JP2012092727A - Vortex pump - Google Patents

Vortex pump Download PDF

Info

Publication number
JP2012092727A
JP2012092727A JP2010239888A JP2010239888A JP2012092727A JP 2012092727 A JP2012092727 A JP 2012092727A JP 2010239888 A JP2010239888 A JP 2010239888A JP 2010239888 A JP2010239888 A JP 2010239888A JP 2012092727 A JP2012092727 A JP 2012092727A
Authority
JP
Japan
Prior art keywords
gas
impeller
fluid
flow path
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010239888A
Other languages
Japanese (ja)
Inventor
Takafumi Seki
孝文 関
Takeshi Kusakabe
毅 日下部
Tetsuya Fukuda
哲也 福田
Toshiyuki Kubota
俊幸 久保田
Toshisuke Sakai
敏輔 酒井
Hidetoshi Ueda
英稔 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010239888A priority Critical patent/JP2012092727A/en
Publication of JP2012092727A publication Critical patent/JP2012092727A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vortex pump that improves gas exhaust performance to reduce restrictions on pump posture during self-priming and to prevent a gas from staying in a pump chamber.SOLUTION: The vortex pump includes: a vane 18 pressurizing fluid by rotation: an impeller 4 having the vane 18 on an outer periphery; the pump chamber 1 storing the impeller 4 therein; and a motor rotating the impeller 4. The pump further has a channel 5 where the fluid flows, on an outer periphery side of the vane 18. The pump chamber 1 includes: a suction pipe 21 communicating with an upstream end 6 of the channel 5; an discharge pipe 22 communication with a downstream end 7 of the channel 5; and a gas-liquid separation part for separating the fluid into gas and liquid at the downstream end 7. A casing forming the pump chamber 1 has a surface facing the impeller 4, and the discharge pipe 22 is opened on the facing surface. In addition, a protrusion 27 circumferentially having a plane is disposed on a portion forming the downstream end 7 of the channel 5 on the facing surface, and the plane serves as a collision surface 44 of the gas-liquid separation part.

Description

本発明は、渦流ポンプ、殊に羽根車の外周に流体の流動する流路を有した自吸式の渦流ポンプに関するものである。   The present invention relates to a vortex pump, and more particularly to a self-priming vortex pump having a flow path through which fluid flows on the outer periphery of an impeller.

従来から、液体を加圧する羽根車と、羽根車を収容したポンプ室と、羽根車を回転させるモータと、羽根車の外周に沿って形成された液体の流れる流路と、を備えた渦流ポンプがある。このような渦流ポンプは、外部のタンク等に貯留された液体を加圧状態でポンプ外に送り出すため、自動車の液体燃料の供給装置等に用いられている。   Conventionally, an eddy current pump including an impeller that pressurizes a liquid, a pump chamber that houses the impeller, a motor that rotates the impeller, and a flow path that flows along the outer periphery of the impeller. There is. Such a vortex pump is used for a liquid fuel supply device of an automobile and the like in order to send liquid stored in an external tank or the like outside the pump in a pressurized state.

そして、近年では、加圧能力の高さから、渦流ポンプを、コンピュータ等の発熱機器を冷却する冷却手段における冷媒供給用の動力源(循環ポンプ)として用いられることがある。   In recent years, the eddy current pump is sometimes used as a power source (circulation pump) for supplying a refrigerant in a cooling means for cooling a heat generating device such as a computer because of its high pressurization capacity.

特開2003−232289号公報JP 2003-232289 A

しかしながら、従来の渦流ポンプは気体の排出性能が余り高くないため、自吸動作を行うにあたって、渦流ポンプの上方にタンクを設けてタンク内の流体自重等で気体排出を補助する必要がある。そのため、従来の渦流ポンプは、構造体等に設置するにあたって、タンク(流体供給源)との位置関係やポンプの向き等のポンプ姿勢が制限されて、様々な姿勢で利用される装置や機器等への搭載(設置)が困難であるという問題がある。   However, since the conventional vortex pump does not have a very high gas discharge performance, it is necessary to provide a tank above the vortex pump and assist gas discharge by the weight of fluid in the tank when performing the self-priming operation. For this reason, when installing a conventional vortex pump on a structure or the like, the position of the pump such as the positional relationship with the tank (fluid supply source) and the direction of the pump is limited, and devices and equipment used in various positions There is a problem that it is difficult to install (install).

また、液体流入時に、液体と共に気体が流路内に浸入すると、羽根車の回転に伴う遠心力によって、液体が羽根車の外周に集まり、液体より密度の小さい気体が羽根車の回転中心側に集まる。そのため、気体が吐出管から排出され難く、気泡となって軸周りに滞留し続けることがあり、軸周りに気泡(気体)が滞留すると、ポンプ駆動時にポンプロックや軸固着等の異常停止を引き起こすことがある。   In addition, if gas enters the flow path together with the liquid when the liquid flows in, the liquid gathers on the outer periphery of the impeller due to the centrifugal force accompanying the rotation of the impeller, and the gas having a density lower than that of the liquid moves toward the rotation center of the impeller. get together. For this reason, the gas is difficult to be discharged from the discharge pipe and may remain as a bubble around the shaft. If the bubble (gas) stays around the shaft, an abnormal stop such as pump lock or shaft sticking may occur when the pump is driven. Sometimes.

そこで、この事情を鑑み、気液混合流体吸入時や自吸動作時の気体の排出性能(自吸性能)を向上させて、自吸動作のポンプ姿勢の制限を軽減すると共に、ポンプ室内の気体の滞留を抑制した渦流ポンプを提供することを課題とした。   Therefore, in view of this situation, the gas discharge performance (self-priming performance) at the time of gas-liquid mixed fluid inhalation or self-priming operation is improved to reduce the restriction of the pump posture of the self-priming operation, and the gas in the pump chamber An object of the present invention is to provide a vortex pump that suppresses stagnation.

上記課題を解決するために、本発明の渦流ポンプは、回転により流体を加圧する羽根部と、羽根部を外周に有した羽根車と、前記羽根車を内部に収納したポンプ室と、前記羽根車を回転させるモータと、を備えると共に、前記流体の流動する流路を前記ポンプ室の前記羽根車の外周側に有し、前記ポンプ室が、前記流路の上流端に連通した吸入管と、前記流路の下流端に連通した吐出管と、前記流路の下流端で流体の気液分離を行う気液分離部と、を備え、前記ポンプ室を形成するケーシングが前記羽根車と前記羽根車の回転軸芯の軸方向に対向した対向面を有すると共に、前記吐出管の内部が前記軸方向に沿って前記対向面から前記ポンプ室に連通し、前記対向面の前記下流端を形成する部位に、周方向に平面を有した突部を設けて、該突部の前記平面を前記気液分離部の流体を衝突させて気液分離を行う衝突面としたものであることを特徴とする。   In order to solve the above problems, the vortex pump of the present invention includes a blade portion that pressurizes a fluid by rotation, an impeller having a blade portion on an outer periphery, a pump chamber that houses the impeller inside, and the blade A motor that rotates the vehicle, and has a flow path through which the fluid flows on an outer peripheral side of the impeller of the pump chamber, and the pump chamber communicates with an upstream end of the flow path; A discharge pipe communicating with the downstream end of the flow path, and a gas-liquid separation unit that performs gas-liquid separation of the fluid at the downstream end of the flow path, and a casing forming the pump chamber includes the impeller and the An opposed surface facing the axial direction of the rotating shaft core of the impeller, and the inside of the discharge pipe communicates with the pump chamber from the opposed surface along the axial direction to form the downstream end of the opposed surface Protrusions with a flat surface in the circumferential direction are provided at Characterized in that the said plane collide the fluid in the gas-liquid separator is obtained by the impact surface to perform gas-liquid separation.

この渦流ポンプとして、前記気液分離部が前記吐出管の内面と軸方向に沿って面一に並ぶ平面を有したものであることが好ましい。   As this vortex pump, it is preferable that the gas-liquid separation part has a flat surface aligned with the inner surface of the discharge pipe along the axial direction.

この渦流ポンプとして、前記吐出管の内部が前記流体の流通方向に直交して切断した断面形状を矩形状としたものであることが好ましい。   The vortex pump preferably has a rectangular cross-sectional shape obtained by cutting the inside of the discharge pipe perpendicular to the fluid flow direction.

