder block provided in the non-contact state with respect to the wall surface of the said groove part.
請求項1記載のシリンダブロックの冷却構造であって、
前記高熱伝導材が、前記シリンダブロックの母材よりも高い熱伝導率を有するシリンダブロックの冷却構造。
A cooling structure for a cylinder block according to claim 1,
The cylinder block cooling structure, wherein the high thermal conductivity material has a higher thermal conductivity than the base material of the cylinder block.
JP2010241384A 2010-10-27 2010-10-27 Cylinder block cooling structure Expired - Fee Related JP5569335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241384A JP5569335B2 (en) 2010-10-27 2010-10-27 Cylinder block cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241384A JP5569335B2 (en) 2010-10-27 2010-10-27 Cylinder block cooling structure

Publications (2)

Publication Number Publication Date
JP2012092758A true JP2012092758A (en) 2012-05-17
JP5569335B2 JP5569335B2 (en) 2014-08-13

Family

ID=46386360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241384A Expired - Fee Related JP5569335B2 (en) 2010-10-27 2010-10-27 Cylinder block cooling structure

Country Status (1)

Country Link
JP (1) JP5569335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167191A (en) * 2018-12-01 2021-07-23 马格德堡大学 Cylinder device and method for cooling cylinder device
CN114382605A (en) * 2021-12-31 2022-04-22 江苏紫金动力股份有限公司 High-performance diesel engine cylinder sleeve and production process thereof
CN115263591A (en) * 2022-08-22 2022-11-01 义乌吉利动力总成有限公司 Engine and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071246A (en) * 2008-09-19 2010-04-02 Hino Motors Ltd Internal combustion engine and cylinder liner
JP2011007244A (en) * 2009-06-24 2011-01-13 Nippon Piston Ring Co Ltd Dry type cylinder liner for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071246A (en) * 2008-09-19 2010-04-02 Hino Motors Ltd Internal combustion engine and cylinder liner
JP2011007244A (en) * 2009-06-24 2011-01-13 Nippon Piston Ring Co Ltd Dry type cylinder liner for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167191A (en) * 2018-12-01 2021-07-23 马格德堡大学 Cylinder device and method for cooling cylinder device
CN114382605A (en) * 2021-12-31 2022-04-22 江苏紫金动力股份有限公司 High-performance diesel engine cylinder sleeve and production process thereof
CN115263591A (en) * 2022-08-22 2022-11-01 义乌吉利动力总成有限公司 Engine and vehicle

Also Published As

Publication number Publication date
JP5569335B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5846135B2 (en) Internal combustion engine
JP5246342B2 (en) Internal combustion engine
JP4331136B2 (en) Cylinder block
JP5569335B2 (en) Cylinder block cooling structure
JP2004092547A (en) Cooling device for engine
CN206246174U (en) A kind of combined radiator of engine motor oil
JP2012218050A (en) Cast pin device
JP2010196518A (en) Cooling device of internal combustion engine
KR101163824B1 (en) Cooling device and insert for water jacket of internal combustion engine
JP2007032306A (en) Cooling device for hollow intake and exhaust valve
JP2005282509A (en) Cooling structure of cylinder block
JP2012112332A (en) Cylinder block of internal combustion engine
JP2005076601A (en) Method for arranging spacer for water jacket, and engine
JP6142094B2 (en) Fluid cooling system
JP2005188414A (en) Cooling structure for internal combustion engine
JP2012117439A (en) Cylinder head exhaust port
JP2015108320A (en) Cooling structure of engine
JP2008520883A (en) Low temperature coolant cooler
KR20170033940A (en) Appratus of cooling electric device
JP6413755B2 (en) Water jacket spacer
CN205002641U (en) Air new trend machine heat exchanger
GeIL IMPROVING THE EFFICIENCY OF THE COOLING SYSTEM OF THE ENGINE
JP2017145783A (en) Cylinder block
JP2023040575A (en) Method for forming cooling structure
TWM651905U (en) Cylinder head imported oil cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5569335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees