JP2012092520A - Construction method for preventing surface failure of slope - Google Patents

Construction method for preventing surface failure of slope Download PDF

Info

Publication number
JP2012092520A
JP2012092520A JP2010238958A JP2010238958A JP2012092520A JP 2012092520 A JP2012092520 A JP 2012092520A JP 2010238958 A JP2010238958 A JP 2010238958A JP 2010238958 A JP2010238958 A JP 2010238958A JP 2012092520 A JP2012092520 A JP 2012092520A
Authority
JP
Japan
Prior art keywords
slope
ground
collapse
vegetation
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238958A
Other languages
Japanese (ja)
Inventor
Hideki Inagaki
秀輝 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO CHISHITSU KK
Original Assignee
KANKYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO CHISHITSU KK filed Critical KANKYO CHISHITSU KK
Priority to JP2010238958A priority Critical patent/JP2012092520A/en
Publication of JP2012092520A publication Critical patent/JP2012092520A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To relatively easily and rapidly prevent a surface failure of a slope by providing a complementary construction method which can be applied even to the slope in precipitous mountains kept in a natural state and making carrying-in of large-size equipment difficult and which can prevent the surface failure while leaving vegetation as-is.SOLUTION: A plurality of iron base pipes 20, which each have a large number of strainer holes 24 formed in a dispersed manner on a peripheral wall of a pipe body and which each structurally have a leading end sharpened, are driven at each of a plurality of spots on a slope from a ground surface in directions different from one another. Back ends of the iron base pipes exposed on the ground are bundled and fastened together by a binding fitting 22, a wire and the like.

Description

本発明は、斜面の表層崩壊を防止する工法に関し、更に詳しく述べると、多数のストレーナ孔を備え、先端が閉合した中空構造の鉄管を斜面に直接打ち込むことにより、斜面の植生をそのまま残しながら表層崩壊を防止する補完的な対策工法に関するものである。   The present invention relates to a method for preventing the collapse of the surface layer of the slope. More specifically, the surface layer is formed by directly driving a hollow steel pipe having a large number of strainer holes and closed ends into the slope while leaving the slope vegetation intact. This is related to complementary measures to prevent collapse.

我が国で発生する自然災害の中で、土砂災害は発生頻度が高く、人命や財産に多大な損害を与えている。特に、斜面や法面の崩壊は最も多い災害であり、その約90%は表層崩壊であると言われている。このため、表層崩壊を未然に防止することが、斜面を保全する上で極めて重要である。この表層崩壊を防止するには、表層を保護する植生が効果的であるとされている。   Among natural disasters that occur in Japan, landslide disasters occur frequently and cause great damage to human lives and property. In particular, slopes and slopes are the most disasters, and about 90% of them are said to be surface failure. For this reason, it is extremely important to prevent the collapse of the surface layer in order to preserve the slope. Vegetation that protects the surface layer is said to be effective in preventing this surface layer collapse.

ところで、表層崩壊は、樹木の根が分布する深さ、もしくはそれよりやや深い表土の層が、降水の浸透とそれによる地下水によって凝集力・粘着力などの力学的安定性を失い、基盤岩に沿って剥落・滑落などの形で急激に崩れる現象である。従って、植生の有無や、植生の種類、その管理状況が、これらの表層崩壊に大きくかかわっているものと推測される。   By the way, in the surface layer collapse, the depth of the tree roots or a slightly deeper soil layer loses mechanical stability such as cohesion and adhesion due to the infiltration of precipitation and the resulting groundwater, and along the basement rock. It is a phenomenon that suddenly collapses in the form of peeling or sliding. Therefore, the presence or absence of vegetation, the type of vegetation, and its management status are presumed to be greatly involved in these surface layer collapses.

植生による斜面安定効果としては、降雨の分散や地表の侵食防止効果の他、根系による表土の緊縛効果、及び植根が基盤岩に侵入することによる杭効果が考えられる。そこで、植生根系による斜面安定手法を確立していくことは、我が国における数多くの斜面と法面の保全や地域生態系の保護のために大いに役立つとともに、最も経済的な対策方法と考えられる。しかしながら、地表の植生がいかに斜面の安定に関係しているかを系統立てた研究は少ない。   The slope stabilization effect by vegetation is considered to be the dispersion effect of rainfall and the effect of preventing erosion of the ground surface, the top-soil binding effect by the root system, and the pile effect by the vegetation invading the basement rock. Therefore, establishing a slope stabilization method using the vegetation root system is considered to be the most economical countermeasure method in addition to greatly helping to preserve many slopes and slopes in Japan and to protect local ecosystems. However, there are few studies that systematize how surface vegetation is related to slope stability.