この渦流ポンプとして、前記ポンプ室が前記流路の下流端と上流端の間を仕切る仕切り部を有し、前記仕切り部が前記吐出管の内面と面一で並ぶ前記下流端側の側壁を有したものであることが好ましい。   As the vortex pump, the pump chamber has a partition portion that partitions the downstream end and the upstream end of the flow path, and the partition portion has a side wall on the downstream end side that is flush with the inner surface of the discharge pipe. It is preferable that

この渦流ポンプとして、気体を上流端の還流させる還流路を備え、前記還流路の上流端を前記流路の中間或いは前記中間より下流側に設けたものであることが好ましい。   The vortex pump is preferably provided with a reflux path for refluxing gas at the upstream end, and the upstream end of the reflux path is provided in the middle of the flow path or downstream from the middle.

このような構成としたことで、従来のものに比べて、気液混合流体吸入時や自吸動作時の気体の排出性能が向上して、自吸動作のポンプ姿勢の制限を緩和することができると共に、ポンプ室内の気体の滞留を抑制することができる。   By adopting such a configuration, the gas discharge performance at the time of gas-liquid mixed fluid inhalation or self-priming operation can be improved and the restriction on the pump posture of self-priming operation can be relaxed compared to the conventional one. In addition, it is possible to suppress the retention of gas in the pump chamber.

実施形態の一例の渦流ポンプの回転円上で切断した断面図である。It is sectional drawing cut | disconnected on the rotation circle of the eddy current pump of an example of embodiment. 同上の外観の斜視図である。It is a perspective view of an external appearance same as the above. 同上のA−A線で一部を切断した(a)外観と(b)流路下流端周辺の斜視図である。It is the perspective view of the (a) external appearance and (b) flow-path downstream end periphery which cut | disconnected a part with the AA line same as the above. 同上の軸方向に切断した断面図である。It is sectional drawing cut | disconnected in the axial direction same as the above. 図4の羽根部周辺を拡大した断面図である。It is sectional drawing to which the blade part periphery of FIG. 4 was expanded. 同上の下流端の断面図である。It is sectional drawing of a downstream end same as the above. 実施形態の他の一例の渦流ポンプの回転円上で切断した断面図である。It is sectional drawing cut | disconnected on the rotation circle of the eddy current pump of another example of embodiment. 同上のポンプケースを透過させた外観の斜視図である。It is a perspective view of the appearance which permeate | transmitted the pump case same as the above. 同上の軸方向に切断した断面図である。It is sectional drawing cut | disconnected in the axial direction same as the above. 同上における還流路上流端の設置位置変更の説明図である。It is explanatory drawing of the installation position change of the reflux path upstream end in the same as the above. 同上の設置位置の違いに伴う圧力変動の流体解析結果の図である。It is a figure of the fluid analysis result of the pressure fluctuation accompanying the difference in an installation position same as the above.

以下、図面に基づいて本発明の実施形態を例示して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

実施形態の一例の渦流ポンプは、図4に示すように、駆動源であるモータと、モータに回転駆動される羽根車4と、羽根車4の外周に位置して内部に流体が流動する流路5と、を備えている。そして、羽根車4は、流体を加圧して流動させる羽根部18を外周側に有すると共に、ロータ14と一体の複数の磁極を羽根車18より内周側に有し、該羽根部18の外周側が流路5となっている。   As shown in FIG. 4, the vortex pump according to the embodiment includes a motor that is a driving source, an impeller 4 that is rotationally driven by the motor, and a flow in which fluid flows inside the impeller 4. Road 5 is provided. The impeller 4 has a blade portion 18 that pressurizes and flows a fluid on the outer peripheral side, and has a plurality of magnetic poles integral with the rotor 14 on the inner peripheral side of the impeller 18. The side is a flow path 5.

詳しくは、図2〜4に示すように、渦流ポンプは、流路5を有すると共に羽根車4を収容したポンプ室1と、ポンプ室1から区画されたモータ部2と、からなっている。そして、ポンプ室1は、ポンプ室1の外殻を形成するポンプケース20と、ポンプ室1とモータ部2を区画する分離板31と、で囲まれている。   Specifically, as shown in FIGS. 2 to 4, the vortex pump includes a pump chamber 1 having a flow path 5 and accommodating the impeller 4, and a motor unit 2 partitioned from the pump chamber 1. The pump chamber 1 is surrounded by a pump case 20 that forms an outer shell of the pump chamber 1 and a separation plate 31 that partitions the pump chamber 1 and the motor unit 2.

また、モータは、コイルを有した環状のステータ8と、モータ駆動を制御する制御部9と、複数のマグネット(磁極)を有した円筒状のロータ14と、ロータ14を回転自在で支持した回転支持部と、を備えている。ステータ8及び制御部9はモータ部2内に配置されており、ロータ14及び回転支持部はポンプ室1内に配置されている。   The motor also includes an annular stator 8 having a coil, a control unit 9 that controls driving of the motor, a cylindrical rotor 14 having a plurality of magnets (magnetic poles), and a rotation that rotatably supports the rotor 14. And a support part. The stator 8 and the control unit 9 are arranged in the motor unit 2, and the rotor 14 and the rotation support unit are arranged in the pump chamber 1.

そして、制御部9はステータ8のコイルに流れる電流を制御することで、モータ駆動を制御しており、ステータ8は制御部9に通電制御されることで、ロータ14を磁気回転させている。更に、制御部9及びステータ8はモータ部2内に充填されたモールド材10を介して分離板31に固定されており、モールド材10は、図2に示すように、モータ部2の外殻を形成している。   And the control part 9 controls the motor drive by controlling the electric current which flows into the coil of the stator 8, and the stator 8 is carrying out the energization control of the control part 9, and makes the rotor 14 magnetically rotate. Further, the control unit 9 and the stator 8 are fixed to the separation plate 31 via a molding material 10 filled in the motor unit 2, and the molding material 10 has an outer shell of the motor unit 2 as shown in FIG. 2. Is forming.

一方、ロータ14及び回転支持部は、図4に示すように、ステータ8と略同芯でステータ8の内周に配置されており、ロータ14はステータ8との間に分離板31が介在しており、回転支持部はロータ14の内周に配置されている。   On the other hand, as shown in FIG. 4, the rotor 14 and the rotation support portion are arranged substantially concentrically with the stator 8 and arranged on the inner periphery of the stator 8, and the rotor 14 and the stator 8 have a separation plate 31 interposed therebetween. The rotation support portion is disposed on the inner periphery of the rotor 14.

そして、回転支持部は、ロータ14の回転中心に位置した軸11と、軸11の軸回りに回転自在で取り付けられた軸受部12と、軸受部12を軸11上に位置規定する受板13と、を有している。軸11は、一端が分離板31に固定されて、他端がポンプケース20に固定されており、軸受部12は外周にロータ14が一体で取り付けられており、ロータ14と共に軸11の軸回りに回転する。   The rotation support portion includes a shaft 11 positioned at the rotation center of the rotor 14, a bearing portion 12 that is rotatably mounted around the shaft 11, and a receiving plate 13 that positions the bearing portion 12 on the shaft 11. And have. The shaft 11 has one end fixed to the separation plate 31 and the other end fixed to the pump case 20, and the bearing portion 12 has a rotor 14 integrally attached to the outer periphery. Rotate to.

以下、特に規定しない限り、軸11の軸方向を単に軸方向と記載し、軸11のラジアル方向を単にラジアル方向と記載する。そして、軸方向に視た形状を平面視の形状と記載し、平面視における羽根車4の回転円を単に回転円と記載する。   Hereinafter, unless otherwise specified, the axial direction of the shaft 11 is simply referred to as an axial direction, and the radial direction of the shaft 11 is simply referred to as a radial direction. The shape viewed in the axial direction is described as a shape in plan view, and the rotation circle of the impeller 4 in plan view is simply referred to as a rotation circle.

受板13は軸受部12の軸方向の両端に夫々配置されると共に、軸11に対して回転不能で軸11或いは分離板31やポンプケース20に固定されている。そのため、軸受部12及びロータ14は軸11に対して軸方向の所定の位置に規定されて、回転時の振動等でロータ14が軸方向に動き難くなり、ロータ14の位置ずれを抑制している。更に、受板13は軸受部12がケーシングに直接接触することも防いでおり、ロータ14回転時にケーシングが磨耗することを防いで、経時劣化に伴う位置ずれの発生を抑制している。   The receiving plates 13 are disposed at both ends of the bearing portion 12 in the axial direction, and are not rotatable with respect to the shaft 11 and are fixed to the shaft 11, the separation plate 31, and the pump case 20. Therefore, the bearing portion 12 and the rotor 14 are defined at predetermined positions in the axial direction with respect to the shaft 11, and the rotor 14 becomes difficult to move in the axial direction due to vibration during rotation and the like. Yes. Further, the receiving plate 13 prevents the bearing portion 12 from coming into direct contact with the casing, prevents the casing from being worn when the rotor 14 rotates, and suppresses the occurrence of misalignment due to deterioration over time.

また、ロータ14は周方向に複数のマグネットが並ぶ円筒形状となっている。そして、ロータ14は、軸芯側に突出した突出部15を円筒の内周面の軸方向の寸法の略中間に有しており、ロータ14は突出部15を介して軸受部12に固定されている。更に、ロータ14は円筒の軸方向の一端に環状の円板16が略同芯で且つ一体で設けられており、ロータ14は軸受部12と共に回転することで、円板16を回転させるものとなっている。   The rotor 14 has a cylindrical shape in which a plurality of magnets are arranged in the circumferential direction. The rotor 14 has a projecting portion 15 projecting toward the axial center side in the middle of the axial dimension of the inner circumferential surface of the cylinder, and the rotor 14 is fixed to the bearing portion 12 via the projecting portion 15. ing. Further, the rotor 14 is provided with an annular disk 16 substantially concentrically and integrally provided at one end in the axial direction of the cylinder, and the rotor 14 rotates with the bearing portion 12 to rotate the disk 16. It has become.

該円板16は、図1や図4に示すように、円板16の外周端に羽根部18を有しており、内径がロータ14の円筒の内径と略同寸となっており、外径がロータ14の円筒外径より大きい寸法となっている。該円板16とロータ14を一体化したものが、羽根車4となっている。   As shown in FIGS. 1 and 4, the disk 16 has a blade portion 18 at the outer peripheral end of the disk 16, and the inner diameter is substantially the same as the inner diameter of the cylinder of the rotor 14. The diameter is larger than the cylindrical outer diameter of the rotor 14. The impeller 4 is obtained by integrating the disc 16 and the rotor 14.

そして、円板16の羽根部18は周方向に略等間隔で切り欠かれた複数の切欠き19からなっている。更に、各切欠き19は、図4や図5に示すように、ラジアル方向に視て略円弧形状で且つ略同寸同形に切り欠かれて、円板16のポンプケース側を向く板面17側及びラジアル方向の外周側に開口している。   And the blade | wing part 18 of the disc 16 consists of the some notch 19 notched in the circumferential direction at substantially equal intervals. Further, as shown in FIGS. 4 and 5, each notch 19 is notched in a substantially arc shape and substantially the same size and shape when viewed in the radial direction, and a plate surface 17 facing the pump case side of the disc 16. It opens to the outer peripheral side of the side and radial direction.

なお、羽根車4はロータ14と一体のものに限らず、羽根車4(円板16)とロータ14が別部材からなるものであってもよい。このものでは、円板16の内周にマグネットを設けて、円板16とロータ14を磁気連結し、円板16をロータ14と共に回転させることが好ましい。   The impeller 4 is not limited to the one integrated with the rotor 14, and the impeller 4 (disk 16) and the rotor 14 may be made of different members. In this case, it is preferable to provide a magnet on the inner periphery of the disk 16 to magnetically connect the disk 16 and the rotor 14 and to rotate the disk 16 together with the rotor 14.

ポンプ室1は、図2に示すように、外部からポンプ室1内に液体を吸入する吸入管21と、ポンプ室1内から外部に液体を吐出する吐出管22と、が外殻から軸方向に沿って突出して設けられている。そして、吸入管21は、断面略矩形状の筒となっており、一端の開口が外部の配管や貯留タンク等の液体供給源等に連通し、他端の開口がポンプ室1内の流路5(詳細は後述する)の上流端6に連通している。一方、吐出管22は吸入管21と略同形同寸の断面略矩形状の筒となっており、一端の開口が外部の配管や液体供給対象等に連通し、他端の開口が、図3に示すように、流路5の下流端7に連通している。   As shown in FIG. 2, the pump chamber 1 includes an intake pipe 21 that sucks liquid into the pump chamber 1 from the outside, and a discharge pipe 22 that discharges liquid from the pump chamber 1 to the outside. It protrudes along. The suction pipe 21 is a cylinder having a substantially rectangular cross section, the opening at one end communicates with a liquid supply source such as an external pipe or a storage tank, and the opening at the other end is a flow path in the pump chamber 1. 5 (details will be described later). On the other hand, the discharge pipe 22 is a cylinder having a substantially rectangular cross section and is substantially the same shape and size as the suction pipe 21, with one end opening communicating with an external pipe or liquid supply object, and the other end opening being a figure. As shown in FIG. 3, it communicates with the downstream end 7 of the flow path 5.

また、ポンプ室1内面は、図4や図5に示すように、円板16の各板面17に夫々対向した環状の内面を有いる。そして、円板16の一方の板面17に正対する略環状の対向面を分離板31のフランジ部33が形成しており、他方の板面17に正対する略環状の対向面をポンプケース20が形成しており、両対向面は軸11と略同芯で位置している。   The inner surface of the pump chamber 1 has an annular inner surface that faces each plate surface 17 of the disk 16 as shown in FIGS. 4 and 5. The flange portion 33 of the separation plate 31 forms a substantially annular facing surface that faces the one plate surface 17 of the disc 16, and the substantially annular facing surface that faces the other plate surface 17 serves as the pump case 20. Both opposing surfaces are located substantially concentric with the shaft 11.

詳しくは、分離板31が、図4に示すように、一端に底部を有した円筒部32と、円筒部32の他端から外周に延設された環状のフランジ部33と、フランジ部33からポンプケース20に向かって立ち上がる環状の立設壁35と、からなる。そして、円筒部32は外周側にステータ8が略同芯で位置し、内周側にロータ14及び軸11が略同芯で位置しており、底部の円筒内部側の面には、軸11の一端を固定する固定部が、軸方向に突出して設けられている。   Specifically, as shown in FIG. 4, the separation plate 31 includes a cylindrical portion 32 having a bottom at one end, an annular flange portion 33 extending from the other end of the cylindrical portion 32 to the outer periphery, and a flange portion 33. And an annular standing wall 35 that rises toward the pump case 20. In the cylindrical portion 32, the stator 8 is positioned substantially concentrically on the outer peripheral side, and the rotor 14 and the shaft 11 are positioned substantially concentric on the inner peripheral side. A fixing portion that fixes one end of the projection protrudes in the axial direction.

フランジ部33は、円板16の一方の板面17と正対した一端面34と、一端面34の外周から軸方向に突出した立設壁35と、備えており、対向面である一端面34は円板16の一方の板面17との軸方向の間に所定のクリアランスを有している。   The flange portion 33 includes one end surface 34 facing the one plate surface 17 of the disk 16, and a standing wall 35 protruding in the axial direction from the outer periphery of the one end surface 34, and one end surface which is an opposing surface. 34 has a predetermined clearance between the disk 16 and one plate surface 17 in the axial direction.

そして、立設壁35は、図1に示すように、羽根車4と略同芯の環状で軸芯側を向いて、一端面34の外周側から軸方向に立ち上がっている。更に、立設壁35は、図5に示すように、壁面から外周に向けて凹んだ平面視略C字形状の凹所36と、凹所36の周方向の端部の間に位置する仕切り部37と、を備えている。   As shown in FIG. 1, the standing wall 35 is a ring that is substantially concentric with the impeller 4 and faces the axial center side, and rises in the axial direction from the outer peripheral side of the one end face 34. Further, as shown in FIG. 5, the standing wall 35 is a partition located between a substantially C-shaped recess 36 that is recessed from the wall surface toward the outer periphery and the circumferential end of the recess 36. Part 37.

凹所36は周面と円板16の外周端のラジアル方向の間がクリアランスより大きい寸法で離れて、羽根部18の外周に平面視略C字形状の空間を形成している。   The recess 36 is separated by a dimension larger than the clearance between the peripheral surface and the radial direction of the outer peripheral end of the disk 16, and forms a substantially C-shaped space in plan view on the outer periphery of the blade portion 18.

そして、凹所36はC字の周方向の一端側が、図4に示すように、吸入管21と軸方向に並んで位置し、周方向の他端側が、図3に示すように、吐出管22と軸方向に並んで位置しており、他端と一端の回転方向RDにおける間に仕切り部37が位置している。   As shown in FIG. 4, the recess 36 is positioned so that one end side in the circumferential direction of the C shape is aligned with the suction pipe 21 in the axial direction, and the other end side in the circumferential direction is a discharge pipe as shown in FIG. 3. 22, the partition portion 37 is positioned between the other end and the one end in the rotational direction RD.