植生による斜面安定効果について、具体的に現地調査を行った事例について説明する。例えば、未固結層地盤については、四国室戸半島の海岸段丘と釧路地方の根釧台地の2箇所で行った調査の結果、森林植生が未固結層の侵食防止や表層崩壊を防止する効果があることが明らかとなっている。岩盤地山については、岐阜県の七宗町での調査の結果、1998年台風8号・7号の風倒木被害の際、地形・地質条件が同じでも広葉樹の被害は少なく、針葉樹(特に未間伐の矮小木)での風倒被害が多く、根の張り方が強いとされる広葉樹での斜面安定効果が高く、樹種や森林の手入れのあり方が重要であることがわかった。   Explain the case study of the field survey on the slope stability effect of vegetation. For example, as for the unconsolidated layer ground, as a result of surveys conducted at two locations on the coastal terraces of the Shikoku Muroto Peninsula and the Neji Plateau in the Kushiro region, the effects of forest vegetation on preventing the unconsolidated layer from eroding and preventing surface collapse It is clear that there is. As for the rock mass, the result of the survey in Shichimune Town in Gifu Prefecture showed that there was little damage to the broadleaf trees even when the topography and geological conditions were the same during the typhoon No. 8 and No. 7 in 1998. It was found that the slope stabilization effect of broad-leaved trees, whose roots are strong, is high, and that the species and forest care are important.

しかし、詳細な検討を行うと、植生による斜面安定を阻害する特殊な地盤特性があることも分かってきた。特に、1998年8月に日本列島を縦断した台風4号は、福島県南部(白河地方)と栃木県北部で多くの斜面崩壊を発生させた。この斜面崩壊に注目すると、崩壊厚さが薄く、根系が垂直に深く延びずに斜面方向にだけ延びた特殊な表層地盤を構成していることがわかった。この崩壊を「根系層崩壊」と呼ぶことにする(非特許文献1参照)。その特徴は以下のとおりである。
(1)崩壊厚さが1m未満ときわめて薄い
(2)斜面傾斜が40°前後と急である
(3)表流水や地下水が集まりやすい地形・地質で生じる
(4)根系のある表層の直下に基盤岩が分布し、Nc値が2以下から50以上に急変する
(5)表層直下の基盤岩に根系が入り込む割れ目がない
(6)崩土内の立木が立ったままで崩土全体が速い速度で流下する
等である。
However, a detailed study has revealed that there are special ground characteristics that impede slope stability due to vegetation. In particular, Typhoon No. 4 that traversed the Japanese archipelago in August 1998 caused many slope failures in the southern part of Fukushima Prefecture (Shirakawa region) and the northern part of Tochigi Prefecture. Paying attention to this slope failure, it was found that the collapse surface is thin, and the root system does not extend deeply vertically but constitutes a special surface ground that extends only in the slope direction. This decay is referred to as “root system layer decay” (see Non-Patent Document 1). Its characteristics are as follows.
(1) Collapse thickness is very thin with less than 1m (2) Slope slope is steep and around 40 ° (3) Topography and geology where surface water and groundwater are likely to gather (4) Directly under the surface layer with root system The basement rock is distributed and the Nc value changes suddenly from 2 or less to 50 or more. (5) There is no fissure where the root system enters the basement rock immediately below the surface layer. And so on.

根系層崩壊の発生の原因は、その地形・地質・植生状況より、根系による崩壊防止効果の1つである緊縛効果は確保されているものの、もう1つの防止効果である杭効果(引き抜き抵抗効果)が表土と基盤岩との境界で発揮できないためと考えられる。また、根系層崩壊は集水地形の斜面で発生しており、崩壊面の表土と基盤岩との境界に湧水穴が数多く観察されること、崩壊上部で基盤岩の凹地構造が認められることが多いことから、豪雨に伴う地下水の集中と間隙水圧の発生により、根系層と基盤岩の境界ですべりが発生したものと判断できる。   The cause of the root layer collapse is the pile effect (drawing resistance effect), which is another prevention effect, although the tight binding effect, which is one of the root collapse prevention effects, is secured from the topography, geology, and vegetation status. ) Cannot be exhibited at the boundary between topsoil and basement rock. In addition, the root system collapse occurred on the slope of the catchment topography, and many spring holes were observed at the boundary between the topsoil and the basement rock on the collapsed surface, and the concave structure of the basement rock was observed at the top of the collapse. Therefore, it can be judged that slip occurred at the boundary between the root system layer and the basement rock due to the concentration of groundwater and generation of pore water pressure due to heavy rain.