仕切り部37は周方向に沿った円弧形状の内周面を有すると共に、該内周面が立設壁35の壁面と略面一で並んでおり、立設壁35と仕切り部37の壁面は円板16の外周端とのラジアル方向の間に所定のクリアランスを有している。   The partition portion 37 has an arc-shaped inner peripheral surface along the circumferential direction, the inner peripheral surface is substantially flush with the wall surface of the standing wall 35, and the wall surface of the standing wall 35 and the partition portion 37 is A predetermined clearance is provided between the outer peripheral end of the disk 16 and the radial direction.

そして、仕切り部37は円弧の周方向の両端に側壁38を有すると共に、軸方向の端面がポンプケース20の対向面に当接されている。更に、各側壁38は夫々軸方向に沿って略平らな面を有すると共に、夫々凹所36のC字の端部と軸方向に略重なって位置している。   And the partition part 37 has the side wall 38 in the both ends of the circumferential direction of a circular arc, and the end surface of an axial direction is contact | abutted to the opposing surface of the pump case 20. As shown in FIG. Furthermore, each side wall 38 has a substantially flat surface along the axial direction, and is positioned so as to substantially overlap the C-shaped end of the recess 36 in the axial direction.

また、ポンプケース20は、図4に示すように、軸11の他端を固定する固定円部23と、固定円部23の外周に位置し平面視略環状の平面25を有した平面部24と、でポンプ室1の内面を形成している。   As shown in FIG. 4, the pump case 20 has a fixed circular portion 23 that fixes the other end of the shaft 11, and a flat portion 24 that is positioned on the outer periphery of the fixed circular portion 23 and has a substantially annular flat surface 25 in plan view. The inner surface of the pump chamber 1 is formed.

平面部24は環状の平面25が、円板16のフランジ部33に対向した板面17と反対側の板面17(他方の板面17)に対向する対向面となっている。そして、平面部24は該平面25に、軸方向に凹んだ平面視略C字形状の凹陥部26と、凹陥部26の周方向の間に位置して軸方向に突出した突部27と、を有している。更に、平面部24は凹陥部26より内周側の平面25が他方の板面17との軸方向の間に所定のクリアランスを有している。   In the plane portion 24, the annular plane 25 is a facing surface facing the plate surface 17 (the other plate surface 17) opposite to the plate surface 17 facing the flange portion 33 of the disk 16. The planar portion 24 is formed on the planar surface 25 in a substantially C-shaped concave portion 26 that is recessed in the axial direction, and a projecting portion 27 that is located between the circumferential directions of the concave portion 26 and protrudes in the axial direction. have. Further, the flat surface portion 24 has a predetermined clearance between the flat surface 25 on the inner peripheral side of the recessed portion 26 and the other plate surface 17 in the axial direction.

凹陥部26は軸11と略同芯のC字形状の天面を有すると共に、該天面が他方の板面17の軸方向における間にクリアランスより大きい寸法で離れており、平面視C字状の空間を形成している。そして、凹陥部26は平面視において外周端が凹所36の周面と略重なって位置すると共に、外周端の周面が凹所36の周面と軸方向に略面一で連続しており、内周端は羽根部18の内周端より内周側或いは略重なって位置している。   The recessed portion 26 has a C-shaped top surface that is substantially concentric with the shaft 11, and the top surface is separated by a dimension larger than the clearance between the other plate surfaces 17 in the axial direction. The space is formed. The recess 26 is positioned so that the outer peripheral end substantially overlaps with the peripheral surface of the recess 36 in plan view, and the peripheral surface of the outer peripheral end is substantially flush with the peripheral surface of the recess 36 in the axial direction. The inner peripheral end is located on the inner peripheral side or substantially overlapping the inner peripheral end of the blade portion 18.

更に、凹陥部26は、図4に示すように、天面の周方向の一方の端部に、吸入管21に連通する吸入連通孔29が開口しており、該天面の他方の端部には、図3に示すように、吐出管22に連通する吐出連通孔30が開口している。   Further, as shown in FIG. 4, the recessed portion 26 has a suction communication hole 29 communicating with the suction pipe 21 at one end portion in the circumferential direction of the top surface, and the other end portion of the top surface. As shown in FIG. 3, a discharge communication hole 30 communicating with the discharge pipe 22 is opened.

吸入連通孔29は、図4に示すように、吸入管21と略同形同寸の平面視矩形状で天面に開口しており、該開口は吸入管21の内部に連通すると共に、開口の縁と吸入管21の内面が軸方向に沿って略面一で連続している。そして、吐出連通孔30は、図3に示すように、吐出管22と略同形同寸の平面視矩形状で天面に開口しており、該開口は吐出管22の内部に連通すると共に、開口の縁と吐出管22の内面が軸方向に沿って略面一で連続している。   As shown in FIG. 4, the suction communication hole 29 has a rectangular shape in plan view that is substantially the same shape and the same size as the suction pipe 21, and is open to the top surface. The opening communicates with the inside of the suction pipe 21, and And the inner surface of the suction pipe 21 are substantially flush with each other along the axial direction. As shown in FIG. 3, the discharge communication hole 30 has a rectangular shape in plan view that is substantially the same shape and size as the discharge pipe 22, and is open to the top surface. The opening communicates with the inside of the discharge pipe 22. The edge of the opening and the inner surface of the discharge pipe 22 are substantially flush with each other along the axial direction.

また、凹陥部26は周方向の端部が凹所36の周方向の端部と軸方向に沿って略重なって位置して、凹所36と軸方向に連通しており、凹陥部26と凹所36の形成する空間は回転方向RDに視て断面略L字形状となっている。そして、凹陥部26及び凹所36によって形成されたL字の空間は、流体の流れる流路5となっている。   Further, the recessed portion 26 is positioned so that the circumferential end thereof substantially overlaps the circumferential end of the recessed portion 36 along the axial direction, and communicates with the recessed portion 36 in the axial direction. The space formed by the recess 36 has a substantially L-shaped cross section when viewed in the rotation direction RD. The L-shaped space formed by the recessed portion 26 and the recessed portion 36 is a flow path 5 through which fluid flows.

そのため、凹陥部26及び凹所36のC字の周方向の吸入管21側の端部が、流路5の上流端6側となっており、吐出管22側の端部が流路5の下流端7側となっている。そして、流路5の下流端7と上流端6の回転方向RDに沿った間に、仕切り部37と突部27が位置するため、上流側と下流側の圧力差が保持されると共に、下流側から上流側への流体の流動を制限されている。   Therefore, the end of the concave portion 26 and the recess 36 on the suction pipe 21 side in the circumferential direction of the C-shape is the upstream end 6 side of the flow path 5, and the end on the discharge pipe 22 side is the end of the flow path 5. It is the downstream end 7 side. And since the partition part 37 and the protrusion 27 are located between the downstream end 7 and the upstream end 6 of the flow path 5 along the rotation direction RD, the pressure difference between the upstream side and the downstream side is maintained, and the downstream side The flow of fluid from the side to the upstream side is restricted.

更に、流路5は羽根車4回転時に切欠き19に連通することで、流体の流れに渦流れを発生させている。詳しくは、図5の矢印Arで示すように、流路5内を回転方向RDに流動する流体が、流路5内を流動中に切欠き19内に流れ込んだ後、切欠き19の円弧に沿って流れて流路5に戻るものとなっている。   Further, the flow path 5 communicates with the notch 19 when the impeller 4 rotates, thereby generating a vortex flow in the fluid flow. Specifically, as indicated by an arrow Ar in FIG. 5, the fluid that flows in the rotational direction RD in the flow path 5 flows into the notch 19 while flowing in the flow path 5, and then enters the arc of the notch 19. It flows along and returns to the flow path 5.

また、図4や図6に示すように、突部27は凹陥部26の両端の周方向の間に位置しており、該突部27の軸方向を向く端面は、平面部24の凹陥部26より内周側の平面25と、略面一に連続すると共に、仕切り部37の軸方向を向く端面に当接されている。   Further, as shown in FIGS. 4 and 6, the protrusion 27 is located between the circumferential directions of both ends of the recess 26, and the end surface facing the axial direction of the protrusion 27 is the recess of the flat portion 24. 26 is substantially flush with the flat surface 25 on the inner peripheral side of the inner wall 26 and is in contact with the end surface of the partition portion 37 facing the axial direction.

そして、突部27は周方向の両端に軸方向に沿って略平らな側面28を夫々備えており、各側面28が夫々軸方向に沿って仕切り部37の側壁38と略面一で連続している。そのため、突部27は流路5の羽根部18の軸方向の一端側(凹陥部26側)の空間を略閉塞して、流路5を仕切り部37と共に平面視C字形状に仕切っている。   The protrusions 27 are respectively provided with substantially flat side surfaces 28 along the axial direction at both ends in the circumferential direction, and each side surface 28 is substantially flush with the side wall 38 of the partition portion 37 along the axial direction. ing. Therefore, the protrusion 27 substantially closes the space on one end side (the recessed portion 26 side) in the axial direction of the blade portion 18 of the flow path 5, and partitions the flow path 5 together with the partition portion 37 in a C shape in plan view. .

更に、突部27は一方の側面28が、図4に示すように、吸入管21の内面とも軸方向に沿って略面一に連続しており、他方の側面28が、図3や図6に示すように、吐出管22の内面とも軸方向に沿って略面一に連続している。そして、突部27の他方の側面28は、流路5内を流動する流体が衝突する気液分離部の衝突面44となっており、該衝突面44に気液混合流体が衝突すると、該流体の気液分離が行われた後、流体や分離された気体等が吐出管22に送出される。   Further, as shown in FIG. 4, the protrusion 27 has one side surface 28 that is substantially flush with the inner surface of the suction pipe 21 along the axial direction, and the other side surface 28 is connected to the inner surface of FIG. As shown, the inner surface of the discharge pipe 22 is also substantially flush with the axial direction. The other side surface 28 of the protrusion 27 serves as a collision surface 44 of the gas-liquid separation unit where the fluid flowing in the flow path 5 collides, and when the gas-liquid mixed fluid collides with the collision surface 44, After the gas-liquid separation of the fluid, the fluid, the separated gas, and the like are sent to the discharge pipe 22.

このように、突部27の側面28を気液分離部の衝突面44としたことで、流体は略平らな衝突面44に衝突するため、衝突面44が曲面形状のものに比べて、流体の衝突面44への衝突力を大きくできる。そして、衝突力を大きくしたことで、気液分離効率が上がり、ポンプ室1内に気体が残留し難くなり、軸周りへの気体滞留に伴うポンプロックや軸固着等の異常停止が発生し難くなり、ポンプ駆動の安定性を向上させることができる。   As described above, since the side surface 28 of the protrusion 27 is used as the collision surface 44 of the gas-liquid separation unit, the fluid collides with the substantially flat collision surface 44. Therefore, the collision surface 44 is more fluid than the curved surface. The impact force on the impact surface 44 can be increased. And, by increasing the collision force, the gas-liquid separation efficiency is increased, and it is difficult for the gas to remain in the pump chamber 1, and it is difficult to cause an abnormal stop such as pump lock or shaft sticking due to gas retention around the shaft. Thus, the stability of driving the pump can be improved.

また、気体の滞留を抑制したことで、気液混合流体吸入時や自吸動作時のポンプの気体の排出性能(自吸性能)を向上できて、自吸動作時のポンプ姿勢の制限を緩和できて、ポンプの設置姿勢の自由度を向上させることができる。   In addition, by suppressing gas stagnation, the pump gas discharge performance (self-priming performance) during gas-liquid mixed fluid inhalation or self-priming operation can be improved, and the restriction on the pump posture during self-priming operation is eased. It is possible to improve the degree of freedom of the installation posture of the pump.

そして、ポンプ姿勢の制限を緩和したことで、車両用の液体燃料の供給装置等の渦流ポンプを備えた流体供給装置において、従来の装置に比べて、デットスペースの削減による小型化や、流体供給源の位置変更に伴う低重心化等を行うことができる。更に、ポンプ姿勢の制限緩和によって、コンピュータやプロジェクター等の様々な姿勢で使用される機器であっても、該機器用の冷却装置等の流体循環装置に、循環ポンプとして搭載(設置)することが可能となる。   Since the restriction on the posture of the pump has been relaxed, the fluid supply device equipped with a vortex pump such as a liquid fuel supply device for vehicles can be reduced in size by reducing dead space and fluid supply compared to conventional devices. The center of gravity can be lowered by changing the position of the source. Furthermore, by relaxing the restriction on the pump posture, even equipment that is used in various postures, such as computers and projectors, can be mounted (installed) as a circulation pump in a fluid circulation device such as a cooling device for the equipment. It becomes possible.

また、流路5の下流端7より回転方向RDの先端側(仕切り部37側)の部位において、仕切り部37がポンプ室1内面と羽根部18のラジアル方向の間隔を狭めており、突部27がポンプ室1内面と羽根部18の軸方向の間隔を狭めている。すなわち、仕切り部37及び突部27を設けたことで、従来の仕切り部37でラジアル方向の間のみを狭めたものに比べて、先端側の部位における羽根部18周辺のポンプ室1の内面との隙間を狭めたものとなっている。   Further, the partition portion 37 narrows the radial space between the inner surface of the pump chamber 1 and the blade portion 18 at the tip end side (partition portion 37 side) in the rotational direction RD from the downstream end 7 of the flow path 5. 27 narrows the interval between the inner surface of the pump chamber 1 and the blade portion 18 in the axial direction. That is, by providing the partition part 37 and the protrusion 27, the inner surface of the pump chamber 1 around the blade part 18 at the tip side portion compared to the conventional partition part 37 narrowed only in the radial direction, The gap is narrowed.

そのため、下流端7に流れた流体が衝突面44を避け難くなり、衝突面44に流体を衝突させ易くできて、気液分離部で気液分離を行い易くすることができる。そして、分離された気体のポンプ室1内での逃げ場も生じ難くなるため、気体が上流側や軸芯側に逃げ難くなり、気体を吐出管22に送出(排出)し易くできて、気体の排出効率を向上させることができる。以下、衝突した液体や気液混合流体や分離された気体を纏めて流体等と記載する。   Therefore, it becomes difficult for the fluid that has flowed to the downstream end 7 to avoid the collision surface 44, the fluid can easily collide with the collision surface 44, and gas-liquid separation can be easily performed in the gas-liquid separation unit. And since the escape space of the separated gas in the pump chamber 1 is less likely to occur, it becomes difficult for the gas to escape to the upstream side and the shaft core side, and the gas can be easily sent (discharged) to the discharge pipe 22. Emission efficiency can be improved. Hereinafter, the collided liquid, gas-liquid mixed fluid, and separated gas are collectively referred to as fluid.

また、衝突面44が側壁38及び吐出管22の内面と軸方向に沿って略面一で連続するため、下流端7に流動された流体等を略面一に連続する面に沿って滑らかに吐出管22内へ導出できて、流体の吐出管22への送出効率を向上することができる。   Further, since the collision surface 44 is substantially flush with the side wall 38 and the inner surface of the discharge pipe 22 along the axial direction, the fluid or the like flowing to the downstream end 7 can be smoothly smoothed along the substantially flush surface. It can lead out into the discharge pipe 22, and the delivery efficiency of the fluid to the discharge pipe 22 can be improved.

そして、仕切り部37の端面と突部27の端面を当接したことで、断面L字の流路5の下流端7より先端側が略閉塞されて、流体等の逃げ場をより生じ難くできると共に、衝突面44を広くできる。そのため、流体が衝突面44に衝突し易くなり、気液分離効率が上がり、気体の排出性能及び自吸性能を向上させることができる。   And by contacting the end face of the partition part 37 and the end face of the projection part 27, the tip side is substantially blocked from the downstream end 7 of the flow path 5 having the L-shaped cross section, and it is possible to make it more difficult for a fluid or the like to escape. The collision surface 44 can be widened. Therefore, the fluid easily collides with the collision surface 44, the gas-liquid separation efficiency is increased, and the gas discharge performance and the self-priming performance can be improved.

更に、流路5の下流端7より先端側を略閉塞したことで、突部27の無い凹陥部26が環状に凹んだ(全周に凹んだ)ものに比べて、流体が吐出管22に送出され易くなり、流体等の吐出管22への送出効率を向上させることができる。   Furthermore, since the distal end side of the downstream end 7 of the flow path 5 is substantially closed, the fluid flows into the discharge pipe 22 as compared with the case where the recessed portion 26 without the projecting portion 27 is annularly recessed (recessed in the entire circumference). It becomes easy to send out, and the delivery efficiency to the discharge pipe 22 of fluid etc. can be improved.