このような根系層崩壊が発生しやすい地盤としては、白河の低溶結火砕流堆積物地盤だけでなく、風化花崗岩や泥岩地盤などがあることが分かった。風化花崗岩地盤としては、滋賀県の鈴鹿山脈(植林地)と原生林の残る同県太神山を調査し、植生と地盤との関係を明らかにした。それによると一度皆伐採が行われ、土壌流出が発生し、スギ植林となっている鈴鹿山脈では繰り返し根系層崩壊が発生している。それに対して、常緑樹の原生林が残る太神山では表層土壌の発達が良好で、根系層崩壊が発生していない。地形・地質的には鈴鹿山脈と同様であるが、植生の違いにより表層地盤が一度流出したところでは表層崩壊が繰り返し発生することが明らかとなり、良好な表層地盤の構造を作り出す潜在植生の重要性が明らかとなった。   It was found that not only the low welded pyroclastic flow deposit ground in Shirakawa but also weathered granite and mudstone ground are likely to cause such root system collapse. As weathered granite ground, we investigated the Suzuka Mountains (forestation) in Shiga Prefecture and Mt. According to this, clear-cutting was once performed, soil runoff occurred, and root system layer collapse occurred repeatedly in the Suzuka Mountains, which is a cedar plantation. On the other hand, Mt. Tajin, where the evergreen virgin forest remains, has good surface soil development and no root system collapse. The topography and geology are similar to those of the Suzuka Mountains, but it is clear that once the surface ground flows out due to the difference in vegetation, it is clear that the surface layer will repeatedly collapse, and the importance of potential vegetation to create a good surface structure Became clear.

このように斜面の表層崩壊を防止する上で、地表を保護する植生は極めて重要である。しかし、植生を効果的に管理するのは非常に手間のかかる作業であるし、時間もかかる。また、根系層崩壊が発生し易い地盤では、植生による斜面安定効果は限定的である。   Thus, vegetation that protects the ground surface is extremely important in preventing the collapse of the slope. However, managing vegetation effectively is a laborious and time consuming process. In addition, the slope stabilization effect by vegetation is limited on the ground where root system collapse is likely to occur.

ところで、従来、鉄道・道路関係の盛土・切土、宅地造成地の斜面等の不安定な土砂部の斜面の補強に、排水パイプが用いられている(特許文献1参照)。これは、周面に複数の水抜き穴を形成したパイプを、不安定な土砂部の斜面に打ち込み又は挿入することにより、パイプの内部を通って水を排出させるものである。地盤内の過剰な水分の排出を主な目的とすることから、パイプとしては、ある程度の太さと長さを必要とする。例えば、特許文献1では、外径60mm程度、長さ3.6m程度のものが用いられている。また、排水のために、パイプは、ほぼ水平か、あるいは外部に露出する外端部が下向きとなるように傾斜させて設置する。   By the way, drainage pipes are conventionally used to reinforce slopes of unstable sediments such as banking / cutting related to railways and roads, and slopes of residential land development sites (see Patent Document 1). This is to discharge water through the inside of the pipe by driving or inserting a pipe having a plurality of drain holes in the peripheral surface into the slope of an unstable earth and sand part. Since the main purpose is to discharge excess water in the ground, the pipe needs to have a certain thickness and length. For example, in Patent Document 1, an outer diameter of about 60 mm and a length of about 3.6 m are used. For drainage, the pipe is installed so as to be substantially horizontal or inclined so that the outer end exposed to the outside faces downward.

このような太く長い排水パイプを用いると、地盤内の排水路を長期的に確保できるが、斜面への打ち込み施工には打設機械を必要とし、機材を搬入できる人工の限られた不安定斜面にしか適用できない。しかし、斜面の表層崩壊を防止したい箇所は、多くの場合、自然の斜面であり、機材を搬入し難い急峻な山間の斜面である。そのような斜面の安定化については、現時点では、植生に頼るしかないが、前述のように、植生の効果的な管理には莫大な手間と時間がかかり、樹木の根系を育成する速効性のある方法はない。また、植生のみでは不十分な地盤もある。   Using such a long and long drainage pipe, it is possible to secure a long-term drainage channel in the ground, but the construction work on the slope requires a driving machine, and an artificially limited unstable slope that can carry in equipment. Only applicable to However, in many cases, it is a natural slope, and a steep mountain slope where it is difficult to carry in equipment is desired to prevent the slope from collapsing. At present, such slope stabilization can only be relied on vegetation. However, as mentioned above, effective management of vegetation requires enormous effort and time, and is effective in nurturing the root system of trees. There is no way. There are also grounds where vegetation alone is insufficient.

特開2003−155737JP 2003-155737 A

稲垣秀輝「根系層崩壊」土と基礎、Vol.50, No.5 (2002)Hideaki Inagaki "Root System Collapse" Soil and Foundation, Vol.50, No.5 (2002)

本発明が解決しようとする課題は、自然の状態にあり、大型の機材を搬入し難い急峻な山間の斜面であっても適用でき、植生をそのまま残しながら、表層崩壊を防ぐ補完的な工法を提供し、それによって比較的容易に且つ速やかに斜面の表層崩壊を防止することができるようにすることである。   The problem to be solved by the present invention can be applied even to steep mountain slopes that are in a natural state and difficult to carry in large-sized equipment, and a complementary construction method that prevents surface layer collapse while leaving vegetation intact. It is to be able to prevent the surface layer collapse of the slope relatively easily and quickly.

本発明は、管本体の周壁に多数のストレーナ孔が分散形成され先端を尖鋭化した構造の鉄根パイプを、斜面の複数地点で、各地点に付き複数本、互いに異なる方向に地表から打ち込み、地上に露出している鉄根パイプの後端部同士を束ねて締結することを特徴とする斜面の表層崩壊防止工法である。この「鉄根パイプ」は、容易に地中への打ち込みができ且つその打ち込みに耐えるだけの機械的強度を有し、地中間隙水圧を低減できるようなサクション機能を備えた細径の管であり、樹木の根の機能を模した人工根の如きものであることから、本発明工法では『鉄根』と称している。   The present invention is a steel pipe having a structure in which a large number of strainer holes are distributed and formed on the peripheral wall of the pipe body, and the tip is sharpened, at a plurality of points on the slope, a plurality of pipes at each point, driven from the surface in different directions, It is a surface layer collapse prevention construction method characterized by bundling and fastening the rear ends of iron pipes exposed on the ground. This “iron pipe” is a small-diameter pipe that has a suction function that can easily be driven into the ground, has mechanical strength that can withstand the driving, and can reduce the underground pore water pressure. In the present invention, it is called “iron root” because it is like an artificial root that mimics the function of a tree root.

ここで使用する鉄根パイプは、典型的には長さ1.0〜1.5m、直径10〜20mmであり、その管本体周壁に形成する多数のストレーナ孔は、直径2〜6mmで、全周の3〜4方向に、5〜15cmの長さ方向間隔で、穿設されているものである。このような鉄根パイプを、例えば1地点当たり2〜6本ずつ地表から打ち込み、地上に露出している鉄根パイプの後端部同士を束ねてワイヤーで縛り付けることで締結する。   The iron pipe used here typically has a length of 1.0 to 1.5 m and a diameter of 10 to 20 mm, and a large number of strainer holes formed in the peripheral wall of the pipe body have a diameter of 2 to 6 mm, It is perforated in the 3-4 direction of the circumference at intervals of 5-15 cm in the length direction. Such iron root pipes are driven from the ground surface, for example, by 2 to 6 pieces per point, and the rear ends of the iron pipes exposed on the ground are bundled and tied together by a wire.

本発明に係る斜面の表層崩壊防止工法は、多数のストレーナ孔を備えた鉄根パイプを、複数本、互いに異なる方向に地表から打ち込み、地上に露出している鉄根パイプの後端部を結束する工法であるから、それによって実質的に樹木の根の効果を模すことができ、周囲の植生をそのまま残しながら、表層崩壊を防ぐ補完的な対策が可能となる。ここで打設した鉄根パイプは、地盤に対する緊縛効果及び杭効果によって表層崩壊を防止できる。また、鉄根パイプには多数のストレーナ孔が分散形成されているので、過剰な間隙水圧を低減する効果が生じ、豪雨に伴う地下水の集中と間隙水圧の発生による根系層と基盤岩の境界での滑り発生を未然に防止できる。   The slope surface layer prevention method according to the present invention includes a plurality of iron pipes having a plurality of strainer holes, driven from the surface in different directions, and binding the rear end of the iron pipe exposed to the ground. Therefore, it is possible to simulate the effect of the roots of the tree, thereby enabling complementary measures to prevent surface collapse while leaving the surrounding vegetation intact. The iron pipe pipes laid here can prevent the surface layer from collapsing by the binding effect and the pile effect on the ground. In addition, since many strainer holes are distributed in the iron pipe, the effect of reducing excessive pore water pressure occurs, and at the boundary between the root system layer and the basement rock due to the concentration of groundwater and generation of pore water pressure due to heavy rain. It is possible to prevent the occurrence of slippage.