また、符号39は立設壁35の先端と嵌まり合う環状の凹部であり、符号40はシール部材を介在させてポンプケース20と分離板31の間をシールするシール部であり、凹部39及びシール部40によって流路5内の流体の外周への漏れを抑制している。そして、符号41はポンプケース20と分離板31を固定する固定具43を挿し通す挿通孔であり、ポンプケース20には該挿通孔41に連通してねじ等の固定具43を挿し通す連通孔42が形成されている。   Reference numeral 39 denotes an annular recess that fits with the tip of the standing wall 35, and reference numeral 40 denotes a seal portion that seals between the pump case 20 and the separation plate 31 with a seal member interposed therebetween. The seal portion 40 suppresses leakage of fluid in the flow path 5 to the outer periphery. Reference numeral 41 denotes an insertion hole through which a fixture 43 for fixing the pump case 20 and the separation plate 31 is inserted, and the pump case 20 communicates with the insertion hole 41 and through which a fixture 43 such as a screw is inserted. 42 is formed.

なお、所定のクリアランスとは、夫々ポンプ組立時の部品交差等で軸方向の寸法が変化しても、互いが接触しない(寸法が零に成らない)程度に広く、且つ流体が容易に流動しない程度に狭い隙間となっている。   The predetermined clearance is wide enough that the dimensions do not come into contact with each other (the dimension does not become zero) even if the dimensions in the axial direction change due to parts crossing during pump assembly, etc., and the fluid does not flow easily. The gap is narrow enough.

また、実施形態の他例として、図7〜9に示すように、ポンプ室1内に、滞留した気体を流路5の上流端6側(吸入管21側)に戻す還流路を設けて、自吸性能を向上させてもよい。なお、前述の例と略同様の構成は同じ符号を付して、重複する説明は省略する。   As another example of the embodiment, as shown in FIGS. 7 to 9, a reflux path is provided in the pump chamber 1 to return the accumulated gas to the upstream end 6 side (suction pipe 21 side) of the flow path 5. Self-priming performance may be improved. In addition, the substantially same structure as the above-mentioned example attaches | subjects the same code | symbol, and abbreviate | omits the overlapping description.

還流路は、流路5の下流側を流れる流体(液体や気液混合流体)を流路5より内周側に流入させると共に、内周側の流体を流路5の上流側に流出させて、流路5より内周側の空間に流体の流れを発生させている。   The reflux path allows fluid (liquid or gas-liquid mixed fluid) flowing downstream from the flow path 5 to flow into the inner peripheral side from the flow path 5, and causes fluid on the inner peripheral side to flow out upstream from the flow path 5. The flow of fluid is generated in the space on the inner peripheral side from the flow path 5.

詳しくは、図9に示すように、分離板31に形成された第1溝部53と、ポンプケース20に形成された第2溝部54と、ロータ14の突出部15に形成された貫通路55と、からなる還流路を、前述の例の渦流ポンプに追加したものとなっている。   Specifically, as shown in FIG. 9, the first groove portion 53 formed in the separation plate 31, the second groove portion 54 formed in the pump case 20, and the through passage 55 formed in the protruding portion 15 of the rotor 14 Are added to the vortex pump of the above-described example.

第1溝部53はフランジ部33の立設壁35との接続部位から内周端までラジアル方向に沿ってフランジ部33の一端面34から軸方向に凹んだ形状となっている。そして、第1溝部53は外周端が立設壁35を介して凹所36の軸方向を向く端面に開口している。   The first groove portion 53 has a shape that is recessed in the axial direction from the one end surface 34 of the flange portion 33 along the radial direction from the connection portion with the standing wall 35 of the flange portion 33 to the inner peripheral end. The first groove portion 53 has an outer peripheral end that is open to an end surface facing the axial direction of the recess 36 via the standing wall 35.

更に、第1溝部53の上記開口は、図7に示すように、回転円上において吸入連通孔29から略180度回転した位置に設けられて、凹所36の形成する空間に連通している。   Further, as shown in FIG. 7, the opening of the first groove portion 53 is provided at a position rotated approximately 180 degrees from the suction communication hole 29 on the rotation circle, and communicates with the space formed by the recess 36. .

そのため、第1溝部53は一端面34及び壁面に形成された回転方向RDに視て略L字状の溝(凹み)となっており、第1溝部53の壁面側の開口は流路5の中間より下流側に位置して、還流路内に流体を流入する還流路上流端51となっている。そして、還流路上流端51は吸入連通孔29から略180度回転した線対象位置に設けられている。   Therefore, the first groove portion 53 is a substantially L-shaped groove (dent) as viewed in the rotational direction RD formed on the one end surface 34 and the wall surface, and the opening on the wall surface side of the first groove portion 53 is the flow path 5. It is located on the downstream side of the middle, and is a reflux path upstream end 51 for flowing fluid into the reflux path. The upstream end 51 of the reflux path is provided at a line target position rotated approximately 180 degrees from the suction communication hole 29.

更に、第1溝部53は、一端面34に形成された軸方向を向く底面と一方の板面17の軸方向の間の寸法及び、立設壁35に形成された外周面と円板16の外周端のラジアル方向の間の寸法が夫々クリアランスより大きい寸法となっている。そのため、第1溝部53は溝内を流体が流動し易く且つ流路5から溝内に流体が流入し易い形状となっており、流路5内を流れる流体の一部は、羽根車4の回転に伴い第1溝部53を介して円筒部32の内周空間に流入される。以下、円筒部32の内周空間を単に円筒部32内と記載する。   Further, the first groove portion 53 has a dimension between the bottom surface facing the axial direction formed on the one end surface 34 and the axial direction of the one plate surface 17, and the outer peripheral surface formed on the standing wall 35 and the disc 16. The dimensions between the outer peripheral ends in the radial direction are larger than the clearances. Therefore, the first groove portion 53 has a shape in which the fluid easily flows in the groove and the fluid easily flows into the groove from the flow path 5, and a part of the fluid flowing in the flow path 5 is part of the impeller 4. With rotation, the air flows into the inner circumferential space of the cylindrical portion 32 through the first groove portion 53. Hereinafter, the inner circumferential space of the cylindrical portion 32 is simply referred to as the inside of the cylindrical portion 32.

また、第2溝部54は、図7や図8に示すように、平面部24の内周端から外周端までラジアル方向に沿って平面部24の平面25から軸方向に凹んでおり、ラジアル方向に沿った略直線形状の溝となっている。そして、第2溝部54は外周端が凹陥部26の内周面に開口しており、該開口は凹陥部26の形成する空間の吸入連通孔29の近傍位置に連通している。そのため、上記外周端の開口は、還流路内の流体を流路5の上流端6に還流する還流路下流端52となっている。   Further, as shown in FIGS. 7 and 8, the second groove portion 54 is recessed in the axial direction from the flat surface 25 of the flat surface portion 24 along the radial direction from the inner peripheral end to the outer peripheral end of the flat surface portion 24. It is a substantially linear groove along the line. The outer peripheral end of the second groove portion 54 opens to the inner peripheral surface of the recessed portion 26, and the opening communicates with a position near the suction communication hole 29 in the space formed by the recessed portion 26. Therefore, the opening at the outer peripheral end is a reflux path downstream end 52 that returns the fluid in the reflux path to the upstream end 6 of the channel 5.

更に、第2溝部54は、図9に示すように、平面部24に形成された凹陥部26より内周側の平面25と一方の板面17の軸方向の間の寸法がクリアランスより大きい寸法となっている。そのため、第2溝部54は溝内を流体が流動し易く且つ溝内から流路5に流体が流入し易い形状となっており、円筒部32内の流体の一部は、羽根車4の回転に伴い第2溝部54を介して流路5の上流端6に還流される。   Further, as shown in FIG. 9, the second groove portion 54 has a dimension in which the dimension between the inner circumferential plane 25 and the axial direction of the one plate surface 17 is larger than the clearance than the recess 26 formed in the plane section 24. It has become. Therefore, the second groove portion 54 has a shape in which the fluid easily flows in the groove and the fluid easily flows into the flow path 5 from the groove, and part of the fluid in the cylindrical portion 32 is rotated by the impeller 4. As a result, the refrigerant is returned to the upstream end 6 of the flow path 5 through the second groove portion 54.