本発明に係る斜面の表層崩壊防止工法の一実施例を示す説明図。Explanatory drawing which shows one Example of the surface layer collapse prevention construction method of the slope concerning this invention. 本発明で用いる鉄根パイプの一例を示す説明図。Explanatory drawing which shows an example of the iron pipe used by this invention.

本発明工法を適用する斜面の例を模式的に図1に示す。これは一部に植生のある山腹の断面である。内部の基盤岩10の上を表層12が覆っている状態である。基盤岩10は、割れ目のない岩盤で植根が入らない場合もあるし、割れ目があり植根が入るような場合もある。表層12は、表土により形成されている。   An example of a slope to which the present invention construction method is applied is schematically shown in FIG. This is a cross section of a mountainside with some vegetation. The surface layer 12 covers the inner basement rock 10. The basement rock 10 may be a bedrock that does not have cracks, and may not have roots, or may have cracks and roots. The surface layer 12 is formed of topsoil.

樹木は、山腹の表土中に網を広げるように強靱な根系16を形成する。この根系16によって、表土の緊縛効果が高まる。更に、割れ目がある基盤岩の場合には、植根が深度方向に発達し、割れ目に入り込む。割れ目に入り込んだ植根は、杭を打ったような状態となり、斜面安定効果が高まる。しかし、割れ目のない基盤岩の場合には、根系の深度方向の発達が阻害され、植根による杭効果は働かず、せん断強度の低下する滑り面14が基盤岩直上(基盤岩10と表層12との境界)に出現するため、根系層崩壊が生じるものと考えられる。このような根系層崩壊が生じやすい状況は、崩壊厚さが1m未満と極めて薄く、斜面傾斜が40度前後と急峻で、表流水や地下水が集まりやすい地形・地質である等の特徴がある。   The trees form a tough root system 16 that spreads the net in the hillside topsoil. The root system 16 enhances the topsoil binding effect. Furthermore, in the case of basement rocks with cracks, the roots develop in the depth direction and enter the cracks. The planted root that has entered the crack becomes like a pile, and the slope stabilization effect is enhanced. However, in the case of basement rocks without cracks, the development of the root system in the depth direction is hindered, the pile effect due to rooting does not work, and the sliding surface 14 with reduced shear strength is directly above the basement rock (basement rock 10 and surface layer 12). It appears that root system layer collapse occurs. Such a situation in which root layer collapse is likely to occur is characterized by the topography and geology where the collapse thickness is as thin as less than 1 m, the slope is steep and around 40 degrees, and surface water and groundwater are likely to gather.

そこで本発明工法では、鉄根パイプ20を、斜面の複数地点で、各地点に付き複数本、互いに異なる方向に地表から打ち込み、地上に露出している鉄根パイプの後端部同士を束ねて結束金具22などを用いて締結する。   Therefore, in the method of the present invention, the iron pipe 20 is driven from the surface of the steel pipe 20 at a plurality of points on the slope in different directions, and the rear ends of the steel pipes exposed on the ground are bundled together. Fastening is performed using the binding hardware 22 or the like.

ここで使用する鉄根パイプの一例を図2に示す。Aは平面を、Bはその縦断面を、Cはc−c断面を、それぞれ表している。鉄根パイプ20は、管本体の周壁に多数のストレーナ孔24が分散形成され、尖鋭化した先端部26は、相対向する2方向から押し潰すことで刃状にシャープに閉合した構造である。典型的には管本体は、長さ1.0〜1.5m、直径10〜20mmであり、その管本体の周壁に形成する多数のストレーナ孔24は、直径2〜6mmで、全周の3〜4方向に、5〜15cmの長さ方向間隔で穿設されているものである。打ち込み易くするため、前記のように先端部26を尖鋭化する。図2に示すように、両側から押し潰す加工をして偏平に閉合した構造とするのが安価に製造できるため好ましいが、コーン状の先端部材を別途製作し装着する構造でもよい。なお、防錆のために、鉄管の表面に亜鉛メッキ処理をなどを施しておくのが好ましい。   An example of the iron pipe used here is shown in FIG. A represents a plane, B represents a longitudinal section thereof, and C represents a cc section. The iron pipe 20 has a structure in which a large number of strainer holes 24 are dispersedly formed on the peripheral wall of the pipe body, and the sharpened tip portion 26 is sharply closed like a blade by being crushed from two opposite directions. Typically, the tube body has a length of 1.0 to 1.5 m and a diameter of 10 to 20 mm, and a large number of strainer holes 24 formed on the peripheral wall of the tube body have a diameter of 2 to 6 mm and a total circumference of 3 It is perforated in the length direction of 5 to 15 cm in the 4 directions. In order to facilitate driving, the tip portion 26 is sharpened as described above. As shown in FIG. 2, it is preferable that the structure is flattened by crushing from both sides because it can be manufactured at low cost, but a structure in which a cone-shaped tip member is separately manufactured and mounted may be used. In addition, it is preferable to galvanize the surface of the iron pipe for rust prevention.