なお、円筒部32内から第2溝部54に流体が流動可能とするために、ポンプケース20の固定円部23の外周面と円板16の内周端のラジアル方向の間をクリアランスより大きい寸法で離すことが好ましい。もちろん、第2溝部54は、平面部24の内周端から軸方向に沿って固定円部23の外周面にも溝を有して、固定円部23の軸方向の端部から円筒部32内に連通した回転方向RDに視て略L字状の凹みであってもよい。   In order to allow fluid to flow from the inside of the cylindrical portion 32 to the second groove portion 54, the dimension between the outer peripheral surface of the fixed circular portion 23 of the pump case 20 and the radial direction of the inner peripheral end of the disc 16 is larger than the clearance. It is preferable to release with. Of course, the second groove portion 54 also has a groove on the outer peripheral surface of the fixed circular portion 23 along the axial direction from the inner peripheral end of the flat portion 24, and the cylindrical portion 32 extends from the axial end portion of the fixed circular portion 23. It may be a substantially L-shaped dent as viewed in the rotational direction RD communicating with the inside.

また、貫通路55は軸方向に沿ってロータ14の突出部15に貫通すると共に、突出部15に複数設けられており、貫通路55は円筒部32内の一端側(底部側)と突出部15を挟んだ他端側(フランジ部33側)の二つの空間を連通させている。   The through passage 55 penetrates the projecting portion 15 of the rotor 14 along the axial direction, and a plurality of the through passages 55 are provided in the projecting portion 15. The through passage 55 has one end side (bottom side) in the cylindrical portion 32 and the projecting portion. Two spaces on the other end side (flange portion 33 side) sandwiching 15 are communicated.

そのため、円筒部32内の液体はロータ14の回転に伴い貫通路55を介して一端側から他端側へ或いは他端側から一端側へ流動するものとなっており、該流動に伴い軸周りに滞留した気体を攪拌して、円筒部32内の流体を気液混合流体にしている。そして、第1溝部53を介した流路5からの液体流入と第2溝部54を介した流路5への液体流出に伴って、円筒部32内の気液混合流体は第2溝部54を介して流路5の上流端6に流出される。   Therefore, the liquid in the cylindrical portion 32 flows from the one end side to the other end side or from the other end side to the one end side through the through passage 55 as the rotor 14 rotates. The gas staying in the cylinder is agitated to make the fluid in the cylindrical portion 32 a gas-liquid mixed fluid. As the liquid flows in from the flow path 5 via the first groove 53 and flows out to the flow path 5 via the second groove 54, the gas-liquid mixed fluid in the cylindrical portion 32 flows through the second groove 54. To the upstream end 6 of the flow path 5.

このように、還流路を設けたことで、流路5の下流側と上流側の圧力差に伴い、第1溝部53や第2溝部54を介して流路5の下流側から上流側へ流路5内の液体が還流すると共に、還流時に軸周りを流れる際に、液体と滞留気体が混合される。そのため、流路5の下流側から還流路に導入された液体は、気液混合流体となって還流路から流路5の上流側に導出されて、円筒部32内の滞留気体を低減できる。   Thus, by providing the reflux path, the flow from the downstream side to the upstream side of the flow path 5 via the first groove part 53 and the second groove part 54 is caused by the pressure difference between the downstream side and the upstream side of the flow path 5. The liquid in the passage 5 is refluxed, and the liquid and the staying gas are mixed when flowing around the axis during the reflux. Therefore, the liquid introduced into the reflux path from the downstream side of the flow path 5 becomes a gas-liquid mixed fluid and is led out to the upstream side of the flow path 5 from the reflux path, so that the staying gas in the cylindrical portion 32 can be reduced.

そして、滞留気体を低減できるため、滞留気体の増加に伴うポンプロックや軸固着等のポンプの異常停止を発生し難くすることができる。更に、滞留気体が気液混合流体となって流路5内を流動するため、流路5の下流端7に流動され易くなり、流動された滞留気体は下流端7の気液分離部で気液分離されて、吐出管22から外部に送出される。   And since a stagnant gas can be reduced, it can be made hard to generate | occur | produce the abnormal stop of pumps, such as a pump lock and shaft fixation accompanying the increase in a stagnant gas. Further, since the staying gas becomes a gas-liquid mixed fluid and flows in the flow path 5, the staying gas easily flows to the downstream end 7 of the flow path 5. The liquid is separated and sent out from the discharge pipe 22 to the outside.

すなわち、円筒部32内で液体に気体を混合すると共に、混合した流体を流路5の上流側に導出させたことで、気体の滞留を抑制できると共に、自吸性能を向上できて、自吸式渦流ポンプの設置時のポンプ姿勢の制限を緩和することができる。なお、還流路は溝形状のものに限らず、筒形状等の流路5内と円筒部32内を連通可能な形状のものであればよい。   That is, by mixing the gas with the liquid in the cylindrical portion 32 and leading the mixed fluid to the upstream side of the flow path 5, it is possible to suppress the stagnation of the gas and improve the self-priming performance. The restriction on the posture of the pump at the time of installing the eddy current pump can be relaxed. The reflux path is not limited to a groove shape, and may be any shape that allows the inside of the flow path 5 and the cylindrical portion 32 to communicate with each other.

また、還流路を設けたことで、流路5内の流体の一部(液体)が還流路に流れるため、吐出管22に流動される流体が減少して、吐出管22での流体圧力が低下することがある。そして、該圧力低下を軽減するには、第1溝部53の外周端である還流路上流端51を、図10,11に示すように、流路5の中間或いは中間より下流側に設けることが好ましい。   Further, since a part of the fluid (liquid) in the flow path 5 flows to the reflux path by providing the reflux path, the fluid flowing to the discharge pipe 22 decreases, and the fluid pressure in the discharge pipe 22 is reduced. May decrease. And in order to reduce this pressure fall, as shown to FIG. 10, 11, the reflux path upstream end 51 which is an outer peripheral end of the 1st groove part 53 should be provided in the middle of the flow path 5, or downstream from the middle. preferable.

図10は還流路上流端51の設置位置の例となっており、還流路上流端51の設置位置は流路5の上流側から順番に第1位置61、第2位置62、第3位置63、第4位置64、第5位置65となっている。そして、図11は還流路上流端51の設置位置の違いに伴うモータ回転数と吐出管22での流体圧力の解析結果となっており、各解析結果は夫々図10の設置位置のいずれか一つに還流路上流端51を設けた際の流体流動の解析結果となっている。   FIG. 10 shows an example of the installation position of the reflux path upstream end 51. The installation position of the reflux path upstream end 51 is the first position 61, the second position 62, and the third position 63 in order from the upstream side of the flow path 5. , A fourth position 64 and a fifth position 65. FIG. 11 shows the analysis results of the motor rotation speed and the fluid pressure in the discharge pipe 22 according to the difference in the installation position of the reflux path upstream end 51. Each analysis result is one of the installation positions in FIG. This is the analysis result of the fluid flow when the reflux path upstream end 51 is provided.

以下、羽根車4の回転円の軸芯を基準点として、吐出連通孔30と吸入連通孔29の周方向の中点から時計回り(回転方向RD)に90度ずつ、第1象限E1、第2象限E2、第3象限E3、第4象限E4と区画して、設置位置と圧力低下の関係を説明する。   Hereinafter, the first quadrant E1, the first quadrant E1, and the second quadrant are respectively rotated 90 degrees clockwise (rotational direction RD) from the circumferential center of the discharge communication hole 30 and the suction communication hole 29 with the axis of the rotation circle of the impeller 4 as a reference point. The relationship between the installation position and the pressure drop will be described by dividing the second quadrant E2, the third quadrant E3, and the fourth quadrant E4.

詳しくは、図10に示すように、第1象限E1が、流路5の上流端6(吸入管21)側の領域となっており、第4象限E4が、流路5の下流端7(吐出管22)側の領域となっている。   Specifically, as shown in FIG. 10, the first quadrant E1 is an area on the upstream end 6 (suction pipe 21) side of the flow path 5, and the fourth quadrant E4 is the downstream end 7 ( The region is on the discharge pipe 22) side.

そして、第2象限E2が、上流端6側(第1象限E1)より下流側で且つ流路長の略中間より上流側の領域となっており、第3象限E3が、下流端7側(第4象限E4)より上流側で且つ第2象限E2より下流側の領域となっている。   The second quadrant E2 is a region downstream from the upstream end 6 side (first quadrant E1) and upstream from the substantially middle of the flow path length, and the third quadrant E3 is the downstream end 7 side ( The region is upstream of the fourth quadrant E4) and downstream of the second quadrant E2.