実際の施工にあたっては、打ち込む鉄根パイプ20が小径で短尺であることから、運搬車両等が進入できないような山間地であっても、作業者が担いで搬入できる。鉄根パイプ20を施工地点に搬入し、ハンマーなどで直接地盤に打ち込む.その際、鉄根パイプ20を、例えば1地点当たり2〜6本ずつ、水平方向あるいはやや上向きから鉛直方向まで様々な方向に打ち込む。そして、地表に露出している各鉄根パイプの後端部同士を束ねて締結する。締結には、バンド状の結束金具22を用いてもよいが、ワイヤー(例えばステンレス線を撚ったワイヤー)や針金などで縛り付けてもよい。ワイヤーや針金の方が、鉄根パイプの本数や打ち込み角度など様々な状況の変化に容易に対応できる。   In actual construction, since the iron pipe 20 to be driven is small in diameter and short, an operator can carry it in even in a mountainous area where a transport vehicle or the like cannot enter. Bring the iron pipe 20 into the construction site and drive it directly into the ground with a hammer. At that time, for example, 2 to 6 iron pipes 20 are driven in various directions from the horizontal direction or slightly upward to the vertical direction. Then, the rear ends of the iron pipes exposed on the ground surface are bundled and fastened. For fastening, a band-shaped binding metal fitting 22 may be used, but may be bound with a wire (for example, a wire in which a stainless wire is twisted) or a wire. Wires and wires can more easily respond to changes in various situations such as the number of iron pipes and driving angle.

打設された複数の鉄根パイプのうち、打ち込み方向によっては表層に留まるものもあるが、あるものは1m厚程度の表層12と基盤岩10との間の滑り面14を貫通して基盤岩10に達する。その際、本発明は打ち込み方式なので、鉄根パイプ周辺の土層が緩むことがなく鉄根パイプの目詰まりも生じない。複数の鉄根パイプ20が後端部で結束されているので、表層に留まっていても表土の緊縛効果が発現し、滑り面を貫通して基盤岩内まで達すると杭効果が生じ、表層が滑り落ちるのを抑止する。また、鉄根パイプ20にはストレーナ加工が施されているので、表層崩壊の原因になる過剰な間隙水圧を抜き出し低減することができる。これらの効果によって、特に、根系層崩壊を防止することができる。なお、斜面の地下水の流れはパイプ流の場合も多く、鉄根パイプはいろいろな方向に多数打ち込めるので、過剰な地下水圧を抜く効果は高い。   Some of the installed steel pipes stay on the surface depending on the driving direction, but some of them penetrate the sliding surface 14 between the surface layer 12 and the basement rock 10 having a thickness of about 1 m, and the basement rock Reach 10 At this time, since the present invention is a driving method, the soil layer around the iron pipe is not loosened, and the iron pipe is not clogged. Since multiple iron pipes 20 are bound at the rear end, the topsoil bondage effect appears even if it stays on the surface layer, and when it reaches the basement rock through the sliding surface, the surface layer slides down Suppresses Further, since the iron pipe 20 is subjected to strainer processing, it is possible to extract and reduce excessive pore water pressure that causes surface layer collapse. By these effects, root system layer collapse can be particularly prevented. In addition, the flow of groundwater on the slope is often a pipe flow, and many iron root pipes can be driven in various directions, so the effect of removing excessive groundwater pressure is high.

なお、本発明で用いる鉄根パイプは、水平方向あるいはやや上向き方向から鉛直方向の間で任意の向きに打ち込まれるものであり、地下水を排水する従来技術とは異なり、単に地中間隙水圧を抜く機能を有するものである。従って、上記のような細径でも十分機能するということになる。   In addition, the iron pipe used in the present invention is driven in an arbitrary direction between the horizontal direction or a slightly upward direction and a vertical direction, and unlike the prior art that drains groundwater, it simply removes the underground pore water pressure. It has a function. Therefore, even the small diameter as described above functions sufficiently.

従って、本発明工法は、次のような特徴がある。
(1)この鉄根パイプは、急な斜面でも人力で持ち運べる長さと重量なので、人力の施工が可能であり、どのような狭い場所や、急斜面でも施工可能である。非常に簡便な対策工であるため、経済性にも優れている。また施工の際、鉄根パイプの打ち込みであるため、周辺の土層が緩まず目詰まりも生じない。
(2)鉄根パイプにはストレーナ加工が施されているため、表層崩壊の原因になる過剰な間隙水圧を排除できる。しかも、鉄根パイプはいろいろな方向に打ち込めるため、過剰な間隙水圧を抜く効果が大きい。
(3)鉄根パイプを基盤岩の部分まで滑り層を貫通して打ち込めるため、その杭効果によって表層の不安定な表土を根の引っ張り抵抗のように抑えることができる。
(4)植生をそのままにして、対策ができるため、斜面生態系を守ることができる。しかも、速効性がある。
(5)割れ目の無い基盤岩にも打ち込めるため、自然の根では効果が出ない根系層崩壊の問題も解決できる。
Therefore, this invention construction method has the following features.
(1) Since this iron pipe is long and heavy enough to be carried by manpower even on steep slopes, it can be constructed by manpower, and can be constructed in any narrow place or steep slope. Because it is a very simple countermeasure, it is also economical. In addition, since the iron pipe is driven during construction, the surrounding soil layer does not loosen and clogging does not occur.
(2) Since the iron pipe is subjected to strainer processing, excessive pore water pressure that causes surface layer collapse can be eliminated. Moreover, since the iron pipe can be driven in various directions, the effect of removing excessive pore water pressure is great.
(3) Since the iron pipe is driven through the sliding layer to the base rock, the pile effect can suppress the unstable surface soil of the surface layer like the tensile resistance of the root.
(4) Since the vegetation can be kept as it is, measures can be taken to protect the slope ecosystem. Moreover, it has a rapid effect.
(5) Since it can also be driven into unbroken basement rocks, it can solve the problem of root system layer collapse, which is not effective with natural roots.

以上のことから分かるように、本発明工法は、割れ目のある基盤岩の場合も、割れ目のない基盤岩の場合にも利用できる。割れ目のある基盤岩の場合には、樹木の根が割れ目に入り込んで杭効果を発揮するが、植生が疎らな場合には鉄根パイプを打ち込むことで植生が密になるまでの間、植生の補完となる。割れ目のない基盤岩の場合には、鉄根パイプが基盤岩に打ち込まれて杭効果を発揮するため、それによって根系層崩壊を防止できる。   As can be seen from the above, the method of the present invention can be used for both base rocks with cracks and base rocks without cracks. In the case of basement rocks with cracks, the roots of the trees enter the cracks and exert a pile effect, but when the vegetation is sparse, it is supplemented with vegetation until the vegetation becomes dense by driving iron pipes It becomes. In the case of unbroken basement rocks, the iron root pipe is driven into the basement rock to exert a pile effect, thereby preventing root system collapse.

10 基盤岩
12 表層
14 滑り面
16 根系
20 鉄根パイプ
22 結束金具
24 ストレーナ孔
26 尖鋭化した先端部
DESCRIPTION OF SYMBOLS 10 Basement rock 12 Surface layer 14 Sliding surface 16 Root system 20 Iron pipe 22 Bundling bracket 24 Strainer hole 26 Sharpened tip

Claims (3)

管本体の周壁に多数のストレーナ孔が分散形成され、先端を尖鋭化した構造の鉄根パイプを、斜面の複数地点で、各地点に付き複数本、互いに異なる方向に地表から打ち込み、地上に露出している鉄根パイプの後端部同士を束ねて締結することを特徴とする斜面の表層崩壊防止工法。   A number of strainer holes are distributed and formed on the peripheral wall of the pipe body, and steel pipes with a sharpened tip are driven from the surface of the ground at multiple points on the slope in different directions and exposed to the ground. A method for preventing the collapse of the surface layer of a slope, which is characterized by bundling and fastening the rear ends of a steel pipe. 使用する鉄根パイプは、長さ1.0〜1.5m、直径10〜20mmであり、その管本体周壁に形成する多数のストレーナ孔は、直径2〜6mmで、全周の3〜4方向に、5〜15cmの長さ方向間隔で、穿設されている請求項1記載の斜面の表層崩壊防止工法。   The iron pipe to be used has a length of 1.0 to 1.5 m and a diameter of 10 to 20 mm, and a number of strainer holes formed in the peripheral wall of the pipe body have a diameter of 2 to 6 mm and 3 to 4 directions on the entire circumference. The method for preventing surface collapse of a slope according to claim 1, wherein the method is perforated at intervals of 5 to 15 cm in the longitudinal direction. 1地点当たり2〜6本ずつ鉄根パイプを地表から打ち込み、地上に露出している鉄根パイプの後端部同士を束ねてワイヤーで縛り付けることで締結する請求項1又は2記載の斜面の表層崩壊防止工法。   The surface layer of the slope according to claim 1 or 2, wherein 2 to 6 iron pipes are driven from the ground surface at one point, and the rear ends of the iron pipes exposed on the ground are tied together and tied together with a wire. Collapse prevention method.
JP2010238958A 2010-10-25 2010-10-25 Construction method for preventing surface failure of slope Pending JP2012092520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238958A JP2012092520A (en) 2010-10-25 2010-10-25 Construction method for preventing surface failure of slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238958A JP2012092520A (en) 2010-10-25 2010-10-25 Construction method for preventing surface failure of slope