また、第1位置61は第2象限E2上に開口し、第2位置62は流路長の略中間(第2象限E2と第3象限E3の境界)に位置するために第2象限E2及び第3象限E3上に開口している。そして、第3位置63は図7〜9に示した例の還流路上流端51の位置であり、該第3位置63は第3象限E3上に開口している。   In addition, since the first position 61 opens on the second quadrant E2, and the second position 62 is located approximately in the middle of the flow path length (the boundary between the second quadrant E2 and the third quadrant E3), the second quadrant E2 and It opens on the third quadrant E3. The third position 63 is the position of the reflux path upstream end 51 in the examples shown in FIGS. 7 to 9, and the third position 63 opens on the third quadrant E3.

更に、第4位置64は第3象限E3と第4象限E4の境界に位置するために第3象限E3及び第4象限E4上に開口し、第5位置65は第4象限E4上に開口している。すなわち、第2位置62、第3位置63、第4位置64は少なくとも一部が、流路5の中間或いは中間より下流側である第3象限E3上に開口している。   Further, since the fourth position 64 is located at the boundary between the third quadrant E3 and the fourth quadrant E4, the fourth position 64 opens on the third quadrant E3 and the fourth quadrant E4, and the fifth position 65 opens on the fourth quadrant E4. ing. That is, at least a part of the second position 62, the third position 63, and the fourth position 64 is open on the third quadrant E3 that is in the middle of the flow path 5 or downstream from the middle.

また、図11に示すように、第3象限E3上に開口した第2位置62、第3位置63、第4位置64では、第1位置61や第5位置65に比べて圧力低下が小さく、第3位置63で最も圧力低下が小さい。これは、第1位置61では流体が不十分な加圧状態で還流路に流れ込み、第5位置65では還流路への流入量が多過ぎ、これら設置位置では、流体が流路5と還流路の間で循環し易く、ポンプ効率の低下に伴う圧力損失が大きくなるためと考えられる。   In addition, as shown in FIG. 11, the pressure drop is small at the second position 62, the third position 63, and the fourth position 64 opened on the third quadrant E3 as compared with the first position 61 and the fifth position 65. The pressure drop is the smallest at the third position 63. This is because at the first position 61, the fluid flows into the reflux path under insufficient pressure, and at the fifth position 65, there is too much inflow into the reflux path. This is thought to be because the pressure loss accompanying the decrease in pump efficiency increases.

このように、還流路の上流端51を、流路5の中間及び中間より下流側の領域である第3象限E3上に開口させることで、還流路設置に伴う圧力低下を軽減できて、気体滞留に伴う異常停止を抑制して良好な自吸性能を備えた渦流ポンプとなる。なお、還流路の上流端51は第2位置62、第3位置63、第4位置64に限らず、第2位置62と第3位置63の間や、第3位置63と第4位置64の間に設置してもよい。   In this way, by opening the upstream end 51 of the reflux path on the third quadrant E3 which is the middle of the flow path 5 and the downstream side of the middle, the pressure drop due to the reflux path can be reduced, and the gas It becomes a vortex pump with good self-priming performance by suppressing abnormal stop due to stagnation. The upstream end 51 of the return path is not limited to the second position 62, the third position 63, and the fourth position 64, but between the second position 62 and the third position 63, or between the third position 63 and the fourth position 64. You may install between.

1 ポンプ室
4 羽根車
5 流路
6 上流端
7 下流端
18 羽根部
21 吸入管
22 吐出管
27 突部
44 衝突面
DESCRIPTION OF SYMBOLS 1 Pump chamber 4 Impeller 5 Flow path 6 Upstream end 7 Downstream end 18 Blade part 21 Suction pipe 22 Discharge pipe 27 Projection part 44 Collision surface

Claims (5)

回転により流体を加圧する羽根部と、羽根部を外周に有した羽根車と、前記羽根車を内部に収納したポンプ室と、前記羽根車を回転させるモータと、を備えると共に、前記流体の流動する流路を前記ポンプ室の前記羽根車の外周側に有し、
前記ポンプ室が、前記流路の上流端に連通した吸入管と、前記流路の下流端に連通した吐出管と、前記流路の下流端で流体の気液分離を行う気液分離部と、を備え、
前記ポンプ室を形成するケーシングが前記羽根車と前記羽根車の回転軸芯の軸方向に対向した対向面を有すると共に、前記吐出管の内部が前記軸方向に沿って前記対向面から前記ポンプ室に連通し、
前記対向面の前記下流端を形成する部位に、周方向に平面を有した突部を設けて、
該突部の前記平面を前記気液分離部の流体を衝突させて気液分離を行う衝突面としたものであることを特徴とする渦流ポンプ。
The fluid flow includes: a blade portion that pressurizes fluid by rotation; an impeller having a blade portion on an outer periphery; a pump chamber that houses the impeller inside; and a motor that rotates the impeller. A flow path on the outer peripheral side of the impeller of the pump chamber,
A suction pipe that communicates with the upstream end of the flow path; a discharge pipe that communicates with the downstream end of the flow path; and a gas-liquid separation unit that performs gas-liquid separation of the fluid at the downstream end of the flow path. With
The casing that forms the pump chamber has a facing surface facing the axial direction of the impeller and the rotational axis of the impeller, and the inside of the discharge pipe extends from the facing surface along the axial direction to the pump chamber. Communicate with
Providing a projecting portion having a flat surface in the circumferential direction at a portion forming the downstream end of the facing surface,
The eddy current pump according to claim 1, wherein the flat surface of the protrusion is a collision surface that collides the fluid of the gas-liquid separation unit to perform gas-liquid separation.
前記気液分離部の前記衝突面が前記吐出管の内面と軸方向に沿って面一に並ぶものであることを特徴とする請求項1に記載の渦流ポンプ。   The vortex pump according to claim 1, wherein the collision surface of the gas-liquid separation unit is flush with the inner surface of the discharge pipe along the axial direction. 前記吐出管の内部が前記流体の流通方向に直交して切断した断面形状を矩形状としたものであることを特徴とする請求項1又は2に記載の渦流ポンプ。   The vortex pump according to claim 1 or 2, wherein the discharge pipe has a rectangular cross-sectional shape cut in a direction perpendicular to the fluid flow direction. 前記ポンプ室が前記流路の下流端と上流端の間を仕切る仕切り部を有し、前記仕切り部が前記吐出管の内面と面一で並ぶ前記下流端側の側壁を有したものであることを特徴とする請求項1〜3のいずれか1項に記載の渦流ポンプ。   The pump chamber has a partition part that partitions between the downstream end and the upstream end of the flow path, and the partition part has a side wall on the downstream end side that is flush with the inner surface of the discharge pipe. The eddy current pump according to any one of claims 1 to 3. 気体を上流端の還流させる還流路を備え、前記還流路の上流端を前記流路の中間或いは前記中間より下流側に設けたものであることを特徴とする請求項1〜4のいずれか1項に記載の渦流ポンプ。   A reflux path for refluxing gas at an upstream end is provided, and an upstream end of the reflux path is provided in the middle of the flow path or on the downstream side of the middle. The vortex pump according to item.
JP2010239888A 2010-10-26 2010-10-26 Vortex pump Withdrawn JP2012092727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239888A JP2012092727A (en) 2010-10-26 2010-10-26 Vortex pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239888A JP2012092727A (en) 2010-10-26 2010-10-26 Vortex pump

Publications (1)

Publication Number Publication Date
JP2012092727A true JP2012092727A (en) 2012-05-17

Family

ID=46386339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239888A Withdrawn JP2012092727A (en) 2010-10-26 2010-10-26 Vortex pump

Country Status (1)

Country Link
JP (1) JP2012092727A (en)

Similar Documents

Publication Publication Date Title
JP4293217B2 (en) Pump and fluid supply device
JP6411468B2 (en) Pump device
CN111373157B (en) Centrifugal pump
TWI464321B (en) Fuel pump
JP2012092727A (en) Vortex pump
WO2022070991A1 (en) Fluid machine
WO2014155925A1 (en) Pump
JP2006348802A (en) Electric pump
JP5568383B2 (en) Water pump
JP5481346B2 (en) Centrifugal pump
JP2007198350A (en) Centrifugal pump and rotor
WO2013179918A1 (en) Self-suction pump
JP2020094496A (en) Centrifugal pump
JP5699274B2 (en) pump
CN111365248A (en) Thin pump
JP5766461B2 (en) Pump device
KR102571417B1 (en) Turbo compressor
US11346358B2 (en) Impeller and centrifugal pump
WO2024057912A1 (en) Pump
JP7159896B2 (en) underwater pump
JP2013064383A (en) Centrifugal pump
WO2020137649A1 (en) Pump
JP2003155992A (en) Fuel pump
JP2006083774A (en) Inline pump
JP2021139311A (en) Pump device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107