Publications (1)

Publication Number Publication Date
JP2012092520A true JP2012092520A (en) 2012-05-17

Family

ID=46386165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238958A Pending JP2012092520A (en) 2010-10-25 2010-10-25 Construction method for preventing surface failure of slope

Country Status (1)

Country Link
JP (1) JP2012092520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201005A (en) * 2015-10-16 2015-12-30 青岛新世纪太阳能科技有限公司 Root pile
JP2017110362A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Ground stabilization structure and ground stabilization method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111704A (en) * 1980-02-02 1981-09-03 Hirose Kozai Sangyo Net like pile structure
JP2006188940A (en) * 2004-08-06 2006-07-20 Ohta Geo-Research Co Ltd Earthquake resistant structure
JP2008214854A (en) * 2007-02-28 2008-09-18 Tsc:Kk Apparatus for driving steel pipe and method of driving steel pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111704A (en) * 1980-02-02 1981-09-03 Hirose Kozai Sangyo Net like pile structure
JP2006188940A (en) * 2004-08-06 2006-07-20 Ohta Geo-Research Co Ltd Earthquake resistant structure
JP2008214854A (en) * 2007-02-28 2008-09-18 Tsc:Kk Apparatus for driving steel pipe and method of driving steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201005A (en) * 2015-10-16 2015-12-30 青岛新世纪太阳能科技有限公司 Root pile
JP2017110362A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Ground stabilization structure and ground stabilization method

Similar Documents

Publication Publication Date Title
Bartley et al. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes
Mishra et al. Soil and water conservation engineering
SE539287C2 (en) Machine for sawing ditches and laying pipes / cables
Addisie et al. Gully head retreat in the sub‐humid Ethiopian highlands: the Ene‐Chilala catchment
DE112015000180T5 (en) mining methods
dewolfe et al. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado
Yang et al. Environmental impacts caused by phosphate mining and ecological restoration: a case history in Kunming, China
CN111248053A (en) Ecological restoration method for high and steep step slope of open-pit quarry
Aristeidis et al. Evaluation of the post-fire erosion and flood control works in the area of Cassandra (Chalkidiki, North Greece)
JP2012092520A (en) Construction method for preventing surface failure of slope
Sarkar et al. Varunavat landslide disaster in Uttarkashi, Garhwal Himalaya, India
Norton et al. Native American methods for conservation and restoration of semiarid ephemeral streams
Beck et al. Geotechnical and environmental applications of karst geology and hydrology
Wohlgemuth et al. Rehabilitation strategies after fire: the California, USA experience
Mickovski et al. Coastal slope instability in contrasting geo-environmental conditions
Porter et al. Natural hazard and risk management for South American pipelines
Ashmole et al. Reclamation and environmental management in dimension stone mining
Davidson et al. A levee breach induced by internal erosion in Western Australia
Au et al. Environmental factors in triggering slope failures
Umashankar et al. Rockfall Mitigation Works for a Newly Formed Road by Cutting into Hard Rock
Neary et al. Rock gabion, rock armoring, and culvert treatments contributing to and reducing erosion during post-fire flooding–Schultz Fire 2010
AU2017101662A4 (en) Root inhibitor system
Humphreys et al. Risk assessment and management of unstable slopes on the national forest estate in Scotland
Ladenhauf et al. Earthquake in Papua New Guinea Results in New Concept for Securing Pipelines in Ridgeline Right-of-Way: The Micropile Contiguous Wall
Pradel Progressive failure reactivation of La Conchita landslide in 2005

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130717